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Abstract Automatic glasses detection on real face images
is a challenging problem due to different appearance varia-
tions. Nevertheless, glasses detection on face images has not
been thoroughly investigated. In this paper, an innovative
algorithm for automatic glasses detection based on Robust
Local Binary Pattern and robust alignment is proposed.
Firstly, images are preprocessed and normalized in order to
deal with scale and rotation. Secondly, eye glasses region
is detected considering that the nosepiece of the glasses is
usually placed at the same level as the center of the eyes in
both height and width. Thirdly, Robust Local Binary Pattern
is built to describe the eyes region, and finally, support vector
machine is used to classify the LBP features. This algorithm
can be applied as the first step of a glasses removal algorithm
due to its robustness and speed. The proposed algorithm has
been tested over the Labeled Faces in the Wild database show-
ing a 98.65 % recognition rate. Influences of the resolution,
the alignment of the normalized images and the number of
divisions in the LBP operator are also investigated.
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1 Introduction

Automatic face recognition is an attractive research issue due
to its great potential in real-life applications. However, robust
face recognition is not a trivial task and occlusions (like wear-
ing glasses) can decrease the performance of an automatic
face recognition system. In some cases, certain glasses can
identify a person or in other cases, act like soft biometrics for
person identification (matrix glasses, U2 glasses). Automatic
gender recognition suffers from the same problems as face
recognition. However, there is certain appearance difference
between men glasses and women glasses, which could help
to distinguish a person’s gender. Even, glasses appearance
between a young person and an older one could improve an
automatic age classification algorithm rather than decrease
its performance. Many security systems require the use of
glasses, their use is mandatory, and intelligent advertising
and marketing could also take advantage of this. Last but not
least, glasses can provide valuable information. For instance,
glasses could reveal the activity a person is doing at a given
time (safety glasses, sport glasses, snow glasses, sunglasses,
underwater glasses, diving mask, reading glasses, eyeglasses,
Google glasses, etc).

Automatic recognition of eyeglasses on facial images
needs a thorough study. Different types of glasses on real
images can be seen in Fig. 1. The inherent appearance
variation on glasses frames, which are even not clearly distin-
guishable (Fig. 1d), makes it a challenging problem. Further
challenges are the different types of glasses: sport glasses
(Fig. (1a, b, h) or sunglasses (Fig. 1g, i), different sizes
(Fig. 1e, f), reflections and glare (Fig. 1c) or rotation of the
face image (Fig. 1d).

123



A. Fernández et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 Glasses can convey information about the user’s context. Dif-
ferent variations in glasses appearance can be seen. These images are
obtained from LFW database

Summarizing, the main areas that can benefit from an
automatic eyeglasses recognition on facial images would
be the use of safety glasses in security systems, intelli-
gent advertising and marketing, soft biometrics for person
identification, face recognition, gender classification, age
classification, hints of activity detection based on type of
glasses, Google glasses recognition and first step of auto-
matic glasses removal.

The main contributions are summarized as follows. Firstly,
the problem of eyeglasses detection needs an up-to-date
review. Main studies on glasses detection are summarized
and analyzed. Secondly, a LBP-based algorithm is developed
to cope with the glasses detection problem and a simple yet
robust algorithm is proposed in order to deal with face align-
ment normalization. Lastly, (1) influences of resolution of
the image, (2) alignment of faces, (3) number of divisions of
the LBP operator and (4) a performance comparison between
LBP and Robust LBP are analyzed.

2 Related work

2.1 Glasses detection, extraction and removal

Facial image analysis has stimulated increasing interest,
including tasks as face detection, face recognition, facial

expression analysis, demographic classification and other
related topics. Although there are less research papers focus-
ing on glasses detection, there are some studies in this regard
(a short description of the results of main studies on glasses
detection can be seen in Table 1).

In [1], six measures for the likelihood of glasses in dif-
ferent regions for detecting the presence of glasses are
introduced. Furthermore, a combination of them turns out
to consistently improve the performance of the individual
measures. Experiments showed that measure from the region
containing the nosepiece of the glasses is the most power-
ful criterion for glasses recognition. In another work [3],
glasses detection and extraction are proposed. Detection is
carried out using edge information within a small area defined
between the eyes. Detection is similar to the method proposed
in [1]. As mentioned in [1], the nosepiece is one of the most
common features existing on all of the glasses. Extraction
is achieved with a deformable contour, combining edge and
geometrical features. In [11], glasses detection and removal
for face recognition using Bayes rules are proposed. Experi-
ments within a face image database showed that this method
is effective and has a better performance than that proposed
in [3]. Extraction is realized using Bayes rules that incorpo-
rate the features around each pixel and the prior knowledge
on glasses features that were learnt and stored in a database.
Glasses removal is achieved with an adaptive median filter
conducted in the points classified as glasses.

A method that makes use of the 3D features obtained by a
trinocular stereo vision system is proposed in [6] to perform
glasses frame detection with 3D Hough transform. It is based
on the fact that the rims of a pair of glasses lie on the same
plane in 3D space. This method requires more cameras and
computational time than other 2D image-based methods. In
[7], a framework for classifying facial attributes is presented.
Similarity is measured by the reconstruction error motivated
by the Eigenface- based methods, and thus, this paper extends
the Eigenface method by representing each attribute by using
a ‘facial attribute-specific subspace (FASS)’.

Wavelet feature-based boosting methods can also be
applied to glasses recognition [5]. This method was orig-
inated from the work on face detection [9]. The glasses
detectors use a variation of the original boosting algorithm
called real AdaBoost [12]. Authors suggest that the nose-
piece of the glasses frame is an important clue for glasses
detection. An algorithm for eyeglasses detection, localiza-
tion and removal is proposed in [8]. An eye region detector,
trained offline, is used to approximately locate the region
of the eyes and thus the region of the eyeglasses. The loca-
tion of the eyeglasses pattern is defined as twice as big as
the detected eye area. Afterward, eyeglasses localization is
done with a Markov chain Monte Carlo (MCMC) method. A
Delaunay triangulation- based method is proposed to locate
glasses from a front-up face image [13]. They decompose
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Table 1 Results of main studies on glasses detection from face images

Jiang et al. [1] Forerunner algorithm on detection of glasses
in facial images. Results are reported
similar in [2]

Dantcheva et al. [2] Train: FERET database. Test performed on a
testing set of images on FERET database.
Detection rate: 87.7 %. True-positive rate:
7.17 %. False- positive rate: 5.66 %

Jing et al. [3] Tested on a set of 419 people, 151 wearing
glasses under different imaging conditions.
Detection rate: 99.52 %, falsely detecting
the presence of glasses in two facial images

Vaquero et al. [4] 1044 internet images were used for training
(308 sunglasses, 318 eyeglasses, 418 no
glasses). Tested on a surveillance video.
Sunglasses (precision: 85 %, recall: 35 %),
eyeglasses (precision: 90 %, recall: 8.9 %),
no glasses (precision: 77 %, recall: 99.5 %)

Wu et al. [5] 3000 images (1500 wearing glasses and 1500
with no glasses) obtained from FERET
database and world wide web were used for
fivefold cross-validation. Best results were
obtained using gabor boost features.
Accuracy: 98.9 % (98.1 % with glasses and
99.7 % without glasses). They implemented
an automatic glasses detection system
whose input is real-life photographs and the
overall correctness is 94.0 %

Wu et al. [6] 513 facial images of 19 people wearing three
kinds of glasses and nine kinds of pose were
used for training. Detection rate: ≈90 %

Shan et al. [7] 100 face images from Bern face database
were used for training: 50 examples from
five subjects wearing glasses were used to
learn glasses-FASS, and 50 examples from
five subjects no wearing glasses were used
to learn non-glasses-FASS. Tested on 200
images from Bern face database with an
average correct rate of 77 %

Wu et al. [8] They train a detector for the eye region based
on the face detector [9] with 12710 samples.
They tested the detector with 1386 face
images. Detection rate: 96 % and false
alarm at 10−4

Heo et al. [10] Correct detection rate was 86.6 % for the
subjects wearing eyeglasses. For the face
images with no eyeglasses, 97.1 % true
negative accuracy was achieved. False-
positive and false-negative errors were 2.9
and 13.4 %, respectively. The database used
in this experiment is comprised of thermal
images from the database developed by the
National Institute of Standards and
Technology (NIST) and Equinox
Corporation

the face shape using the Delaunay triangulation. In the first
step of the algorithm, they perform a binarization of the face.
This method can have some problems if glass frames have

very low contrast. In addition, they do not obtain very good
results if the glasses do not cover eyes. Data-fused image
composed of visual and thermal ones is used in [10] to pro-
duce an integrated image for eyeglass removal in order to
perform a robust face recognition. The eyeglass region in
thermal face images can be represented by two ellipses.

A method for removing glasses from a human frontal
face image is proposed [14]. Glasses region is automatically
extracted using color and shape information. They perform
glasses removal, but not glasses detection. Firstly, glasses
region is automatically extracted using color and shape infor-
mation, and then, a natural looking facial image without
glasses is generated by means of recursive error compen-
sation using PCA reconstruction. They carried out some
experiments, and the recognition performance is improved
by using glasses removal methods. In [4], authors trained
nine Viola and Jones detectors, one for each facial attribute.
Glasses type is performed. They distinguish three types: sun-
glasses, eyeglasses and the absence of them.

Soft biometrics (eyeglasses, for example) can be used
for person identification [2]. They implement an algorithm
deduced from [1], which performs edge detection on a pre-
processed gray-level image.

2.2 Face alignment and normalization

Alignment step of a face recognition algorithm is often
ignored or not detailed. In some cases, the alignment is
done manually, where the positions of the eyes are manually
labeled. In other cases, this step is ignored, under the assump-
tion that the face detection algorithm will perform some
kind of alignment. Many recognition algorithms depend on
an accurate positioning of the face region into a canonical
pose before the recognition step takes place. This alignment
process can lead to improve recognition accuracy on real
images, even for algorithms robust to misalignments [16].
In [17], authors propose a method for aligning images using
poorly aligned examples of a class with no additional data
generating a alignment machine for that object class. In [18],
authors use a combination of unsupervised joint alignment
with unsupervised feature learning in order to align images.

Some studies are done in relation to the alignment of the
images. It was found that automatic alignment methods did
not increase gender classification rate, while manual align-
ment increased the classification rate a little [19]. Therefore,
they concluded that automatic alignment needs improv-
ing. This statement, valid at that time, should be reviewed,
because automatic alignment methods have improved in both
accuracy and robustness.

A face normalization algorithm based on eyes detection
is proposed [20]. The algorithm detects the position of the
pupils in the face image. After that, the algorithm normal-
izes the orientation, the scale and the gray scale of the face
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image. Face region is adjusted based on the position of the
mouth. This algorithm has the drawback it needs to locate the
position of the pupils, and thereby, glasses and partial occlu-
sions can alter the result of the normalization step. Another
face normalization algorithm is proposed [21]. The eyes are
located manually in the faces, and faces are rotated and
aligned in the images so that each face has eyes in the same
location. After the normalization step, images are scaled to
a fixed size.

In this work, a face alignment and normalization algo-
rithm is proposed. In order to get the angle of misalignment,
a regression line is calculated based on four points of the
eyes. There are some automatic facial feature points detec-
tor [22], [23], but the detector of facial landmarks used in
this paper [15] takes advantage of relationship among some
facial features of the face (eyes, nose and mouth) in terms of
appearance and structure distribution. In this way, this algo-
rithm can estimate the position of the eyes under occlusion
(like wearing glasses or sunglasses).

3 Methodology

In Fig. 2, the main steps of the algorithm, which are dis-
cussed below, can be seen. First of all, this work starts with
location of the face using the algorithm by Viola and Jones
[9]. After the face is located in the image, some preprocess-
ing is necessary in order to deal with pose, rotation, scale and
inaccuracies of the located face. A face normalization algo-
rithm is applied to get the region around the eyes. Afterward,
LBP and Robust LBP are applied in order to get the feature
sets. Finally, support vector machine (SVM) is applied on the
classification step. SVM is applied to classify the extracted
feature histograms over the normalized eyes glasses regions.
The output of the SVM classifier is a two-class classification
problem, i.e., glasses vs no glasses. Therefore, different type
of glasses (sport glasses, sunglasses, safety glasses, reading
glasses, etc.) belong to the same category. SVMs are a useful
technique for data classification and have been proven useful
in a number of pattern recognition tasks including face and
facial recognition [24]. LIBSVM was used for the training
and testing of SVMs [25].

3.1 Face alignment and normalization

3.1.1 Landmarks relationship to estimate eyes position

When the shape or intensity characteristics of the eyes cannot
be reliably measured due to occlusion (like wearing glasses or
sunglasses), the context characteristics are very useful for eye
localization. This is because eyes in the face context usually
have stable relationship with other facial features in terms of
both appearance and structure distribution [26]. In this way,

(a) (b) (c) (d)

(e)

(a) (b) (c) (d)

(e)

(a) (b) (c) (d)

(e)

(a) (b) (c) (d)

(e)

(a) (b) (c) (d)

(e)

Fig. 2 Pipeline of the algorithm for glasses detection on facial images:
a input image obtained from LFW database, b landmarks detection and
regression line, c rotated face, d normalized eye glasses region and e
Local Binary Pattern
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(a) (b)

(c) (d)

Fig. 3 Definition of a underlying graph for the landmark configuration
and b the components of the detector. Sample images c and d where
the estimated landmark positions have the mean normalized deviation
equal to 10 %. The green and red points denote the manually annotated
and estimated landmarks, respectively. These images are obtained from
[15] (color figure online)

a detector of facial landmarks learned by structured output
SVM [15] has been applied in order to detect the positions
of the main points of the face and hence of the eyes.

The input of the classifier is a still image of fixed size con-
taining a single face. The output of the classifier is estimated
locations of a set of facial landmarks. A graph constraint
with eight components is taken into account see Fig. 3a.
Each facial feature is computed on a rectangular window
see Fig. 3b. The accuracy of the classifier has been tested
on LFW database [27]. The detector estimates around 97 %
of the images with the mean normalized deviation between
the estimated and the ground truth positions <10 %. In order
to clarify this measure, two sample images (see Fig. 3c, d)
are shown, where the estimated landmark positions have the
mean normalized deviation equal to 10 %.

3.1.2 Procedure

In order to perform a robust, fully automatic ROI normaliza-
tion a new algorithm is proposed in Algorithm 1. The input
of the normalization algorithm is a still image. This image
is resized to a certain size. Different tests are performed in
order to know how this size affects the recognition rate (see
Sect. 4). This algorithm is based on [21] but fully automatic,
where:

• eyes_distance_r is the ratio of the distance from left outer
eye to right outer eye in the resized image.

• eye_line_r is the ratio of the height above and below eyes.
• size is the size of the resized face image

– size.w is the width of the resized image
– size.h is the height of the resized image

Main steps are summarized as follows. Eight facial land-
marks are obtained [15]. In order to get the angle of
misalignment, a regression line is calculated based on four
points: the canthi of the left and right eye, i.e., left inner eye,
left outer eye, right inner eye and right outer eye (see Fig. 4).
After that, faces are rotated and aligned in the images so that
eyes are located in the same coordinates for all the images.
The area around the eyes is calculated in source image. Once
the coordinates for the corners of the eye glasses region in
the rotated image are calculated, the resulting area is cropped
from the rotated image.

Algorithm 1 Face ROI normalization
eyes_distance_r, eye_line_r, size
1: Eight facial landmarks are located. Linear regression is calculated

based on the four landmarks of the eyes. Angle α of misalignment
is calculated, and image is rotated based on α in order to align the
source image

2: Euclidean distance d0 between the eyes is calculated in the rotated
image

3: Distance of the eyes in the resized image is calculated by dt =
si ze.w ∗ eyes_distance_r

4: Ratio r is calculated by r = d0/dt
5: Width w0 and height h0 of the area around the eyes are calculated

by w0 = r ∗ si ze.w and h0 = r ∗ si ze.h
6: Coordinates for the corners of the face area in the rotated image

are calculated by xl = xe − w0/2, yt = ye − h0/eye_line_r ,
xr = xl + w0 and yb = yt + h0, where xl is x-coordinate of the left
border, xe is x-coordinate of the point in the halfway between the
eyes, yt is y-coordinate of the top border, ye is y-coordinate of the
eyes, xr is x-coordinate of the right border, and yb is y-coordinate
of the bottom border. This RO I is cropped from the image

7: return RO I

3.2 Local Binary Pattern

The Local Binary Pattern operator is a type of feature used for
classification. It has been found to be a powerful feature for
texture classification. It was introduced in 1996 as a means
of summarizing local gray-level structure [28]. The operator
takes a local neighborhood around each pixel, thresholds the
pixels of the neighborhood at the value of the central pixel and
uses the resulting binary-valued image patch as a local image
descriptor. It was originally defined for 3×3 neighborhoods,
giving eight bit codes based on the eight pixels around the
central one. Formally, the LBP operator takes the form:
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Fig. 4 Linear regression based
on four landmarks of the eyes

LBP (xc, yc) =
7∑

p=0

2ps(gp − gc) (1)

where in this case, p runs over the eight neighbors of the
central pixel c, gc and gp are the gray-level values at c and
p and

s(x) =
{

1, if x ≥ 0
0, otherwise

(2)

The LBP encoding process is illustrated in Fig. 5. The
operator was extended to use neighborhoods of different sizes
[29], thus making it feasible to deal with textures at different
scales. This is denoted by (P, R) where P represents the
number of sampling points and R represents the radius of the
neighborhood. When the sampling points do not fall at integer
positions, the intensity values are bilinearly interpolated. See
Fig. 6 for an example of the circular (8, 2) neighborhood. This
implementation is called circular LBP (LBPP,R):

LBPP,R (xc, yc) =
P−1∑

p=0

2ps(gp − gc) (3)

Another extension to the original operator [29] defined
the so-called uniform patterns: An LBP is ‘uniform’ if it
contains at most two bitwise transitions from 0 to 1 or vice
versa when viewed as a circular bit string. For example,
00000000, 00011110 and 10000011 are uniform patterns.
Uniformity is an important concept in the LBP methodology,
representing primitive structural information such as edges
and corners. Although only 58 of the 256 8-bit patterns are
uniform, nearly 90 % of all observed image neighborhoods
are uniform [29]. The following notation for the uniform
LBP operator is used: LBPu2

P,R . Because the gray value of
the central pixel is used as threshold, LBP is sensitive to
noise, especially in the near-uniform image regions. Another
demerit of LBP is that many different structural patterns may
have the same LBP code. In order to enhance the discrimina-
tive capability of the local structure, Completed LBP (CLBP)

6

7 2

1 1 0

1

1 0 03

1
Binary: 11010011Threshold

Decimal: 211
4

5 9 1

4

Fig. 5 The basic LBP operator

Fig. 6 The circular (8, 2) neighborhood. The pixel values are bilinearly
interpolated whenever the sampling point is not in the center of a pixel

was proposed [30]. Although CLBP solves some confusion
of different patterns, not all of these patterns can be differ-
entiated perfectly. Besides, CLBP is sensitive to noise since
the value of a pixel is still used as a threshold directly.

In order to solve these difficulties, Completed Robust
Local Binary Pattern (CRLBP) was proposed [31]. This
descriptor is used to extract the region glasses information.
Firstly, Average Local Gray Level (ALG) is calculated as
follows:

ALG =
∑8

i=1 gi + g

9
(4)

where g represents the gray value of the center pixel and gi

denotes the gray value of the neighbor pixel. ALG represents
the average gray level of local texture, which is obviously
more robust to noise than the gray value of the central pixel.
ALG ignores the specific value of an individual pixel, while
sometimes the specific information of the central pixel is
needed. To make a balance between anti-noise and informa-
tion of individual pixel, a Weighted Local Gray Level (WLG)
is defined as follows:

WLG =
∑8

i=1 gi + αg

8 + α
(5)
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where α is a parameter set by user. Now the RLBP can be
calculated as follows:

RLBPP,R =
P−1∑

p=0

2ps(gp − WLGc) (6)

That is the same as:

RLBPP,R =
P−1∑

p=0

2ps

(
gp −

∑8
i=1 gi + αgc

8 + α

)
(7)

After labeling an image with the different LBP operators,
a histogram of the labeled image fl(x, y) can be defined as:

Hi =
∑

x,y

I { fl(x, y) = i}, i = 0, . . . , n − 1 (8)

where n is the number of different labels produced by the
LBP operator and:

I {A} =
{

1, if A = true
0, otherwise

(9)

For efficient face representation, feature extracted should
retain also spatial information. Hence, the facial image is
divided into m regions {R0, . . . , Rm−1}. In this way, the basic
histogram defined above can be extended into a spatially
enhanced histogram [32], which encodes both the appear-
ance and the spatial relations of facial regions. The spatially
enhanced histogram is defined as:

Hi, j =
∑

x,y

I { fl(x, y) = i}I {(x, y) ∈ R j } (10)

where i = 0, . . . , n − 1, j = 0, . . . , m − 1. The histogram
has a description of the normalized eye glasses region on
three different levels of locality: The labels for the histogram
contain information about the patterns on a pixel level, the
labels are summed over a small region to produce information
on a regional level, and the regional histograms are concate-
nated to build a global description [32]. In conclusion, the
extracted feature histogram represents the local texture and
global shape of the normalized eye glasses region.

4 Results

A series of experiments are conducted on LFW database [27].
LFW database is a database originally created to study the
problem of unconstrained face recognition, which contains
13,233 face images of 5749 distinct subjects collected from
the web. This database has also recently been used as bench-
mark for another attribute recognition algorithms [33], [34].

In this paper, the use of this database as benchmark for glasses
recognition in real images is carried out. Three thousand face
images (1500 wearing glasses, 1500 not wearing glasses) are
considered in the experiment; see Fig. 1 for some examples.
All experimental results were obtained using the commonly
used fivefold cross-validation in order to use standardized
practices [33].

In order to get a robust and computationally lightweight
(efficient) algorithm, a good trade-off between recognition
performance and feature vector length should be addressed.
There are some parameters that can be chosen to optimize this
algorithm: LBP operator, radius of the operator, number of
neighbors, multiresolution analysis and number of divisions.

Uniform patterns produces 59 labels for a neighborhood of
eight pixels and produces 256 labels for standard LBP. Addi-
tionally, for the 16 neighborhoods, the numbers are 243 and
65,536, respectively. In experiments with facial images [32],
it was found that 90.6 % of the patterns in the (8, 1) neighbor-
hood and 85.2 % of the patterns in the (8, 2) neighborhood
are uniform. Using uniform patterns instead of all the possi-
ble patterns has produced better recognition results in many
applications [35]. By varying sampling radius R, LBP of dif-
ferent resolutions can be obtained, and thus, multiresolution
analysis can be accomplished by combining the information
provided by multiple operators varying (P, R) [36]. How-
ever, for most of the existing work, LBP with a fixed radius
(R = 2) was applied. A small radius of the operator makes
the information encoded in the histogram more local [37].

Preliminary tests carried out in this work showed that
LBPu2

8,2 gives better results than other combinations. Mean
recognition rates achieved on these preliminary tests for the
LBP indicated that multiresolution analysis is not necessary
for glasses detection.

4.1 Resolution and size of the normalized region

In many practical video surveillance applications, the faces
acquired by outdoor cameras are of low resolution [38], so
tests are carried out in order to establish the minimum reso-
lution of the images. First of all, taken into account the set of
selected images from LFW database, the average size of the
facial regions is calculated to establish an approximate size of
the facial region in the algorithm. The average distance from
left outer eye to right outer eye is 63.86 pixels and a standard

deviation of 5.39 pixels

(
5.39 =

√∑
(63.86−x)2

(3000−1)

)
. In order

to decrease the amount of data to process and to avoid false-
positive recognition, eye glasses region is selected taken into
account only the eyes zone. A symmetrical region around the
center of the eyes is selected considering that the nosepiece
of the glasses is usually placed at the same level as the cen-
ter of the eyes in both height and width. The height of the
eye glasses region is heavily determined by the size of the
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Fig. 7 Normalized eye glasses
regions at different resolutions.
Original image corresponds
with Fig. 1e and normalized
eyes glasses region matches
with Fig. 13k

(a) 100 x 45 normalized

eye glasses region (max-

imum size)

(b) 80 x 36 normalized

eye glasses region

(c) 58 x 26 normalized

eye glasses region

38 x 17 normalized

eye glasses region

(f) 16 x 7 normalized

eye glasses region (min-

imum size)

(d)

glasses. The width is determined taking into account the dis-
tance between the eyes and the sides of the glasses. In these
experiments, the width of the normalized eye glasses region
is 122 % bigger than the height of the normalized region (see
Fig. 13 for some examples).

Since the average distance from left outer eye to right outer
eye is 63.86 pixels, the maximum tested width for the nor-
malized eye glasses region is 100 pixels and a height of 45
pixels. So, the size of the maximum normalized eye glasses
region is 4500 pixels. The minimum tested width is 16 pixels
and a height of seven pixels. So, the size of the minimum nor-
malized eye glasses region is 112 pixels. See Fig. 7 for some
examples. In Fig. 8, different tests are performed varying
from the maximum to the minimum size of the normalized
eye glasses region. It can be appreciated that the relationship
between the size of normalized eye glasses region and the
recognition rate follows a logarithmic distribution. This log-
arithmic distribution depends on the number of division of
the LBP operator. Two examples can be seen in Fig. 9. R2 =
{0.9880, 0.9875, 0.9826, 0.9812, 0.9897, 0.9880, 0.9876,

0.9891, 0.9915, 0.9898} correspond to the correlation coef-
ficients obtained from the different LBP series from Fig. 8.

4.2 Number of divisions of the LBP operator

Since the LBP histogram is calculated over each rectangu-
lar region of the image, using a small number of divisions
makes the feature vector shorter, but also means losing spa-
tial information. In order to encode the spatial information,
face image is usually divided into a grid of non-overlapping
regions {R0, . . . , Rm−1}. So, the length of the feature vector
becomes B = 59 × m using uniform patterns, in which m
is the number of regions. The mean recognition rates for the
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Fig. 8 Results varying from the maximum to the minimum size of the
normalized eye glasses region
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Fig. 9 Relationship between size of normalized eye glasses region and
recognition rate follows a logarithmic distribution. Two examples are
shown

LBPu2
8,2 as a function of the number of regions is plotted in

Figs. 10 and 11. When looking for the optimal number of
regions, it is observed the changes in the number of regions
may cause big difference in the length of the feature vector,
but the performance is not necessarily affected significantly.
However, it is noticed the divisions in the width of the image
have a greater impact on the performance than the divisions
in the height of the image. It makes sense due to the charac-
teristics of the normalized eyes region.
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Fig. 10 Recognition rates as a function of the number of regions. No
alignment of the images is carried out
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Fig. 11 Recognition rates as a function of the number of regions.
Alignment of the images is carried out

4.3 Alignment of the images

A performance comparison between alignment of the faces
and non alignment can be seen in Figs. 10 and 11. It can be
seen that the recognition rate improves if the alignment step
is performed, which is increased by an average of 1.55 %.

4.4 Varying α on the Robust Local Binary Pattern
algorithm

A set of experiments is carried out to select the optimal para-
meter α (see Fig. 12). RLBP introduced a parameter α in
order to make a balance of robustness and stability. It should
be pointed out that RLBP performs more stably under com-
plex illumination and viewpoint variations, since it extracts
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Fig. 12 LBP and RLBP comparison varying α between [1–30]

the gray-level information of both local neighbor set and
individual pixel. RLBP outperforms standard LBP.

5 Discussion

The proposed algorithm has been tested on real images over
the Labeled Faces in the Wild database achieving a 98.65 %
recognition rate (Fig. 13). Most algorithms are not tested with
real-life photographs. In [5], the overall correctness is 94.0 %
on real-life photographs. In [4], the system was tested on a
surveillance video with real conditions and the best results
are detecting eyeglasses with a precision of 90 % and a recall
of 8.9 %.

As far as authors know, this is the first time this database
is proposed for comparison of glasses detection. So, compar-
isons with our algorithm using this database are not possible.
But in order to see that the proposed method advances the
state of the art, the algorithm has also been tested on FERET
database [39] because some of the previous methods were
trained/tested with this database [2], [5]. A detection rate of
87.7 % was obtained by the algorithm proposed by Dantcheva
et al. [2]. Wu et al. [5] achieved a remarkable accuracy of
98.9 % using wavelet features. It is worth mentioning that the
algorithm proposed in [5] was trained/tested not only with
FERET database images but also with other World Wide Web
images. The results of our algorithm on FERET database
achieved 99.89 and 99.83 % recognition rate with RBLP and
LBP, respectively. Some examples can be seen in Figs. 14
and 15. In most images, the results are like the ones shown in
Fig. 14, that is, the normalized eye glasses region are calcu-
lated on FERET face images based on the accurately position
of the facial landmarks. In Fig. 15, even when some of the
four landmarks of the eyes are not accurately detected, the
normalized eye glasses region algorithm can operate robustly.
This fact can be appreciated even better in Fig. 15g, h. The
algorithm used for detecting the landmarks did not perform
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Fig. 13 Normalized eye glasses
region for all images from LFW
database contained in this work

(a) (b) (c) (d) (e)

(f) (g)

(h) (i) (j) (k) (l)

(m) (n)

well probably because these images exhibit a profile view
pose. Even so, due to the fact that the relationship among
facial features could approximate the location of the eyes,
the eye glasses normalization algorithm can operate quite
well. The failure case from FERET database can be seen in
Fig. 15i. So, in conclusion, the proposed glasses region nor-
malization algorithm has the capabilities of detecting glasses
region with different poses and under different conditions.

Furthermore, since a low-resolution face contains limited
information [38], several tests are performed in order to know
how the resolution of the face images affects recognition rate.
A total of forty-three different resolutions of the normalized
eye glasses region were studied in this research. The lower-
resolution images were down-sampled form original images.
It should also be noted that the relationship between the size
of normalized eye glasses region and the recognition rate
follows a logarithmic distribution. In other words, the LBP
features perform robustly and stably over a useful range of
low resolutions.

In case of alignment of the face images, an average
recognition rate of 95.19 % is achieved (average value from
Fig. 11). The best average performance is achieved with ten
division in the width (average performance of 96.40 %) and
seven division in the height (96.03 %). Additionally, if the
choice is not to align the faces, an average recognition rate
of 93.64 % is performed (average value from Fig. 10). The

(a) (b) (c)

(d) (e) (f)

Fig. 14 The normalized eye glasses region is calculated on FERET
face images based on the accurate position of the facial landmarks

best average performance is achieved with eight divisions in
the width (average performance of 95.54 %) and five divi-
sions in the height (average perfomance of 94.85 %). It can
therefore be concluded that a large number of divisions can
decrease the performance due to the nonalignment of the face
images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 15 The normalized eye glasses region algorithm can operate
robustly under different image conditions from FERET database. The
failure case is included (Fig. 15i)

A large number of LBP variations are designed to expand
the scope of application, which offers better performance as
well as improvement in the robustness of one or more aspects
of the original LBP [40]. In this study, Robust Local Binary
Pattern is applied and compared with Local Binary Pattern.
RLBP outperforms LBP for almost all values of α in the range
of (1–30). Small values of α did not increase the performance
compared with original Local Binary Pattern. However, for
bigger values, the performance is improved considerably. For
instance, varying α from 10 to 30, the average performance
can increase by 0,42 %.

Finally, it should also be noted that the relationship
between size of the normalized eye glasses region and the
execution time for both RLBP and LBP follows a linear dis-
tribution. R2 = {0.9993, 0.9981} values are obtained for
RLBP and LBP, respectively, see Fig. 16. LBP is in aver-
age, 2.31 % times faster than RLBP. All steps and processes
involved in the eye glasses region normalization operation
(face detection, landmark detection, face rotation, eye glasses
region cropping and resize to desired output) take an average
of 30 ms. All experiments in this study are carried out on a
2500-MHz Intel running Windows.

Fig. 16 Relationship between size of the normalized eye glasses region
and the execution time for both RLBP and LBP follows a liner distrib-
ution

6 Conclusions

Automatic glasses detection on real face images has many
potential uses in security systems, intelligent advertising and
marketing. In this study, glasses detection on real face images
has been investigated. A normalized eye glasses region is
proposed, and a comparison between the original LBP and
RLBP is carried out varying α parameter. Influences of the
resolution, the alignment of the normalized images and the
number of divisions in the LBP operator are also carried
out. Experimental results demonstrate that a simple yet effi-
cient algorithm can obtain impressive classification accuracy
achieving 98.65 % recognition rate on LFW database. This
algorithm has been tested on FERET database too, achieving
99.89 % recognition rate. Experimental results also show that
the proposed algorithm is robust under a wide range of light-
ing conditions, different poses and can deal with occlusion,
that are very common with sunglasses, for example. Even
when main features from the face are not correctly extracted,
the algorithm can estimate glasses region quite robust.

Normalized eye glasses region described in this study can
also be used to extract relevant information to deal with the
problem of eye closeness detection. Eyes closeness detection
from face images has wide applications like facial expres-
sion recognition, driver fatigue detection and so on. Closed
eyes in the Wild (CEW) database has recently been released
[41]. Future work includes the development of an architec-
ture able to face with both problems simultaneously using
LFW and CEW databases and new models and descrip-
tors in order to get better image features to achieve better
recognition performance without sacrificing simplicity. For
example, Completed Hybrid Local Binary Pattern (CHLBP)
has recently been proposed [42] to avoid tuning α parame-
ter. A new comprehensive database to benchmark glasses
detection and recognition will be proposed. To improve gen-
eralization, different databases will be combined and some
checks will be performed [43] in order to build a realistic
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and, as far as possible, not biased database. Different types
of glasses (sport glasses, sunglasses, safety glasses, reading
glasses, etc) will be included in this database in order to test
both detection and recognition.

Acknowledgments Authors are grateful to anonymous reviewers for
constructive feedback and insightful suggestions that greatly improved
this article.
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