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Abstract. We present a parametric groundness analysis whose input
and output are parameterized by a set of groundness parameters. The
result of the analysis can be instantiated for different uses of the pro-
gram. It can also be used to derive sufficient conditions for safely re-
moving groundness checks for built-in calls in the program. The para-
metric groundness analysis is obtained by generalizing a non-parametric
groundness analysis that uses the abstract domain Con. It is shown to be
as precise as the non-parametric groundness analysis for any possible val-
ues for the groundness parameters. Experimental results of a prototype
implementation of the parametric groundness analysis are given.
Keywords: Abstract Interpretation, Groundness Analysis, Logic pro-
grams

1 Introduction

In logic programming [28, 1], a real world problem is modeled as a set of axioms
and a general execution mechanism is used to solve the problem. While this
allows a problem to be solved in a natural and declarative manner, the general
execution mechanism incurs a performance penalty for most programs. This
motivated much research into semantic based analysis of logic programs [19].
Groundness analysis is one of the most important analyses for logic programs.
It provides answers to questions such as whether, at a program point, a variable
is definitely bound to a ground term - a term that contains no variables. This is
useful not only to an optimizing compiler but also to other program manipulation
tools. There have been many methods proposed for groundness analysis [34, 40,
21, 6, 13, 43, 16, 32, 16, 2, 3, 24, 9, 8, 41].

This paper presents a new groundness analysis whose input and output are
parameterized by a number of groundness parameters, hence called parametric
groundness analysis. These parameters represent groundness information that is
not available before analysis but can be provided after analysis. Providing such
information instantiates the result of analysis. Instantiability implies reusability.
A program module such as a library program can be analyzed once and the



result be instantiated for different uses of the program module. This improves
the efficiency of analysis. Instantiability also makes the new groundness analysis
amenable to program modifications since modules that are not changed need not
be re-analyzed. Groundness parameters in the input and the output of the new
groundness analysis makes it easier to derive a sufficient condition under which
groundness checks for built-in calls in the program can be safely removed.

The parametric groundness analysis is obtained by generalizing a ground-
ness analysis based on the abstract domain Con [40]. Con is the least precise
abstract domain for groundness analysis. The parametric groundness analysis is
thus less precise than a groundness analysis that uses a more precise abstract
domain namely Pos [32], Def [21] or EPos [23]. However, a Con-based groundness
analysis is much more efficient than groundness analyzers based on more precise
abstract domains. By generalizing a Con-based groundness analysis, we obtain
a parametric groundness analysis that is more efficient and scalable.

The parametric groundness analysis is performed by abstract interpreta-
tion [17, 18]. Abstract interpretation is a methodology for static program analysis
whereby a program analysis is viewed as the execution of the program over a non-
standard data domain. A number of frameworks have been brought about for
abstract interpretation of logic programs [35, 5, 6, 26, 27, 33, 37, 31]. An abstract
interpretation framework is an analysis engine that takes care of algorithmic
issues that are common to a class of analyses, allowing the designer of an anal-
ysis to focus on issues that are specific to the analysis. This greatly simplifies
the design and the presentation of a new analysis. The parametric groundness
analysis will be presented in the abstract interpretation framework in [29]. The
adaptation to other frameworks [35, 5, 6, 26, 27, 33, 37, 31] can be easily made.

The remainder of the paper is organized as follows. Section 2 gives motivation
for the parametric groundness analysis through an example. Section 3 gives ba-
sic notations and briefly describes the abstract interpretation framework in [29].
Section 4 reformulates a non-parametric groundness analysis that is generalized
in section 5 to obtain the new groundness analysis. Section 6 provides perfor-
mance results of a prototype implementation. In section 7, we compare our work
with related work. Section 8 concludes the paper. Proofs are omitted due to
space limit.

2 Motivation

In groundness analysis, we are interested in knowing which variables will be
definitely instantiated to ground terms and which variables are not when the
execution of the program reaches a program point. We use g and u to represent
these two groundness modes of a variable. Let MO

def
= {g, u} and / be defined as

g/g, g/u and u/u. 〈MO, /〉 is a complete lattice with infimum g and supremum u.
Let ∇ and 4 be the least upper bound and the greatest lower bound operators
on 〈MO, /〉 respectively.

Example 1. Consider the program and the initial goal in Figure 1. Let©a : Q =⇒
©b : R denote that if Q holds at the program point©a then R holds whenever the
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←©a treesort(Li, Lo). ©b

treesort(Li, Lo)← list to tree(Li, T ), tree to list(T, Lo).

insert(I, void, tr(I, void, void)).
insert(I, tr(E, L, R), tr(E, Ln, R))←©c I < E, insert(I, L, Ln).
insert(I, tr(E, L, R), tr(E, L, Rn))←©d I >= E, insert(I, R, Rn).

insert list([H|L], T, Tn)← insert(H, T, Tm), insert list(L, Tm, Tn).
insert list([], T, T ).

list to tree(L, T )← insert list(L, void, T ).

tree to list(T, L)← tree to list aux(T, [], L).

tree to list aux(void, L, L).
tree to list aux(tr(I, L, R), O, N)←

tree to list aux(R, O, L1), tree to list aux(L, [I|L1], N).

Fig. 1. The treesort program from [20]. Circled letters are not part of the program but
locate program points.

execution reaches the program point©b . Let X 7→ m denote that the groundness
mode of X is m. A groundness analysis infers the following statements.

©a : (Li 7→ g) ∧ (Lo 7→ g) =⇒©c : (I 7→ g) ∧ (E 7→ g)
©a : (Li 7→ g) ∧ (Lo 7→ u) =⇒©c : (I 7→ g) ∧ (E 7→ g)
©a : (Li 7→ u) ∧ (Lo 7→ g) =⇒©c : (I 7→ u) ∧ (E 7→ u)
©a : (Li 7→ u) ∧ (Lo 7→ u) =⇒©c : (I 7→ u) ∧ (E 7→ u)

These statements must be inferred independently from each other. The ground-
ness of I and E at the point ©c depends on the groundness of Li and Lo at the
point ©a in such a way that I and E are ground at point ©c iff Li is ground at
point ©a . Thus, it will be desirable to have a groundness analysis which infers
the following statement

©a : (Li 7→ α) ∧ (Lo 7→ β) =⇒©c : (I 7→ α) ∧ (E 7→ α) (1)

where α and β are groundness parameters ranging over MO.

Such an analysis is parametric in the sense that its input ©a : (Li 7→ α) ∧
(Lo 7→ β) and its output ©c : (I 7→ α) ∧ (E 7→ α) are parameterized.

Statement (1) can be instantiated as follows. When the parameters α and
β are assigned groundness modes from MO, the groundness of Li and Lo at
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the point ©a and the groundness of I and E at the point ©c are obtained by
instantiation. The first statement inferred by the non-parametric groundness
analysis is obtained from (1) by assigning g to both α and β. Instantiations can
be made for four different assignments of groundness modes to α and β.

Statement (1) can also be used to infer a sufficient condition on α and β
under which the run-time check on the groundness of I and E in the built-in call
I < E at the point ©c can be safely removed. Specifically, if α is assigned g then
the run-time check can be safely removed. With a non-parametric groundness
analysis, one needs to analyze the program for four times to infer the sufficient
condition.

3 Preliminaries

Lattice Theory A poset is a tuple 〈A,v〉 where A is a set and v is a reflexive,
anti-symmetric and transitive relation on A. Let B ⊆ A and u ∈ A. u is an upper
bound of B if b v u for each b ∈ B. u is a least upper bound of B if u v u′ for
any upper bound u′ of B. The least upper bound of B, if exists, is unique and
denoted tB. Lower bounds and the greatest lower bound are defined dually. uB
denotes the greatest lower bound of B.

A complete lattice is a poset 〈A,v〉 such that tB and uB exist for any

B ⊆ A. A complete lattice is denoted 〈A,v,⊥,>,u,t〉 where ⊥ def
= t∅ and

> def
= u∅. Let 〈A,v,⊥,>,u,t〉 be a complete lattice and B ⊆ A. B is a Moore

family if > ∈ B and (x1 u x2) ∈ B for any x1 ∈ B and x2 ∈ B.
Let 〈A,vA〉 and 〈B,vB〉 be two posets. A function f : A 7→ B is monotonic

if f(a1) vB f(a2) for any a1 ∈ A and a2 ∈ A such that a1 vA a2. Let X ⊆ A. We

define f(X)
def
= {f(x) | x ∈ X}. We sometimes use Church’s lambda notation

for functions, so that a function f will be denoted λx.f(x).

Logic programming Let Σ be a set of function symbols, Π a set of predicate
symbols, V a denumerable set of variables and U ⊆ V. The set TΣ,U of terms over
Σ and U is the smallest set containing x in U and f(t1, · · · , tn) with f/n ∈ Σ,
n ≥ 0 and ti ∈ TΣ,U for 1 ≤ i ≤ n. The set AΠ,Σ,U of atoms over Π and
TΣ,U consists of p(t1, · · · , tn) with p/n ∈ Π, n ≥ 0 and ti ∈ TΣ,U for 1 ≤ i ≤
n. Let vars(O) denote the set of variables in O. A substitution is a mapping
θ : V 7→ TΣ,V such that {x ∈ V | x 6= θ(x)}, denoted dom(θ), is finite. The

range of θ is range(θ)
def
= ∪X∈dom(θ)vars(θ(X)). θ|\U is a substitution such

that (θ|\U)(x) = θ(x) for x ∈ U and (θ|\U)(x) = x for x 6∈ U . A substitution
θ : V 7→ TΣ,V is uniquely extended to a homomorphism θ : TΣ,V 7→ TΣ,V . A
renaming substitution is a bijective mapping from V to V. Let Sub be the set of
idempotent substitutions.

An equation is a formula l = r where either l, r ∈ TΣ,V or l, r ∈ AΠ,Σ,V .
The set of all equations is denoted Eqn. For a set of equations E ∈ ℘(Eqn), a
unifier of E is a substitution such that θ(l) = θ(r) for each (l = r) ∈ E. E is
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called unifiable if E has a unifier. A unifier θ of E is a most general unifier if
for any other unifier σ of E there is a substitution η such that σ = η ◦ θ where
◦ denotes function composition. All most general unifiers of E are equivalent
modulo renaming. Let mgu : ℘(Eqn) 7→ Sub∪{fail} return either a most general
unifier for E if E is unifiable or fail otherwise. mgu({l = r}) is also written as

mgu(l, r). Let θ ◦ fail
def
= fail and fail ◦ θ def

= fail for any θ ∈ Sub ∪ {fail}.
Let VI be the set of variables of interest. VI is usually the set of the variables

occurring in the program. We will use a fixed renaming substitution Ψ such that
Ψ(VI ) ∩VI = ∅. Ψ is called a tagging substitution in [36].

Abstract interpretation Two semantics of the program are involved in ab-
stract interpretation. One is called concrete and the other abstract. In a com-
positional definition of semantics, the concrete semantics is defined in terms of
a group of semantic functions fi : Di 7→ Ei and the abstract semantics is de-
fined in terms of another group of semantic function f ]

i : D]
i 7→ E]

i such that
each abstract semantic function f ]

i simulates its corresponding concrete seman-
tic function fi. To prove the correctness of the abstract semantics (the program
analysis) with respect to the concrete semantics is reduced to proving the cor-
rectness of each abstract semantic function f ]

i with respect to its corresponding
concrete semantic function fi. The latter can be done using the Moore fam-
ily approach [18] when concrete domains Di and Ei are complete lattices. Let
γD]

i
: D]

i 7→ Di and γE]
i

: E]
i 7→ Ei be monotonic functions such that γD]

i
(D]

i )

and γE]
i
(E]

i ) are Moore families. Then f ]
i : D]

i 7→ E]
i is correct with respect to

fi : Di 7→ Ei iff fi(γD]
i
(x])) vEi

γE]
i
(f ]

i (x])) for each x] ∈ D]
i .

Abstract interpretation framework The abstract interpretation framework
in [29] which we use to present the parametric groundness analysis is based on a
concrete semantics of logic programs that is defined in terms of two operators on
(℘(Sub),⊆). One is the set union ∪ and the other is UNIFY defined as follows.
Let a1, a2 ∈ AΠ,Σ,VI and Θ1, Θ2 ∈ ℘(Sub).

UNIFY (a1, Θ1, a2, Θ2) = {unify(a1, θ1, a2, θ2) 6= fail | θ1 ∈ Θ1 ∧ θ2 ∈ Θ2}

where unify(a1, θ1, a2, θ2)
def
= mgu(ρ(θ1(a1)), θ2(a2)) ◦ θ2 and ρ is a renaming

substitution satisfying (vars(θ1) ∪ vars(a1)) ∩ (vars(θ2) ∪ vars(a2)) = ∅.
Specializing the framework for a program analysis consists in designing an

abstract domain 〈ASub,v〉, a monotonic function γASub : ASub 7→ ℘(Sub) such
that γASub(ASub) is a Moore family and an abstract operator AUNIFY on
〈ASub,v〉 such that, for any a1, a2 ∈ AΠ,Σ,VI and any π1, π2 ∈ ASub,

UNIFY (a1, γASub(π1), a2, γASub(π2)) ⊆ γASub(AUNIFY (a1, π1, a2, π2))

since monotonicity of γASub implies that γASub(π1)∪γASub(π2) ⊆ γASub(π1tπ2)
where t is the least upper bound operator on 〈ASub,v〉. Elements of ASub
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are called abstract substitutions since they describe sets of substitutions. The
abstract operator AUNIFY is called abstract unification operator as its main
functionality is to simulate unification.

4 Non-Parametric Groundness Analysis

This section reformulates the groundness analysis presented in [40] that uses the
abstract domain for groundness proposed in [34]. The reformulated groundness
analysis will be used in section 5 to obtain the parametric groundness analysis.

4.1 Abstract Domain

A set of substitutions is described by associating each variable in VI with a
groundness mode from MO. The abstract domain is thus 〈Con,vCon〉 where

Con
def
= VI 7→ MO and vCon is the pointwise extension of /.1 (Con,vCon) is

a complete lattice. The set of substitutions described by an abstract substitu-
tion in Con is given by a function γCon : Con 7→ ℘(Sub) defined as follows.

γCon(θ])
def
= {θ | ∀X ∈ VI .((θ](X) = g)→ (vars(θ(X)) = ∅)}

γCon is a monotonic function from 〈Con,vCon〉 to 〈℘(Sub),⊆〉. A substitution θ
is said to satisfy an abstract substitution θ] if θ ∈ γCon(θ]).

The abstract unification operator for the non-parametric groundness analysis
also deals with groundness of renamed variables. Let VI †

def
= VI ∪ Ψ(VI ). We

define Con†
def
= VI † 7→ MO and γ†Con(θ

])
def
= {θ | ∀X ∈ VI †.((θ](X) = g) →

(vars(θ(X)) = ∅)}.

Lemma 1. γCon(Con) and γ†Con(Con†) are Moore families.

4.2 Abstract Unification

Algorithm 1 defines the abstract unification operator AUNIFY Con for the non-
parametric groundness analysis. Given θ], σ] ∈ Con and a1, a2 ∈ AΠ,Σ,VI , the
renaming substitution Ψ is first applied to a1 and θ] to obtain Ψ(a1) and Ψ(θ]),
and Ψ(θ]) and σ] are combined to obtain ζ] = Ψ(θ]) ∪ σ]. Note that ζ] ∈ Con†

and a substitution satisfying ζ] satisfies both Ψ(θ]) and σ]. E0 = mgu(Ψ(a1), a2)
is then computed. If E0 = fail then the algorithm returns {X 7→ g | X ∈
VI } - the infimum of 〈Con,vCon〉. Otherwise, the algorithm continues. η] =
DOWN Con(E0, ζ

]) is then computed. If a variable X occurs in t, (Y/t) in E0

and Y is ground in ζ] then X is ground in η]. Then β] = UPCon(η], E0) is
computed. If Y/t in E0 and all variables in t are ground in η] then Y is ground
in β]. The algorithm finally restricts β] to VI and returns the result.

1 An element f in Con is represented as {x ∈ VI | f(x) = g} in the literature.
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Algorithm 1 Let θ], σ] ∈ Con, a1, a2 ∈ AΠ,Σ,VI .

AUNIFY Con(a1, θ
], a2, σ

])
def
=

let E0 = mgu(Ψ(a1), a2) in
if E0 6= fail
then UPCon(E0,DOWN Con(E0, Ψ(θ]) ∪ σ]))|\VI
else {X 7→ g | X ∈ VI }

DOWN Con(E, ζ])
def
= λX.

{
ζ](X), if X 6∈ range(E)
ζ](X) 4 (4(Y/t)∈E∧X∈vars(t)ζ

](Y )), otherwise.

UPCon(E, η])
def
= λX.

{
η](X), if X 6∈ dom(E)
η](X) 4 (5Y ∈vars(E(X))ζ

](Y )), otherwise.

The following theorem states the correctness of the non-parametric ground-
ness analysis.

Theorem 1. For any θ], σ] ∈ Con and any a1, a2 ∈ AΠ,Σ,VI ,

UNIFY (a1, γCon(θ]), a2, γCon(σ])) ⊆ γCon(AUNIFY Con(a1, θ
], a2, σ

]))

5 Parametric Groundness Analysis

The input and the output of the parametric groundness analysis by necessity
contains a set Para of groundness parameters. They are instantiated after analy-
sis by an assignment of groundness modes to groundness parameters - a function
from Para to MO. Therefore, the parametric groundness analysis needs to prop-
agate groundness information encoded by groundness parameters in such a way
that instantiating its output by a groundness assignment κ obtains the same
groundness information as first instantiating its input by κ and then performing
the non-parametric groundness analysis.

5.1 Abstract Domain

We first consider how to describe groundness of a variable in the presence of
groundness parameters. In the non-parametric groundness analysis, groundness
of a variable is described by a groundness mode from MO. Propagation of ground-
ness reduces to computing the least upper bounds and greatest lower bounds of
groundness modes from MO. In the parametric groundness analysis, groundness
descriptions of a variable contain parameters and hence the least upper bound
and greatest lower bound of groundness descriptions cannot evaluated to an el-
ement of MO or an element of Para during analysis. We resolve this problem
by delaying the least upper bound and the greatest lower bound computations.
This requires that groundness of a variable be described by an expression formed
of elements of MO, elements of Para, the least upper bound operator ∇ and the
greatest lower bound operator 4. It can be shown that
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Observation 1 Any expression formed as above is equivalent to an expression
of the form ∇i∈I(4j∈Jiα

j
i ) where αj

i ∈ Para.

Expression ∇i∈I(4j∈Ji
αj

i ) is represented as a set S of subsets of ground-
ness parameters. Let S = {S1, S2, · · · , Sn}, Si = {α1

i , α
2
i , · · · , α

ki
i }. S stands for

51≤i≤n(41≤j≤ki
αj

i ) which is a function from (Para 7→ MO) to MO defined

as S(κ)
def
= 51≤i≤n(41≤j≤kiκ(α

j
i )). For any κ ∈ (Para 7→ MO), ∅(κ) = g

since 5∅ = g and {∅}(κ) = u as 5(4∅) = u. Thus, ∅ and {∅} represent
modes g and u respectively. There may be two parametric groundness descrip-
tions S1 and S2 such that S1(κ) = S2(κ) for any κ ∈ (Para 7→ MO). We fol-
low the normal practice in program analysis of identifying those descriptions
that have the same denotation. Define relations � and ∼= on ℘(℘(Para)) as

S1�S2
def
= ∀S1 ∈ S1.∃S2 ∈ S2.(S2 ⊆ S1) and S1

∼=S2
def
= (S1�S2) ∧ (S2�S1).

Then ∼= is an equivalence relation on ℘(℘(Para)). The domain of parametric
groundness descriptions is 〈PMO,�〉 where

PMO
def
= ℘(℘(Para))/∼=

� def
= �/∼=

〈PMO,�〉 is a complete lattice with its infimum being [∅]∼= and its supremum
being [{∅}]∼=. The least upper bound of [S1]∼= and [S2]∼= is [S1]∼= ⊕ [S2]∼= =
[S1 ∪ S2]∼= and the greatest lower bound of [S1]∼= and [S2]∼= is [S1]∼= ⊗ [S2]∼= =
[{S1 ∪ S2 | S1 ∈ S1 ∧ S2 ∈ S2}]∼=. A parametric groundness description [S]∼= ∈
PMO is a function from (Para 7→ MO) to MO defined as [S]∼=(κ)

def
= S(κ).

In other words, a parametric groundness description is instantiated to a non-
parametric groundness description - a groundness mode in MO by a groundness
assignment.

Let |X| be the number of elements in set X and size([S]∼=)
def
= ΣS∈S |S|. It

can be shown that

Lemma 2. The height of PMO is O(2|Para|) and size([S]∼=) is O(|Para|2|Para|)
for any [S]∼= ∈ PMO.

A parametric abstract substitution is a function that maps a variable in
VI to a groundness description in PMO. The domain of parametric abstract
substitutions is 〈PCon,vPCon〉 where PCon

def
= VI 7→ PMO and vPCon is the

pointwise extension of �. 〈PCon,vPCon〉 is a complete lattice with its infimum
being {x 7→ [∅]∼= | x ∈ VI }. A parametric abstract substitution θ] ∈ PCon can

be thought of as a function from (Para 7→ MO) to Con defined as θ](κ)
def
= λX ∈

VI .((θ](X))(κ)), that is, a parametric abstract substitution is instantiated to a
non-parametric abstract substitution by a groundness assignment. The meaning
of a parametric abstract substitution is given by γPCon : PCon 7→ ((Para 7→
MO) 7→ ℘(Sub)) defined as follows.

γPCon(θ])
def
= λκ.{θ | ∀x ∈ VI .((θ](x)(κ) = g)→ (vars(θ(x)) = ∅))}
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Example 2. Let Para = {α, β, γ} and VI = {x, y, z}. θ] = {x 7→ [{{α, γ}}]∼=, y 7→
[{{β, γ}}]∼=, z 7→ [{{α, γ}, {β, γ}}]∼=} is a parametric abstract substitution and
γPCon(θ]) is the following function from groundness assignments to sets of sub-
stitutions.
{α 7→ g, β 7→ g, γ 7→ g} 7→ {θ ∈ Sub | vars(θ(x)) = vars(θ(y)) = vars(θ(z)) = ∅}

...
{α 7→ u, β 7→ u, γ 7→ u} 7→ Sub


Let PCon†

def
= VI † 7→ PMO and γ†PCon(θ

])
def
= λκ.{θ | ∀x ∈ VI †.((θ](x)(κ) =

g)→ (vars(θ(x)) = ∅))}.

Lemma 3. γPCon(PCon) and γ†PCon(PCon†) are Moore families.

5.2 Abstract Unification

Algorithm 2 defines an abstract unification operator for the parametric ground-
ness analysis. It is obtained from that for the non-parametric groundness analysis
by replacing non-parametric groundness descriptions with parametric ground-
ness descriptions, ∇ and4 by ⊕ and ⊗ respectively, and renaming AUNIFY Con,
DOWN Con and UPCon into AUNIFY PCon,DOWN PCon and UPPCon respectively.

Algorithm 2 Let θ], σ] ∈ PCon, a1, a2 ∈ AΠ,Σ,VI .

AUNIFY PCon(a1, θ
], a2, σ

])
def
=

let E0 = mgu(Ψ(a1), a2) in
if E0 6= fail
then UPPCon(E0,DOWN PCon(E0, Ψ(θ]) ∪ σ]))|\VI
else {X 7→ [∅]∼= | X ∈ VI }

DOWN PCon(E, ζ])
def
= λX.

{
ζ](X), if X 6∈ range(E)
ζ](X) ⊗ (

⊗
(Y/t)∈E∧X∈vars(t) ζ

](Y )), otherwise.

UPPCon(E, η])
def
= λX.

{
η](X), if X 6∈ dom(E)
η](X) ⊗ (

⊕
Y ∈vars(E(X))ζ

](Y )), otherwise.

Lemma 4. The time complexity of AUNIFY PCon is O(|VI |2|Para|22|Para|) and
that of tPCon is O(|VI ||Para|22|Para|) where tPCon is the least upper bound oper-
ator on PCon.

Example 3. This example illustrates how AUNIFY PCon works. Let

VI = {X,Y, Z}
A = g(X, f(Y, f(Z,Z)), Y )
B = g(f(X,Y ), Z,X)
θ] = {X 7→ {{α1, α2}}, Y 7→ {{α1, α3}}, Z 7→ {{α2, α3}}}
σ] = {X 7→ {{α1}, {α2}}, Y 7→ {{α2, α3}}, Z 7→ {∅}}
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Suppose Ψ = {X 7→ X0, Y 7→ Y0, Z 7→ Z0}. We have

Ψ(A) = g(X0, f(Y0, f(Z0, Z0)), Y0)
Ψ(θ]) = {X0 7→ {{α1, α2}}, Y0 7→ {{α1, α3}}, Z0 7→ {{α2, α3}}}
ζ] = Ψ(θ]) ∪ σ]

=
{
X0 7→ {{α1, α2}}, Y0 7→ {{α1, α3}}, Z0 7→ {{α2, α3}},
X 7→ {{α1}, {α2}}, Y 7→ {{α2, α3}}, Z 7→ {∅}

}
and

E0 = eq ◦mgu(Ψ(A), B) = {X0 = f(Y0, Y ), Z = f(Y0, f(Z0, Z0)), X = Y0}

and

η] = DOWN PCon(E0, ζ
])

=
{
X0 7→ {{α1, α2}}, Y0 7→ {{α1, α2, α3}}, Z0 7→ {{α2, α3}},
X 7→ {{α1}, {α2}}, Y 7→ {{α1, α2, α3}}, Z 7→ {∅}

}
β] = UPPCon(E0, η

])

=
{
X0 7→ {{α1, α2, α3}}, Y0 7→ {{α1, α2, α3}}, Z0 7→ {{α2, α3}},
X 7→ {{α1, α2, α3}}, Y 7→ {{α1, α2, α3}}, Z 7→ {{α2, α3}

}
Finally,

AUNIFY PCon(A, θ], B, σ])
= β]|\VI
= {X 7→ {{α1, α2, α3}}, Y 7→ {{α1, α2, α3}}, Z 7→ {{α2, α3}}}

The following theorem states that instantiating the output of the parametric
groundness analysis by a groundness assignment obtains the same groundness
information as first instantiating its input by the same groundness assignment
and then performing the non-parametric groundness analysis.

Theorem 2. Let [S1]∼=, [S2]∼= ∈ PMO, θ], σ] ∈ PCon, η], ζ] ∈ PCon†, a1, a2 ∈
AΠ,Σ,VI and E ∈ ℘(Eqn). For any κ ∈ (Para 7→ MO),

(a) ([S1]∼=⊗[S2]∼=)(κ) = (S1(κ)4S2(κ)) and ([S1]∼=⊕[S2]∼=)(κ) = (S1(κ)∇S2(κ));
(b) (DOWN PCon(E, ζ]))(κ) = DOWN Con(E, ζ](κ));
(c) (UPPCon(E, η]))(κ) = UPCon(E, η](κ)); and
(d) (AUNIFY PCon(a1, θ

], a2, σ
]))(κ) = AUNIFY Con(a1, θ

](κ), a2, σ
](κ)).

The following theorem establishes the correctness of the parametric ground-
ness analysis.

Theorem 3. For any a1, a2 ∈ AΠ,Σ,VI , κ ∈ (Para 7→ MO), and θ], σ] ∈ PCon,

UNIFY (a1, γPCon(θ
])(κ), a2, γPCon(σ

])(κ)) ⊆ γPCon(AUNIFY PCon(a1, θ
], a2, σ

]))(κ)
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6 Implementation

We have implemented the parametric groundness analysis and the abstract in-
terpretation framework in SWI-Prolog. The abstract interpretation framework
is implemented using O’Keefe’s least fixed-point algorithm [38]. Both the ab-
stract interpretation framework and the parametric groundness analysis are im-
plemented as meta-interpreters using ground representations for program vari-
ables and groundness parameters.

6.1 An Example

Example 4. The following is the permutation sort program from [42] (Chapter 3)
and the result of the parametric groundness analysis. The sets are represented
by lists. V 7→ T is written as V/T in the results, α as alpha and β as beta.
Program points marked (a) and (b) will be referred to later.

:- %[Li/[[alpha]],Lo/[[beta]]] (a)

sort(Li,Lo).

%[Li/[[alpha]],Lo/[[alpha,beta]]]

select(X,[X|Xs],Xs).

%[X/[[alpha,beta]],Xs/[[alpha]]]

select(X,[Y|Ys],[Y|Zs]) :-

%[X/[[beta]],Y/[[alpha]],Ys/[[alpha]],Zs/[[]]]

select(X,Ys,Zs).

%[X/[[alpha,beta]],Y/[[alpha]],Ys/[[alpha]],Zs/[[alpha]]]

ordered([]).

%[]

ordered([X]).

%[X/[[alpha,beta]]]

ordered([X,Y|Ys]) :-

%[X/[[alpha,beta]],Y/[[alpha,beta]],Ys/[[alpha,beta]]] (b)

X=<Y,

%[X/[],Y/[],Ys/[[alpha,beta]]]

ordered([Y|Ys]).

%[X/[],Y/[],Ys/[]]

permutation(Xs,[Z|Zs]) :-

%[Xs/[[alpha]],Z/[[beta]],Zs/[[beta]],Ys/[[]]]

select(Z,Xs,Ys),

%[Xs/[[alpha]],Z/[[alpha,beta]],Zs/[[beta]],Ys/[[alpha]]]

permutation(Ys,Zs).

%[Xs/[[alpha]],Z/[[alpha,beta]],Zs/[[alpha,beta]],Ys/[[alpha]]]

permutation([],[])

%[].

sort(Xs,Ys) :-

%[Xs/[[alpha]],Ys/[[beta]]]

11



permutation(Xs,Ys),

%[Xs/[[alpha]],Ys/[[alpha,beta]]]

ordered(Ys).

%[Xs/[[alpha]],Ys/[[alpha,beta]]]

The top-level goal is sort(Li, Lo) and the input abstract substitution at pro-
gram point (a) is {Li 7→ {{α}}, Lo 7→ {{β}}}. It says that groundness mode of
Li is α and that of Lo is β. The parametric groundness analysis infers an ab-
stract substitution for every other program points. The abstract substitution at
program point (b) associates the parametric groundness description α4β with
variables X, Y and Ys. The result can be instantiated by any of four groundness
assignments in {α, β} 7→ MO. Let κ = {α 7→ g, β 7→ u}. Then κ instantiates the
input abstract substitution to {Li 7→ g, Lo 7→ u} and the abstract substitution
at program point (b) to {X 7→ g, Y 7→ g,Ys 7→ g}. This indicates that if the
goal sort(Li, Lo) is called with Li being ground then X,Y and Ys are ground
when (X <= Y ) is invoked.

Since the abstract substitution at program point (b) maps both X and Y to
α4β, it is obvious that if either α or β is assigned g then X and Y are ground
before the execution of X =< Y and the run-time groundness check at program
point (b) can be eliminated.

6.2 Performance

The SWI-Prolog implementation of the parametric groundness analysis has been
tested with a set of benchmark programs. The experiments were done on an
1.0GHz Dell Desktop running Windows 2000 Professional and SWI-Prolog 3.4.0.

Table 1 shows time performance of the implementation. All but the last row
corresponds to a specific input. The input consists of a program, a goal and an
input abstract substitution that specifies the groundness of the variables in the
goal. The program and the goal are listed in the first and the third columns. The
input abstract substitution associates each variable in the goal with a different
groundness parameter. For instance, the abstract substitution for the first row
is {X 7→ {{α}}, Y 7→ {{β}}}. The second column lists the size of the program
measured in the number of program points in the program. Each fact p is treated
as a clause p ← true which has two program points. The fourth column is the
time in seconds spent on the input. The last row gives the total size of the
programs and the total time.

Table 1 indicates that the prototype parametric groundness analyzer spends
an average of 1.72 seconds to process one thousand program points. This is an
acceptable speed for most logic programs. We believe that there is still room for
improving the time performance through a better implementation because both
meta-programming and ground representation of variables significantly slow the
prototype.

The same table compares the performance of the parametric groundness anal-
ysis with that of the non-parametric groundness analysis presented in [40] which
uses a subset of VI as an abstract substitution. The subset contains those vari-
ables that are definitely ground under all substitutions described by the abstract
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Program Points Goal Poly Mono Ratio Assign-
(sec) (sec) ments

Buggy Quick Sort 38 qs(A, B) 0.038 0.016 2.375 4

Exponentiation 27 exp(A, B, C) 0.01 0.009 1.111 8

Factorial 25 factorial(A, B) 0.008 0.005 1.6 4

Graph Connectivity 50 connected(A, B) 0.012 0.009 1.333 4

Heapify Binary Trees 27 heapify(A, B) 0.043 0.015 2.867 4

Improved Quick Sort 22 iqsort(A, B) 0.025 0.009 2.778 4

Interchange Sort 24 sort(A, B) 0.015 0.005 3 4

List Insertion 23 insert(A, B, C) 0.01 0.008 1.25 8

Permutation Sort 26 sort(A, B) 0.018 0.008 2.25 4

QuickSort with D-List 22 quicksort(A, B) 0.027 0.012 2.25 4

Tree Sort 34 treesort(A, B) 0.038 0.014 2.714 4

ann 653 go(A) 0.911 0.541 1.684 2

asm 904 asm PIL(A, B) 1.188 0.855 1.389 4

boyer 351 tautology(A) 0.269 0.16 1.681 2

browse 132 q 0.073 0.06 1.217 1

chat 1368 chat parser 4.326 2.554 1.694 1

cs r 348 pgenconfig(A) 0.649 0.42 1.545 2

disj r 180 top(A) 0.103 0.088 1.17 2

dnf 95 go 0.285 0.239 1.192 1

ga 503 test ga 0.541 0.531 1.019 1

gabriel 131 main(A, B) 0.122 0.072 1.694 4

kalah 298 play(A, B) 0.215 0.144 1.493 4

life 115 lift(A, B, C, D) 0.04 0.04 1 16

mastermind 238 play 0.13 0.1 1.3 1

meta 110 interpret(A) 0.139 0.073 1.904 2

nand 624 main(A) 1.117 0.921 1.213 2

naughts and crosses 137 play(A) 0.067 0.042 1.595 2

nbody 454 go(A, B) 0.404 0.235 1.719 4

neural 382 test(A, B) 0.257 0.119 2.16 4

peep 541 comppeepopt(A, B, C) 1.07 0.538 1.989 8

press 455 test press(A, B) 1.624 0.626 2.594 4

queens 33 queens(A, B) 0.01 0.007 1.429 4

read 500 read(A, B) 1.863 1.219 1.528 4

reducer 408 try(A, B) 0.719 0.426 1.688 4

ronp 110 puzzle(A) 0.097 0.05 1.94 2

sdda 355 do sdda(test, A, B, C) 0.462 0.23 2.009 8

semi 216 go(A, B) 0.773 0.382 2.024 4

serialize 50 go(A) 0.083 0.033 2.515 2

simple analyzer 560 main(A) 0.716 0.39 1.836 2

tictactoe 286 play(A) 0.34 0.263 1.293 2

tree order 39 v2t(A, B, C) 0.038 0.021 1.81 8

tsp 153 tsp(A, B, C, D, E) 0.164 0.087 1.885 32

zebra 64 zebra(A, B, C, D, E, F, G) 0.048 0.025 1.92 128

11111 19.087 1.78 7.4

Table 1. Performance of Parametric Groundness Analysis
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substitution. This allows operators on abstract substitutions to be optimized.
The non-parametric groundness analysis is implemented in the same way as the
parametric groundness analysis.

The number of different groundness assignments for the parametric ground-
ness analysis is two to the power of the number of groundness parameters. Each
assignment corresponds to a non-parametric groundness analysis that is per-
formed and measured. The fifth column lists the average time in seconds spent
on these non-parametric groundness analyses. The sixth column lists the ratio
of the fourth column and the fifth column. The seventh column lists the number
of groundness assignments.

The table shows that the time the parametric groundness analysis takes is
from 1.0 to 3.0 times that the non-parametric groundness analysis takes. On
average, the parametric groundness analysis is 78% slower. This is due to the
fact that the parametric groundness descriptions are more complex than the
non-parametric groundness descriptions. The abstract unification operator and
the least upper bound operator for the parametric groundness are more costly
than those for the non-parametric groundness analysis.

The result of the parametric groundness analysis is much more general than
that of the non-parametric groundness analysis. It can be instantiated as many
times as there are different groundness assignments. The average number of
groundness assignments is 7.4 which is 4.2 times the average performance ratio
1.78. In order to derive a sufficient condition for safely removing groundness
checks for builtin calls, the non-parametric groundness analysis must be run as
many times as the number of groundness assignments. In this case, the para-
metric groundness analysis is 4.2 times better.

7 Related Work

The parametric groundness analysis has been obtained from a non-parametric
groundness analysis that uses a simple groundness domain. As groundness is use-
ful both in compile-time program optimizations and in improving the precision
of other program analyses, more powerful groundness domains have been stud-
ied. These domains consists of propositional formulae over program variables
that act as propositional variables. Dart uses the domain Def of definite propo-
sitional formulae to capture groundness dependency between variables [21]. For
instance, the definite propositional formula x ← (y ∧ z) represents the ground-
ness dependency that x is bound to a ground term if y and z are bound to
ground terms. Def consists of propositional formulae whose models are closed
under set intersection [16]. Marriott and Søndergaard use the domain Pos (also
called Prop) of positive propositional formulae [32]. A propositional formula f is
positive if f is true when all propositional variables in f are true. Pos is strictly
more powerful than Def. It has been further studied in [16, 2, 3] and has several
implementations [24, 8, 4].

Giacobazzi and Scozzari reconstruct Def and Pos from Con via Heyting com-
pletion [22, 39] where Con is a subdomain of Pos and consists of propositional
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formulae that are conjunctions of propositional variables. The Sharing domain
proposed by Jacobs and Langen for sharing analysis [25, 26] also contains ground-
ness information. Cortesi et. al prove that groundness information contained in
Sharing is exactly that captured by Def [15, 14]. Codish and Søndergaard recently
discover that Sharing is isomorphic to Pos in structure [10].

Pos-based analyzers using binary decision diagrams have been shown [24] to
be precise and efficient for benchmark programs. However, Pos-based analyzers
do not come with any efficiency guarantee as they require in the worst case
exponential number of iterations or exponentially large data structures [11].
More abstract domains [21, 23] have been proposed, offering different trade-offs
between the precision and the efficiency of analysis.

Pos-based goal-independent groundness analyzers enjoys a favorable prop-
erty of being condensing [26, 32]. An analysis F that infers output information
F (P, φ) from a program P and input information φ is condensing if F (P, φ∧ψ) =
F (P, φ)∧ψ for any P, φ and ψ. Thus, a condensing analysis can be performed with
partial input information φ and its output be conjoined with additional input
information ψ to obtain the output that would result from analyzing the pro-
gram with complete input information φ∧ψ. Thus, a Pos-based goal-independent
groundness analysis is also parametric since its result can be instantiated by logic
conjunction. [32] and [8] present two approaches to perform condensing goal-
independent groundness analysis using program transformation and bottom-up
evaluation. An atomic call in the transformed program in [32] contains both
variables of interest at a program point in the original program and variables in
the query. Thus, the abstract domain for goal-independent groundness analysis
in [32] is Pos(Para∪VI ) since variables in the query play the role of groundness
parameters. Similar argument can be made of [8].

Groundness analyzers in [24, 16] use Pos with top-down abstract interpreta-
tion frameworks to perform goal-dependent groundness analysis [24, 16]. These
analyzers project a Pos formula onto variables occurring in the clause to which
the program point belongs. This makes them fail to capture groundness de-
pendency between variables at a program point and variables in a query. Let
PosX denote the set of positive Boolean functions over X - the set of proposi-
tional variables. The following fix should make a top-down Pos-based ground-
ness analysis condensing and hence parametric. The abstract domain PosVI is
extended to Pos(Para∪VI ) and the projection operation λf.∃̄VI .f is replaced with
λf.∃̄(Para∪VI ).f .

Though Pos-based groundness analysis is parametric and more precise than
the parametric groundness analysis, the parametric groundness analysis is more
efficient. The cost of an analysis is determined by the number of iterations
performed and cost of operations performed in each iteration. The height of
Pos(Para∪VI ) (abstract domain in a Pos-based goal-dependent groundness analy-
sis) is O(2|VI |2|Para|) [3]. The height of PCon (abstract domain in the parametric
groundness analysis) is O(|VI |2|Para|). Therefore, the number of iterations per-
formed in the parametric groundness analysis is much less than those performed
in a Pos-based groundness analysis. Abstract operations AUNIFY PCon and tPCon
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are also much less expensive than ∨, ∧ and existential quantification on posi-
tive Boolean functions over (Para ∪ VI ) in a Pos-based groundness analysis.
Therefore, the parametric groundness analysis is more efficient than a Pos-based
groundness analysis. Furthermore, the parametric groundness analysis has the
same asymptotic time and space complexity as a Con-based groundness analysis
when it is used with Para = ∅. Thus, it only pays more cost than a Con-based
analysis when it infers more general results.

append([ ], L, L).
append([H|L1], L2, [H|L3]) ← append(L1, L2, L3).©b

← ©a append(Xs,Ys,Zs).©c

Fig. 2. The append program

It is interesting to note that the parametric groundness analysis also captures
some groundness dependency among variables.

Example 5. For the program and the goal in Figure 2, the parametric groundness
analysis infers

©a : {Xs 7→ {{α}},Ys 7→ {{β}},Zs 7→ {{γ}}}
=⇒©c : {Xs 7→ {{α, γ}}, Y s 7→ {{β, γ}}, Zs 7→ {{α, γ}, {β, γ}}}

This implies that whenever Xs and Ys are bound to ground terms at point
©c , Zs is bound to a ground term at the same point. In order to bind Xs to
a ground term, g must be assigned to either α or γ. In order to bind Ys to a
ground term, g must be assigned to either β or γ. Any groundness assignment
satisfying the above two conditions will evaluate {{α, γ}, {β, γ}}} to g. So, we
have Xs ∧Ys → Zs in Pos. Similarly, we can infer Xs ∧Ys ← Zs.

In general, if the abstract substitution at a program point assign Rj to Yj for
1 ≤ j ≤ l and Si to Xi for 1 ≤ i ≤ k and ⊕1≤j≤lRj � ⊕1≤i≤kSk then the Pos
like proposition ∧1≤i≤kXi → ∧1≤j≤lYj holds at the program point. Thus the
parametric groundness analysis also captures groundness dependency between
program variables. However, the degree to which the parametric groundness
analysis captures this kind of groundness dependency is limited. In particular,
when Para = ∅, the parametric groundness analysis degenerates to the non-
parametric groundness analysis which does not capture this kind of groundness
dependency.

There have also been effort in analyzing logic programs to discover type de-
pendency between program variables [7, 30, 12]. Though groundness modes in
MO can be thought of as types, it is not beneficial to apply a type depen-
dency analysis to infer groundness dependency. Abstract domains for type de-
pendency analyses in [7, 30, 12] are more complex and hence abstract operations
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are more costly than those required in a groundness dependency analysis. Fur-
thermore, their abstract domains have infinite increasing chains and they must
employ a widening operator. [30] obtains a parametric type analysis from a non-
parametric type analysis. Since types have much rich structures than groundness
modes, equational constraints over parametric types need be incorporated into
its abstract domain in order to propagate precisely type dependency. This makes
abstract operations costly. As there are infinite number of assignments of types
to type parameters, loss of precision is incurred when abstract operations in
the parametric type analysis mimicks those in the non-parametric type analysis.
The parametric groundness analysis presented in this paper has a much simpler
abstract domain and abstract operations that mimicks precisely those in the
non-parametric groundness analysis.

8 Conclusion

We have presented a new groundness analysis, called parametric groundness
analysis, that infers groundness of variables parameterized by groundness param-
eters that can be instantiated after analysis. The parametric groundness analysis
is obtained by generalizing a non-parametric groundness analysis. Experimen-
tal results with a prototype implementation of the analysis are promising. The
parametric groundness analysis is as precise as the non-parametric groundness
analysis.

The parametric groundness analysis is theoretically faster but less precise
than a Pos based groundness analysis. As future work, we would like to compare
experimentally the time and the precision of the parametric groundness analysis
with those of Pos based groundness analyses.
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13. A. Cortesi and G. Filé. Abstract interpretation of logic programs: an abstract do-
main for groundness, sharing, freeness and compoundness analysis. In Proceedings
of the Symposium on Partial Evaluation and Semantics-based Program Manipula-
tion, pages 52–61, New Haven, Connecticut, USA, 1991.
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15. A. Cortesi, G. Filé, and W. Winsborough. Comparison of abstract interpreta-
tions. In Proceedings of the 19th Int. Colloquium on Automata, Languages and
Programming ICALP’92, pages 523–534. Springer Verlag, 1992.
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