ZCIFR

Centre for International
Finance and Regulation

Towards Financial System Integrity

Research Working Paper Series

Asset price bubbles in the Australian market

Jamie Alcock
Petra Andrlikova
Angelo Aspris
Sean Foley
Stephen Satchell
Reuben Segara
Danika Wright
Juan Yao

The University of Sydney

JUNE 2016
WORKING PAPER NO.119/2016 / Project TO06

This research was supported by the Centre for International Finance and Regulation , which is a Centre of Excellence for
research and education in the financial sector, funded by the Commonwealth and NSW Governments www.cifr.edu.au).

AUSTRALIAN UNIVERSITY PARTNERS

MACQUARIE) B2 mruwvmsmyor E UNIVERSITY OF Australian
S o National

UNIVERSITY / “%U SYDNEY JIECHNOTICYSIDHEY University

‘ RESEARCH CENTRE PARTNERS INDUSTRY PARTNERS

—~ sl o KING &WGDD
Gapital Markets o a / kPMG' MALLESONS @

Commonwealthtak cutting through complexity MACQUARE

Trade &
Investment

http://www.cifr.edu.au).%22

ECIFR

All rights reserved. Working papers are in draft form and are distributed for purposes of comment and discussion only and may
not be reproduced without permission of the copyright holder.

The contents of this paper reflect the views of the author and do not represent the official views or policies of the Centre for In-
ternational Finance and Regulation or any of their Consortium members. Information may be incomplete and may not be relied
upon without seeking prior professional advice. The Centre for International Finance and Regulation and the Consortium part-
ners exclude all liability arising directly or indirectly from use or reliance on the information contained in this publication

www.cifr.edu

Asset Price Bubbles in the Australian Market

Jamie Alcock, Petra Andrlikova, Angelo Aspris, Sean Foley,
Stephen Satchell, Reuben Segara, Danika Wright and Juan Yao
The University of Sydney

June 3, 2016

Executive Summary

We explore the prevalence of asset-price bubbles in Australian listed industrial equi-
ties and A-REIT markets. In contrast to the US listed stock markets, we find little
evidence of asset-price bubbles in historical returns of Australian markets (1992-
2016). Our findings are robust to the choice of econometric method and historical
data range.

We also provide a review of the literature surrounding asset-pricing bubbles, as
well as a review of the econometric identification of asset-price bubbles. In our
analysis we note that significant future research is required in the econometric iden-
tification of asset-price bubbles. While the existence of asset price bubbles cannot be
ruled out, significant advancements in the literature are required before academics
and practitioners can gain any further insight.

Contents

1

2

Introduction

Literature Review
2.1 Rational expectations and symmetric information
2.1.1 Gordon growth model
2.2 Rational expectations and asymmetric information
2.3 Heterogeneous beliefs and short-sales constraints
2.4 Rational and behavioural traders
2.4.1 Institutional herding
2.4.2 Herding and high-frequency traders
2.5 TIrrational valuation L
2.6 Convenience yield o
2.7 Experimental evidenceo

Methodology

3.1 Variance Bounds Tests

3.2 West (1987) two-step tests
3.2.1 Estimation technique

3.3 Unit root and cointegration tests
3.3.1 Phillips, Shi, and Yu (2013) rolling window approach

3.4 Bubbles treated as unobservable variables
3.4.1 State-space model with Markov switching regimes

Implementation

4.1 Australian Equities: S&P ASX 200 index
4.1.1 Variance bounds test
4.1.2 West (1987) two-step tests
4.1.3 Unitroottests

4.2 Australian REIT market: A-REIT index
4.2.1 Variance bounds test
422 West (1987) two-step tests
4.2.3 Unitroottests

Critical Analysis

5.1 Shiller (1981a) variance bounds test
5.2 West (1987) two-step test
5.3 Unitroot testso

15
16
17
18
21
24
25
28

30
30
30
33
35
41
41
41
43

5.4 Real-time detection strategyo 50

Conclusion 51
Appendix B: Matlab Toolbox User Guide 61
Appendix C: Matlab Code 105

1 Introduction

A study of market bubbles is generally considered a test of market efficiency (or
inefficiency) since bubbles are concerned with rising prices that are detached from
their fundamental values. Verifying the existence of such an inefficiency requires us
to be able to appropriately formulate fundamental value, which typically assumes
homogeneous and rational investors. Requiring additional attention is the issue of
persistence. Cochrane (1991) and Chung and Lee (1998) suggest that deviations,
which slowly return to fundamental values, are more indicative of a 'fad’ as opposed
to a bubble. As such, an additional dimension in this definition is associated with
the duration of the inefficiency.

The literature has contributed a significant number of models to test for the
presence of asset pricing bubbles or fads. A fad is commonly understood as a mean-
reverting deviation from fair value, whereas a bubble is an explosive deviation from
fair value. Among the methods most commonly adopted to detect asset-price bubbles
are variance bound tests, which imply an upper bound on stock-price variability. The
literature also provides for empirical tests, such as West’s two-step approach which
compares asset pricing models with and without bubbles. Unit root and cointegration
test are also widely used to detect asset pricing bubbles. Most recently, tests in which
bubbles are treated as unobservable variables have garnered significant attention.
The state-space model with Markov-switching regimes is used to define the price,
dividend and bubble process. The two regimes relate to bubble burst and bubble
survival. The most important outcome of this model is the implied probability of
bubble burst for any asset or asset class.

The presence of bubbles in asset prices has been a widely-discussed topic among
theoretical economists and empirical researchers. Indeed, the two Nobel laureates
in Economics for 2013 have widely differing opinions on the existence of asset-price
bubbles. Eugene Fama’s efficient markets hypothesis states that asset-price bubbles
cannot exist because prices already include all the publicly available information.The
key to the efficient markets hypothesis in rejecting the presence of asset-price bubbles
is the prediction that investors can not exploit information, as the market responds
immediately to new information as it arrives. If the market knew asset-prices were
bubble-like it would be a profitable opportunity to take positions that would ben-
efit from the correction, an outcome that is inconsistent with the efficient markets
hypothesis.

Robert J. Shiller challenges the efficient markets hypothesis by analysing the US
stock market and concludes that stock volatility is much greater than what can be
explained by the rational expectations of future dividends. Shiller further extends

this observation to form the irrational exuberance argument. In this argument, the
positive feedback loop drives high prices even higher as enthusiasm among investors
spreads and supports the potential for bubble formation.

Asset-price bubbles assisted by substantial credit growth, very often precede fi-
nancial crises (Phillips, Shi, and Yu, 2013). The global financial crisis of 2008-2009
is no exception. The creators of regulatory mechanisms are therefore focusing on
controlling abnormal or excessive credit creation. The main aim of central bankers
is to establish conditions for stability in financial markets and thus minimise the
potential for asset-price bubbles. This can turn into an impossible task if central
bankers fail to identify whether there really is a bubble in a given financial market or
not. It is therefore crucial to develop an appropriate empirical framework for bubble
identification.

Section 2 includes a literature review with a summary of the existing theoretical
strands explaining the existence of asset-price bubbles and Section 3 discusses the
existing detection techniques. Section 4 presents the results of the implementation
of these bubble-detection tests in the Australian context. In Section 5, we provide a
critical analysis of existing methods. Section 6 concludes.

2 Literature Review

We present the main theoretical strands explaining the presence of asset price bub-
bles. We start with the most standard model setting assuming rational expectations.
We then focus on theories allowing for irrational market players to participate in fi-
nancial markets. A short review of experimental evidence is then presented.

2.1 Rational expectations and symmetric information

In this setting, all agents are assumed to have rational expectations and the same
perfect information. Tirole (1982) rules out the existence of bubbles in situations
where it is known that the initial allocation is Pareto optimal. If everyone knows
that the current allocation is Pareto optimal, no individual would be willing to buy
an overpriced asset because it would make him worse off. No trade thus occurs at a
price higher than the fundamental value and bubbles cannot emerge.

2.1.1 Gordon growth model

The Gordon growth model implies the following relation between the price and div-
idend values

Pt 1

oy T—g @
where r is the rate of return and g is the expected growth of earnings from divi-
dends. In this model, bubbles can emerge with high expected growth of earnings or
low returns. When applied to the Tech bubble on the US stock market, Cochrane
(2002) concludes that earnings growth would have to be extremely large to justify
the empirical evidence of large price to dividend ratios. Low return environments
can also lead to bubble-type behaviour of asset prices. It is however hard to theoret-
ically explain why the market risk premium would suddenly drop in times of bubbles
occurrence to allow for low returns. This theory also does not explain other observed
phenomena such as the high volumes traded during bubbles, the scarcity of shares
or short-sales restrictions.

If we substitute d;_; from equation (1) for d;_; = e;_1(1 + g)PR;_1, where ¢;_4
are earnings per share and PR;_; is the payout ratio, we receive the price to earning
(PE) relation:

Dt (14+g)PR;

—:PEt:
€t r—g

(2)

Assuming that the retained earnings are reinvested at rate r, or that g = (1 —
PR;)r and the payout ratio is stable over time, and substituting into equation (2)

6

leads to,

1+(1-P P 1+(1-P 1
p_pp, o UHA=PROPR 1+ -PRr _1+g 3)
e r—(1—PR)r r r
for r # 0.
It thus implies that
2 =144 (4)
€t

By substituting r = ry+ A, we get (r;+)\)’;—z = 1+ g, where A is the market price
for risk and ry is the risk free rate. Since A > 0 and g > 0, it follows that

rffeiz <1 (5)

If the inequality does not hold, it may be a sign of the existence of bubble. As we
can see from Figure 1, a large portion of Australian listed firms do not satisfy this
condition and have ry2t > 1.

2.2 Rational expectations and asymmetric information

Grossman (1976) states that with any positive cost of obtaining information, and
prices which fully reveal information, market equilibrium would never exist since
there would be no additional benefit of paying for information, if value can be ob-
served directly from prices. Individual traders do not personally benefit from having
inside information in a fully revealing equilibrium. Individuals can only benefit from
private information if price is only partly revealing this information. There has to be
another source of uncertainty or noise so that market agents cannot infer the infor-
mation from prices directly. This implies that theoretically bubbles can exist, since
in equilibrium prices cannot include all the information about fundamental value and
the presence of bubble does not have to be commonly known. Even if agents are
aware of the presence of a bubble, they do not know whether the other agents know
about the bubble or not. If agents have asymmetric information available, Allen
et al. (1993) argue that bubbles can emerge under the following conditions:

1. prices do not fully reveal information
2. investors are constrained from selling in at least one asset

3. it is not common knowledge that the initial allocation is Pareto efficient.

yoar-2009 yoar-2010 yoar-2011

‘th'hm»? B : - ,;HVH”H’VWWWHMWT : : “QH ‘H—H_H-Hﬂ—w,—n—‘ B

(a) 2009 (b) 2010 (c) 2011

yoar-2012 yoar-2013 yoar-2013

m Hm@ S—— Hﬁmmm‘ — Hﬁmmm‘

(d) 2012 (e) 2013 (f) 2014

Figure 1: Histogram of PE; x ry of Australian listed companies in years 2009-2014.
Price to earnings ratio (PE,) is retrieved from DataStream, the 90-day bank accepted
bill rate is used as the risk free rate (r¢) published by the Reserve Bank of Australia.

2.3 Heterogeneous beliefs and short-sales constraints

We continue with theoretical setting with rational expectations, in which agents start
with different prior distributions of value. This is in contrast to the asymmetric in-
formation model, where agents have the same prior distribution but a noisy price
signal. Investors with different prior distribution will agree to disagree about the
asset value (Brunnermeier, 2008). In the presence of short selling constraints and
heterogeneous beliefs, bubbles can emerge because pessimists are constrained from
reducing the price to its fundamental level. This view is also supported by exper-
imental evidence. Kirman and Teyssiere (2005) conduct an experiment, in which
agents with heterogeneous beliefs are given different forecasting tools, which form
their expectations. If one particular forecasting tool turns out to be more successful,
more people will use it and if such tool is self-reinforcing, price will deviate from the
fundamental value and a bubble will occur. They argue that bubbles can exist while
traders are rational.

Scheinkman and Xiong (2003) provide evidence that heterogeneous belief bub-
bles are accompanied by large traded volumes and high stock price volatility. If only
some advisors understand new technological advances and recognise heterogeneity in
advisors, bubbles arise (Hong et al., 2008). Cheng et al. (2012) find that price effi-
ciency is improved with increased short selling after removing short-sale constraints
on PO stocks in the Taiwanese market.

2.4 Rational and behavioural traders
2.4.1 Institutional herding

Rational institutional investors are expected to take advantage of arbitrage opportu-
nities and drive the price to equilibrium, however, there are always limits of arbitrage.

This theoretical explanation of asset-price bubbles is also referred to as the lim-
ited arbitrage theory (Brunnermeier, 2008). In this model, rational sophisticated
traders interact with behavioural traders, who can be influenced by certain biases.
Under the efficient market hypothesis, bubbles cannot exist since rational traders will
trade against the bubble before it is allowed to emerge. There are however limits to
this arbitrage theory, which prevent the rational traders from correcting the price.
Brunnermeier (2008) lists the following limitations.

1. fundamental risk emerges due to the fact that perfect substitutes rarely exist,
which makes short positions more risky

2. mnoise trader risk, which might push the price in a different direction, widening
the mispricing

3. synchronisation risk, as the coordination of rational traders is required to in-
fluence the price.

Due to these limitations, rational traders may not trade against the mispricings
aggressively enough, allowing bubbles to form. Abreu and Brunnermeier (2002) re-
veal that rational traders may not aim to correct prices, rather preferring to “ride
the bubble”. Empirical evidence from hedge funds, which are assumed to represent
rational traders, is in line with the “riding the bubble” hypothesis (Brunnermeier and
Nagel, 2004). Brokers and banks tend to employ ”chartists” as well as ”fundamen-
talists”. The question remains whether this ”chartism” or other form of technical
analysis has any effect on market efficiency (Bowden, 1990).

DeMarzo, Kaniel, and Kremer (2008) argue that when an asset is in limited
supply the rational agents care about their relative wealth. They may not wish to

trade against the crowd. They may just invest in an asset that is commonly hold by
others due to the concerns of taking risk alone.

Mitchell and Pulvino (2012) examine the arbitrage strategies of hedge funds over
2008 financial crisis in particular. They argue that due the difficulty of access to debt
financing by hedge funds during the crisis period, instead of trading in the direction
to force prices of similar securities to converge, arbitrageurs had to liquidate existing
positions, thus causing increased divergence of prices in the market. As a result,
mispricing in the market persisted for months.

There is extensive empirical evidence showing that money managers tend to trade
excessively in the direction of the recent trades of other managers (see Grinblatt,
Titman, and Wermers (1995); Lakonishok, Shleifer, and Vishny (1992)). Sias (2004)
documents evidence that institutional investors are attracted to securities with the
same characteristics. They tend to follow their own and other trades changes over-
time. Moreover, institutional investors are more likely to follow similarly classified
institutional investors than differently classified institutional investors.

Money managers mimic actions of each other in order to preserve their reputation
and/or compensation. Herding behavioural of investors and financial professionals
can be either rational or non-rational. Dass, Massa, and Patgiri (2008) argue that
apart from the reputational concerns, mutual fund managers are driven to herd when
their performance are evaluated relative to their peers. Thus asset price bubbles are
caused by herding among traders.

Dasgupta, Prat, and Verardo (2011) further investigate the price impact of in-
stitutional herding. Based on model of Scharfstein and Stein (1990), they incor-
porate the interactions among three classes of traders: career-concerned fund man-
agers, profit-motivated proprietary traders and security dealers endowed with market
power. Their model shows that the reputational concerns of fund managers give rise
to an endogenous tendency to imitate past trades, which impacts the prices of the
assets they trade.

Brown, Wei, and Wermers (2013) argue that analyst recommendation changes in-
duce mutual funds mangers herd into stock with consensus sell-side analyst updates,
and out of stocks with consensus downgrades. The herding behaviour is stronger for
managers with career concerns. Herding in institutional traders and money managers
destabilised markets and cause asset prices to deviate from the equilibrium and thus
partially explain bubble formation.

10

2.4.2 Herding and high-frequency traders

The emergence of high-frequency traders as modern market makers has caused con-
siderable concern, for whilst they may bring additional liquidity, particularly during
calm periods, their lack of explicit quoting obligations may increase volatility when
the market experiences stressful periods. This can lead to situations such as the May
6th flash crash in 2010, which saw around 1 trillion USD wiped off the market value of
the Dow Jones, which authors such as Dichev, Huang, and Zhou (2014) attribute to
short-term herding combined with the withdrawal of high-frequency market makers.
This withdrawal thinned the limit order book, resulting in extremely low liquidity
and high volatility.

While the main argument for high-frequency traders interaction in the market is
the additional liquidity that they provide, which studies such as Hendershott, Jones,
and Menkveld (2011) and Menkveld (2013) have shown reduces transactions costs
through lower bid-ask spreads. Generally, reduced transactions costs are associated
with reduced volatility. However, liquidity above some threshold may not always be
beneficial. Indeed, there is some evidence that increased liquidity - or trading volume
- while appearing to reduce volatility at the level of an individual stock, may amplify
tail risk on a larger scale.

Dichev et al. (2014) examine the relationship between higher trading volumes
and stock-level volatility, finding that higher trading volumes can produce ”its own
volatility above and beyond that based on fundamentals”. This is pertinent to the
study of bubbles, as the thinning of liquidity in stressful periods may amplify the
extremes to which financial markets move. Haldane (2011) emphasizes the danger
of normalising deviance at the micro level, concluding that ”thinner technological
slices may make for fatter market tails. Flash Crashes, like car crashes, may be more
severe the greater the velocity.”

As modern capital markets have evolved, the level of high-frequency trading has
grown substantially. This growth is heavily concentrated in a small number of firms.
A 2015 report by ASIC! identified that over 27% of total equity trading volume was
conducted by less than 0.5% of high-frequency traders. This level of concentration is
one of the factors Sornette and Von der Becke (2011) cite as indicative of increased
volatility. This change in the landscape of the Australian capital markets increases
the importance of testing explicitly for the existence of asset price bubbles.

IReview of high-frequency trading and dark liquidity

11

2.5 Irrational valuation

Shiller (2000) suggests that this behaviour is irrational and suggests that irrational
exuberance is the psychological basis of a speculative bubble. This is consistent
with the evidence found by Coates (2012) in the neuroscience field, who finds that
bull and bear markets affect the brain chemistry of traders, which can lead to the
exacerbation of financial booms and busts.

Shiller (2015) defines speculative bubbles in the context of irrational valuation:

“I define a speculative bubble as a situation in which news of price increases spurs
investor enthusiasm, which spreads by psychological contagion from person to person,
in the process amplifying stories that might justify the price increases and bringing in
a larger and larger class of investors, who, despite doubts about the real value of an
investment, are drawn to it partly through envy of others successes and partly through
a gamblers excitement.”

It is however hard to believe that all the investors including experienced fund
managers would trade without any rationality. If this was the case, it would imply
that no asset pricing model would work. An asset pricing framework allowing for
irrational patterns in human behaviour is yet to be introduced. Some of the cognitive
biases observed by psychologists are discussed in Ritter (2003).

2.6 Convenience yield

Cochrane (2002) links the evidence of short-sales constraints, high dispersion of opin-
ion, relative scarcity of shares, high traded volumes and high volatility that occurs
during bubble periods in the US and concludes that bubbles existence can be ex-
plained by the convenience yield. Taking the example of 3Com and Palm share prices,
he demonstrates that the bubble component or the price difference of fundamentally
identical instruments can be explained by the liquidity premium. It was cheaper to
buy Palm shares implicitly by buying 3Com than making a direct investment in Palm
shares although both strategies would lead to the same outcome. The Palm shares
were overpriced due to the high turnover, low-share supply, arbitrage and short-sales
constraints and a poor correlation of the two share prices in short term.

Cochrane (2002) relates the argument of convenience yield to the money-market.
People hold a smaller amount of cash for their own consumption despite the fact
that they are losing the interest relative to holding government bills. It is convenient
to hold some amounts of cash to be able to make transactions in the period between
the trips to the banks to ensure liquidity. Palm shares provided this liquidity since
the traded volumes and turnover each day were high relative to 3Com.

12

Hong et al. (2006) provide empirical evidence consistent with the convenience
yield theory by analysing the relation between number of tradeable shares and spec-
ulative bubbles. They conclude that investors with heterogeneous beliefs who face
short-sale constraints trade stocks with limited float because of insider lockup. The
turnover and volatility decrease with asset float and price drop at the expiration
date.

2.7 Experimental evidence

Investigating the price dynamics and how bubbles form has also been investigated
in the experimental literature. A distinct advantage of investigating this issue in
a laboratory setting is the ability to control the assets fundamental price. One of
the first experimental studies in this area was conducted by Smith, Suchanek, and
Williams (1988). In this experiment, participants are provided with both an asset
and cash and are not allowed to short-sell. The traders are free to trade the asset
that pays a dividend over the length of the experiment, which consist of 15 periods,
each lasting a maximum of 240 seconds. The fundamental price of the asset at each
period is equal to the present value of the future expected dividends. In the learning
to optimise experimental design set up by Smith et al. (1988), traders are motivated
to optimise their profits. The traders endowment is equal to the sum of the capital
gains/losses from trading and dividends earned. The experiment reveals after the
initial period, the asset price substantially increases above the fundamental value
and crashes towards the end of the experiment. An interesting finding is that price
bubbles appear frequently, especially if traders are less experienced. Using a simi-
lar experimental design, Dufwenberg, Lindqvist, and Moore (2005) address whether
traders experience can help prevent the formation of bubbles. They find evidence
to suggest that that when the fraction of experienced traders is only one-third, the
incidence of bubbles can be eliminated or substantially reduced. Mixed evidence in
the experimental literature is found when short sale constraints are relaxed. In con-
trast to Haruvy and Noussair (2006); Ackert et al. (2002) find that the ability short
sell makes experimental markets more efficient, thereby preventing the formation of
bubbles.

In a complementary learning to forecast experiment design to Smith et. al.,
subjects are rewarded according to their forecasting accuracy (see Marimon, Spear,
and Sunder (1993)). Hommes et al. (2008) present an experiment focused on the
expectation formation of participants. The task is to predict the next price of an
asset when there is no knowledge about the underlying market equilibrium equation,
but there is perfect knowledge of the dividend generating process. Participants are

13

therefore allowed to construct their rational expectations of fundamental price. In
this experimental set up, bubbles emerge. This can be explained by the so-called
positive-feedback expectations, when participants seem to extrapolate the trend in
observed asset prices into the future. It demonstrates that even in situation with
symmetric information, bubbles exist. With an increasing price, participants predict
a further increase in price, which leads to further increase in prices and the emergence
of a bubble.

Blanchard and Watson (1982) refer to this as the “deterministic bubble” (p.4).
He points out, however, that to be rational the deterministic bubble would need to
continue into perpetuity, making such an outcome implausible.

To summarise, there are several theoretical views that are able to explain the
existence of asset-price bubbles on stock markets. While most of the theories focus
on the question of whether bubbles can or cannot exist, few studies have sufficiently
explained why and when bubbles emerge and burst (Brunnermeier, 2008).

14

3 Methodology

There are many existing empirical tests for asset-price bubbles. These include vari-
ance bounds tests, which imply an upper bound on stock-price variability. If this
upper bound is exceeded, a bubble may be present. The next type of asset-price bub-
bles test are the West’s two-step tests, which test for the presence of bubbles directly
by comparing the empirical models with and without bubbles. If the estimates from
the two models are equal, there is no bubble present. The unit root and cointegra-
tion tests are the most widely used tests for bubbles detection. If price and dividend
process are cointegrated and thus include the same source of randomness, there is
no bubble in asset prices. The last type of tests discussed in this paper are tests,
in which bubbles are treated as unobservable variables. The state-space model with
Markov-switching regimes is used to define the price, dividend and bubble process.
The two regimes relate to bubble burst and bubble survival. The most important
outcome of this model is the implied probability of bubble burst for any asset or
asset class.

Before we describe each test in a greater detail, we set up the empirical design
consistent across all testing procedures. We start by rearranging the formula for net
returns to get the expression for current price, where p; is the price at time t, d; is
the dividend paid at time ¢ and r; is the net return.

(6)

o= FE |:pt+1 + dt+1:|

1+ Tt41

Moreover, using the law of iterated expectations and assuming constant rate of
return, we can see that the current price equals the expected discount value of all
future dividends and the expected discounted price of the asset at maturity date.

Ti diss
—~ (1+r)

For assets with a finite maturity, the price at maturity, pr, is zero, as no further
dividends are paid after maturity. For assets with infinite maturity, the present value
of price in infinity is also equal to zero due to the discounting effect

p, = E, +@L—ﬁ;% (7)

(14r)T—t

hm—li—zm (8)

T—oo (14 7)T—

which is also known as the transversality condition. If the transversality condition
does not hold, the asset can include a bubble component and p; = p{ +b;, where p{ is

15

the fundamental value component of the asset price and b; is the bubble component
of the asset price. This implies that under certain conditions, bubbles can emerge
under the rational expectations and symmetric information setting.

The empirical tests for the existence of asset-price bubbles in financial markets is
based on the equation (2), which can be rewritten in the following manner, where B,
is the bubble component. The asset price includes two components, the market fun-
damental component, which is the discounted value of all future expected dividends,

and the bubble component. In the no bubble case, the transversality condition is
satisfied and B; = 0.

N 4B, (9)

If not stated otherwise, the following assumptions are required in the empirical
tests for bubble identification:

1. there are no informational asymmetries

2. the agents are risk neutral

3. the risk free rate is constant

4. the dividend generating process in not expected to change.

The next subsections describe the individual empirical tests used to detect asset-

price bubbles on financial markets.

3.1 Variance Bounds Tests

The Shiller (1981b) variance bounds test for equity prices evaluates market efficiency
by testing the null hypothesis of the market fundamental solution to equation (6).
The ex post rational price can be expressed as the present value of actual dividends:

(10)

Assuming rational expectations, the difference between expected and actual div-
idends is a mean-zero variable (Giirkaynak, 2008):

T—1

ZEt diyi) +€t :pt+z €t) (11)

1+r

where ¢; is assumed to be uncorrelated with the information available at time ¢,
the variance of the ex-post price p; can therefore be defined as

V(i) = V) +¢V(e) > Vip), (12)

where ¢ = [1/(1+2)?)]/[1 — 1/(1 + r)?]. Equation (12) creates an upper bound on
the variance of the asset prices. If the equity prices violate the variance bound, it
implies that prices do not follow equation (10).

The usage of this technique to detect bubbles is however problematic since this
test was originally constructed to test the present value model and not the presence
of bubbles in prices. Kleidon (1986) shows that data simulated from the present
value model violate the variance bound without the presence of a bubble if the time-
series of variances is non-stationary. This is due to the fact that the variance should
be a cross-sectional point-in-time measure but the variances from the equation (12)
are time-series estimates, which creates a problem. The variance bounds tests are
therefore not suited for detecting bubbles in asset prices but can serve as a good
monitoring tool for a successful bubble identification.?

3.2 West (1987) two-step tests

The West two-step tests examine the presence of bubbles by testing the hypothesis of
the absence of a bubble and the bubble existence sequentially. West’s test is based on
the observation that with the absence of bubbles in asset prices, the Euler equation
of the no-arbitrage asset pricing can be estimated and implies values of the discount
rate. Assuming that dividends follow an autoregressive (AR) process with known
parameters and discount rate, the relationship between the market fundamental asset
values and dividends can be obtained.

Under the null hypothesis, the estimates model coefficients for the no-bubble and
the existence of a bubble hypothesis are equal. If the estimates differ, it leads to the
conclusion of model misspecification or bubbles. Model misspecification can then be
ruled out by applying a specification test to the Euler equation and the AR dividend
process. If the model is not misspecified and the two estimates are not equal, the
only possible explanation is the existence of a bubble.

The Euler equation is the rearranged formula for the net return given that ex-
pectations are based on an information set €);:

Dy = Ey (prs1 + disa] Q1). (13)

1+7r

2Further discussion on the suitability of this method is provided in Giirkaynak (2008).

17

Equation (9) can be tested using the regression in the following form:

De (D1 + dig1) + . (14)

T 14r
If dividends follow a stationary AR(1) process
dy = ¢dy_y + uy, (15)

the market fundamental price can be expressed as
T—i

f_ Ey(dy+i|$2) _ 7
by = 121 W = Bd, (16)

where

— ¢
=t
1_1+r

The actual price can contain a bubble.
Pt = Bdt + Bt. (17)

If there is a bubble present in the asset prices, the estimate of § from equation
(17) will be biased. This type of test can only detect bubbles that are correlated
with dividends. West (1987) applies this logic on level as well as differenced data
to account for non-stationarity of dividend and price processes. He also assumes an
AR(q) price and dividend process, where ¢ is determined to fit the data.

3.2.1 Estimation technique

West (1987) proposes to test the presence of speculative bubbles using level and
differenced data. For the sake of simplicity, we will use the notation based on level
of the price and dividend process.

Step 1: Determine order of the AR process

The first step of the West (1987) test involves the identification of the ARIMA
order ¢ of the dividend process. The identification is based either on arbitrarily
selected ¢ = 4 or identification based on e.g. the Akaike information criterion.

Step 2: Estimate regression coefficients using OLS and 2SLS

18

After we determine the order ¢, we get to the estimation of the parameters from
the trivariate system of equations:

Pe = b(Pey1 + digr) + uy, (18)

which follows from equation (14), where b = 1/(1 + 7).
Dividends follow an AR(q) process

dit1 = p+ Ordy + .. + Ogdi—gr1 + Vey1, (19)

where ¢4, ..., ¢, are AR coefficients and v is the error term.
Prices also follow an AR(q) process

Pte1 =M + 51dt + ...+ 5th—q+1 + Wty1, (20)

where 61, ..., 0, are AR coefficients and w4, is the error term.

The coefficients from equations (19) and (20) are estimated using OLS. The
coefficient b from equation (18) is estimated using instrumental variable approach
based on two-stage least-square (2SLS) method. Equation (18) can be also expressed
as py = bXy11 + ug, where X1 = ppy1 + diyq. The vector X,y is estimated using
information available at time ¢ in the first stage of the 2SLS method

Xt+1 = OéDt + €tt1 (2].)
In the second stage, we use the fitted values of Xt+1 and estimate

Pe = bXpp1 + Uy (22)

Step 3: Apply GMM to get the variance-covariance matrix of the
trivariate system

We now have all the estimates from the trivariate system of equations, which is
in total 2¢ + 3 coefficients. West (1987) further applies the Hansen (1982) method
of moments estimator, gr(0) = 4 > hy(6).

Let Dy = (1,dy, ..., di—g41)" be the vector of dividends. For the estimated vector
of parameters é, the moment equations satisfy the orthogonality conditions from the
trivariate system of equations

. o Dy(pi — Xib)
0= M) =%> | Dildu—Dig) | (23)

Dt+1(pt+1 - D£+15)

19

Since E(h:(0*)), where 6* is the true but unknown #, Hansen (1982) show that
VT () ~ N(0, (F.S~ Fr)™), where Fr is the (3¢ + 3) x (2¢ + 3) matrix of partial
derivatives of the moment equations with respect to the vector of parameters 6,
Fr = 8%0) and S is the (3¢ + 3) x (3¢ + 3) covariance-variance matrix of the
orthogonality conditions,

E(Di(pe — Xib)(pe — X,b)'D})
S=Eh(0)h(0)) =72 | E(Di(ds1 — D£¢)(dt+1 - Décb) D)
E(Dis1(pess — Dy)(pron — Dj110)' Dy)
There is in total 3¢ + 3 equations in the orthogonality conditions matrix h; and
2q + 3 coefficients to be estimated.
The first part of the orthogonal conditions Dy (p; — th;) can be expressed as

1 — X;b

d R d X,b

.t X (py — Xib) = t(pt . b) , which is a (¢ + 1) vector with one
dt7q+1 dt q+1(th)

coefficient (b).)
The second part of the orthogonal conditions D;(d;+1 — Dj¢) can be expressed as

1 depr — o — Grdy + -+ Pgdy—g41

dy) di(d1 —ﬂ—¢1dt+"'¢ di—g+1)

: X (dp1—fi—prdi+- - ¢th—q+1) = o
dt—q+1 di— q+1(dt+1 —p— ¢1dt o Qgli—qi1)

which is a (¢ + 1) vector with (¢ + 1) coefficients (ji, ¢y, ..., b,).
Finally, the third part of the orthogonal conditions Dy (pir1 — D HS) can be
expressed as
1 D1 — M — 01y + -+ - 0gdy—gi1

dy R di(pry1 — M — 61dy + - - 8gdi—gi1)
) X (pry1—m—01dp+ - dgdi—gy1) = i) S

di—g1 di—g1(Drs1 — M — O1dy + -+ - Sgdy—g11)
which is a (¢ + 1) vector with (¢ + 1) coeflicients (12, 01, ...,).

Step 4: Test the presence of bubbles
The test for the presence of bubbles is constructed based on the relationship be-
tween the estimated parameters 0 = (b, i, ¢1, ..., @g, ™, 01, ..., §,) and the parameters

20

from the following set of equations.

Pir1 = M+ 01depr + ... + 5th—q+2 + Wit
m+ 01dppr + oo+ 0gdi—qr2 = Doy V' Edyyitr)|[Hia
Wit = 241 T Ct1

241 = Yooy U (Edyyin) | Ipr — Edyyiga)|Hepn)

Hansen and Sargent (1981) show that the system of equations from (24) can be
simplified into the following set of constraints, R(f):

(24)

0=m—b(1—-0)"10(b) " u
0=20; — (®(b)~t —1) (25)
0=24; —®(b)* D e bE=iti®,, for j =2, ..., q,
where ®(b)' = (1 - > b'¢;) !
The null hypothesis of no bubbles present in the data is given as R(6) = 0. The
test statistic is calculated as

- 8R(9)> A (8R(9))'] o
R(6 F.5F ~ R(0 26
(6) K % (T) % (0) (26)
This statistic (26) is x2-distributed with ¢ + 1 degrees of freedom.

3.3 Unit root and cointegration tests

Another way to test for the existence of asset-bubbles is to apply unit root tests to
the relationship between stock prices and dividend yields. If the asset price does not
deviate from its fundamental value, the time-series of the ratio between the stock
price and its dividend yield should be stationary. In other words, if the two time
series are cointegrated, they share the same stochastic drift, which is counter the
hypothesis of an asset price bubble. This approach has been widely used by the
academic literature (Phillips et al., 2013, 2011; Chan and Woo, 2008; Jirasakuldech
et al., 2008; Waters, 2008; Cunado et al., 2005; Koustas and Serletis, 2005; Bohl,
2003; Chung and Lee, 1998; Lamont, 1998; Charemza and Deadman, 1995; Horvath
and Watson, 1995; Ackert and Smith, 1993; Craine, 1993; Froot and Obstfeld, 1989;
Diba and Grossman, 1988; Campbell and Shiller, 1986).

Diba and Grossman (1988) propose a test that allows for other factors o; that
influence the price and specify the market fundamental pricing relation as

E, dt+z+0t
. 27
Z fiT (27)

21

Assuming that the other factors are not more non-stationary than the dividend
process, the market fundamental price will be of the same non-stationary order. The
presence of bubbles can be thus tested by verifying whether stock prices are stationary
after differencing the same number of times to make dividends stationary. Using the
Dickey-Fuller test, Diba and Grossman (1988) conclude that after integrating both
time series by an order of one, equation (27) holds, which rejects the presence of
bubbles. Other authors have however obtained contradictory results using different
data frequency or data sub-samples.

Campbell and Shiller (1986) identify persistent deviations of stock prices from
present value of future dividends analysing the S&P 500 composite index and thus
provide evidence of bubbles existence while using tests for cointegration between
stock value and dividends. Similar conclusions are drawn by Froot and Obstfeld
(1989) and Craine (1993), who test for a unit root presence in the price-dividend
ratio on annual data of S&P 500 index. Bohl (2003) also obtains differing results of
unit root tests with and without including in data the I'T bubble observed since mid
90s. The following empirical papers were also not able to resolve the issue of existence
of asset price bubbles as their findings are often contradictory. For instance, Horvath
and Watson (1995) support the cointegration relationship between stock prices and
dividends and suggest that no bubble exist in the US. On the other hand, Cunado
et al. (2005) test for presence of a bubble using fractional approach. When using
monthly data, they cannot reject the unit root hypothesis, which implies presence of
rational bubbles. Nevertheless, on daily and weekly data, they reject the hypothesis
of unit root. The inability of existing literature to conclusively prove or disprove the
existence of asset-price bubbles leaves this an open empirical question.

Evidence outside the US varies widely. For example, Jirasakuldech et al. (2008)
use multivariate tests to examine the Thai equity market and conclude that there is
no long-run relationship between prices, dividends and earnings, which indicates the
presence of a bubble. Chung and Lee (1998) find that Hong Kong and Singaporean
prices do not deviate from fundamentals, whereas Korean and Japanese markets
are strongly influenced by non-fundamental and non-financial factors. Cheng et al.
(2012) find that price efficiency is improved with increased short selling after remov-
ing short-sale constraints on IPO stocks in the Taiwanese market.

The existing literature identifies the following limitations of unit root tests. Ack-
ert and Smith (1993) argue that the standard measures of dividend payments un-
derestimate the total cash flows to shareholders, which impacts the cointegration
between dividends and prices. Moreover, Waters (2008) notes that certain types
of bubbles are not detectable by unit root tests. He concludes that unit root tests
have difficulty differentiating between periodically collapsing bubbles and a persis-

22

tent, mean-reverting process. He also finds that bubbles generated by the stochastic
explosive unit root model of Charemza and Deadman (1995) can be detected by
properly specified unit root tests, but the periodically collapsing bubbles of Evans
(1991) cannot.

Since standard unit root tests may erroneously reject evidence of bubbles when
prices contain stochastic bubbles, Chan and Woo (2008) develop a new test to detect
the existence of stochastic explosive root bubbles. Using Monte-Carlo simulation,
they examine the power performance of this new test for the null hypothesis of coin-
tegration in the presence of bubbles with a stochastic explosive root. Koustas and
Serletis (2005) use autoregressive fractionally integrated moving average (ARFIMA)
processes, since it allows for more flexible modelling of low frequency dynamics of
stock prices, dividends, and their equilibrium relationship while allowing significant
deviations from equilibrium in the short run. Moreover, it enables the authors to
investigate the degree of persistence of log dividend yields for the S&P 500. They
conclude that fractionally integrated dividend yield is consistent with rational bub-
bles in stock market prices.

Phillips et al. (2011) develop a new methodology to identify bubble behaviour
with consistent dating of their origination and collapse. This allows them to create an
early warning diagnostic of bubble activity. They investigate time series of financial
asset prices, commodity prices and bond prices are investigated and propose a new
procedure for the identification of bubble migration across markets. They find statis-
tically significant bubble characteristics in all time series in the US financial markets.
Phillips et al. (2011) employ an econometric method using forward recursive regres-
sion coupled with sequential right-sided unit root tests. This method enables early
identification of mildly explosive behaviour in asset prices, or anticipatory evidence
of a move away from martingale behaviour. The method proposed by Phillips et al.
(2011) is effective in situations when there is a single bubble existing in the data.
The identification of multiple bubbles, which periodically collapse is a more complex
exercise (Phillips et al., 2013). This limits the use of standard econometric methods
for bubble identification since in reality more bubbles can exist within the analysed
period. Phillips et al. (2013) propose a procedure suitable for cases with multiple
bubbles in the data set by allowing for a flexible window width, on which the tests
for bubbles identification are conducted.

23

3.3.1 Phillips, Shi, and Yu (2013) rolling window approach

The model specification for asset prices is based on equation (17) including the bubble

component:
T—i

Et(dtJri + Ot)
= E ——— + B,. 2
pt - (1 7")1 t (8)

The bubble component satisfies the submartingale property:
Ey(Bi1) = (1+7)B,. (29)

We can empirically test for the presence of an explosive process in the the price-
dividend ratio by using the most standard test of unit root existence, the Augmented
Dickey-Fuller (ADF) test (Said and Dickey, 1984), with a null hypothesis of unit root
presence. We allow possibility of multiple bubbles in the data following Phillips et al.
(2013) using flexible rolling windows. The empirical model is defined as

k
Ayt = a7"177"2 + ﬁrl,rzyt—l + Z ,lvbil;rgAyt—i + €t, (30)

i=1
where Ay, is a change in price-dividend ratio, ., s, By, », and ¥} . are regression
coefficients, k is the lag order, ro = r; 4+ r,, is the window size and errors are i.i.d.
random variables, ¢, ~ N(0,02%). The corresponding ADF test statistics based on
this regression are defined as ADF}2.

The presence of bubbles is tested using the generalised supremum ADF (GSADF)
test introduced by Phillips et al. (2013). The GSADF test is based on a sequence of
recursive ADF unit root tests with flexible forward rolling window. The product of
this method is a dating strategy, which identifies the points of bubble origination and
termination. The advantage of using the GSADF test is the flexibility of windows
with flexible starting and ending points. This enables the detecting of explosive
behaviour more frequently than by using the method with fixed windows.

The idea of the GSADF test is to run the regression from equation (30) recursively
on sub-samples of data. The GSADF test statistics is then the largest ADF statistic
(supremum) over all feasible ranges of r; and ry:

GSADF(rg) = sup {ADF! ry} (31)

1
ro€lro,1],r1€[0,r2—7r0]

The asymptotic critical values necessary for any statistical inference about signifi-
cance are provided in Phillips et al. (2013). The asymptotic distribution of GSADF

24

tests depends on the smallest window size, as the smallest window size decreases,
critical values increase.

The most important feature of a successful asset-pricing detection tool is the
ability of the method to assess whether the bubble exists or not with real time data.
In other words, it is required that the mechanism correctly evaluates if a particular
point in time belongs to a bubble phase. Phillips et al. (2013) propose a backward
GSADF test to perform tests on a backward expanding sample. The origination date
of a bubble is the first chronological observation, when GSADF test statistics value
is below the critical value. The outcome of this strategy is a set of origination and
ending dates of asset-price bubbles existence. The main advantage of this method
relative to other approaches is that it can be applied on data samples that include
more than one explosive feature.

3.4 Bubbles treated as unobservable variables

The empirical model used for speculative bubbles identification when bubbles are
treated as unobservable variables follows the method from Al-Anaswah and Wilfling
(2011). This technique is based on the state-space model with Markov switching. Al-
Anaswah and Wilfling (2011) define a present value stock price model in state-space
form estimated using Kalman filter. The unobservable bubble process is specified
by two-regime Markov switching model, where the two regimes are bubble survival
and bubble collapse. Al-Anaswah and Wilfling (2011) follow Wu (1997), who treats
bubbles as unobservable variables and extend their scheme by allowing for switching
regimes.
The model is specified as follows:

q=kK+VE (i) + (1 —)d, — py, (32)

where q is the log return, expectations are conditional on all available information
at time t, p, = In(P;) is the log stock price at time t, d; = In(D;) is the log dividend
paid at time t and &, are linearisation parameters.?

Applying the transversality condition, lim; . ¢'F;(p;es = 0, leads to the no
bubble solution to equation (19) and defines the market fundamental asset price:

f_hk—4
t 1 . 1/}

The general solution to equation (33) includes the bubble component, which
satisfies the submartingale property specified in equation (29). In order to prevent

p + (1 =) Z V' Ey(dpys). (33)

31 is the average log dividend-price ratio and & is defined by £ = —In(¢)) — (1 —)In(1/y — 1).

25

the problems related to non-stationarity of time-series data, the price equation is
expressed in first differences.

Apy = Apl + AB = (1—)Y ¢'Ei(diyi — Eroa(diric1)) + AB,. (34)

1=0

Wu (1997) and Al-Anaswah and Wilfling (2011) assume that dividends follow an
AR integrated moving average process, in particular the ARIMA (h,1,0) in the form

h
Adt = u + Z ¢jAdt_j + 5t7 (35)
j=1

where d; ~ N(0,02). The autoregressive process from equation (35) can be expressed
in terms of (h x 1) vectors yy = (Ady, Ady_1, ..., Ady_p11)’, u = (1,0,0,...,0), v¢ =
(6,0,0,...,0) and (h x h) matrix

1 P2 h3 . Ph1 O

1 0 0 .. 0 0
A=|lo0o 1 0 .. 0 0], (36)
00 0 .. 1 0

which simplifies the equation (31) into the form
Ve =u+ Ayeiq + Vi (37)
The stock price model from equation (30) is represented by
Ap; = Ady + mAy, + ADBy, (38)

where m = gA(I — A) ™[I — (1 —v)(I—A)~!] (Campbell and Shiller 1987). The
linear bubble process follows from the submartingale property specified in equation
(16)

Bt = (1/¢)Bt,1 +77t7 (39)
where 7; is assumed to be i.i.d., N(O,ag), Y = 1+ r and 1) is uncorrelated with
dividend innovation &;. The bubble process is however unobservable, which requires

the use of state-space representation and the Kalman filter (Al-Anaswah and Wilfling,
2011).

26

State space model

The state-space representation of the present-value model is expressed as follows.
The model description is based on Al-Anaswah and Wilfling (2011) and Wu (1995).

/Bt = FIBt—l + Eta (40)

zy = HB, | + Dgt + ¢, (41)

In this system of equations, B, is the (n x 1) vector of unobserved or state-space
variables, gy and zg are (m x 1) and (n x 1) vectors of observed (input and output)
variables, F, H and D are constant real matrices and & and (i are (nx 1) and (I x 1)

vectors of disturbances. We assume that the vectors of disturbances are serially
uncorrelated, E(§,) =0, E(£,£)) = Q, E(¢,) =0 and E((,C;) = R.

The asset-pricing model consists of three parts, the ARIMA dividend process
from equation (35), the stock price process from equation (34) and the bubble process
from equation (39). The model can be expressed in the state-space form defined in
equations (40) and (41) when

B, = (Bt, Bt—l)/yzt = (AdmApt)/,

g = (1,Ady)', Ady_1, Ady s, ..., Ady_p)',

gt = (77157 0>/7 Ct = (5157 O>/

(4 Ym0 %)
and

b_ (M 0 b1 bo oh — 1 o) (43)

0 (1+m1) (mg—ml) (mg—mg) (mh_g—mh_l) —mp

where m; is the ith element of vector m from equation (25). The covariance matrices

are specified as
o2 0 o2 0
— n — 1)
Q_<0 0>’R_(O O)' (44)

The bubble process is treated as the unobservable part of the state space model.
There are two measurement equations, including the dividends and asset price pro-
cess and two transition equations defining the bubble process. The estimation of the
stochastic bubble component using the Kalman filter is outlined in Al-Anaswah and
Wilfling (2011), page 1075.

27

3.4.1 State-space model with Markov switching regimes

In the state-space model with Markov switching regimes, the parameters of matrices
F H,D,¥ and R can switch between two regimes, which modifies the state space
model into the following form

/87& = FStIBtfl + ét’ (45)

Zy = HSuBt—l + DStgt + Ct? (46)

(2) =N (0 (Qost ROSt» : (47)

S; denotes the unobservable two-states regime variable, S; = (1,2), which deter-
mines the values of parameters at time ¢. The Markov transition probability matrix

is given by
P 1 —pa
I1= , 48
(1 —Pu D22 > (48)

where p;; = P(S; = j|Si—1 = 1).

The procedure to estimate the parameters of the state-space model is alsi depicted
in in Figure 5.1 in Kim and Nelson (1999, p. 105). In summary, after obtaining the
initial values, the Kalman filter is run with while collapsing the posteriors ,Bg‘it’j_)l and

Pi‘zi)l after the end of each iteration to get 6§| , and Pgl .

The aim of this regime-switching model is to estimate the two-state switching
parameter matrices Fg,, Hg,, Ds,,Qs,, Rs,. Al-Anaswah and Wilfling (2011) note
that it is difficult to numerically maximise the likelihood function with so many
parameters and reduce their model complexity by imposing the following restrictions
on model parameters. They model the dividend process d; as a pure random walk
without drift, i.e. set p = 0 and A = 0 in equation (35) thereby contracting the matrix
D from equation (43) correspondingly. Second, they only allow the autoregressive
coefficient 1/1 in the bubble process (39) to switch between the two regimes (in order
to discriminate between moderately growing and explosive periods in the bubble
process) while modeling all other parameters as non-switching between the Markov-
regimes. Both restrictions imply that Al-Anaswah and Wilfling (2011) estimate the
switching autoregressive bubble coefficients 1/1¢ and 1/15 in the matrices Fg,, the
non-switching variances o7 and o} in the matrices and R from equations (44) and
both transition probabilities pi; and poy from the matrix IT in equation (48).

This method is able to identify (ex-post) the dates of bubble burst, which are
the points in time when the probability of bubble surviving is lower than 0.5. The

28

example of the bubble burst identification for the US market is shown in Figure 2.
This method offers a real-time mechanism how to detect bubbles in financial markets
and brings valuable estimates of bubble burst probabilities for each point of time of
the analysed period.

Figure 2: State-space model with regime switching. Source: Al-Anaswah and Wil-
fling (2011), page 1083.

USA (1871-2004), smoothed probabilities USA (1871-2004), prices (in logs)

0.8 !

1.0

0.6 o

0.4

0.2

o =2 N W & OO O ~N @
I N ! 1 ! L L 1

0.0

1875 1900 1925 1950 1975 2000 1875 1900 1925 1950 1975 2000

29

4 Implementation

We implement the main empirical tests for asset-price bubbles detection in the Aus-
tralian market, using the S&P ASX 200 index as a proxy for the market and the
A-REIT index for Real Estate Investment Trusts listed on ASX as a proxy for the
property market. We provide results of the Shiller (1981a) variance bounds test,
West (1987) two-step test, and both the Phillips, Shi, and Yu (2013) and Phillips,
Wu, and Yu (2011) unit root tests.

4.1 Australian Equities: S&P ASX 200 index
4.1.1 Variance bounds test

We apply the Shiller (1981a) variance bounds test, which considers the implications
of comparing the efficient market model against a perfect foresight model which is
commonly referred to as the ex-post rational price.

The efficient market model is represented as:

(14+7r)

 Ey(diys
3 (di+i)

Pt =

i=0

where p; is the real price, d; is the real dividend, r is the constant interest rate,

and FE;() is the expectation operator conditional on information available at time ¢.
The ex post rational price is defined as:

. _ diyi
be = ; (1+47)

where p; is the ex post rational price.
The test compares the standard deviation of the two series. If the efficient markets
model holds true, then it can be shown that:

o(pr) < o(py).

Figure 3 (Figure 4) displays the observed and ex-post rational price series on
monthly (quarterly) basis as well as the corresponding variance bounds.

Table 1 contains the boundary test results using monthly and quarterly data.
Columns of the results table correspond to a different end point scaling of the ex
post rational price, with 1.0 representing the mean of the detrended price series. The
standard deviation of the price series, std(p), clearly exceeds the standard deviation
of each ex post rational price series, std(p*), both on monthly and quarterly basis.

30

11000 Comparison of price p; and ex post rational price p; - both detrended

T 1200 — T T T
Variance of observed price
al scale factor =1.3 Variance of ex-post rational price|
al scale factor =1 i
10000 - al scale factor =0.7 \ B
il 1000 4
I g
/
800 S
-
600 / R
J
—
/
400 - Vi R
-
200 | 3 1
P
4000 L L L . L L . L iy E— L L L L . L L
1993 1995 1998 2001 2004 2006 2009 2012 2015 1995 1998 2001 2004 2006 2009 2012 2015
time

(a) Prices (b) Variances

Figure 3: Variance Bounds Test on the S&P ASX 200 index. Comparison of observed
price and ex-post rational price (both detrended) in panel a), and its variances in
panel b), calculated using monthly data from May 1992 until April 2016

Comparison of price p; and ex post rational price pj - both detrended
10000 (v T T T T T T T T 1200 T T T T T T T T
Iy Variance of observed price
\;“ Variance of ex-post rational price|
9000 [R 1000 - A
L /!
W
| r
8000 | 4 800 o 4
| o
| R 600 - ‘ B
‘ N
\ \ r r
6000 - +L 7 /R \ I 400 - r i
7 ‘ M. -
| o —
/ Va ‘ﬁ — :
5000 200 o -
_— _— T
[—T"
4000 1 L L L L L L L L ol " L L L L L
1993 1995 1998 2001 2004 2006 2009 2012 2015 1995 199 2001 2004 2006 2009 2012 2015
time

(a) Prices (b) Variances

Figure 4: Variance Bounds Test on the S&P ASX 200 index. Comparison of observed
price and ex-post rational price (both detrended) in panel a), and its variances in
panel b), calculated using quarterly data from May 1992 until April 2016

One interpretation of this result is that the price and dividend data contains
bubbles. However, we should be cautious here as the failure of the test does not

31

11000 ¢
price
al scale factor =1.3
al scale factor =1
10000 - al scale factor =0.7 \

Comparison of price p; and ex post rational price p; - both detrended

4000
1993 1995 1998 2001 2004 2006 2009 2012 2015
time
(a) 1992-2016
5000 Comparison of price p; and ex post rational price p - both detrended

4500 -

detrended price

@
&
8
3

3000

2500

I
8
8

L L L L L L . L
1993 1995 1998 2001 2004 2006 2009 2012 2015

time

(c) 1992-2004

8000 ¢

7500

7000

6500

detrended price

4s00 |

4000

3500

3000
1

3200

3000

2800

2600

detrended price

2000

1800

1600

2400 {

2200

L L L L L L . L
1993 1995 1998 2001 2004 2006 2009 2012 2015

Comparison of price p; and ex post rational price p; - both detrended

price

‘M
r |
.
993 1995 1998 2001 2004 2006 2009 2012 2015
time
Comparison of price p; and ex post rational price p - both detrended

time

(d) 1992-1998

Figure 5: Variance Bounds Test on the S&P ASX 200 index. Comparison of observed
price and ex-post rational price (both detrended) using monthly data from May 1992
until April 2016 in panel a), monthly data from May 1992 until December 2010 in
panel b), monthly data from May 1992 until December 2004 in panel ¢) and monthly
data from May 2000 until December 1998 in panel d).

directly imply the existence of bubbles. Essentially, the Shiller (1981a) variance
bounds test is a validation test of the efficient markets model and is thus not a direct
test for rational bubbles.

The Shiller (1981a) test assumes that the price process is stationary, which is
unlikely to be satisfied in the real world. We therefore focus further on alternative

Table 1: Results of the Shiller (1981a) variance bounds tests conducted on monthly
and quarterly data available between May 1992 and April 2016

Monthly Quarterly
E(p) 6420.90 6420.90 6420.90 6375.70 6375.70 6375.70
E(d) 246.39 246.39 246.39 24518 245.18 245.18
r 0.04 0.04 0.04 0.04 0.04 0.04
2 0.08 0.08 0.08 0.08 0.08 0.08
b 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
cor(p,p*) 045 0.65 0.71 0.23 0.64 0.57
std(d 41.84 41.84 41.84 41.92 41.92 41.92

(
()
std(p) 1079.60 1079.60 1079.60 1067.70 1067.70 1067.70
std(p*) 846.62 759.50 853.01 653.21 402.53 634.01

bubble detection strategies.

4.1.2 West (1987) two-step tests

Unlike the variance bounds test which doesn’t directly include the presence of bubbles

when rejecting the model, the West (1987) test specifically includes the ability to

check for bubbles by testing the model and no-bubbles hypotheses sequentially.
The Euler equation relating prices and dividends is given by:

Pt = bEy(prs1 + dis)

where p; is the real stock price in period ¢, b the constant real discount rate
0<b=1/(1+r) <1, r the constant expected return, and E;() is the expectation
operator conditional on information available at time .

In the absence of bubbles an estimate of the discount rate can be obtained by
noting that

pr = b(pi1 + diy1) + wrr

where wu;yq is the error term. Since wu;yq is correlated with p;yq and d;yq, the
estimation requires the use of an Instumental Variable.

Next, West (1987) assumes dividends follow a pure auto-regressive process, order
q, of the form

dt+1 = U + d)ldt + ...+ ¢th_q+1 + Vi1

Estimates for the dividend regression coefficients are readily obtained by OLS.

33

Finally, the usual asset price equation
pe=) VEia(dyys)
i=1

is estimated by letting
Pepr = M+ 01dipy + ..+ 0gdy—_gyo + Wigy

As each estimation process above represents part of the relationship between
prices and dividends it is possible to derive constraint equations relating all the
estimated model parameters. Under the assumption that no bubbles are present,
the constraint equations should all be satisfied. A statistical test is constructed to
measure how closely the constraints are satisfied.

It is important to note that the West (1987) test hinges on being able to vali-
date the discount rate and dividend ARIMA estimation processes. Provided these
estimates are sound, model misspecification can be ruled out and any violation of
the constraint equations can be directly attributed to the presence of bubbles. Con-
sistent with West’s (1987) original application, we set the AR order ¢ to 2 and use
both level and differenced data.

Table 2: Results of the West (1987) two-step test conducted on monthly and quar-
terly data available between May 1992 and April 2016

Monthly Quarterly
Data Size: 286 285 94 93
Data Set: 05/92-04/16 05/92-04/16 05/92-04/16 05/92-04/16
Differenced: no yes no yes
q: 2 2 2 2
DokF": 3 3 3 3
Test Statistic: 0.025 0.003 0.064 0.018
P-value: 0.999 1.000 0.996 0.999

When we run the West test on full data sample from 1992 to 2016, we get a
p-value close to 1 and cannot reject the hypothesis that there are no bubbles in the
Australian data during this time period, see Table 2. The Test Statistic from Table
2 represents the West’s test statistic defined in equation (26). The same conclusion
holds if we divide the data into shorter periods (e.g. one-year or two-year periods),
in all the sub-periods, the p-value is greater than 0.9, which suggests that based on

34

the West (1987) test, there is no evidence to suggest that bubbles exist in either
Australian stock or real estate prices.

4.1.3 Unit root tests

Unit Root tests rely on testing the relationship between the price and dividend ratio
series for stationarity. If the price and dividend series are cointegrated they share
the same stochastic drift, which is counter to the hypothesis of bubbles existing. The
testing procedures broadly fall under the term Unit Root testing.

The simplest test for a unit root is the augmented Dickey-Fuller (ADF) test.
In this testing scenario, the entire sample is considered and a single test result is
returned. The power of a simple ADF test to detect bubbles is weak in the sense
that it doesn’t yield useful information about the start and end dates of bubble
episodes, and it can fail if more than one episode occurs.

Phillips, Shi, and Yu (2013) rolling window approach

To get around the limitations of the simple ADF test Phillips, Wu, and Yu (2011)
propose an extension called the Supremum ADF test (SADF) which considers an
increasing sample window size, starting from a mimimum window and ending at the
full sample. Their test then calculates the Supremum of all ADF tests conducted
on all sub-sample windows and compares that to appropriate critical values derived
by extensive Monte Carlo simulations. The SADF test also offers a date-stamping
strategy whereby bubble start and end dates can be successfully identified. Although
the SADF test is extremely useful it has some shortcomings, not least of which is that
it can fail to find bubbles when considering the full sample size but can successfully
find bubbles when considering each half of the full sample separately.

We perform an SADF test, with parameters specified exactly as in Phillips, Wu,
and Yu (2011). Specifically, we test for:

e a unit root with drift

e a minimum window size of 36 months

zero lag terms included in each ADF test

2000 Monte Carlo simulations when computing critical values

Null model parameters d and 7 set to 1

Critical value tests performed at 90%, 95%, and 99% confidence levels

35

Phillips, Wu, and Yu (2011) Unit Root Test 1: Monthly S&P ASX 200

10000 ¢
w’Y A/
|
Ak
l
\
|
il | 1
15 I \ /|
i (
| |
20 | \ 5000 -
\ I
I
)l |
251 \ [~
| Y \
ey
3l
The backward ADF sequence (left axis)
‘The 95% critical value sequence (eft axis) rices
Price-Dividend ratio (right axis) Dividends (right axis)
350 ok o
1993 1995 1998 2001 2004 2006 2009 2012 2015 1993 1995 1998 2001 2004 2006 2009 2012 2015

(a) Test Diagnostic

400

(b) Prices and Dividends

Figure 6: S&P ASX 200, SADF test on monthly price-dividend ratio from May 1992

b).

Phillips, Wu, and Yu (2011) Unit Root Test 1:

0.5 ; 10000 7
e _—
Al f
il
|
I)
| \
151 | Il \
WA
|/ | \ /
|/ | | 5000 \ I
/ | | A
| i | |)
2 \
|
L)
\ A /
\ e ~
N, & _
25| A %
The backward ADF sequence (ief axis)
95% critical value sequence (left axis)| Prices
Price-Dividend ratio (right axis) - Dividends (right axis)
3l ol o
1993 1995 1998 2001 2004 2006 2009 2012 2015 1993 1995 1998 2001 2004 2006 2009 2012 2015

(a) Test Diagnostic

until April 2016 in panel a), with corresponding price and dividend levels in panel

Quarterly S&P ASX 200

400

"\ 200

(b) Prices and Dividends

Figure 7: S&P ASX 200, SADF test on quarterly price-dividend ratio from May 1992

b).

36

until April 2016 in panel a), with corresponding price and dividend levels in panel

We also plot the sample sequence, the backwards ADF statistic sequence, and
the 95% critical value sequence on monthly basis in Figure 6 and on quarterly basis
in Figure 7. We cannot identify any bubbles in monthly or quarterly prices.

The SADF test, which is based on the backward sequence of ADF test statistic,
shown in Figures 6 and 7, has some shortcomings and may not adequately identify
bubbles present in the data. Phillips et al. (2013) improve this method and propose a
new measure, the Generalized supremum ADF test (GSADF). The GSADF test ex-
tends the concept of the SADF test by allowing the window start point to also move,
thereby covering many more sub-samples of the entire sample size. The GSADF
test has been shown to be extremely effective in identify commonly accepted bubble
episodes in historical data, and it also offers the same data-stamping strategies as
the SADF test. Note that the data-stamping strategies for SADF and GSADF are
typically run on backwards tests, rather than forwards, to provide test results at
the most recent sample point (i.e. the windows start at the most recent points and
extend back in time, rather than forwards in time).

Phillips, Shi, and Yu (2013) Unit Root Test 2: Monthly S&P ASX 200

0.5 T T T T T 7 T T 10000 r; T T T T T 7 T T 400

Ak Il " \“‘h‘\ / ““\ 5000 |- \/ I N A " Voo

The backward ADF sequence (left axis)
‘The 95% critical value sequence (left axis)

Price-Dividend ratio (right axis)

250 L L L L L I L L ol L L L L L I L P Y
1993 1995 1998 2001 2004 2006 2009 2012 2015 1993 1995 1998 2001 2004 2006 2009 2012 2015

(a) Test Diagnostic (b) Prices and Dividends

Figure 8: A-REIT index, The backwards SADF statistic sequence: SADF test on
monthly price-dividend ratio from May 1992 until April 2016 in panel a), with cor-
responding price and dividend levels in panel b). Shaded areas represent detected
asset-price bubbles.

We plot the output of this improved unit root test statistic, and the 95% critical

value sequence based on monthly data in Figure 8 and quarterly data in Figure
9. When we analyse monthly prices, we find that there are points at which the

37

backwards SADF sequence exceeds the critical value sequence, which suggests that
there are bubbles present in data. Based on the SADF backward-dating strategy,
there is evidence of three periods, when prices contain a bubble in the Australian
market. The periods when the Phillips et al. (2013) procedure detected bubbles in
prices are from November 2008 until February 2009, August 2009 until November
2009 and August 2011 until October 2011.

All of these three periods are rather short and represent a small deviation of prices
from dividends. We therefore do not suspect that there is any systematic asset-price
bubble present in the data.

Furthermore, we focus on quarterly data and conduct the same test to detect
any bubbles in quarterly prices. Our results suggest that there is only one period
(which is also relatively short) of a bubble between September 2008 and February
2009, Figure 9.

Phillips, Shi, and Yu (2013) Unit Root Test 2: Quarterly S&P ASX 200

2 T T T T T T T T 10000 (1 T T T T T T T T 400

The backward ADF sequence (left axis)
The 95% critical value sequence (left axis)
Price-Dividend ratio (right axis)

N L L L L L L L L ol L L L L L L L o
1993 1995 1998 2001 2004 2006 2009 2012 2015 1993 1995 1998 2001 2004 2006 2009 2012 2015

(a) Test Diagnostic (b) Prices and Dividends

Figure 9: S&P ASX 200, The backwards SADF statistic sequence: SADF test on
quarterly price-dividend ratio from May 1992 until April 2016 in panel a), with
corresponding price and dividend levels in panel b). Shaded areas represent detected
asset-price bubbles.

Table 3 provides the value of the test statistic used to examine whether there are
any asset-price bubbles using all the data available for the S&P ASX 200 index. Since
the value of the test statistic is lower than most of the critical values, we conclude
that there is little evidence of existence of bubbles in the Australian equity prices.

The results of no evident bubble found in the Australian equity market contrast

38

Table 3: Results of the unit-root tests conducted on monthly and quarterly data
available between May 1992 and April 2016. We use the following test to identify
existence of bubbles in the Australian market: the Supremum ADF test (SADF)
proposed by Phillips, Wu, and Yu (2011) and the Generalized supremum ADF test
(GSADF) proposed by Phillips, Shi, and Yu (2013). Test-Stat is the value of the
test statistic of each test and CV represent critical values.

Test-Stat CV 90 pct CV 95 pct CV 99 pct

Monhtly

SADF -0.829 0.306 0.558 1.081
GSADF 0.450 1.222 1.451 1.897
Quarterly

SADF -0.927 0.044 0.313 0.783
GSADF 0.992 0.704 0.981 1.423

The backward SADF sequence (left axis)
The 95% critical value sequence (left axis)
The price-dividend ratio (right axis)

A‘.
| %W d{' Tl Jﬂ. im.}

1860 1880 1900 1920 1840 1860 1930 2000 2020

Figure 10: Results of the unit-root tests conducted on US equity data (price-to-
dividend ratio) available between January 1871 and December 2010. We use the
Phillips, Shi, and Yu (2013) Generalized supremum ADF test (GSADF) test to
identify existence of bubbles in the US equity market: the Generalized supremum
ADF test (GSADF).

39

those of the US equities. In the US, there is a strong evidence of the existence
of an asset-price bubble, detected using the Phillips, Shi, and Yu (2013) unit root
test, around the year 2000, when the test statistic exceeds the critical value for a
considerable time period, which is associated with a sharp increase in prices, as shown
in Figure 10.

40

4.2 Australian REIT market: A-REIT index
4.2.1 Variance bounds test

We apply the Shiller (1981a) variance bounds test on the A-REIT index to compare
the standard deviation of the observed price and ex-post rational price, Figure 11 on
monthly basis and Figure 12 on quarterly basis.

2000 450

400 -

350 -
1500 - 7 R 300 -
AP

A 250 |-

200 -

detrended price

1000 -) [NP 150 L

500

L L L L L L L L L L
2002 2004 2005 2006 2008 2009 2010 2012 2013 2015

(a) Prices (b) Variances

Figure 11: Variance Bounds Test on the A-REIT index. Comparison of observed
price and ex-post rational price (both detrended) in panel a), and its variances in
panel b), calculated using monthly data from May 2000 until April 2016

Table 4 contains the boundary test result on a monthly and quarterly data.
Columns of the results table correspond to a different end point scaling of the ex
post rational price, with 1.0 representing the mean of the detrended price series. The
standard deviation of the price series, std(p), clearly exceeds the standard deviation
of each ex post rational price series, std(p*), both on monthly and quarterly basis.

4.2.2 West (1987) two-step tests

We apply the West test on full data sample of the A-REIT index from 2000 to 2016,
and get a p-value close to 1, which implies that we cannot reject the hypothesis
that there are no bubbles in the Australian REIT prices during this time period, see
Table 5. The same conclusion holds if we divide the data into shorter periods (e.g.
one-year or two-year periods), in all the sub-periods, the p-value is greater than 0.9,

41

of price pi and ex po
2000 price p and ex p

st rational price p - both detrended

450

1500 -

1000 =

500

0

time

(a)

Figure 12: Variance Bounds Test on the A-REIT index. Comparison of observed
price and ex-post rational price (both detrended) in panel a), and its variances in

400 -

350

300 -

250

200 -

50

e L . L L L . L
2002 2004 2005 2006 2008 2009 2010 2012 2013 2015

(b) Variances

panel b), calculated using quarterly data from May 2000 until April 2016

Table 4: Results of the Shiller (1981a) variance bounds tests conducted on monthly

and quarterly data available between May 2000 and April 2016

Monthly Quarterly
E(p) 1034.40 1034.40 1034.40 1027.00 1027.00 1027.00
E(d) 63.54 63.54 63.54 63.43 63.43 63.43
r 0.06 0.06 0.06 0.06 0.06 0.06
2 0.13 0.13 0.13 0.13 0.13 0.13
b -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
cor(p,p*) 0.87 0.82 0.72 0.73 0.65 0.47
std(d) 20.37 20.37 20.37 21.08 21.08 21.08
std(p) 315.57 315.57 315.57 31555 315.55 315.55
std(p*) 241.17 244.23 261.67 127.95 141.99 193.02

which suggests that based on the West (1987) test, we did not find any evidence of

bubbles existing in Australian prices.

42

Comparison of price p; and ex post rational price p; - both detrended

L L L
2006 2009 2012 2015
time

L
2004

L
2001

(¢) 2000-2008

Comparison of price p; and ex post rational price p; - both detrended

2000 2200
price price
al scale factor =1.3 al scale factor =1.3
al scale factor =1 2000 - -ale factor =1
al scale factor =0.7 ale factor =0.7
1800 -
|
f |
1500 - 1600 |- A
A
8 N N N
g \ g /
ES il Z 1400 - d
z N MM g I
E I W E I
z \ £ 1200 RS
3 TR 3 !
3 W) 3 |
LI N |
1000 - “ \ / + 1000 -
\ o
\ v .
\ [- 800 |7/~
a -
\ 600 |
|
500 400
2001 2004 2006 2009 2012 2015 2001 2004 2006 2009 2012 2015
time time
(a) 2000-2016 (b) 2000-2012
3200 Comparison of price p; and ex post rational price p - both detrended 2000 Comparison of price p; and ex post rational price p - both detrended
1900 -
3000 R
1800 -
2800 - 1
1700
2600 1
B © 1600 -
Z 2400 - 4 Z 1500 -/
E < 1400
2200 g
1300 -
2000 g
1200 -
1800 - g
1100
1600 1000

L
2001

L L L
2006 2009 2012
time

L
2004

(d) 2000-2004

L
2015

Figure 13: Variance Bounds Test on the A-REIT index. Comparison of observed
price and ex-post rational price (both detrended) using monthly data from May
2000 until April 2016 in panel a), monthly data from May 2000 until December
2012 in panel b), monthly data from May 2000 until December 2008 in panel c¢) and
monthly data from May 2000 until December 2004 in panel d).

4.2.3 Unit root tests

Phillips, Shi, and Yu (2013) rolling window approach
We perform the SADF test on A-REIT index, with parameters specified exactly
as in Phillips et al. (2011). Specifically, we test for:

43

Table 5: Results of the West (1987) two-step test conducted on monthly and quar-
terly data available between May 2000 and April 2016

Monthly Monthly
Data Size: 192 191 63 62
Data Set: 05/00-04/16 05/00-04/16 05/00-04/16 05/00-04/16
Differenced: no yes no yes
q: 2 2 2 2
DokF" 3 3 3 3
Test Statistic: 0.0101 0.001 0.1922 0.0713
P-value: 0.9997 1.000 0.9788 0.995

e a unit root with drift

e a minimum window size of 36 months

zero lag terms included in each ADF test

2000 Monte Carlo simulations when computing critical values
e Null model parameters d and 7 set to 1

Critical value tests performed at 90%, 95%, and 99% confidence levels

We identify one bubble in monthly A-REIT prices, observed between October
2014 and January 2015. We plot the sample sequence, the backwards ADF statistic
sequence, and the 95% critical value sequence on monthly basis in Figure 14 and on
quarterly basis in Figure 15.

This detected bubble is not caused by a sharp increase of price but rather by a
sudden drop in dividend yield. This decrease in dividends of REITs was however
not persistent and once dividends have increases to the original level, the detected
ceased to exist. It is questionable that such situation can truly be referred to as an
asset-price bubble in REIT prices since the cause of the detection of a bubble was
not due to prices but dividends.

We also implement the Generalized supremum ADF (GSADF) test and plot the
output of this improved unit root test statistic, and the 95% critical value sequence
based on monthly data in Figure 16 and quarterly data in Figure 17. When we
analyse monthly prices, we find that there are points at which the backwards SADF
sequence exceeds the critical value sequence, which suggests that there are bubbles

44

Phillips, Wu, and Yu (2011) Unit Root Test 1: Monthly A-REIT index

-0.5 T T T T T T T T T 4 4000 T T T T T T T T T g 200
. | .
1L il
/ it |
\ [
“ I | |
‘ [!
15+ ‘ ™
| \ ‘
I\ |
| | | y ‘ X
1 | W [| \ Vo
2H | > 2000 - Y | | 4100
V | [YA |
| I | [— |
| \ ¥
A T |
AN
25 JUWh A | \]
Vit f ‘)
\ A L NI AN
/ | e » {
J o u
3l ‘ V%
\ “ The backward ADF sequence (left axis)
~ ‘The 95% critical value sequence (left axis) rices
Price-Dividend ratio (right axis) Dividends (right axis)
35 . I . . . I . . . ! 0 I I . . . I . . I !
2002 2004 2005 2006 2008 2009 2010 2012 2013 2015 2002 2004 2005 2006 2008 2009 2010 2012 2013 2015

(a) Test Diagnostic (b) Prices and Dividends

Figure 14: A-REIT index, SADF test on monthly price-dividend ratio from May
2000 until April 2016 in panel a) with corresponding price and dividend levels in
panel b). Shaded areas represent detected asset-price bubbles.

Phillips, Wu, and Yu (2011) Unit Root Test 1: Quarterly A-REIT index

05— ; ; . . ; ; . . ; 4000 — ; ; . . ; ; . . — 200
B - 1
al Ml
i
| ga
| e
1.5 [
| [
/
|)
| Lo \
% [\
2l | / | 2000 L/ \ \ 100
\- —/ \ \ \
) X
. | P
NAWAY
/
250 \
~
Yy,
— Y
| \
| .
3l /
The backward ADF sequence (left axis)
The 95% critical value sequence (left axis)| Prices
Price-Dividend ratio (right axis) Dividends (right axis)
55 ol) — o
2002 2004 2005 2006 2008 2009 2010 2012 2013 2015

20‘02 20‘04 20‘05 20‘06 20‘08 20‘09 20“ 0 20‘1 2 20‘1 3 20“ 5
(a) Test Diagnostic (b) Prices and Dividends

Figure 15: A-REIT index, SADF test on quarterly price-dividend ratio from May
2000 until April 2016 in panel a) with corresponding price and dividend levels in
panel b).

45

present in data. Based on the SADF backward-dating strategy, there is evidence
of two periods, when the test detect an asset-price bubble in the Australian REIT
market:

e Bubble 1: between March 2010 and July 2010
e Bubble 2: between September 2011 and November 2011.

The first bubble period is caused by the fact that dividends decreased by less
than prices. The prices did not grow between March 2010 and July 2010 but the test
still detects a bubble since dividends decrease at a higher rate. The second bubble
period is relatively short and is also not associated with any sharp increase in price.
We therefore conclude that REIT prices are relatively stable and follow the changes
of dividends, which suggests that threre are no evident asset-price bubbles in REIT
prices.

Phillips, Shi, and Yu (2013) Unit Root Test 2: Monthly A-REIT index

1 T T T T T T T T T T 4000 T T T T T T T T T T 200

v 2000 | r Y | N 100

The backward ADF sequence (Ieft axis)
The 95% critical value sequence (left axis)
Price (right axis)

0

. L L . . L L L . L . L L L L L L L . L
2002 2004 2005 2006 2008 2009 2010 2012 2013 2015 2002 2004 2005 2006 2008 2009 2010 2012 2013 2015

(a) Test Diagnostic (b) Prices and Dividends

Figure 16: A-REIT index, The backwards SADF statistic sequence: SADF test
on monthly price-dividend ratio from May 2000 until April 2016 in panel a) ,with
corresponding price and dividend levels in panel b). Shaded areas represent detected
asset-price bubbles.

Our findings using Phillips et al. (2013) on quarterly data Figure 17 and results
from the two unit root tests on all data (Table 6) confirm our hypothesis that there
is little evidence of asset-price bubbles in REIT prices.

46

Phillips, Shi, and Yu (2013) Unit Root Test 2: Quarterly A-REIT index

0 T T T T T T T T T T 4000 T T T T T T T T T T 200

A5f [\ AN 2000 \ \ 100

———— The backward ADF sequence (left axis)
o, equence (left axis)

e 95% critical value s
Price (right axis)

0

. L L L . L L L L L L L L L L L L L . L 0
2002 2004 2005 2006 2008 2009 2010 2012 2013 2015 2002 2004 2005 2006 2008 2009 2010 2012 2013 2015

(a) Test Diagnostic (b) Prices and Dividends

Figure 17: A-REIT index, The backwards SADF statistic sequence: SADF test
on quarterly price-dividend ratio from May 2000 until April 2016 in panel a) ,with
corresponding price and dividend levels in panel b).

Table 6: Results of the unit-root tests conducted on monthly and quarterly data
available between May 2000 and April 2016. We use the following test to identify ex-
istence of bubbles in the Australian REIT market: the Supremum ADF test (SADF)
proposed by Phillips, Wu, and Yu (2011) and the Generalized supremum ADF test
(GSADF) proposed by Phillips, Shi, and Yu (2013). Test-Stat is the value of the
test statistic of each test and CV represent critical values.

Test-Stat CV 90 pct CV 95 pct CV 99 pct

Monthly

SADF -0.776 0.262 0.479 1.089
GSADF 0.698 1.057 1.297 1.773
Quarterly

SADF -0.838 -0.030 0.249 0.778
GSADF -0.662 0.445 0.730 1.252
GSADF 0.992 0.704 0.981 1.423

47

5 Critical Analysis

We discuss the performance of the existing empirical techniques to detect asset-price
bubbles. In particular, we analyse the Shiller (1981a) variance bound test, West
(1987) two-step test and Phillips, Shi, and Yu (2013); Phillips, Wu, and Yu (2011)
unit root tests. We focus on the applicability of these tests in the Australian context.

5.1 Shiller (1981a) variance bounds test

Shiller (1981a) provides one of the first attempts to identify asset-price bubbles in
US stock data. It compares observed prices with ex-post rational prices, calculated
based on the expected value of dividend payments. With perfect foresight, the ex-
post rational price is the present value of the sum of all future dividends. Without
perfect foresight, the ex-post rational price contains an error, which increases its
variance. The variance of the ex-post ration price should therefore be higher than
the variance of observed prices.

Shiller (1981a) measures the variances based on a time series of prices and divi-
dends and therefore assumes that the price process is stationary and ergodic. If this
assumption is valid, the variance bound inequality is a good test to identify asset
price bubbles in data. In reality, however we often see that prices are not stationary
and are believed to follow a random walk non-stationary process. This implies that
the variance of the non-stationary price process will be higher than the variance of
ex-post rational prices measured using dividends, which is not due to the presence
of asset-price bubbles. The variance bound test can be used only based on a cross
sectional relationship, e.g. across economies but not time.

Because we have only one realisation of prices for a given time in reality, we do
not recommend using the variance bound test to make any statements about the
presence of bubbles.

5.2 West (1987) two-step test

West (1987) attempts to overcome the above mentioned problems with detection of
asset-price bubbles and propose a different technique, which does not rely so heavily
on unrealistic assumptions. He models two situations, with and without bubbles in
prices. He then tests whether the two situations yield similar results, if yes, there is
no bubble present in data.

West (1987) assumes that dividends follow an autoregressive process, which im-
plies that the forecasting equations are stationary in either the levels or first differ-
ences of real dividends. Flood and Hodrick (1990) argue that the likelihood that

48

a constant process characterises dividends for over 100 years of data is rather low.
Another aspect of the West (1987) test criticised by Flood and Hodrick (1990) is
the specification of the the return generating model, which involves using only the
one-period relation between current price and expected next period dividend and
price.

In terms of the usability of this method for early detection of asset-price bubbles
in data, this test does not directly identify the dates of beginning of bubbles and ends
of bubbles. With a long time series of data and relatively short period of bubbles
in data, this test is likely to be unable to correctly identify any bubble existence.
Although, this test represents a valid instrument for ex-post detection of bubbles in
data, it may under certain circumstances be unable to detect all price bubbles and
we therefore do not recommend to use this test solely.

5.3 Unit root tests

Another alternative way to test for the presence of bubbles is to analyse the relation-
ship between stock prices and dividend yields. This approach has become popular
and widely-used among practitioners and researchers. We analyse the dating strat-
egy methodology developed by Phillips, Wu, and Yu (2011) and updated by Phillips,
Shi, and Yu (2013). This method aims to overcome some of the issues related to the
usability of identification techniques that concerned e.g. the West (1987) two-step
test, as discussed above. This dating strategy allows for an early-warning diagnostic
of bubble activity. The original technique (Phillips, Wu, and Yu, 2011) is effective
when there is a single bubble in data but may become unable to identify multiple,
periodically collapsing bubbles. Phillips, Shi, and Yu (2013) therefore create an up-
dated technique, which allows for a flexible window width and can detect more than
one bubble in a given data set.

The unit root tests assess whether the price-dividend ratio is stationary. The
Phillips, Shi, and Yu (2013) rolling-window approach uses the Augmented Dickey-
Fuller test, with a null hypothesis of unit root presence and thus no bubble in data.
Cochrane (1991) critises the use of unit root tests. He argues that time series with
a unit root can be decomposed into a stationary series and a random walk. The
random walk component can have a small variance so that the tests for unit roots
will have arbitrarily low power in finite samples. This implies the identification of
asset-prices bubbles using unit root test may have a large Type II error.

Despite some of the weaknesses, the Phillips, Shi, and Yu (2013) rolling-window
strategy provides a strong test of bubble presence, which can be used as an early-
warning mechanism since it also outputs the dates when the bubble in data started

49

and ended.

We have however identified a few situations when the Phillips, Shi, and Yu (2013)
and Phillips, Wu, and Yu (2011) detected asset-price bubbles without having any
significant increase in prices. The detection of bubbles was due to a decrease in
dividends, which increased the price-to-dividend ratio. It is questionable whether
such a situation can truly be defined as an asset-price bubble situation. We propose
to be more conservative and do not recommend to make any statement about bubble
presence based on the outcome of the unit root test only. We recommend to take into
account all the available information, including the preceding changes of dividends
and prices.

5.4 Real-time detection strategy

The Shiller (1981a) variance bounds test and the West (1987) two-step test provide
merely an ex-post technique to determine whether there was an asset-price bubble
present in data some years back in history. These tests cannot detect bubbles in
real-time and are thus not suitable for an early-warning detection mechanism for an
existing asset-price bubble.

The unit root tests developed by Phillips, Shi, and Yu (2013) and Phillips, Wu,
and Yu (2011) on the other hand provide a mechanism to detect asset-price bubbles
in real time, which increases their usability in practice. The output of the Phillips,
Shi, and Yu (2013) and Phillips, Wu, and Yu (2011) tests is a timely dating strategy,
which identifies the begginning date and ending data of each asset-price bubble
present in data, using ex-post information available at each point in time only, and
thus eliminating the forward-looking bias.

50

6 Conclusion

There are various theoretical views that take into account and explain the existence
of asset-price bubbles on stock markets. While most of the theories focus on the ques-
tion of whether bubbles can or cannot exist, few studies have sufficiently examined
why and when bubbles emerge and burst (Brunnermeier, 2008).

This report first summarises the main theoretical arguments and market condi-
tions that allow bubbles to exist. Second, it describes the most-widely used methods
to detect bubbles in real time. Further, it implements the main methods for asset-
price bubble identification in Australia, using the S&P ASX 200 index as a proxy for
the Australian equity market and the A-REIT index as a proxy for the Australian
REIT market. We find little evidence of asset-price bubbles in Australia. Australian
prices are stable and consistent with dividend yields. Finally, we present a critical
analysis of the method used and conclude that the unit root tests, represented by
Phillips, Shi, and Yu (2013) and Phillips, Wu, and Yu (2011), provide the most
suitable technique for bubble detection in prices.

Given the importance of detecting threats to the stability of financial markets,
the limited understanding of asset-price bubbles in prior research is unsettling. The
primary conflicts are both theoretically and methodologically based. The compre-
hensive and objective examination of asset-price bubble theory and detection models
presented in this report make several significant contributions. Firstly, by synthe-
sising the arguments from a large and growing strand of literature this report es-
tablishes a framework for comparison of the key existing techniques for detecting
bubbles. Further, in identifying the limitations in the existing set of techniques this
report prescribes a technique that is most suitable to the Australian market while
also setting a foundation for future research that may develop enhanced detection
methods. Finally, in finding little evidence of bubbles in Australian listed equities
and property, this report contributes to optimal policy setting by regulatory bodies
concerned with market stability and potential distortions.

51

References

Abreu, D., Brunnermeier, M. K., 2002. Synchronization risk and delayed arbitrage.
Journal of Financial Economics 66 (2), 341-360.

Ackert, L. F., Charupat, N., Church, B. K., Deaves, R., 2002. Bubbles in experimen-
tal asset markets: Irrational exuberance no more. Federal Reserve Bank of Atlanta
Working Paper 24.

Ackert, L. F., Smith, B. F., 1993. Stock price volatility, ordinary dividends, and
other cash flows to shareholders. The Journal of Finance 48 (4), 1147-1160.

Al-Anaswah, N., Wilfling, B., 2011. Identification of speculative bubbles using state-
space models with markov-switching. Journal of Banking & Finance 35 (5), 1073~
1086.

Allen, F., Morris, S., Postlewaite, A., 1993. Finite bubbles with short sale constraints
and asymmetric information. Journal of Economic Theory 61 (2), 206-229.

Blanchard, O. J., Watson, M. W., 1982. Bubbles, rational expectations and financial
markets.

Bohl, M. T., 2003. Periodically collapsing bubbles in the us stock market? Interna-
tional Review of Economics & Finance 12 (3), 385-397.

Bowden, R. J., 1990. Predictive disequilibria and the short run dynamics of asset
prices. Australian Journal of Management 15 (1), 65-87.

Brown, N. C., Wei, K. D., Wermers, R., 2013. Analyst recommendations, mutual
fund herding, and overreaction in stock prices. Management Science 60 (1), 1-20.

Brunnermeier, M. K., 2008. Bubbles. The New Palgrave Dictionary of Economics 2.

Brunnermeier, M. K., Nagel, S., 2004. Hedge funds and the technology bubble. The
Journal of Finance 59 (5), 2013-2040.

Campbell, J. Y., Shiller, R. J., 1986. Cointegration and tests of present value models.
Tech. rep., National Bureau of Economic Research.

Chan, H. L., Woo, K.-Y., 2008. Testing for stochastic explosive root bubbles in asian
emerging stock markets. Economics Letters 99 (1), 185-188.

92

Charemza, W. W., Deadman, D. F., 1995. Speculative bubbles with stochastic ex-
plosive roots: the failure of unit root testing. Journal of Empirical Finance 2 (2),
153-163.

Cheng, L.-Y., Yan, Z., Zhao, Y., Chang, W.-F., 2012. Short selling activity, price ef-
ficiency and fundamental value of ipo stocks. Pacific-Basin Finance Journal 20 (5),
809-824.

Chung, H., Lee, B.-S., 1998. Fundamental and nonfundamental components in stock
prices of pacific-rim countries. Pacific-Basin Finance Journal 6 (3), 321-346.

Coates, J., 2012. The hour between dog and wolf: Risk-taking, gut feelings and the
biology of boom and bust. HarperCollins UK.

Cochrane, J. H., 1991. A critique of the application of unit root tests. Journal of
Economic Dynamics and Control 15 (2), 275-284.

Cochrane, J. H.,; 2002. Stocks as money: convenience yield and the tech-stock bubble.
Tech. rep., National bureau of economic research.

Craine, R., 1993. Rational bubbles: A test. Journal of Economic Dynamics and
Control 17 (5), 829-846.

Cunado, J., Gil-Alana, L. A., De Gracia, F. P., 2005. A test for rational bubbles in
the nasdaq stock index: a fractionally integrated approach. Journal of Banking &
Finance 29 (10), 2633-2654.

Dasgupta, A., Prat, A., Verardo, M., 2011. The price impact of institutional herding.
Review of Financial Studies 24 (3), 892-925.

Dass, N., Massa, M., Patgiri, R., 2008. Mutual funds and bubbles: The surprising
role of contractual incentives. Review of Financial Studies 21 (1), 51-99.

DeMarzo, P. M., Kaniel, R., Kremer, 1., 2008. Relative wealth concerns and financial
bubbles. Review of Financial Studies 21 (1), 19-50.

Diba, B. T., Grossman, H. 1., 1988. Explosive rational bubbles in stock prices? The
American Economic Review, 520-530.

Dichev, I. D., Huang, K., Zhou, D., 2014. The dark side of trading. Journal of
Accounting, Auditing & Finance 29 (4), 492-518.

53

Dufwenberg, M., Lindqvist, T., Moore, E., 2005. Bubbles and experience: An exper-
iment. American Economic Review, 1731-1737.

Evans, G. W., 1991. Pitfalls in testing for explosive bubbles in asset prices. The
American Economic Review, 922-930.

Flood, R. P., Hodrick, R. J., 1990. On testing for speculative bubbles. The Journal
of Economic Perspectives 4 (2), 85-101.

Froot, K. A., Obstfeld, M., 1989. Intrinsic bubbles: The case of stock prices. Tech.
rep., National Bureau of Economic Research.

Grinblatt, M., Titman, S., Wermers, R., 1995. Momentum investment strategies,
portfolio performance, and herding: A study of mutual fund behavior. The Amer-
ican economic review, 1088-1105.

Grossman, S., 1976. On the efficiency of competitive stock markets where trades have
diverse information. The Journal of finance 31 (2), 573-585.

Giirkaynak, R. S., 2008. Econometric tests of asset price bubbles: Taking stock.
Journal of Economic Surveys 22 (1), 166-186.

Haldane, A., 2011. The race to zero, speech at international economic association
sixteenth world congress. Beijing, China 8.

Hansen, L. P., 1982. Large sample properties of generalized method of moments
estimators. Econometrica: Journal of the Econometric Society, 1029-1054.

Hansen, L. P.; Sargent, T. J., 1981. Formulating and estimating dynamic linear
rational expectations models. Rational Expectations and Econometric Practice 1,
91-126.

Haruvy, E., Noussair, C. N., 2006. The effect of short selling on bubbles and crashes
in experimental spot asset markets. The Journal of Finance 61 (3), 1119-1157.

Hendershott, T., Jones, C. M., Menkveld, A. J., 2011. Does algorithmic trading
improve liquidity? The Journal of Finance 66 (1), 1-33.

Hommes, C., Sonnemans, J., Tuinstra, J., Van De Velden, H., 2008. Expectations
and bubbles in asset pricing experiments. Journal of Economic Behavior & Orga-
nization 67 (1), 116-133.

o4

Hong, H., Scheinkman, J., Xiong, W., 2006. Asset float and speculative bubbles. The
Journal of Finance 61 (3), 1073-1117.

Hong, H., Scheinkman, J., Xiong, W., 2008. Advisors and asset prices: A model of
the origins of bubbles. Journal of Financial Economics 89 (2), 268-287.

Horvath, M. T., Watson, M. W., 1995. Testing for cointegration when some of the
cointegrating vectors are prespecified. Econometric Theory 11 (05), 984-1014.

Jirasakuldech, B., Emekter, R., Rao, R. P., 2008. Do thai stock prices deviate from
fundamental values? Pacific-Basin Finance Journal 16 (3), 298-315.

Kim, C.-J., 1994. Dynamic linear models with markov-switching. Journal of Econo-
metrics 60 (1-2), 1-22.

Kim, C.-J., Nelson, 1999. State-space models with regime switching: classical and
Gibbs-sampling approaches with applications. Vol. 2. MIT press Cambridge, MA.

Kirman, A., Teyssiere, G., 2005. Testing for bubbles and change-points. Journal of
Economic dynamics and Control 29 (4), 765-799.

Kleidon, A. W., 1986. Variance bounds tests and stock price valuation models. The
Journal of Political Economy, 953-1001.

Koustas, Z., Serletis, A., 2005. Rational bubbles or persistent deviations from market
fundamentals? Journal of Banking & Finance 29 (10), 2523-2539.

Lakonishok, J., Shleifer, A., Vishny, R. W., 1992. The impact of institutional trading
on stock prices. Journal of financial economics 32 (1), 23-43.

Lamont, O., 1998. Earnings and expected returns. The Journal of Finance 53 (5),
1563-1587.

Marimon, R., Spear, S. E., Sunder, S., 1993. Expectationally driven market volatility:
an experimental study. Journal of Economic Theory 61 (1), 74-103.

Menkveld, A. J., 2013. High frequency trading and the new market makers. Journal
of Financial Markets 16 (4), 712-740.

Mitchell, M., Pulvino, T., 2012. Arbitrage crashes and the speed of capital. Journal
of Financial Economics 104 (3), 469-490.

55

Phillips, P. C., Shi, S.-P., Yu, J., 2013. Testing for multiple bubbles: limit theory of
real time detectors.

Phillips, P. C., Wu, Y., Yu, J., 2011. Explosive behavior in the 1990s nasdaq: When
did exuberance escalate asset values? International economic review 52 (1), 201
226.

Ritter, J. R., 2003. Behavioral finance. Pacific-Basin Finance Journal 11 (4), 429-437.

Said, S. E., Dickey, D. A., 1984. Testing for unit roots in autoregressive-moving
average models of unknown order. Biometrika 71 (3), 599-607.

Scheinkman, J. A., Xiong, W., 2003. Overconfidence and speculative bubbles. Journal
of political Economy 111 (6), 1183-1220.

Shiller, R. J., 1981a. Do stock prices move too much to be justified by subsequent
changes in dividends? The American Economic Review 71 (3), 421-436.

Shiller, R. J., 1981b. The use of volatility measures in assessing market efficiency*.
The Journal of Finance 36 (2), 291-304.

Shiller, R. J., 2000. Irrational exuberance.
Shiller, R. J., 2015. Irrational exuberance. Princeton University Press.
Sias, R. W., 2004. Institutional herding. Review of financial studies 17 (1), 165-206.

Smith, V. L., Suchanek, G. L., Williams, A. W., 1988. Bubbles, crashes, and endoge-
nous expectations in experimental spot asset markets. Econometrica: Journal of
the Econometric Society, 1119-1151.

Sornette, D.; Von der Becke, S., 2011. Crashes and high frequency trading. Swiss
Finance Institute Research Paper (11-63).

Tirole, J., 1982. On the possibility of speculation under rational expectations. Econo-
metrica: Journal of the Econometric Society, 1163-1181.

Waters, G. A., 2008. Unit root testing for bubbles: a resurrection? Economics Letters
101 (3), 279-281.

West, K. D., 1987. A specification test for speculative bubbles. The Quarterly Journal
of Economics 102 (3), 553-580.

56

Wu, Y., 1995. Are there rational bubbles in foreign exchange markets? evidence from
an alternative test. Journal of International Money and Finance 14 (1), 27-46.

Wu, Y., 1997. Rational bubbles in the stock market: Accounting for the us stock-
price volatility. Economic Inquiry 35 (2).

57

Appendix A: State-space model with regime switch-
ing - Estimation Set-Up

Step-by-step procedure of the Filter and the Approximate Maximum Like-
lihood Estimation of the Model

The filter for the state-space model with Markov switching is proposed by Kim
(1994) and is a combination of the Kalman filter and the Hamilton filter. The Kim
(1994) filter can be summarised into the following steps, which follow closely the
summary provided by Kim and Nelson (1999) in Chapter 5.2.3 and Al-Anaswah and
Wilfling (2011):

Step 1: Choose initial values for the Kalman filter

The Kalman filter treats the parameters from the state-space model as known. In
reality, these parameters are unknown and we need to estimate the to get the initial
parameters to start the Kalman filter.* We estimate the vector of parameter matrices,
o, a = (F,H, D Q R) using the following log likelihood function, Al-Anaswah and
Wilfling (2011):

T
L(alz,g) = const — 0.5) _(In[det(HPy,_H' + R)]+
t=1

+ Cijy—r) (HPH' + R)71C:s|t71)/~ (49)

After we obtain the maximum-likelihood estimate of a, we can determine the
smoothed estimates of the state vector and its error covariance matrix using the
Kalman filter and the full-sample smoother as described in Step 2.

Step 2: Run the Kalman filter for states ¢,5 = 1,2
The estimates of ﬁtjlf and its covariance matrix can obtained using the Kalman

filter defined by the following algorithm. Let ﬁt(f;j) denote the best linear mean-
squared estimate of 3; in state j given the model and all observed information up to

time 7 and S; = 7 and S;_; = 1.
/81(5|th—)1 - Fjﬁi—l\t—l (50)

Py, = Py Ff + (51)

tlt—1

4Matlab function “estimate”, http://au.mathworks.com/help/econ/ssm.estimate.html

58

¢y = n—HB, — Dyg (52)
ft(;;”1 P} Hy + R; (53)
ﬁgfij IBt\ t|£])1H (£ tl— A CE\? 1 (54)
Pt|t [I - Pt\t 1H (ft|t’])1> "Hj]ngtj 1 (55)

where P(|’J) is the mean- squared error matrlx of the ﬁt‘ +3) estimate, ft(ﬁ’i)1 is the

conditional variance of the forecast error C N t—l' These equations are computed for-
ward recursively.’
To get a more efficient estimates of the state vector and its error covariance

matrix, Al-Anaswah and Wilfling (2011) propose using the full-sample smoother®
computed backward recursively to get the vector (3, given that S; = j and Sy = k:

1
65]) = t|t + J¢ (k) (ﬂt+1|T 6t+1\t) (56)
k ‘
P =P, + 30D (3 — T3 (57)
'Where J Uk = Pi| F'[P Sj‘] ,Bt‘T is an inference of 3, based on full sample,
ngf) is the mean-squared error matrix of 3 t] k),

Step 3: Calculate Pr[S;, S;_1|V;] and Pr[S;|V;| using the Hamilton filter
This step is explained in detail in Chapter 5.2.2 in Kim and Nelson (1999).

Step 3.1
At the beginning of the t-th iteration, given the Pr[S;_; = i|V,], i = 1,2, we
calculate

PT[St = j, Stfl = Z'|\Ijt,1] = PT’[St = j‘Stfl = ?:]PT[St,1 = Z|\I’t}, (58)
where Pr[S; = j|S;_1 = i] is the transition probability.

Step 3.2
The joint density of z;,S; and S;_; is given as

f(Zu St = 7,511 = i’\ptfl) = f(Zt|St = 7,51 =1, \thl)
PT[St == j, St—l == i|lpt_1], (59)

SMatlab function “filter”, http://au.mathworks.com/help/econ/ssm.filter.html
SMatlab function “smooth”, http://au.mathworks.com/help/econ/ssm.smooth.html

59

for 7,7 = 1,2, and from which we can obtain the marginal density of z; by

M M
f(Zt“Ijtfﬁ = Z Z f(Zt|St =7 Sio1 = (3 \I]tfl)Pr[St =7, S = Z'|‘I’t71], (60)

j=1 i=1

where the conditional density f(z¢|S; = j,S:—1 = ¢, V;_1) can be obtained from the
prediction error decomposition

N
2

(f(z}j))—1/2

tlt—1

.f(zt|St = ja St—l = 'L.a ,lvz)t—l) = (27‘-)7
1, i) v relid) n1 a(id
exp {—§(C§|tj_)1) (ft(|ti)1) 1C§|t]—)1} , (61)

for i,j = 1,2, where CE‘?_)I and ;" are given by equations (52) and (53).

Step 3.3
After the end of time ¢, we can update the probability term Pr[S; = 7,5, 1 =
i|Wy_1] and get

f(zt|St = 7,51 =1, ‘Ijt—l)f(st =7, Sio1 = Z'|‘I’1t—1)
f(2e] W)

P?“[St = j, St,1 = Z’\Ijt] = s (62)

fori,j =1,2.

Step 4: Collapse M x M posteriors into M x 1

We use the probability terms from Step 3.3 to collapse the M x M posteriors into
M x 1 equations. In particular, the term ,Bi‘ , from equation (54) and Pi| , from equa-
tion (55) can be collapsed into M x 1 equations using the following approximations:

SM PrIS, . =i, S, = jluB8)

J
= Pr{S, = ¥ (95)
pi _ S PriSi =i Se =PI + (B, = BBy~ BV o
He Pr[S; = j|V¥,] .

The derivation of these approximation steps is provided by in Kim and Nelson
(1999) on pages 100-102.

60

7 Appendix B: Matlab Toolbox User Guide

61

Asset Bubble

The Asset Bubble Toolbox showcases some of the different techniques for detecting rational bubbles in price and
dividend data.

Many algorithms for detecting asset bubbles in price and dividend data have been proposed over the last 50 years.
In this toolbox a subset of the the total literature is explored, prodiving an overview of how rational bubble detection
methods have evolved over time.

The toolbox provides methods for executing bubble detection tests on real price and dividend data, and exposes
useful summary results and plots to help make inference about the existence of bubbles in the data being analysed.

Quick Links

= Loading Test Data

= Variance Bounds Test

= West's Test

= Unit Root Tests

= State-Space Markov Switching Test

Function and Class Reference
= Functions and classes provided in the Asset Bubble Toolbox
Demonstrations

s Robert Shiller's Variance Bounds test
= Keneth West's test
= Phillips, Shi, and Yu's SADF and GSADF tests

= Al-Anaswah and Wilfling's State-space Markov switching test

Published with MATLAB® R2015b

Loading Test Data

Contents

= Overview

= Shiller's Chapter 26 data

= Shiller's S&P monthly data

= Phillips, Shi, and Yu's price-dividend ratio data

Overview

Testing for bubbles in price and dividend data can be performed on any price and dividend time series and the Asset
Bubble Toolbox makes no restrictions on assumed sample data.

Historically, tests have always been peformed on Robert Shiller's S&P 500 datasets which are freely available from
http://aida.wss.yale.edu/~shiller/data.htm or http://www.econ.yale.edu/~shiller/data/chapt26.html.

As a convenience, the Asset Bubble Toolbox includes latest versions of these datasets at time of toolbox publication.
In addition, convenience functions have been provided to allow quick loading of the data into MATLAB variables.

In all cases, Microsoft Excel is a prerequisite in order to use the parameterised loading functions (all data files are
excel files). If Excel is unavailable, in some cases the data can be still be loaded but with pre-determined parameter
settings.

Shiller's Chapter 26 data

This data is sourced from http://www.econ.yale.edu/~shiller/data/chapt26.html, and contains S&P 500 yearly
composite price and dividend data for the years 1871 to 1999. The data has been modified slightly to include an
additional PPI column with PPI 1979 = 100 (by default, the data has PPI 1982 = 100).

To load data, use the LoadShillerChap26Data function. LoadShillerChap26Data takes two parameters:

= maxYear - The maximum year to include data for

= scaleByPPI - Boolean (true/false) indicating if all prices should be made real by scaling by PPI relative to PPl in
the final observation year

The following example shows how to load Shiller's data from 1871 to 1979 inclusive (as used in Shiller's original
paper).

[Dates, Prices, Dividends, PPI] = LoadShillerChap26Data(1979, true);

If Excel is not available, use the following command to load the data variables into the workspace. In this case
maxYear is fixed at 1979 and scaleByPPlI is always true.

load VarianceBoundsDemoData
For a version of the data with maxYear fixed at 1980 and scaleByPPI set to true use

load WestsTwoStepDemoData

Shiller's S&P monthly data

This data is sourced from http://aida.wss.yale.edu/~shiller/data.htm, and contains S&P 500 composite monthly price
and dividend data for the years 1871 to current.

To load data, use the LoadShillerTestData function. LoadShillerTestData automatically rolls monthly data up to yearly
data which is the format primarily used in asset bubble detection research papers. LoadShillerTestData takes two
parameters:

= maxYear - The maximum year to include data for

= scaleByCPI - Boolean (true/false) indicating if all prices should be made real by scaling by CPI relative to CPlin
the final observation year.

The following example shows how to load Shiller's data from 1871 to 1980 inclusive (as used in West's original
paper).

[Dates, Prices, Dividends, CPI] = LoadShillerTestData(1980, true);

Phillips, Shi, and Yu's price-dividend ratio data

This data is sourced from https://sites.google.com/site/shupingshi/home/research and contains sample data use by
Phillips, Shi, and Yu (PSY) in their paper on SADF and GSADF testing procedures.

The following example shows how to load PSY's data which runs from 1871 to 2010 inclusive (as used in PSY's
original paper).

[Dates, PriceOnDividend] = LoadUnitRootTestData();
If Excel is not available, use the following command to load the data variables into the workspace.

load UnitRootDemoData

Published with MATLAB® R2015b

Variance Bounds Test

The Asset Bubble Toolbox includes functions for performing variance bounds tests.

To conduct a test, first load some data and create an instance of the VarianceBounds class. Then call PerformTest to
obtain an instance of the VarianceBoundsResult class, which can be used for easy plotting and table generation.

Try running the following example:

load VarianceBoundsDemoData.mat

VB = VarianceBounds(Dates, Prices, Dividends);
VBR = VB.PerformTest(true, [1.3 1 .7]);
VBR.PlotRealPriceAgainstExPostRationalPrice();
ResultsTable = VBR.GenerateResultsTable()

For more information see:

= Variance Bounds Test Demonstration

= Variance Bounds Test Documentation

Published with MATLAB® R2015b

West's Test

The Asset Bubble Toolbox includes functions for performing West's test for speculative bubbles.

To conduct a test, first load some data and create an instance of the WestsTwoStep class. Then call PerformTest to
obtain the test result.

Try running the following example:

load WestsTwoStepDemoData.mat
WTS = WestsTwoStep(Dates, Prices, Dividends);
TestResults = WTS.PerformTest(2, false)

For more information see:

s West's Test Demonstration

= West's Test Documentation

Published with MATLAB® R2015b

Unit Root Tests

The Asset Bubble Toolbox includes functions for performing different types of unit root tests.

To conduct a test, first load some data and create an instance of the UnitRootBubble Test class. Then call one of the
unit root test methods, depending on which test type you would like to perform. Running a test returns and instance of
UnitRootBubble TestResult which can be used for easy plotting and table generation.

Try running the following example:

load UnitRootDemoData.mat
URBT = UnitRootBubbleTest(Dates, PriceOnDividend);

EqType = UnitRootNullTestType.UnitRootWithDrift;

Tw = 36;
k = 0;
M = 2000;
d =1;
eta = 1;

quants = [.9 .95 .99];
UseMex = true;
URBTR = URBT.PerformSADFTest(EqType, Tw, k, M, d, eta, quants, UseMex);

URBTR.GenerateResultsTable()
URBTR.GeneratePlot(0.95);
URBTR.GenerateBubbleStartEndTimes(0.95)

For more information see:

= Unit Root Test Demonstration

= Unit Root Test Documentation

Published with MATLAB® R2015b

Variance Bounds test for bubbles
Robert Shiller's variance bounds test for asset bubbles in price and dividend data

Contents

= Method

= Demonstration

Method

Robert Shiller's variance bounds test considers the implications of comparing the efficient markets model against a
perfect foresight model which is commonly referred to as the ex post rational price.

The efficient martkets model is represented as:
a

— FEp(dpii)
pe=) arry

=0

where Pt is the real price, it is the real dividend, 7 is the constant interest rate, and Ey() is the expectation operator
conditional on information available at time .

The ex postrational price is defined as:

. - iy
) e ——
P

where P! is the ex postrational price.

The test compares the standard deviation of the two series. If the efficient markets model holds true, then it can be
shown that:

alp) = alpy)

Demonstration

Shiller's original application of the test was to S&P 500 annual price and dividend data from 1871 to 1979.

Load Shiller's test data and create an instance of the VarianceBounds class

load VarianceBoundsDemoData.mat
VB = VarianceBounds(Dates, Prices, Dividends);

The VarianceBounds class has a method called PerformTest which takes two arguments called shouldDetrend and
terminalValueScales. shouldDetrend is a boolean (true or false), which should be set to true if detrending of the data
is required. terminalValueScales is a 1xN matrix of scalings around 1.0 for the terminal condition of the ex post
rational price.

In Shiller's original application, the data was detrended so we will do the same here. Additionally, we will specify
some scalings for the terminal condition of the ex post rational price to see how they affect the test result.

VBR = VB.PerformTest(true, [1.3 1 .7]);

PerformTest returns an instance of the VarianceBoundsResult class, which contains methods for plotting and
displaying test results. Let's plot the real price and ex post rational price series together.

VBR.PlotRealPriceAgainstExPostRationalPrice();

Comparison of price py and ex post rational price pf - both detrended

260

240

22071

price

— — — gy, terminal scale Factor =1
o, terminal scale factor =1
— — — gy, terminal scale Factor =0,

3|

2001

180

160 -

140

detrended price

120

100

'| 1ol
-~ ﬂﬁ\iluil II|

L\

|

' |'|
b

lf ||I||r'1|
!. |'|| U |

G0
1860

1880

1900

1920
time

1940 1960 1980

The plot above is essentially the same plot that Shiller presented. For comparison we show the different ex post
rational price series. Shiller's terminal condition on the ex post rational price is the mean of the detrended price series
(PerformTest uses the same condition).

Now let's print the test result information. Each column of the results table corresponds to a different end point scaling
of the ex postrational price, with 1.0 representing the mean of the detrended price series.

ResultsTable

ResultsTable

E(p)
E(d)
r bar
r2 bar

cor(p,p*)
std(d)
std(p)

VBR.GenerateResultsTable()

Results
145.92 145.92 145.92
6.7374 6.7374 6.7374
0.046172 0.046172 0.046172
0.094475 0.094475 0.094475
0.015796 0.015796 0.015796
0.35875 0.26876 0.031906
1.4116 1.4116 1.4116
48.756 48.756 48.756

std(p*) 12.949 9.6057 16.224

The standard deviation of the price series, std(p), clearly exceeds the standard deviation of each ex post rational price
series, std(p*).

One interpretation of this result is that the price and dividend data contains bubbles. However, we should be cautious
here as the failure of the test does not directly imply the existence of bubbles. Essentially Shiller's variance bounds
testis a validation test of the efficient markets model and not a direct test for rational bubbles.

Published with MATLAB® R2015b

West's test for speculative bubbles
Kenneth West's specification test for speculative bubbles in price and dividend data.

Contents

= Method

= Demonstration

Method

Unlike the Variance Bounds test which doesn't directly include the presence of bubbles when rejecting the model,
West's test specifically includes the ability to check for bubbles by testing the model and no-bubbles hypotheses
sequentially.

The Euler equation relating prices and dividends is given by:
P = bE(piy1 + dis)

where Pt is the real stock price in period , i the constant real discount rate 0<b=1/(1+r)< L r the constant
expected return, and Ei() is the expectation operator conditional on information available at time f.

In the absence of bubbles an estimate of the discount rate can be obtained by noting that
P = b{pis1 + disa) + upn

where i+1is the error term. Since #+1is correlated with *#+1 and .y 1, the estimation requires use of Instumental
Variables.

Next, West assumes dividends follow a pure auto-regressive process, order 4, of the form
dip1 = p+ dy + .. F Gpdi_gi1 + Vi
Estimates for the dividend regression coefficients are readily obtained by OLS.

Finally, the usual asset price equation

pe=)_ VEui(d)
=1

is estimated by letting
Pre1 =M+ Sy + ... A riqrf. q+2 + Wi

Because each estimation process above represents part of the relationship between prices and dividends itis
possible to derive constraint equations relating all the estimated model parameters. Under the assumption that no
bubbles are present, the constraint equations should all be satisfied. A statistical test is constructed to measure how
closely the constraints are satisfied.

Itis important to note that West's test hinges on being able to validate the discount rate and dividend ARIMA
estimation processes. Provided these estimates are sound, model mispecification can be ruled out and any violation
of the constraint equations can be directly attributed to the presence of bubbles.

Demonstration

West's original application of the test was to S&P 500 annual price and dividend data from 1871 to 1980.

Load West's test data and create an instance of the WestsTwoStep class

load WestsTwoStepDemoData.mat
WTS = WestsTwoStep(Dates, Prices, Dividends);

The WestsTwoStep class has a method called PerformTest which takes two arguments called ARg and
UseDifferencedData. ARq is the auto-regressive order. UseDifferencedData is a boolean (true or false), which
controls if the testis run on level (false) or differenced (true) data.

In West's original application, ARq was set at 2 and 4 and both level and differenced data were considered. For now,
let's choose ARq = 2 and level data.

TestResults = WTS.PerformTest(2, false)

TestResults

DataSize: 108
DataSet: '1873-1980'°
Differenced: 'no'
q: 2
DoF: 3
TestStatistic: ©.5224

TestStatisticSig: ©.9139

TestResults is a MATLAB structure array with metrics about the test process. We can see that the test was run on data
covering 1873 to 1980 and produced a highly significant test statistic of 0.5224. In this case, we reject the hypothesis
that bubbles existin the data. We also need to validate each estimation process used.

Published with MATLAB® R2015b

Unit Root tests for bubbles

Contents

= Method
= SADF Demonstration
= GSADF Demonstration

Method

Unit Root tests rely on testing the relationship between the price and dividend ratio series for stationarity. If the price
and dividend series are cointegrated they share the same stochastic drift, which is counter to the hypothesis of
bubbles existing. The testing procedures broadly fall under the term Unit Root testing.

The simplest test for a unit root is the augmented Dickey-Fuller (ADF) test. In this testing scenario, the entire sample is
considered and a single testresultis returned. The power of a simple ADF test to detect bubbles is weak in the sense
that it doesn't yield useful information about the start and end dates of bubble episodes, and it can fail if more than
one episode occurs.

To getaround the limitations of the simple ADF test Phillips, Wu and Yu (2011, PWY) propose an extension called the
Supremum ADF test (SADF) which considers an increasing sample window size, starting from a mimimum window
and ending at the full sample. Their test then calculates the Supremum of all ADF tests conducted on all sub-sample
windows and compares that to appropriate critical values derived by extensive Monte Carlo simulations. The SADF
test also offers a date-stamping strategy whereby bubble start and end dates can be successfully identified. Although
the SADF testis extremely useful it has some shortcomings, not least of which is that it can fail to find bubbles when
considering the full sample size but can successfully find bubbles when considering each half of the full sample
separately.

The answer to the failings of the SADF test is the Generalized supremum ADF test (GSADF) as proposed by Phillips,
Shi, and Yu (2013, PSY). The GSADF test extends the concept of the SADF test by allowing the window start point to
also move, thereby covering many more sub-samples of the entire sample size. The GSADF test has been shown to
be extremely effective in identify commonly accepted bubble episodes in historical data, and it also offers the same
data-stamping strategies as the SADF test. Note that the data-stamping strategies for SADF and GSADF are typically
run on backwards tests, rather than forwards, to provide test results at the most recent sample point (i.e. the windows
start at the most recent points and extend back in time, rather than forwards in time).

SADF Demonstration

Let's explore PSY's application of the SADF test to the S&P 500, sampled monthly from January 1871 to December
2010.

Load PSY's test data and create an instance of the UnitRootBubble Test class

load UnitRootDemoData.mat
URBT = UnitRootBubbleTest(Dates, PriceOnDividend);

The UnitRootBubbleTest class has methods for performing ADF, SADF, and GSADF tests. We will perform an SADF
test, with parameters specified exactly as in PSY's paper. Specifically, we will test for:

= a unit root with drift
= a minimum window size of 36 months
= zero lag terms included in each ADF test

= 2000 Monte Carlo simulations when computing critical values

= Null model parameters il and T set to 1

= Critical value tests performed at 90%, 95%, and 99%

In addition, we can supply a final boolean parameter UseMex to indicate if we want the software to use compiled
code when performing tests. Since the simulations can take a long time to compute itis ideal to speed things up as
much as possible. In general, always set UseMex to true unless you need to modify the code.

EqType = UnitRootNullTestType.UnitRootWithDrift;

Tw = 36;
k = 0;
M = 2000;
d =1;
eta = 1;

quants = [.9 .95 .99];
UseMex = true;
URBTR = URBT.PerformSADFTest(EqType, Tw, k, M, d, eta, quants, UseMex);

PerformSADFTest returns an instance of the UnitRootBubble TestResult class, which contains methods for plotting
and displaying test results. Let's start by examining the test result by calling GenerateResultsTable

URBTR.GenerateResultsTable()

ans =

Test_Stat Cv_90 V.95 CV_99

SADF 3.4432 1.4218 1.659 2.0803

Itis clear that the SADF statistic exceeds all critival values at 90%, 95% and 99%. On this basis, we conclude that the
data contains bubbles. Now let's plot the sample sequence, the backwards ADF statistic sequence, and the 95%
critical value sequence.

URBTR.GeneratePlot(0.95);

The backward ADF sequence (left axis)
The 95% critical value sequence (left axis)
The price-dividend ratio (right axis)

of
1« o “"“LJHM H L{ :iJ Lk‘,f

L | [T]

1860 1880 1200 1920 1940 1960 1980 2000 2020

Here we can clearly see that there are points at which the backwards ADF sequence exceeds the critical value
sequence. Finally, let's run the date-stamping strategy to get estimates for bubble start and end dates.

URBTR.GenerateBubbleStartEndTimes(0.95)

ans =
StartDate EndDate
Bubblel 1879.4 1880.4
Bubble2 1997.5 2002.5

Two bubble episodes are identified. Note that the date-stamping strategy imposes a mimimum window size for an
episode to be classed as a bubble, which is set at logy(T') as per guidelines in PSY's paper.

GSADF Demonstration

Let's continue by exploring PSY's application of the GSADF test to the S&P 500, sampled monthly from January 1871
to December 2010. Parameters for the GSADF test are identical for the SADF test above.

Run the GSADF test and examine results

URBTR = URBT.PerformGSADFTest(EqType, Tw, k, M, d, eta, quants, UseMex);
URBTR.GenerateResultsTable()

ans =

Test_Stat CV_90 cV_95 cvV_99

GSADF 4.2069 2.5791 2.8091 3.1982

Itis clear that the GSADF statistic exceeds all critival values at 90%, 95% and 99%. On this basis, we conclude that
the data contains bubbles. Plot the sample sequence, the backwards SADF statistic sequence, and the 95% critical
value sequence.

URBTR.GeneratePlot(0.95);

The backward SADF sequence (left axis)
The 95% critical value sequence (left axis)
The price-dividend ratio (right axis)

| wau il Wﬂw{m I\ -

1860 1880 1200 1920 1940 1960 1980 2000 2020

Here we can clearly see that there are points at which the backwards SADF sequence exceeds the critical value
sequence. Finally, let's run the date-stamping strategy to get estimates for bubble start and end dates. When
estimating dates using the GSADF test, GenerateBubble StartEnd Times requires two additional parameters.
MinDurationinYears controls the minimum size for a bubble episode to register as a bubbler, and SamplesPerYear
represents the number of data points over a year in the sample. PSY look for bubbles greater than 0.5 years using
monthly data.

MinDurationInYears = 0.5;
SamplesPerYear = 12;
URBTR.GenerateBubbleStartEndTimes(0.95, MinDurationInYears, SamplesPerYear)

ans =

StartDate EndDate

Bubblel 1878.3 1880.4
Bubble2 1886.5 1887.5
Bubble3 1907.6 1908.2
Bubble4 1917.6 1918.4
Bubble5 1928.7 1929.8
Bubble6 1945.8 1946.5
Bubble?7 1954.7 1956.4
Bubble8 1987 1987.8
Bubble9 1995.5 1996.5
Bubblelo 1996.8 2001.7
Bubblell 2008.8 2009.4

Eleven bubble episodes are identified. These episodes correspond to all the currently accepted major periods of
exuberance and collapse in the S&P 500 data.

Published with MATLAB® R2015b

Functions and classes provided in the Asset Bubble Toolbox

Variance Bounds Test

= VarianceBounds class

= VarianceBoundsResult class
West's Test

= AROrderPicker class

= DiscountRateEstimator class
= WestsCovarianceMatrix class
= WestsDataBuilder class

= WestsSymbolicComps class

= WestsTwoStep class
Unit Root Tests

= ADF_FL function

= CriticalValuesCache class

= UnitRootBubbleTest class

= UnitRootBubbleTestResult class

= UnitRootNullSimulator class

= UnitRootNullTestType enumeration
= UnitRootTests class

= UnitRootTestsCaller function

= UnitRootTestsCaller_mex MEX file

= UnitRootTestType enumeration
State-space Markov Switching Tests

= Not currently implemented...

Published with MATLAB® R2015b

VarianceBounds class

Contents

= Overview
= Constructor

s PerformTest

Overview

Class for computing variance bounds test for price and dividend time series data using the method of Shiller (1981b).

Robert Shiller's variance bounds test considers the implications of comparing the efficient markets model against a
perfect foresight model which is commonly referred to as the ex post rational price.

The efficient martkets model is represented as:

— Ei(dii)
DDy e

=0

where Pt is the real price, iy is the real dividend, 1 is the constant interest rate, and Eq() is the expectation operator
conditional on information available attime f.

The ex postrational price is defined as:

‘ i ”lfll
) —_—
" i LFT)

where P! is the ex post rational price.

The test compares the standard deviation of the two series. If the efficient markets model holds true, then it can be
shown that:

alp) = alpy)

Constructor

VB = VarianceBounds(dates, prices, dividends);
Inputs:

= datesis an Nx1 vector of increasing dates for each pointin the sample data
= prices is an Nx1 vector of prices for each pointin the sample data

= dividends is an Nx1 vector of dividends for each pointin the sample data
Outputs:

= VBis the constructed VarianceBounds class

PerformTest

VBR = VB.PerformTest(shouldDetrend, terminalValueScales);

Peforms the variance bounds test, optionally detrending data prior to running the test.
Inputs:

= shouldDetrend is a boolean, indicating if the data should be detrended via a log regression before running the
test

= terminalValueScales is a 1xM array of scalings around 1.0 for the terminal condition of the ex post rational price
Outputs:

= VBRis an instance of VarianceBoundsResult which can be used to generate plots and tables

Published with MATLAB® R2015b

VarianceBoundsResult class

Contents

= Overview

= Constructor

= GenerateResultsTable

= PlotRealPriceAgainstExPostRationalPrice
= PlotExPostRationalPrice

= PlotDetrendRegressionDetails

Overview

Class representing the results from running a variance bounds test. Contains useful methods for generating plots and
tables of results.

Constructor

Users should not explicity construct instances of VarianceBoundsResult. Instead, they should call PerformTest(...) on
an instance of VarianceBounds to return a constructed VarianceBoundsResult, referred to below as VBR.

GenerateResultsTable

[tab] = VBR.GenerateResultsTable();

Generates table of test results similar to that found in Shiller's paper (p431). The final rows in the table can be used to
accept of reject the test for bubbles.

Outputs:

= tabis a MATLAB table object.

PlotRealPriceAgainstExPostRationalPrice

VBR.PlotRealPriceAgainstExPostRationalPrice();

Generates a new figure and plots an overlay of the ex post rational price on the real price. If different ex post rational
price terminal scalings have been supplied, each is plotted as a different coloured series.

PlotExPostRationalPrice

VBR.PlotExPostRationalPrice();

Plots the ex post rational price series. If different ex post rational price terminal scalings have been supplied, each is
plotted as a different coloured series.

This is useful for comparing how the terminal scalings affect the computed values for the ex post rational price.

PlotDetrendRegressionDetails

VBR.PlotDetrendRegressionDetails();

If the user requested detrending of the price and dividend data prior to performing the test, the regression process
can be plotted via this function.

AROrderPicker - class

Contents

= Overview

= Constructor

= SetData

= PickBestAROrder

Overview

Determines the best pure AR order for a given time series. AROrderPicker uses Akaike and Bayesian information
criteria to pick the best pure AR order (i.e. there is no MA component).

Constructor

AROP = AROrderPicker(Data);
Inputs:

» Datais the input time series data
Outputs:

= AROP is the constructed AROrderPicker class

SetData

AROP.SetData(Data)
Sets the data on the AROrderPicker class instance.
Inputs:

= Datais the input time series data

PickBestAROrder

[pAIC, pBIC, aic, bic] = AROP.PickBestAROrder(MaxP, d)
Picks the best AR order p for an ARIMA(p,d,0) model using Akaike and Bayesian Information Criteria.
Inputs:

= MaxP is the maximum number of AR lags to consider

= disthe degree of differencing in the ARIMA model
Outputs:

= pAIC is the best AR order using Akaike IC
= pBIC is the best AR order using Bayesian IC
= aicis the Akaike IC object returned from MATLAB's aicbic function

= bicis the Bayesian IC object returned from MATLAB's aicbic function

DiscountRateEstimator - class

NOTE: DiscountRateEstimator makes use of Mike Cliffs freely available GMM and MINZ libraries (see
https://sites.google.com/site/mcliffweb/programs).

Contents

= Overview
= Constructor

= EstimateDiscountRate

Overview

Estimates the discount rate b from the arbitrage (Euler) equation relating prices and dividends.
The arbitrage relationship is given by

pe=b+ E(p +din)

This can be rewritten in the form

pm=b(py +di) + urn

where Ut+1is potentially correlated with P¢+1and @41, The esimtation uses Instrumental Variables, with @t or Ald)
as Instruments

Constructor

DRE = DiscountRateEstimator(Data);
Inputs:

= Datais a structure array instance of the data object returned by WestsDataBuilder.GenerateData.
Outputs:

» DRE is the constructed DiscountRateEstimator class

EstimateDiscountRate

EDR = DRE.EstimateDiscountRate(UseSimpleMethod);
Estimates the discount rate.
Inputs:

= UseSimpleMethod is boolean. When true, uses simple 2SLS IV estimation. When false uses two-stage GMM
estimation, with the first stage being simple IV estimation and the second stage being application of GMM to yield
the best heteroskedasticity consistent estimate.

Outputs:

= EDRis a structure array with fields for the results, as well as the data used. EDR varies depending on which
estimation technique is used.

WestsCovarianceMatrix - class

Contents

= Overview
= Constructor

= Computed Property V

Overview

Computes West's variance-covariance matrix V for the vector & of regression coefficients (West 1987, p563).

Assuming the order of the AR process is 4, the coefficients vector & with dimenstions (29 +3) x 1 is represented as
8=(bud,..., g by, .., ﬁ,l.]J
where

= liis the estimated discount rate from the arbitrage (Euler) equation
» Misthed: regression intercept

L ERRRER " are the €t regression coefficients
= mis the Pr+1regression intercept

01,..., 94 are the Pt+1 regression coefficients

Constructor

WCM = WestsCovarianceMatrix(Data,Sd_hat,b_hat,phi_hat,delta_hat,IsDifferenced);
Inputs:

= Datais a structure array instance of the data object returned by WestsDataBuilder.GenerateData.
= Sd_hatis an estimate of the spectral density matrix from estimating the arbitrage equation, size (q+17)x(q+1)

= b_hatis an estimate of i

= phi_hatis a vector containing estimates for I and ¥, size (g+1)x1
= delta_hatis a vector containing estimates for 1t and &, size (g+1)x1

= [sDifferenced is boolean (true/false) and indicates if level or differenced data is being used.
Outputs:

= WCM is the constructed WestsCovarianceMatrix class

Computed Property V

The variance-covariance matrix is automatically computed during class construction and is available to access via
dot(.) notation.

CovMat = WCM.V;

Published with MATLAB® R2015b

WestsDataBuilder - class

Contents

= Overview
= Constructor

= GenerateData

Overview

Class for building the different data matrices used in West's speculative test for bubbles.

Constructor

WDB = WestsDataBuilder(Prices, Dividends, ARq, UseDifferencedData);
Inputs:

= Pricesis an Nx1 vector of prices for each pointin the sample data
= Dividends is an Nx1 vector of dividends for each pointin the sample data
= ARq is the auto-regressive order used to represent dividends in the model

= UseDifferencedData is boolean (true/false) and indicates if level or differenced data should be constructed.
Outputs:

= WDBis the constructed WestsDataBuilder class

GenerateData

Data = WDB.GenerateData();
Construct the data used in West's test process.
Outputs:

= Data is structure array with the following fields

= Data.ptis the price series

= Data.dtis the dividend series

» Data.ptplus1 is the price series attime £ + 1 (or the 1st A of it)

» Data.diplus1 is the dividend series at time t+1 (or the 1st 2\ of it)

» Data.Xis (price + dividend) attime # + 1

» Data.Dis the instruments (lagged dividends) at time t (or the 1st /A of it)

» Data.Dplus1 is the instruments (lagged dividends) attime + 1 (or the 1st /A of it)

Published with MATLAB® R2015b

WestsSymbolicComps - class

Contents

= Overview
= Constructor

= Computed Properties

Overview

Class to compute symbolic math structures for West's coefficients

Assuming the order of the AR process is {, the coefficients vector © with dimenstions |24
8=(bud,..., g by, .., ﬁ,l.]J
where

» bisthe estimated discount rate
» Misthed: regression intercept
3 PERRRL %4 are the regression coefficients
= mis the Pr+1regression intercept

01,..., 94 are the Pt+1 regression coefficients

Two constraint equations are constructed:

= R1-Forlevel data: ¢ ~ Af(q)
= R2 - For differenced data: &(dt) ~ Alt(q)

The jacobian matrix is also derived for each constraint vector
s dR1 = i

i

» dR2 =0

£ 3) % Lis represented as

All structures are returned as symbolic math objects and can be evaluated with real values for the coefficients via

subs.

For example, suppose the have the real calculated coefficients in a (2q+3)x1 vector Coeffs. We can evaluate the dR1

jacobian using

subs(dR1,Theta, Coeffs)

Constructor

WSC = WestsSymbolicComps(ARq);

Outputs:

= WSC is the constructed WestsSymbolicComps class

Computed Properties

The following properties are automatically computed during class construction and are available to access via dof(.)
notation.

= WSC.R1 is the level data symbolic constraint vector
= WSC.R2 s the differenced data symbolic constraint vector
= WSC.dR1 is the level data symbolic jacobian matrix

= WSC.dR2 s the differenced data symbolic jacobian matrix

Published with MATLAB® R2015b

WestsTwoStep - class

Contents

= Overview
= Constructor

s PerformTest

Overview

Class for computing Kenneth West's specification test for speculative bubbles in price and dividend data.

Unlike the Variance Bounds test which doesn't directly include the presence of bubbles when rejecting the model,
West's test specifically includes the ability to check for bubbles by testing the model and no-bubbles hypotheses
sequentially.

The Euler equation relating prices and dividends is given by:
P = bE(pry1 + disa)

where Pt is the real stock price in period t, i the constant real discount rate 0<b=1/(1+r)< 1, r the constant
expected return, and Ei() is the expectation operator conditional on information available at time f.

In the absence of bubbles an estimate of the discount rate can be obtained by noting that

Pt = biprs1 + dis1) + uen
where 41 is the error term. Since Ut+1is correlated with P't+1and @1+ 1, the estimation requires use of Instumental
Variables.

Next, West assumes dividends follow a pure auto-regressive process, order 4, of the form
tdip1 = p 4 drdy + .. Gt + P4
Estimates for the dividend regression coefficients are readily obtained by OLS.

Finally, the usual asset price equation

pe=) _VEu(d)
i=]

is estimated by letting
Pre1 =m+ dydieg + ... A riqrf. q+2 + W

Because each estimation process above represents part of the relationship between prices and dividends itis
possible to derive constraint equations relating all the estimated model parameters. Under the assumption that no
bubbles are present, the constraint equations should all be satisfied. A statistical test is constructed to measure how
closely the constraints are satisfied.

Specifically, once estimates have been obtained for all coefficients, the constraint vector Rf. o) is constructed which

relates the estimated coefficients & to each other using analytical expressions. The vector 1t(8) has dimenstions
(q+1)x1.

The null hypothesis is that R(B) = ”'.

West's test statistic is

R(O) [(%)%%Jf} R(©)

where:

i

= % is the (g+1)x(2g+3) jacobian matrix of first partial derivatives of i(O)

» Visthe (29+3)x(2q+3) estimated variance-covariance matix of the coefficients

¥
The test statistic, under the null, is asymptotically distributed as a X~ distribution with g+7 degrees of freedom.
Rejecting the null and validating the regression estimates provides evidence for speculative bubbles in the data.

Itis important to note that West's test hinges on being able to validate the discount rate, dividend ARIMA, and price on
distributed lag of dividends estimation processes. Provided these estimates are sound, model mispecification can be
ruled out and any violation of the constraint equations can be directly attributed to the presence of bubbles.

Constructor

WTS = WestsTwoStep(Dates, Prices, Dividends);
Inputs:

= Dates is a time series vector of date data
= Prices is a time series vector of price data

= Dividends is a time series vector of dividend data
Outputs:

= WTS s the constructed WestsTwoStep class

PerformTest

Result = WTS.PerformTest(ARq, UseDifferencedData)
Performs West's test for speculative bubbles
Inputs:

= ARq is the auto-regressive order

= UseDifferencedData is boolean (true/false) and indicates if level or differenced data should be used when
performing the test

Outputs:

= Resultis a MATLAB structure array with the following fields:
= ResultDataSize is the total number of samples used
= ResultDataSetis a string representation of the date range used

= Result.Differenced is "true" or "false"

= Resultq is the auto-regressive order

= Result.DoF is the degrees of freedom for the X test
= Result. TestStatistic is the calculated test statistic value

= Result. TestStatisticSig is the significance of the calculated test statistic

Published with MATLAB® R2015b

ADF_FL

NOTE: This code has been sourced directly from Phillips, Shi, and Yu (see
https://sites.google.com/site/shupingshi’/home/research).
Contents

= Overview

= Usage

Overview

Computes a right-tailed augmented Dickey Fuller test with a fixed lag order for the regression model.

Usage

[estm] = ADF_FL(y,adflag,EqType)
where,

= yisthe inputtime series data
= adflag is the lag order of the ADF test, adflag >= 0
= EqType is an instance of UnitRootNullTestType

= estmis the right-tailed test statistic that results from running the test on the data

Published with MATLAB® R2015b

CriticalValuesCache - class

Contents

= Overview

= Constructor
= getCachePath
= ClearCache

= getCVs

Overview

Singleton class for managing a cache of Unit Root test critical values.

Unit root tests rely on simulating the null hypothesis model many times to determine the critical value sequences for a fixed set of model and
test parameters. Since this process can be time consuming, it is preferable to cache the results of simulations for quick retrieval at a later time
when conducting significance tests.

CriticalValuesCache is a single-instance class (singleton) which provides methods for interacting with the cached critical value sequences, as
well as generating new entries for the cache when no existing match is found.

Typical usage is to get a handle to the cache and then query it for values, optionally asking the cache to generate the required values if they
don't exist.

Constructor

Since CriticalValuesCache is a singleton, no public constructor is available. To use CriticalValuesCache, get a handle to the single instance by
calling the getinstance method, as in the following example:

CVC = CriticalValuesCache.getInstance;

getCachePath

cachePath = CVC.getCachePath();
Retrieves the full system file path to the folder housing the cache files.
Outputs:

= cachePath is a MATLAB fullfile specification.

ClearCache

CVC.ClearCache();

Clears the contents of the critical values cache.

getCVs

[TestCVs, simResults, fileWasCreated] = CVC.getCVs(self, TType, T, M, EqType, Tw, d, eta, lag, rebuild, quants, useMex);
Gets the critical values sequence for the supplied parameters.

Unless rebuild is set to true, getCVs will attempt to locate a cached copy of the simulated results from a previous run. If no match is found in the
cache, orif rebuild is set to true, getCVs will force-run the simulation using the supplied parameters and add the values to the cache upon
completion.

The null model for data simulation is defined as:
m=d+T "+ 0%y +e

where ¢tisiid. (0,07 and # = 1

Inputs:

= TType is an instance of UnitRootTestType

= Tisthe sample size

= Mis the number of simulations to perform

= EqType is an instance of UnitRootNullTestType

= Twis the minimum test window size

= d and etfa are the null model parameters

= Jagis the ADF lag order

= rebuild is a logical value which will cause the simulations to run again when set to true
= quantsis a row vector of quantiles to use when calculating critical values

= useMex is a boolean value, set to true to use the compiled mex file when simulating

Outputs:

= TestCVsis a vector or critical values for the supplied quantiles quants
= simResults is the matrix of simulated critical values

= fileWasCreated returns true if the cache file was created or updated, false otherwise.

Published with MATLAB® R2015b

UnitRootBubbleTest - class

Contents

= Overview

= Constructor

= SetData

= PerformADFTest

= PerformSADFTest
= PerformGSADFTest

Overview

Performs various types of unit root bubble detection tests.

This is a helper class that encapsulates the process of testing for bubbles in a price-dividend ratio series.

Constructor

URBT = UnitRootBubbleTest(dates, priceOnDividend);
Inputs:

= dates is the date series (sorted, increasing)

= priceOnDividend is the price-dividend ratio series for the associated rows in dates
Outputs:

» URBT s the constructed UnitRootBubbleTest class

SetData

URBT.ResetData(dates, priceOnDividend);
Resets the data on the UnitRootBubbleTest class instance.
Inputs:

= dates is the date series (sorted, increasing)

= priceOnDividend is the price-dividend ratio series for the associated row in dates

PerformADFTest

URBTR = URBT.PerformADFTest(EqType, k, M, d, eta, quants, UseMex);
Runs an ADF test on the price-dividend ratio data.
Inputs:

= EqType is an instance of UnitRootNullTestType
= kisthe ADF lag order

= Mis the number of simulations to perform

= d and eta are the null model parameters
= quantsis a row vector of quantiles to use when calculating critical values

= useMex s a boolean value, setto true to use the compiled mex file when simulating

Outputs:

» URBTRis an instance of UnitRootBubbleTestResult

PerformSADFTest

URBTR = URBT.PerformSADFTest(EqType, Tw, k, M, d, eta, quants, UseMex);

Runs a SADF test on the price-dividend ratio data.

Inputs:

= EqType is an instance of UnitRootNullTestType

= Twis the minimum test window size

= kisthe ADF lag order

= Mis the number of simulations to perform

= d and eta are the null model parameters

= quantsis a row vector of quantiles to use when calculating critical values

= useMex is a boolean value, setto true to use the compiled mex file when simulating

Outputs:

= URBTR s an instance of UnitRootBubbleTestResult

PerformGSADFTest

URBTR = URBT.PerformGSADFTest(EqType, Tw, k, M, d, eta, quants, UseMex);

Runs a GSADF test on the price-dividend ratio data.

Inputs:

= EqType is an instance of UnitRootNullTestType

= Twis the minimum test window size

= kisthe ADF lag order

= Mis the number of simulations to perform

» d and eta are the null model parameters

= quantsis a row vector of quantiles to use when calculating critical values

= useMex s a boolean value, setto true to use the compiled mex file when simulating

Outputs:

= URBTR s an instance of UnitRootBubbleTestResult

Published with MATLAB® R2015b

UnitRootBubbleTestResult class

Contents

= Overview

= Constructor

= GenerateResultsTable

= GenerateBubbleStartEndTimes

= GeneratePlot

Overview

Class representing the results from running a unit root test. Contains useful methods for generating plots and tables
of results.

Constructor

Users should not explicity construct instances of UnitRootBubble TestResult. Instead, they should call PerformTest(...)
on an instance of UnitRootBubble Test to return a constructed UnitRootBubble TestResult, referred to below as
URBTR.

GenerateResultsTable

[tab] = URBTR.GenerateResultsTable();

Generates table of test statistic and associated right-tailed critical values.

Note: Should only be called for SADF and GSADF test types (not useful for ADF test type).
Outputs:

= tabis a MATLAB table object.

GenerateBubbleStartEndTimes

[tab] = URBTR.GenerateBubbleStartEndTimes(Beta, MinDurationInYears, SamplesPerYear);
Generates a table of bubble start and end times using the test's date stamping algorithm.
Inputs:

= Beta is the critival value sequence level (typically one 0f 0.9, 0.95, 0.99)

= MinDurationinYears is only required for test type GSADF, and represents the minimum bubble size in years (can
be fractional).

= SamplesPerYearis only required for test type GSADF, and represents the number of data samples in a full year.
Outputs:

= fabis a MATLAB table object.

GeneratePlot

[hAx,hLinel,hLine2] = URBTR.GeneratePlot(Beta);

Generates a plot of the unit root bubble test results. The plot contains lines for the real price series, the Beta x 100 %
critical value sequence, and the unit root test statistic sequence.

Inputs:

= Beta is the critival value sequence level (typically one 0f 0.9, 0.95, 0.99)

Outputs:

= hAx contains handles of the two axes created
= hlLine1 is the handle of the graphics object for line 1

= hLine2is the handle of the graphics object for line 2

Published with MATLAB® R2015b

UnitRootNullSimulator - class

Contents

= Overview
= Constructor

s PerformSimulation

Overview

Simulator for the various types of null tests for each unit root test type (ADF, SADF, GSADF). Simulations are typically
used to derive asymptotic critical values for a given set of model parameters.

The null model for data simulation is defined as:

p=d«T "+ 0%y +e

where €tisiid.(0,0%)and # = 1

Constructor

URNS = UnitRootNullSimulator(TType, T, M, EqType, Tw, d, eta, lag, useMex);
Inputs:

= TTypeis an instance of UnitRootTestType

= Tisthe sample size

= Mis the number of simulations to perform

= EqType is an instance of UnitRootNullTestType
= Twis the minimum test window size

= d and efa are the null model parameters

= Jagis the ADF lag order

= useMex is a boolean value, set to true to use the compiled mex file when simulating
Outputs:

s URNS is the constructed UnitRootNullSimulator class

PerformSimulation

simResults = URNS.PerformSimulation();
Performs the simulation steps for the specified unit root test.

WARNING: This function can take considerable time to execute if Tand M are large (> 1000). Typical runtimes for
large input parameters range from hours to days. PerformSimulation uses the default MATLAB parallel pool to
distribute simulation calculations over multiple threads, thus reducing runtime considerably. tic and toc are also
utilised, giving the user the total run time to perform the simulation.

To work out approximately how long this method will take to run, determine how many available CPU cores there are,
say C, and call the method with T and setting M = C, which will give you the run time with full core utilisation, denoted
. The appoximate runtime in seconds when using M is then given by:

. M = ite
M= —F
C

Outputs:

= simResults is a matrix containing test results for each simulation. In the case of ADF tests simResults is 1 x M. For
SADF and GSADF tests, simResults is (T-Tw+1) x M.

Published with MATLAB® R2015b

UnitRootNullTestType - enumeration

Contents

= Overview

= Usage

Overview

Enumeration representing the different types of ADF null model tests.

Usage
Specify a value by using dot(.) syntax to select the required enumeration value. The following values are supported:
UnitRootNullTestType.UnitRoot

UnitRootNullTestType.UnitRootWithDrift
UnitRootNullTestType.UnitRootWithDriftAndTrend

Published with MATLAB® R2015b

UnitRootTests - class

Contents

= Overview

= Constructor

= UnitRootTests.ADF

= UnitRootTests.SADF
= UnitRootTests. GSADF

Overview

Contains a static implementation for each different unit root test. The available test types are ADF, SADF, and GSADF.

Note: GSADF can be slow for large data sets and small minimum window size, therefore itis recommended to use
the MEX file UnitRootTestsCaller_mex instead of this class when performing GSADF tests on large data sets.

Constructor

UnitRootTests only contains static methods, therefore no constructor is required.

UnitRootTests.ADF

Results = UnitRootTests.ADF(data, k, EqType);
Performs the basic ADF test on the supplied data.
Inputs:

= datais the input time series data
= kisthe ADF lag order
= EqType is an instance of UnitRootNullTestType

Outputs:

= Results contains the right-tailed ADF test statistic value

UnitRootTests.SADF

Results = SADF(data, T, swindow@, k, EqType);
Performs the SADF test on the supplied data.
Inputs:

= datais the input time series data

= Tisthe sample size

= swindow0 is the minimum test window size

= kisthe ADF lag order

= EqType is an instance of UnitRootNullTestType

Outputs:

= Results contains the right-tailed ADF test statistic value

UnitRootTests.GSADF

Results = GSADF(data, T, swindow@, k, EqType);

Performs the GSADF test on the supplied data.

Inputs:

= datais the input time series data

= Tisthe sample size

= swindow0 is the minimum test window size

= kisthe ADF lag order

= EqType is an instance of UnitRootNullTestType

Outputs:

= Results contains the right-tailed ADF test statistic value

Published with MATLAB® R2015b

UnitRootTestsCaller - function

Contents

= Overview

= Usage

Overview

A wrapper function for calling the methods of the UnitRootTests class.

This function exists primarily for the purpose of the MATLAB Coder MEX generator, which requires the entry point to
the code to be a function (not a class method).

Usage

[simResults] = UnitRootTestsCaller(TType, data, T, swindow®, k, EqType);
Inputs:

= TTypeis an instance of UnitRootTestType

= datais the time series data

= Tisthe sample size

= swindow0 is the minimum test window size

= kisthe ADF lag order

= EqType is an instance of UnitRootNullTestType

Outputs:

= simResults is the result of running the unit root test on the data

Published with MATLAB® R2015b

UnitRootTestType - enumeration

Contents

= Overview

= Usage

Overview

Enumeration representing the different types of unit root tests available in the Asset Bubble Toolbox.

Usage
Specify a value by using dot(.) syntax to select the required enumeration value. The following values are supported:
UnitRootTestType.ADF

UnitRootTestType.SADF
UnitRootTestType.GSADF

Published with MATLAB® R2015b

8 Appendix C: Matlab Code

105

12/05/16 1:06 PM \\econ.usyd.edu.au\...\CreateDemoData.m 1 of

function CreateDemoData ()

$CREATEDEMODATA Creates demo data

Each bubble test has traditionally been applied to a specific dataset.
This function loads the relevant dataset and then saves the variables
into *.mat files for easy loading in demo files

o° oo o°

o)

% Get the current working folder
folder = fileparts (which (mfilename)) ;

% Shiller's variance bounds test uses S&P 500 data from 1871 to 1979
[Dates, Prices, Dividends, PPI] = LoadShillerChap26Data (1979, true);
filename = fullfile(folder, 'VarianceBoundsDemoData.mat');

save (filename, 'Dates', 'Prices', 'Dividends', '"PPI");

% West's test uses S&P 500 data from 1871 to 1980

[Dates, Prices, Dividends, PPI] = LoadShillerChap26Data (1980, true);
filename = fullfile(folder, 'WestsTwoStepDemoData.mat');

save (filename, 'Dates', 'Prices', 'Dividends', '"PPI");

% The unit root tests of Phillips, Shi, and Yu use S&P 500 data from 1871 to 2010
[Dates, PriceOnDividend] = LoadUnitRootTestData();

filename = fullfile(folder, 'UnitRootDemoData.mat');

save (filename, 'Dates', 'PriceOnDividend') ;

end

12/05/16 1:07 PM \\econ.usyd....\LoadShillerChap26Data.m 1 of 1

function [Dates, Prices, Dividends, PPI] = LoadShillerChap26Data (maxYear, scaleByPPI)
$LOADSHILLERCHAP26DATA Loads data from Robert Shiller's Chapter 26 appendix

% Loads data from Robert Shiller's Chapter 26 appendix (obtained from http://www. ¢«
econ.yale.edu/~shiller/data/chapt26.html)

% The test data file is located in this script's directory in Shiller Chap26 Data.¥

maxYear represents the max year to include data for (from 1871 to 1999)
scaleByPPI is a boolean. If true, the prices and dividends are made real byK'
scaling using PPI

folder = fileparts(which (mfilename)) ;

filename = fullfile(folder, 'Shiller Chap26 Data.xlsx');

sheet="'Sheetl';

x1lRange="'A6:G134'; % Note: If an updated data file is obtain, this range will need to¥
be adjusted

shillerData = xlsread(filename, sheet, x1lRange);

% Filter by max year (find largest index)

filterSize = length(find(shillerData(:,1) < maxYear + 1));

Dates = shillerData(l:filterSize,1);

PPI = shillerData(l:filterSize,7);
Prices = shillerData(l:filterSize,2);
Dividends = shillerData(l:filterSize,3);

Store the final PPI value, in case we are scaling by PPI
Note that this data originally has PPI 1982 = 100 (which is slightly different than
PPI 1979 = 100 as used by Shiller in his original paper).

o oo o° o

However, a new column has been added to the data to scale PPI to 1979 = 100
PPIFinalValue = PPI(filterSize);

Adjust for inflation by scaling relative to PPI in the final year for consideration

o0 oo

to convert all monetary values to real values relative to the final year
if (scaleByPPI)

PPIScalingRatio = PPIFinalValue./PPI;

Prices = Prices.*PPIScalingRatio;

Dividends = Dividends.*PPIScalingRatio;
end

end

12/05/16 1:07 PM \\econ.usyd.ed...\LoadShillerTestData.m 1 of 2

function [Dates, Prices, Dividends, CPI] = LoadShillerTestData (maxYear, scaleByCPI)
SLOADSHILLERDATA Loads data from Robert Shiller's excel data file

% Loads data from Robert Shiller's excel data file (obtained from http://www.econ. ¢
yale.edu/~shiller/data/ie data.xls)

The test data file is located in this script's directory in shiller ie data.xls

maxYear represents the max year to include data for (from 1871 to 2016)

o0 do oe

scaleByCPI is a boolean. If true, the prices and dividends are made real by¢

0

caling using CPI
% The data is rolled up to yearly data before being returned.

folder = fileparts(which (mfilename)) ;

filename = fullfile(folder, 'shiller ie data.xls');

sheet="Data';

x1Range="A9:F1748'; % Note: If an updated data file is obtain, this range will need to¥¢
be adjusted

shillerData = xlsread(filename, sheet, x1lRange);

% Filter by max year (find largest index)

filterSize = length(find(shillerData(:,6) < maxYear + 1));

Dates = shillerData(l:filterSize,6);

CPI = shillerData(l:filterSize,5);

Prices = shillerData(l:filterSize,2);
Dividends = shillerData(l:filterSize,3);

% Now roll up the monthly data to yearly data.
startDate = floor (Dates(l));

endDate = ceil (Dates (end)) ;

rolledUpSize = endDate - startDate;

DatesRolledUp = zeros (rolledUpSize,l);

PricesRolledUp = zeros(rolledUpSize,1l);

DividendsRolledUp = zeros(rolledUpSize,l);

CPIRolledUp = zeros(rolledUpSize,1l);

% Store the final CPI value, in case we are scaling by CPI
CPIFinalValue = CPI(filterSize);

Adjust for inflation by scaling relative to CPI in the final year for consideration

o° oo

to convert all monetary values to real values relative to the final year
if (scaleByCPI)

CPIScalingRatio = CPIFinalValue./CPI;

Prices = Prices.*CPIScalingRatio;

Dividends = Dividends.*CPIScalingRatio;
end

% We use a basic roll-up strategy, taking the Jan record for all but the dividend ¢
stream
for i=l:rolledUpSize

% Construct a filter for the current year's data
filter = Dates > (startDate + i1 - 1) & Dates < (startDate + 1i);
% Filter each set down to just the data for the year
SubPrices = Prices(filter);
SubDividends = Dividends (filter);

12/05/16 1:07 PM \\econ.usyd.ed...\LoadShillerTestData.m

2

of

o0 o0 AP o° o° o°

end

SubCPI = CPI(filter);

%Shiller uses the January prices so we do the same
DatesRolledUp (i) = startDate + 1 - 1;
PricesRolledUp (i) = SubPrices(1l);

CPIR0olledUp (i) = mean (SubCPI);

% We (arbitrarily) use an average of the dividends over the entire year
DividendsRolledUp (i) = mean (SubDividends) ;

if (scaleByCPI)
% Deflate by CPI for the start of the year
PricesRolledUp (i) = PricesRolledUp (i) *CPIFinalValue/SubCPI (1) ;

o)

% Deflate by the average CPI value of the year

DividendsRolledUp (i) = DividendsRolledUp (i) *CPIFinalValue/CPIRolledUp (i) ;

end

Dates = DatesRolledUp;
Prices = PricesRolledUp;
Dividends = DividendsRolledUp;

CPI

end

= CPIRolledUp;

12/05/16 1:08 PM \\econ.usyd.e...\LoadUnitRootTestData.m 1 of

function [Dates, PriceOnDividend] = LoadUnitRootTestData ()

$LOADUNITROOTTESTDATA Loads data from PSY's sample excel data file

% Loads data from Phillips, Shi, and Yu's sample excel data file (obtained from«
https://sites.google.com/site/shupingshi/PrgGSADF.zip?attredirects=0&d=1)

% The test data file is located in this script's directory in SP DV.xlsx

folder = fileparts (which (mfilename)) ;
filename = fullfile(folder, 'SP DV.xlsx');

SPDV = xlsread(filename) ;
Dates = SPDV(1:1680,2);
PriceOnDividend = SPDV(1:1680,6);

end

12/05/16 1:08 PM \\econ.usyd.edu.au\...\VarianceBounds.m 1 of 3

classdef VarianceBounds < handle

$VARIANCEBOUNDS Shiller's Variance bounds test for financial time series

Class for computing variance bounds test for two financial time series using«
the method of Shiller (1981b).

o0 o

% Usage:

% ---Constructor---

% VB = VarianceBounds (dates, prices, dividends, pricelIndex), where

% dates is an Nx1 vector of increasing dates for each point in the sampleK'
data

% prices is an Nx1 vector of prices for each point in the sample data

% dividends is an Nxgl vector of dividends for each point in the sample ¢
data

It is assumed that prices and dividends have been made real by scaling¥

o°

using a price index (e.g. CPI)
---Methods---
VBR = PerformTest (shouldDetrend)
Performs the variance bounds test and returns a VarianceBoundsResult«

o o oP

object

properties (SetAccess = private)
Dates
Prices
Dividends
PricesDetrended
DividendsDetrended

end

methods
% Constructor

function VBT = VarianceBounds (dates, prices, dividends)
VBT .Dates = dates;
VBT.Prices = prices;
VBT.Dividends = dividends;
VBT.PricesDetrended = prices;
VBT.DividendsDetrended = dividends;

end

function VBR = PerformTest (self, shouldDetrend, terminalValueScales)
% Peforms the variance bounds test, optionally detrending data prior to¥
running the test
$ terminalValueScales is a 1xM array of scalings around 1.0 for the«
terminal condition of the ex post rational price
% Returns an instance of VarianceBoundsResult which can be used to¥
generate plots and tables
% Detrend data (if required)
Beta = [];
if shouldDetrend
[Beta] = self.DetrendDatal();
end
% Compute the ex post rational price series
[ExPostRationalPrice, r bar] = ComputeExPostRationalPrice (self, 4

terminalValueScales) ;

12/05/16 1:08 PM \\econ.usyd.edu.au\...\VarianceBounds.m 2 of 3

% Construct the results object
VBR = VarianceBoundsResult (self.Dates, self.Prices, self.Dividends, ¥
shouldDetrend,
self.PricesDetrended, self.DividendsDetrended, Beta,Z'
ExPostRationalPrice,
terminalValueScales, r bar);
end
end

methods (Access = private)
function [ExPostRationalPrice, r bar] = ComputeExPostRationalPrice (self, v
terminalValueScales)
% Computes the ex post ration price series from real prices and dividends

% Compute the approximation to the discount rate
r bar = mean(self.DividendsDetrended)/mean (self.PricesDetrended) ;
gamma_bar = 1/ (l+r bar);

% Allocate memory and initialise the final wvalues

ExPostRationalPrice = zeros(length(self.PricesDetrended),lengthz'
(terminalValueScales));

ExPostRationalPrice (length (ExPostRationalPrice),:) = terminalValueScales. 4

*mean (self.PricesDetrended) ;

% Work backwards recursively to populate the series
for t=length (ExPostRationalPrice)-1:-1:1
ExPostRationalPrice(t,:) = gamma bar* (ExPostRationalPrice (t+1,:) +¢
self.DividendsDetrended (t+1,1));
end
end

function [Beta] = DetrendData (self)
% AssumeS an exponential fit, then regresses natural log of prices on¥

dates
[Beta,~,~,~,~] = regress(log(self.Prices), [ones(size(self.Dates)) self. ¢
Dates]);
lambda = exp(Beta(2,1));
T = self.Dates(end,1);
self.PricesDetrended = zeros(size(self.Prices));
self.DividendsDetrended = zeros(size(self.Dividends));
for t=1l:length(self.Dates)
self.PricesDetrended(t,1l) = self.Prices(t,1l)/ (lambda” (self.Dates (t,1) ¢
- T))I
self.DividendsDetrended(t,1l) = self.Dividends (t,1)/ (lambda” (self.Dates¥
(£, 1) +1 -T));
end
end
end

12/05/16 1:08 PM \\econ.usyd.edu.au\...\VarianceBounds.m 3 of 3

12/05/16 1:08 PM \\econ.usyd.e...\VarianceBoundsResult.m 1 of 4

classdef VarianceBoundsResult < handle
$VARIANCEBOUNDSRESULT Result container class for variance bounds test results
% Class representing the result of running a variance bounds test.
% Can be used to generate plots and tables of results
properties (SetAccess = private)
Dates
Prices
Dividends
ShouldDetrend
PricesDetrended
DividendsDetrended
Beta
ExPostRationalPrice
TerminalValueScales
r bar
end

methods
function VBTR = VarianceBoundsResult (Dates, Prices, Dividends, ShouldDetrend, ¥
PricesDetrended,
DividendsDetrended, Beta, ExPostRationalPrice, TerminalValueScales, ¢
r bar)
VBTR.Dates = Dates;
VBTR.Prices = Prices;
VBTR.Dividends = Dividends;
VBTR.ShouldDetrend = ShouldDetrend;
VBTR.PricesDetrended = PricesDetrended;
VBTR.DividendsDetrended = DividendsDetrended;
VBTR.Beta = Beta;
VBTR.ExPostRationalPrice = ExPostRationalPrice;
VBTR.TerminalValueScales = TerminalValueScales;
VBTR.r bar = r bar;
end

function [tab] = GenerateResultsTable (self)
% Generates table of results according to Shiller's paper (p431)

ResultsRows 9;
ResultsCols = length(self.TerminalValueScales);

Results = zeros (ResultsRows,ResultsCols);
RowNames = cell (ResultsRows,1);

for j=1l:ResultsCols

Index = 1;
RowNames{Index} = 'E(p)"';
Results (Index,j) = mean(self.PricesDetrended);

Index = Index + 1;
RowNames{Index} = 'E(d)"';
Results (Index,j) = mean(self.DividendsDetrended) ;

Index = Index + 1;
RowNames{Index} = 'r bar';

12/05/16 1:08 PM \\econ.usyd.e...\VarianceBoundsResult.m 2 of 4

Results (Index,j) = self.r bar;

Index = Index + 1;
RowNames{Index} = 'r2 bar';
Results (Index,j) = (1 + self.r bar)"2 - 1;

Index = Index + 1;
RowNames{Index} = 'b';

Results (Index,j) = self.Beta(2,1);

Index = Index + 1;

RowNames{Index} = 'cor (p,p*)"';
Results (Index,j) = corr(self.PricesDetrended, self.ExPostRationalPrice ¥
(:,3))3
Index = Index + 1;
RowNames{Index} = 'std(d)"';
Results (Index,j) = std(self.DividendsDetrended);
Index = Index + 1;
RowNames{Index} = 'std(p)';
Results (Index,j) = std(self.PricesDetrended);
Index = Index + 1;
RowNames{Index} = 'std(p*)';
Results (Index,j) = std(self.ExPostRationalPrice(:,7));
end
tab = table(Results, 'RowNames', RowNames) ;
end
function PlotRealPriceAgainstExPostRationalPrice (self)
figl = figure;
set (figl, 'defaulttextinterpreter', 'latex');
plot (self.Dates, self.PricesDetrended)
hold on
plot (self.Dates, self.ExPostRationalPrice, '--")
xlabel ('time')
ylabelText = 'price';
titleText = 'Comparison of price $p t$ and ex post rational price¥
Sp_tn*s';
if self.ShouldDetrend
titleText = [titleText ' - both detrended'];
ylabelText = ['detrended ' ylabelText];

end
ylabel (ylabelText)
title(titleText)

legendStrings = cell(length(self.TerminalValueScales) + 1,1);
legendStrings(l) = {'price'};
for i=l:length(self.TerminalValueScales)
legendStrings (i+1) = {strcat('Sp t"*$, terminal scale factor = 4
num2str (self.TerminalValueScales (1))) };

12/05/16 1:08 PM \\econ.usyd.e...\VarianceBoundsResult.m 3 of

end

end

h = legend(legendStrings, 'Location', 'northwest');
set (h, 'Interpreter', 'latex"')

%legend('Location', "'northwest")

function PlotExPostRationalPrice(self)

figure

hold on

legendStrings = cell(length(self.TerminalValueScales),1);

for i=1l:length(self.TerminalValueScales)
plot (self.Dates, self.ExPostRationalPrice(:,1i));
legendStrings (i) = {strcat('Scale factor = "', num2str (self. ¢

TerminalValueScales (i))) };

plot.")

end

end

xlabel ("time')

ylabel ('ex post rational price')

title('ex post rational price - different terminal scalings')
legend (legendStrings) ;

dateMin
dateMax

fix(min(self.Dates)) - 1;
fix (max (self.Dates)) + 1;

axis ([dateMin dateMax 0 3007])

function PlotDetrendRegressionDetails (self)

o

% Plots the regression details of the detrending process
% Check to make sure the data was detrended before running this

if ~self.ShouldDetrend

error ('No detrending was performed on the data. Unable to generate ¢

end
figure

subplot(1,2,1)

plot (self.Dates, log(self.Prices));

hold on

plot (self.Dates, [ones(size(self.Dates)) self.Dates]*self.Beta, 'r-'")
xlabel ("time')

ylabel ('ln(price) ")

title('Linear regression of 1ln(price)"')
legend('ln(price) ', 'regression')

legend ('Location', "northwest')

subplot (1,2,2)

plot (self.Dates, self.Prices);

hold on

Y = self.Beta(l,1) + self.Beta(2,1)*self.Dates;
plot (self.Dates, exp(Y), 'r-");

xlabel ('time'")

ylabel ('price')

title('Exponential fit of price data')

legend ('price','fit")

12/05/16 1:08 PM \\econ.usyd.e...\VarianceBoundsResult.m 4 of 4

legend ('Location', "northwest"')
end
end
end

12/05/16 1:09 PM \\econ.usyd.edu.au\h...\AROrderPicker.m 1 of

classdef AROrderPicker < handle
$ARORDERPICKER Determines the best pure AR order for a given time series
% AROrderPicker uses Akaike and Bayesian information criteria

% to pick the best pure AR order (i.e. there is no MA component).

properties (SetAccess = private)

Data
end
methods
function AROP = AROrderPicker (Data)
AROP.Data = Data;
end

function SetData (self, Data)
self.Data = Data;
end

function [pAIC, pBIC, aic, bic] = PickBestAROrder (self, MaxP, d)
Picks the best AR order p using an ARIMA(p,d,0) model and
both Akaike and Bayesian Information Criteria.

oe

MaxP is the maximum number of AR lags to consider
d is the degree of differencing
Returns the best p for both AIC and BIC

o o° e o

LOGL = zeros (MaxP,1);
PQ = zeros (MaxP,1);
for p = 1:MaxP
mod = arima(p,d,0);
[~,~,1logl] = estimate (mod,self.Data, 'print', false);
LOGL (p,1) = logL;
PQ(p,1l) = p; % Normally p+g but g (MA order) is assumed zero
end

% Total number of params is p+g+l, but g=0
[aic,bic] = aicbic (LOGL,PQ+1,length(self.Data));
[~, PAIC] = min(aic);

[~, pBIC]

min (bic);
end
end
end

12/05/16 1:09 PM \\econ.usyd....\DiscountRateEstimator.m 1 of 2

classdef DiscountRateEstimator

$DISCOUNTRATEESTIMATOR Estimates the discount rate b
The arbitrage relationship is given by

p t = b*E(p_(t+l) + d (t+1)|I_t)
This can be rewritten in the form

p_t = Db*(p (t+l) + d_(t+l)) + u_(t+1)

where u (t+l) is potentially correlated with p (t+l) and d (t+1)
The esimtation uses Instrumental Variables, with d t or diff(d t) as¥

o° d° o° o° o° oo

Instruments

properties (SetAccess = private)
Data
end

methods
function DRE = DiscountRateEstimator (Data)
% Data is an instance of the structure array returned by WestsDataBuilder. ¢
GenerateData ()
DRE.Data = Data;
end

function EDR = EstimateDiscountRate (self, UseSimpleMethod)

o)

% Estimate the discount rate.
% UseSimpleMethod is boolean. When true, uses simple 2SLS IV estimation. ¥
When false uses GMM estimation.

% EDR is a structure array with fields for the results, as well as the¢

data used.

if UseSimpleMethod
EDR = self.SimpleIVEstimation() ;
else
EDR = self.GMMEstimation () ;
end
end
end

methods (Access = private)
function EDR = SimplelIVEstimation (self)

o)

% Performs simple 2SLS IV estimation

oe

Get the data

self.Data.X;
self.Data.pt;
self.Data.D;

N =X
Il

Perform 2SLS
Stage 1 - Regress preditors on instruments

ol o oe

Stage 2 - Regress response on stage 1 fitted values

SPz = Z*inv (Z'*Z)*z2';

%b_hat = inv(X'*Pz*X)*X'*Pz*Y;
Pz = Z*((2'*Z)\2");

b hat = (X'"*Pz*X)\X'*Pz*Y;

r hat = (1l-b_hat)/b_hat;

12/05/16 1:09 PM \\econ.usyd....\DiscountRateEstimator.m 2 of

end

end

end

% Build up the stucture array result
EDR(1) .b hat = b hat;
EDR(1) .r hat = r hat;

function EDR = GMMEstimation (self)

end

oe

Performs GMM estimation on the data using Mike Cliff's GMM library
West's IV estimation is effectively GMM assuming
heteroskedasticity in the errors (i.e. it is NOT simple 2SLS)

The first step obtains an estimate of the discount rate using 2SLS
The second step uses this estimate to find the optimal

A0 o° d° o o°

estimate by application of GMM.

oe

Get the data

= self.Data.X;
= self.Data.pt;
= self.Data.D;

NoOX

% Step 1 - Initial estimate of b hat using 2SLS
EDR 2SLS = self.SimpleIVEstimation();
b hat = EDR 2SLS.b hat;

% Step 2 - Optimal estimate of b _hat using GMM
gmmopt.infoz.momt="1lingmmm' ;

gmmopt.plot = 0;

gmmopt.prt = 0;

[out, opts] = gmm(b_hat,gmmopt, Y, X, Z);

b hat = out.b;
r hat (1-b_hat) /b_hat;

% Build up the stucture array result
EDR(1) .b hat = b hat;

EDR(1) .r_hat = r hat;

EDR (1) .gmmOut = out;

EDR (1) .gmmOpts = opts;

12/05/16 1:10 PM \\econ.usyd....\WestsCovarianceMatrix.m 1 of 4

classdef WestsCovarianceMatrix < handle
SWESTSCOVARIANCEMATRIX Summary of this class goes here
% Detailed explanation goes here

properties (SetAccess = private)
D
Dplusl
X
Sd hat
pt
ptplusl
dtplusl
b hat
phi_hat
delta_hat
IsDifferenced

end

methods
function WCM = WestsCovarianceMatrix (Data,Sd hat,b hat, ...
phi hat,delta hat,IsDifferenced)

% Computes West's variance-covariance matrix V (West 1987, p563)

% Data 1is a structure array holding the different data matrices

% Sd _hat is an estimate of the spectral density matrix from estimating the
arbitrage equation (gt+l)x(gt+l)

% b hat is an estimate of the discount rate 1x1

% phi hat is the coefficient estimates from the dividend ARIMA process ¥
(g+l)x1

o

3 delta hat is the coefficent estimates from the regression of prices on¥
lagged dividends (g+1)x1

o

% IsDifferenced is true if using differenced data, false otherwise

WCM.D = Data.D;

WCM.Dplusl = Data.Dplusl;
WCM.X = Data.X;

WCM.Sd hat = Sd hat;

WCM.pt = Data.pt;
WCM.ptplusl = Data.ptplusl;
WCM.dtplusl = Data.dtplusl;
WCM.b hat = b _hat;

WCM.phi hat = phi hat;
WCM.delta hat = delta hat;
WCM.IsDifferenced = IsDifferenced;

WCM.ComputeCovarianceMatrix () ;
end
end

methods (Access = private)
function ComputeCovarianceMatrix (self)

12/05/16 1:10 PM \\econ.usyd....\WestsCovarianceMatrix.m 2 of 4

o

% Performs the computational steps to approximate the covariance matrix V
% Determine the integer constants from the supplied data
self.T = length(self.pt);

self.q = length(self.phi hat) - 1;

% Compute Hansen and Singleton's optimal weighting matrix
%self.A hat = self.X'*Self.D*inv(self.T*self.Sd_hat);
self.A hat = self.X'*self.D/(self.T*self.Sd_hat);

% Compute S hat
hat = self.S hat();

0

Compute the normalising matrix
FT is diag(T"1/2,...,T"1/2)
FT = diag(sqgrt(self.T)*ones(2*self.qg+3,1));
if self.IsDifferenced
% FT is diag(T,T"1/2,...,T"1/2)
FT(1,1) = self.T;

o
°
o
°

end

% Compute normalising matrix CT
% CT is diag(T*1/2,...,T"1/2)
CT = diag(sqrt(self.T)*ones (2*self.g+3,1));
if self.IsDifferenced
% CT is diag(T"3/2,T"1/2,...,T"1/2)
CT(1l,1) = self.T*(3/2);
end

% Compute sum of h t theta terms
h t theta = self.h t theta(l);
for t = 2:self.T
h t theta = h t theta + self.h t theta(t);
end

h t theta trans = h t theta';

5 Finally, compute the covariance matrix approximation

% FTinv = inv (FT) ;
% Terml = inv(FTinv*h t theta*FTinv);
% Term2 = inv(FTinv*h t theta trans*FTinv);

self.V = Terml*S hat*Term2;

Terml FT\h t theta/FT;
Term2 = FT\h_t theta trans/FT;
self.V = Terml\S hat/Term2;

% Scale by CT
$self.V = inv (CT) *self.V;
end

function [S hat] = S hat(self)

o

% Computes S hat

o)

% Approximate variable m, used in the weighting process

12/05/16 1:10 PM

\\econ.usyd....\WestsCovarianceMatrix.m

3 of

end

o

% m ~ sqrt(T)
self.m = ceil (sqgrt(self.T));

S hat = self.Omega 1i(0);

for i=l:self.m

Omega i = self.Omega 1i(i);

S hat = S hat + self.K(i)*(Omega i + Omega 1i');
end

function [Omega i] = Omega i (self, i)

end

)

% Computes Omega i, used in equation for S hat
% Initialise storage for Omega i
Omega i1 = zeros(2*self.g+3);

for t=i+l:self.T

h t = self.h t(t);

h t minus i = self.h t(t-i);

Omega_1 = Omega_ i + h_t*h t minus_i';
end

Omega i = Omega i/self.T;

function [K] = K(self, 1)

end

% Computes weight elements used in S hat calculation
K=1-1i/(self.m + 1);

function [h t] = h t(self, t)

phi_hat);

o)

% Computes the orthogonality vector h t
h t = zeros(2*self.qg+3,1);

% Arbitrage equation

h t(1,1) = self.A hat*self.D(t,:)'*(self.pt(t) - self.X(t)*self.b hat);

o)

¢ ARIMA process for dividends

h_t(2:self.q+2,l) = self.D(t,:)'*(self.dtplusl(t)—self.D(t,:)*self.z'

% OLS process for prices on distributed lag of dividends
if ~self.IsDifferenced
h t(self.g+3:end, 1)

(t,:)*self.delta hat);

self.Dplusl(t,:)'*(self.ptplusl(t)—self.Dpluslf'

else
h_t(self.q+3:end,1) = self.Dplusl(t,:) '*(self.ptplusl(t)-self.D(t,:) v
*self.delta hat);
end
end
function [h_t theta] = h t theta(self, t)

o

% Computes the matrix of partial derivatives (w.r.t. theta) of

12/05/16 1:10 PM \\econ.usyd....\WestsCovarianceMatrix.m 4 of

end

end

end

% the orthogonality vector h t

% Initialise to zero (as is the case for many of the partial derivatives)
h t theta = zeros(2*self.g+3);

% Arbitrage equation (partial derivatives all zero except w.r.t. b hat)
h t theta(l,1) = self.A hat*self.D(t,:)'*(-self.X(t));

% ARIMA process for dividends

dhdphi = -self.D(t,:);

h t theta(2:self.g+2,2:self.g+2) = self.D(t,:) '*dhdphi;
% OLS process for prices on distributed lag of dividends
if ~self.IsDifferenced

dhddelta = -self.Dplusl(t,:);
else
dhddelta = -self.D(t,:);
end
h t theta(self.g+3:end,self.g+3:end) = self.Dplusl(t,:)'*dhddelta;

12/05/16 1:10 PM \\econ.usyd.edu.a...\WestsDataBuilder.m 1 of 2

classdef WestsDataBuilder < handle
SWESTSDATABUILDER Class for building the different data matrices used in West's ¥
speculative test for bubbles

properties (SetAccess = private)
Prices
Dividends
q
UseDifferencedData
end

methods
function WDB = WestsDataBuilder (Prices, Dividends, ARqg, UseDifferencedData)
WDB.Prices = Prices;
WDB.Dividends = Dividends;
WDB.qg = ARQg;
WDB.UseDifferencedData = UseDifferencedData;
end

function Data = GenerateData (self)

oe

Construct the data used in West's test process
Results are returned in a structure array with the following
fields
pt is the price series
dt is the dividend series
ptplusl is the price series at time t+1 (or the diff of it)
dtplusl is the dividend series at time t+1 (or the diff of it)
X is (price + dividend) at time t+1
D is the instruments (lagged dividends) at time t (or the diff of it)
Dplusl is the instruments (lagged dividends) at time t+1 (or the diff

o0 o° e O P O o° o° o

of it)

Lags = self.gq - 1;
% All vectors are initially from t=1:T
if ~self.UseDifferencedData

% Not using differencing
pt = self.Prices(l:end-1); % t=1:T-1
dt = self.Dividends(l:end-1);
ptplusl self.Prices(2:end);
dtplusl = self.Dividends(2:end); % t=2:T
X = self.Prices(2:end) + self.Dividends(2:end); % t=2:T

Q0

Get the instruments D and Dplusl, from level dividends
= [ones(length(dt),1l) lagmatrix(dt,0O:Lags)]; % t=1:T-1
Dplusl = [ones(length(dtplusl),l) lagmatrix(dtplusl,O:Lags)]; % t=2:T

@)

Reduce data lengths considering lags, since D and Dplusl

0P o

will contain NaN for Lags>0

pt = pt(Lags+l:end,l); % t=1l+Lags:T-1

dt = dt(Lags+l:end,l); % t=l+Lags:T-1

ptplusl = ptplusl(Lags+l:end,l); % t=2+Lags:T
dtplusl = dtplusl(Lags+l:end,1l); % t=2+Lags:T
X = X(Lagstl:end,1l); % t=2+Lags:T

D = D(Lags+l:end,:); % t=l+Lags:T-1

12/05/16 1:10 PM \\econ.usyd.edu.a...\WestsDataBuilder.m 2 of 2

Dplusl = Dplusl(Lags+l:end,:); % t=2+Lags:T
else
% Using differencing
pt = self.Prices(l:end-1); % t=1:T-1
dt = self.Dividends(l:end-1); % t=1:T-1
ptplusl = diff(self.Prices); % t=2:T
dtplusl = diff(self.Dividends); % t=2:T
X = self.Prices(2:end) + self.Dividends (2:end); % t=2:T

Get the instruments D and Dplusl, from differenced dividends
= [ones (length (dtplusl)-1,1) lagmatrix(dtplusl(l:end-1,1),0:Lags)]; ¥

g oe

Dplusl = [ones(length(dtplusl)-1,1) lagmatrix(dtplusl(2:end,1),0: 4

Reduce data lengths considering lags and differencing,

d0 oo

since D and Dplusl will contain NaN for Lags>0
pt = pt(Lags+2:end,1l); % t=2+Lags:T-1

dt = dt(Lags+2:end,l); % t=2+Lags:T-1

ptplusl = ptplusl(Lags+2:end,1l); % t=3+Lags:T
dtplusl = dtplusl(Lagst2:end,l); % t=3+Lags:T

X = X(Lagst2:end,1); t=3+Lags:T

D = D(Lags+l:end, :); t=2+Lags:T-1

Dplusl = Dplusl(Lags+l:end,:); % t=3+Lags:T

oe oo

end

% Package up into structure array
Data(l) .pt = pt;
Data(1l) .dt = dt;

Data(l) .ptplusl = ptplusl;
Data(l) .dtplusl = dtplusl;
Data(l) .X = X;

Data(l) .D = D;

Data(l) .Dplusl = Dplusl;

end
end

end

12/05/16 1:10 PM \\econ.usyd.edu...\WestsSymbolicComps.m 1 of

classdef WestsSymbolicComps
SWESTSSYMBOLICCOMPS Class to compute symbolic math structures for West's¥
coefficients

oo

Assuming the order of the AR process is g, the coefficients vector Theta
with dimenstions (2g+3)xl is represented as

Theta = (b,mu,phil,...,phig,m,deltal,...,deltaq)"’
where
b is the estimated discount rate
mu is the d t regression intercept
phil,...,phig are the d t regression coefficients
m is the p t regression intercept
deltal,...,deltag are the p t regression coefficients

Two constraint equations are constructed:
R1 - For level data: d t ~ AR(q)
R2 - For differenced data: d t - d (t-1) ~ AR(q)

The jacobian matrix is also derived for each constraint vector
dR1 = dR1/dTheta
dR2 = dR2/dTheta

All structures are returned as symbolic math objects and can be evaluated with
real values for the coefficients via subs.

For example, suppose the have the real calculated coefficients in a (2g+3)x1¢
vector Coeffs.

o o P O O O O A O A O° A A A O A J° o J° o° o°

oe

We can evaluate the dR1 jacobian using
subs (dR1, Theta, Coeffs)

o°

properties (SetAccess = private)
q
Theta
R1
R2
dR1
dR2
end

methods
function WSC = WestsSymbolicComps (ARQ)
Constructs a new WestsSymbolicComps object
ARg 1is the auto-regressive order
WSC.qg = ARqg;

o0 oo

% Create symbolic variables for each element of the coefficient vector
% Note: mu is handled differently since mu() is also a MATLAB function
syms b m;

C = ones(ARq,1);

phi = sym('phi%d', size(C));
delta = sym('delta%d', size(C));
% Construct the coefficient vector
WSC.Theta = [b; sym('mu'); phi; m; delta]l;

o)

% Construct the constraint vector R1 for level data

12/05/16 1:10 PM \\econ.usyd.edu...\WestsSymbolicComps.m 2 of

end

end

end

5

% The formulae are taken from West's paper, equation 13a
PHI = 1 - b*phi(l);
for i=2:ARqg
PHI = PHI - (b”i)*phi(i);
end

PHIINV = PHI"-1;

WSC.RL = m - b*((1-b)"-1)*PHIINV*sym('mu');
WSC.R1(2,1) = delta(l)-(PHIINV-1);

for j=2:ARq

WSC.R1(j+1,1) = delta(j):;
for k=j:ARq

WSC.R1(j+1,1) = WSC.R1(j+1,1) - PHIINV* ((b"(k-j+1))*phi(k));
end

end

% Construct the jacobian of the constraint vector R1
WSC.dR1 = jacobian(WSC.R1l, WSC.Theta);

Construct the constraint vector R2 for difference data

o)
°
o
°

The formulae are taken from West's paper, equation 13b

WSC.R2 = m - (b*((l-b)"-1)*PHIINV + PHIINV - 1)*sym('mu');
for j=1:ARg-1
WSC.R2(j+1,1) = delta(j) - (PHIINV-1)*phi(3);
for k=j+1:ARqg
WSC.R2 (j+1,1) = WSC.R2(j+1,1) - PHIINV* ((b”" (k-7))*phi(k));
end
end
WSC.R2 (end+1,1) = delta(end) - (PHIINV - 1)*phi(end);

o)

% Construct the jacobian of the constraint vector R2
WSC.dR2 = jacobian (WSC.R2, WSC.Theta);

12/05/16 1:11 PM \\econ.usyd.edu.au\ho...\WestsTwoStep.m 1 of 4

classdef WestsTwoStep < handle

SWESTSTWOSTEP Class to perform West's two-step test for speculative bubbles

% West's two-step test compares regression coefficients from different

% regression mechanisms to determine if price and dividend series contain¥
speculative bubbles.

The test involves three estimation procedures:
1) Estimating the discount rate b = 1/(l+r) from the Euler equation usingkl
Instrumental Variables

o° o oe

o)

% 2) Estimating the AR(q) regression coefficients for the dividend generating«
process using OLS

% 3) Estimating the regression coefficients for the price vs dividend generatingz'
process using OLS

o°

o

The order of the AR process is q, and is supplied by the user (West uses g=2¢

and g=4)
% The unknown coefficients vector Theta has dimensions (2g+3)x1
% Once estimates have been obtained for all unknown coefficients, a constraint ¥

vector R(Theta) is
% constructed which relates the coefficients to each other using analytical ¢
expressions.

The vector R(Theta) has dimenstions (g+1)x1

The null hypothesis is that R(Theta) = 0.
West's test statistic is
R(Theta) ' [(dR/dTheta) V (dR/dTheta)']”-1 R(Theta)
where:
dR/dTheta is the (g+1l)x(2g+3) jacobian matrix of first partial derivatives ¢
Theta)
V is the (2g+3)x(2g+3) estimated variance-covariance matix of the ¢
coefficients Theta

—~ 0% o9 d° o° od° oo o

of R

o

o

oe

The test statistic, under the null, is asymptotically distributed as
a chi-squared distribution with g+l degrees of freedom.

Rejecting the null and validating the estimates of 1), 2) and 3)
provides evidence for speculative bubbles in the data.
properties (SetAccess = private)

Dates %Input: Date series data

Prices %Input: Price series data

Dividends %Input: Dividend series data

o 0 e o0 oP

g %$Input: auto-regressive order

IsDifferenced %Input: Wether or not to first-difference supplied data

Data %Output: Structure array holding all the data vectors and matrices used ¥
in the calculations

EDR %Output: Structure array holding output from the discount rate estimation«

process

b %Output: The discount rate

DividendCoeffs %Output: Estimated coefficients from dividend regression¥
process

PriceCoeffs %Output: Estimated coefficients from price regression process

CovarianceMatrix %Output: Estimated asymptotic variance-covariance matrix of ¢
coefficients

Coeffs %Output: The vector of estimated coefficients

12/05/16 1:11 PM \\econ.usyd.edu.au\ho...\WestsTwoStep.m

2 of 4

WSC %Output: Object holding symbolic representations of the constraint vector ¥

and jacobian
R %Output: Vector of evaluated constraint equations
dR %$Output: Matrix of evaluated Jacobian elements
TestStatistic %Output: West's test statistic

TestStatisticSig %Output: The statistical significance of the test statistic

end

methods
function WTS = WestsTwoStep (Dates, Prices, Dividends)
% Constructs a new WestsTwoStep object
% Prices is a level price series

Dividends is the corresponding level dividend series for the price¥

series

WTS.Dates = Dates;

WTS.Prices = Prices;

WTS.Dividends = Dividends;
end

function Result = PerformTest (self, ARqg, UseDifferencedData)
Performs West's test for speculative bubbles

oe

ARg is the auto-regressive order

o oo

differenced data, false otherwise

self.q = ARqg;
self.IsDifferenced = UseDifferencedData;

WDB = WestsDataBuilder (self.Prices, self.Dividends, self.q, self.¢

IsDifferenced) ;
self.Data = WDB.GenerateDatal() ;
self.ComputeDiscoutRate() ;
self.RegressDividends () ;
self.RegressPrices();
self.ComputeCovarianceMatrix () ;
self.ComputeConstraintsAndJacobian () ;
self.ComputeTestStatistic();
% Pack results into structure array
DataSize = length(self.Data.pt);
Result (1) .DataSize = DataSize;

> UseDifferencedData should be true if the test should be run on«

Result (1) .DataSet = strcat(numZStr(self.Dates(end—DataSize+l)),'—',numZStrf

(self.Dates (end)));
if self.IsDifferenced

Result (1) .Differenced = 'yes';
else

Result (1) .Differenced = 'no';
end
Result(l).g = self.qg;

)
Result (1) .DoF = self.g+l;
Result (1) .TestStatistic = self.TestStatistic;
Result (1) .TestStatisticSig = self.TestStatisticSig;
end

end

12/05/16 1:11 PM \\econ.usyd.edu.au\ho...\WestsTwoStep.m 3 of

methods (Access = private)
function ComputeDiscoutRate (self)

o)

% IV estimation of Euler equation

% Compute the discount rate using GMM
DRE = DiscountRateEstimator (self.Data);
self.EDR = DRE.EstimateDiscountRate (false);
self.b = self.EDR.b hat;

end

function RegressDividends (self)

o)

% ARIMA estimation of dividend process

IM = fitlm(self.Data.D(:,2:end),self.Data.dtplusl, 'linear');
% TODO: Store LM away for later use
self.DividendCoeffs = LM.Coefficients.Estimate;

end

function RegressPrices(self)

)

% OLS estimation of price process on lagged dividends

% Regress price on distributed lag of dividends
if (~self.IsDifferenced)
LM = fitlm(self.Data.Dplusl(:,2:end),self.Data.ptplusl, "linear');
else
IM = fitlm(self.Data.D(:,2:end),self.Data.ptplusl, "linear');
end

% TODO: Store LM away for later use
self.PriceCoeffs = LM.Coefficients.Estimate;
end

function ComputeCovarianceMatrix (self)

o)

% Compute variance-covariance matrix V

WCM = WestsCovarianceMatrix(self.Data,self.EDR.gmmOut.S, ...
self.b,self.DividendCoeffs,self.PriceCoeffs,self.IsDifferenced);
self.CovarianceMatrix = WCM.V;

WCMV2 = WestsCovarianceMatrixV2 (self.Data,self.EDR.gmmOut.S, ...
self.b,self.DividendCoeffs,self.PriceCoeffs,self.IsDifferenced);
self.CovarianceMatrix = WCMV2.V;

o0 o0 oP

PCM = PetrasCovarianceMatrix (self.Data,self.b,...
self.DividendCoeffs,self.PriceCoeffs,self.IsDifferenced);
self.CovarianceMatrix = PCM.V;

o° do oo

end

function ComputeConstraintsAndJacobian (self)
% Get the symbolic representation for the coefficients, constraints, and¢
associated Jacobian
self.WSC = WestsSymbolicComps (self.q);

% Construct the coefficients vector of estimated coefficients
self.Coeffs = [self.b; self.DividendCoeffs; self.PriceCoeffs];

12/05/16 1:11 PM \\econ.usyd.edu.au\ho...\WestsTwoStep.m 4 of 4

$ Evaluate the symbolic constraint vector and Jacobian matrix with the ¢
values in Coeffs

if (~self.IsDifferenced)
self.R = eval (subs (self.WSC.R1, self.WSC.Theta, self.Coeffs));
self.dR = eval (subs(self.WSC.dR1l, self.WSC.Theta, self.Coeffs));

else
self.R = eval (subs (self.WSC.R2, self.WSC.Theta, self.Coeffs));
self.dR = eval (subs(self.WSC.dR2, self.WSC.Theta, self.Coeffs));

end

end

function ComputeTestStatistic(self)

% Compute West's test statistic
$self.TestStatistic = self.R'*inv (self.dR*self.CovarianceMatrix*self.dR") ¢

*self.R;
self.TestStatistic = self.R'*((self.dR*self.CovarianceMatrix*self.drR') ¥
\self.R);
self.TestStatisticSig = 1 - chi2cdf (self.TestStatistic, self.gq + 1);
end
end

end

12/05/16 1:11 PM \\econ.usyd.edu...\WestsTwoStepResult.m 1 of 1

classdef WestsTwoStepResult < handle
SWESTSTWOSTEPRESULT Summary of this class goes here
% Detailed explanation goes here

properties
end

methods
function WTSR = WestsTwoStepResult ()

end
end

end

12/05/16 1:12 PM \\econ.usyd.edu.au\home\sta...\ADF FL.m 1 of 2

oe

"Testing for Multiple Bubbles" by Phillips, Shi and Yu (2011)
Note: This function has been modified from the original.
Specifically, the input mflag has been changed to an enumerated
value EgType to reduce the complexity of the function.

o oo o° o°

In this program, we calculate the ADF statistic with a fixed
lag order.
y is the time series being tested, with N observations
adflag is the lag order of the regression model (k >= 0)
EqType is the value of UnitRootNullTestType defining the null hypothesis

00 o° oo o° oo

function [estm]=ADF FL(y,adflag,EqType)
N_

’
tl=size(y,1)-1; % 1
const=ones (tl,1); (
trend=1:1:tl; % 1x
trend=trend'; % (N

N-1)x1
N-1)
-1)x

(

=

)

% Initialise the data vectors (level and first difference)

vyl = y(size(y,1l)-tl:size(y,1)-1); % y(1l:N-1) is (N-1)x1
dy = y(2:size(y,1l)) - y(l:size(y,1)-1); %y(2:end) - y(l:end-1) is (N-1)xl
dy0 = dy(size(dy,1l)-tl+l:size(dy,1)); % dy(l:N-1) is (N-1)x1l, just dy

x=yl; % (N-1)x1
% Set up the regression model based on EgType
switch (EqType)
case UnitRootNullTestType.UnitRootWithDrift;
x=[x const]; % Include constant
case UnitRootNullTestType.UnitRootWithDriftAndTrend

o)

x=[x const trend]; % Include constant and trend

x1=x; % One of (N-1)x2, (N-1)x3, (N-1)x1 depending on EqType

% If we are including lag terms in the regression, reduce the
% working set size by the number of lags
t2=tl-adflag; % N-1-k

x2=x1(size(x1,1)-t2+1l:size(x1,1),:); % from k+1 to (N-1) (including yl and«
x) 1is (N-1-k)x(size(x1,2)
dy01=dy0 (size(dy0,1)-t2+1:size (dy0,1)); % from k+1l to (N-1) (including dy0)«

is (N-1-k)x1

If we are including lag terms, append to the regressor data
with as many lag terms as we are including

o° o oe

i.e. include k lag variables of dy in x2
if adflag>0;

szx2 = size(x2);
x2 = [x2 zeros(szx2(l),adflag)];
j=1;

while j<=adflag;
% Insert the k-th lag of dy into x2
%2 (:,52zx2(2) + j) = dy(size(dy,1l)-t2+1-j:size(dy,1)-3); % dy(k+1—j:N—1—j)f
is (N-1-k)x1
J=j+1;

12/05/16 1:12 PM \\econ.usyd.edu.au\home\sta...\ADF FL.m 2 of

end

end;
end;

% Perform the regression process (i.e. regress dy0l on x2)
% beta is (Mtk)xl where M = EgType.AsInt (1,2,o0r 3)

beta =(x2"'*x2)"(-1)* (x2'*dy01) ;

% Compute the residuals of the regression
eps = dy0l - x2*beta; % is (N-1-k)x1

% Compute the significance

dof = t2-adflag-double (EqType) ;

sig = sqrt(diag(eps'*eps/dof* (x2'*x2)"(-1)));

% Compute the ADF test statistic
tvalue=beta./sig;

% Extract the test statistic corresponding to the Beta*y (t-1) term

% i.e. the test statistic for the coeff calculated from the first column of x2
% which is the ADF test statistic of interest

estm=tvalue (1) ;

12/05/16 1:12 PM \\econ.usyd.edu...\UnitRootBubbleTest.m 1 of

classdef UnitRootBubbleTest < handle
SUNITROOTBUBBLETEST Performs various types of unit root bubble detection tests

o % d°e o° oP

This is a helper class that encapsulates the process of testing for bubbles
in a price-dividend ratio series.

The user supplies a Tx2 matrix where the first column corresponds to a date
series (sorted, increasing) and the second column is the price-dividend ratio
for the associated date for the same row.

properties (SetAccess = private)

end

dates
priceOnDividend
T

cveC

methods

(set to

values

running

quants,

UseMex)

(set to

function URBT = UnitRootBubbleTest (dates, priceOnDividend)
% Constructor for UnitRootBubbleTest
URBT.CVC = CriticalValuesCache.getInstance;
URBT.ResetData (dates, priceOnDividend) ;

end

function ResetData(self, dates, priceOnDividend)
% Call this function to reset the data
self.Initialise(dates, priceOnDividend) ;

end

function URBTR = PerformADFTest (self, EqType, k, M, d, eta, quants, UseMex)
Run an ADF test on the price-dividend data

oe

EgType is an instance of the enumeration UnitRootNullTestType
k is the ADF lag order
M is the number of simulations to run when estimating critical values ¥

ol o oe

0 to disable simulations)
d and eta are the null model parameters

e oo

quants is a row vector of gquantiles to use when calculating critical ¥

oe

tests

% Perform the ADF test on the data

Tw = self.T; % Test window is complete data set

URBTR = self.PerformTest (UnitRootTestType.ADF, EqType, Tw, k, M, d, eta,¢'
UseMex) ;
end

function URBTR = PerformSADFTest (self, EqType, Tw, k, M, d, eta, quants, v

Run a SADF test on the price-dividend data

EqType is an instance of the enumeration UnitRootNullTestType

Tw is the minimum test window size

k is the ADF lag order

M is the number of simulations to run when estimating critical values ¢

o0 d° o° d° oo

0 to disable simulations)
d and eta are the null model parameters

o
°
o
°

quants is a row vector of quantiles to use when calculating critical ¢

UseMex is a boolean value, set to true to use the compiled mex file when«

12/05/16 1:12 PM \\econ.usyd.edu...\UnitRootBubbleTest.m 2 of 3

values
o

% UseMex is a boolean value, set to true to use the compiled mex file when¥
running tests

% Perform the SADF test on the data
URBTR = self.PerformTest (UnitRootTestType.SADF, EqType, Tw, k, M, d, eta, v
quants, UseMex);
end

function URBTR = PerformGSADFTest (self, EqType, Tw, k, M, d, eta, quants,k’
UseMex)
Run a GSADF test on the price-dividend data
EgqType is an instance of the enumeration UnitRootNullTestType
Tw is the minimum test window size
k is the ADF lag order
M is the number of simulations to run when estimating critical values ¢
(set to 0 to disable simulations)

o o° d° oo oP

% d and eta are the null model parameters
% quants is a row vector of quantiles to use when calculating critical ¥
values

% UseMex is a boolean value, set to true to use the compiled mex file when«

running tests

% Perform the GSADF test on the data
URBTR = self.PerformTest (UnitRootTestType.GSADF, EqType, Tw, k, M, d, eta, ¥
quants, UseMex) ;
end
end

methods (Access = private)
function Initialise(self, dates, priceOnDividend)
% Initialise the class properties
self.dates = dates;
self.priceOnDividend = priceOnDividend;
self.T = length(dates);

end

function URBTR = PerformTest (self, TType, EqType, Tw, k, M, d, eta, quants, v
UseMex)
if UseMex
Results = UnitRootTestsCaller mex (TType, self.priceOnDividend, self.T, ¢
Tw, k, EqType);
else
Results = UnitRootTestsCaller (TType, self.priceOnDividend, self.T, Tw, ¥
k, EqType);
end

URBTR = UnitRootBubbleTestResult (self.dates, self.priceOnDividend, self.T, ¥
TType, EqType, Tw, k, M, d, eta, quants, Results);
% Perform simulations, 1f the user has requested it
if M >0
[TestCVs, simResults, ~] = self.CVC.getCVs(TType, self.T, M, Equpe,K'
Tw, d, eta, k, false, quants, UseMex);
URBTR.SetCVSimulationResults (TestCVs, simResults);

12/05/16 1:12 PM \\econ.usyd.edu...\UnitRootBubbleTest.m 3 of 3

end
end
end

end

12/05/16 1:12 PM \\econ.us...\UnitRootBubbleTestResult.m 1 of 4

classdef UnitRootBubbleTestResult < handle

SUNITROOTBUBBLETESTRESULT Container class for results from running a unit root ¥
bubble test

% Encapsulates the result data from running a unit root test of a given typeK'
(ADF, SADF, GSADF)

% Used by UnitRootBubbleTest class when returning the result of a bubble test.

% Can be used to plot the results, determine if the null hypothesis is«¢
accepted/rejected,

% and generate date stamps for bubble start-end dates if the test type supportsK'
it.

properties (SetAccess = private)
dates
priceOnDividend
T
TestType
EgqType
Tw
k
M
d
eta
quants
TestResults
TestCVs
simResults

end

methods
function URBTR = UnitRootBubbleTestResult (dates, priceOnDividend, T, TType,ﬁ/
EqType, Tw, k, M, d, eta, quants, Results)

URBTR.dates = dates;
URBTR.priceOnDividend = priceOnDividend;
URBTR.T = T;
URBTR.TestType = TType;
URBTR.EqType = EqType;
URBTR.Tw = Tw;
URBTR.k =
URBTR.M =
URBTR.d = d;
URBTR.eta = eta;
URBTR.quants = quants;
URBTR.TestResults = Results;

’

’

Q= o~

end

function SetCVSimulationResults (self, TestCVs, simResults)
self.TestCVs = TestCVs;
self.simResults = simResults;

end

function [tab] = GenerateResultsTable (self)

$ Generates table of test statistic and associated right-tailed criticalv
values

if isempty(self.simResults)

12/05/16 1:12 PM \\econ.us...\UnitRootBubbleTestResult.m 2 of 4

o)

% Critical values have not bee supplied, so we can't do anything about ¥
this.
error ('Critical values have not been supplied. Unable to generate«
table. ")
end

TType = self.TestType.char;
TestStat = max(self.TestResults);

Vars = cell(l,1+length(self.quants));
Vars{l} = TestStat;

VarNames = cell(l,1+length(self.quants));
VarNames{l} = 'Test Stat';

QuantsAsPercent = floor (100*self.quants);

for i = l:length(QuantsAsPercent)
VarNames{i+l} = strcat('CV ',int2str (QuantsAsPercent(i)));
Vars{i+l} = self.TestCVs (1)

end

tab = table(Vars{:}, 'RowNames', {TType}, 'VariableNames', VarNames) ;
end

function [tab] = GenerateBubbleStartEndTimes (self, Beta, MinDurationInYears, ¥
SamplesPerYear)
% Generates a table of bubble start and end times using the test's date¢
stamping algorithm

o

% Beta is the critival value sequence level (typically one of 0.9, 0.95,¢

0.99)
if isempty(self.simResults)
$ Critical values have not bee supplied, so we can't do anything about ¥
this.
error ('Critical values have not been supplied. Unable to generatezf
table. ")
end
if self.TestType == UnitRootTestType.ADF

error ('Test type ADF does not support start-end date detection. ¢
Unable to generate table.')
end

if self.TestType == UnitRootTestType.GSADF && nargin < 4
error ('Test type GSADF requires MinDurationInYears and SamplesPerYear ¢
as the final parameters. Unable to generate table.')
end

CVSequence = quantile(self.simResults,Beta,?2);

BubbleStartIndices = [];
BubbleEndIndices = [];
InBubble = false;
DateIndexOffset = self.Tw-1;
for 1 = l:length (CVSequence)
if self.TestResults (i) > CVSequence (i)

12/05/16 1:12 PM \\econ.us...\UnitRootBubbleTestResult.m 3 of 4

if ~InBubble
InBubble = true;
BubbleStartIndices = [BubbleStartIndices; DateIndexOffset + ¢

il;
end
else

if InBubble

InBubble = false;

BubbleEndIndices = [BubbleEndIndices; DateIndexOffset + 1];
end
end
end
if length (BubbleEndIndices) ~= length (BubbleStartIndices)
BubbleEndIndices = [BubbleEndIndices; self.T];
end

% Filter out bubbles smaller than the minimum duration
MinDuration = 0;
switch (self.TestType)
case UnitRootTestType.SADF
MinDuration = loglO(self.T);
case UnitRootTestType.GSADF
% Min duration is delta*loglO(T) where delta is
% frequency dependent.
MinDuration = SamplesPerYear*MinDurationInYears;
end

DurationFilter = (BubbleEndIndices - BubbleStartIndices) > MinDuration;

BubbleStartDates = self.dates (BubbleStartIndices (DurationFilter));
BubbleEndDates = self.dates (BubbleEndIndices (DurationFilter)) ;

BubbleNames = cell (length (BubbleStartDates),1);
for j = l:length (BubbleNames)

BubbleNames{j} = strcat('Bubble',int2str(j));
end

tab = table (BubbleStartDates, BubbleEndDates, 'RowNames', BubbleNames, ¥
'"VariableNames', {'StartDate', '"EndDate'});
end

function [hAx,hLinel,hLine2] = GeneratePlot (self, Beta)
% Generates a plot of the unit root bubble test results
% Beta is the critival value sequence level (typically one of 0.9, 0.95, ¢

0.99)
if isempty(self.simResults)
% Critical values have not bee supplied, so we can't do anything about ¥
this.
error ('Critical values have not been supplied. Unable to generate¥
plot.")

end

if self.TestType == UnitRootTestType.ADF

12/05/16 1:12 PM \\econ.us...\UnitRootBubbleTestResult.m 4 of 4

error ('Test type ADF does not support plotting. Unable to generatel(
plot.")
end

Results = [NaN(self.Tw-1,1);self.TestResults];
CVSequence = [NaN(self.Tw-1,1); quantile(self.simResults,Beta,2)];

figure

[hAx,hLinel,hLine2] = plotyy([self.dates,self.dates], [Results,CVSequence], 4
self.dates,self.priceOnDividend) ;

hAx (2) .YLim = [-max(self.priceOnDividend) max(self.priceOnDividend)];

range = max (Results) - min(Results);

hAx (1) .YLim = [min(Results)-1 max(Results) + range];

ResultsLegenedItem = '';

switch (self.TestType)
case UnitRootTestType.SADF
ResultsLegenedItem = 'The backward ADF sequence (left axis)';
case UnitRootTestType.GSADF
ResultsLegenedItem = 'The backward SADF sequence (left axis)';
end

CVLegenedItem = ['The ' int2str(floor(100*Beta)) '% critical value¥
sequence (left axis)'];

legend (ResultsLegenedItem, CVLegenedItem, 'The price-dividend ratio (right«
axis) ')
legend ('Location', "northwest"')
end
end
end

12/05/16 1:13 PM \\econ.usyd.edu.au\h...\UnitRootTests.m 1 of 1

classdef UnitRootTests
SUNITROOTTESTS Contains an implementation for each different unit root test
Uses ADF test with a fixed lag order and unit root equation type supplied by«

the

end

o
°

caller.
The available tests are ADF, SADF, and GSADF.

Note: GSADF can be slow for large data sets and small minimum window size,
therefore it is recommended to use the MEX file UnitRootTestsCaller mex
instead of this class when performing GSADF tests on large data sets.

o d° o° o°

methods
function Results = ADF (data, k,EqType)

end

end

(Static)

Results = ADF FL(data(:,1),k,EqType);

function Results = SADF (data, T, swindowO, k, EgType)

end

oe

The Supremum ADF test.
Uses an increasing window size starting from swindowO
and ending at T. k is the ADF lag order and EqgType
is the type of unit root process being tested
dim = T-swindowO+1;
Results = zeros(dim,1);
for i=swindowO:1:T;
Results (i-swindowO+1)= ADF FL(data(l:i,1),k,EqType);
end;

e oo oe

function Results = GSADF (data, T, swindowO, k, EqType)

end

oe

The Generalised Supremum ADF test.

Uses an increasing window size that ranges from rl to r2
k is the ADF lag order and

EgType is the type of unit root process being tested
dim = T-swindowO+1;

Results=zeros (dim, 1) ;

for r2=swindowO:1:T;

o° oo oe

dim0=r2-swindowO+1;
rwadft=zeros (dim0, 1) ;
for rl=1:1:dim0;
rwadft (rl)= ADF FL(data(rl:r2,1),k,EqType);
end;
Results (r2-swindowO+1) = max (rwadft);
end;

12/05/16 1:13 PM \\econ.usyd....\UnitRootNullSimulator.m 1 of 3

classdef UnitRootNullSimulator

SUNITROOTNULLSIMULATOR Simulator for the various types of null tests for each unit«
root test type

% For unit root test of type TType, conducts the given unit root test using nullve
equation type EqgType
on M simulations of the null model specification

The null model is defined as:
y t = d*T"-eta + theta*y (t-1) + e t, where e t is i.i.d. (0,sigma”"2) and ¢

o o° od° o

o
=y
0]
ot
o))
Il
i

TType 1is an instance of the UnitRootTestType enumeration
NumSamps is the sample size

NumSims is the number of simulations to perform

EqType is an instance of the UnitRootNullTestType enumeration
Tw is the minimum test window size

d, and eta are the null model parameters

o 0 0 o° d° o° d° oe

lag is the ADF lag order

properties (SetAccess = private)

TType % The type of unit root test being simulated
NumSamps % The number of observations in the sample
NumSims % The number of simulations to run
EgType % The equation type defining the null hypothesis
Tw % The minimum test window size
d % Null model parameter
eta % Null model parameters
lag % The ADF lag order
useMex % Set to true to use the compiled MEX file when running tests
end
methods
function URNS = UnitRootNullSimulator (TType, T, M, EqType, Tw, d, eta, lag, ¥
useMex)
% Constructor for UnitRootNullSimulator
URNS.TType = TType;
URNS.NumSamps = T;
URNS.NumSims = M;
URNS.EqType = EqgType;
URNS.Tw = Tw;
URNS.d = d;
URNS.eta = eta;
URNS.lag = lag;
URNS.useMex = useMex;
end
function simResults = PerformSimulation (self)

% Performs the simulation steps for the specified unit root test

tic
B

% Generate the data
data = self.GenerateData;

% Store local variables to avoid parfor broadcast var warnings
T = self.NumSamps;

12/05/16 1:13 PM \\econ.usyd....\UnitRootNullSimulator.m 2 of 3

M = self.NumSims;
swindow0 = self.Tw;

k = self.lag;

Eq = self.EqType;
UseMex = self.useMex;

switch (self.TType)
case UnitRootTestType.ADF
simResults = self.SimADF (data, M, k, Eq, UseMex);
case UnitRootTestType.SADF;
simResults = self.SimSADF (data, T, M, swindowO, k, Eqg, UseMex);
case UnitRootTestType.GSADF
simResults = self.SimGSADF (data, T, M, swindowO, k, Eqg, UseMex);
end
toc
end
end

methods (Access = private)
function simResults = SimADF (~,data, M, k, Eqgq, UseMex)
simResults = zeros (1,M);
if UseMex
parfor j=1:M;
simResults(1l,3j) = UnitRootTestsCaller mex (UnitRootTestType.ADF, 4
data(:,3), 0, 0, k, Eq);
end;
else
parfor j=1:M;
simResults (l,3j) = UnitRootTests.ADF(data(:,3), k, Eqg);
end;
end
end

function simResults = SimSADF (~, data, T, M, swindowO, k, Eq, UseMex)
simResults = zeros (T-swindowO+1,M) ;
if UseMex
parfor j=1:M;

simResults(:,]j) = UnitRootTestsCaller_mex(UnitRootTestType.SADF,Z’
data(:,3), T, swindowO, k, Eq);
end;
else
parfor j=1:M;
simResults(:,3j) = UnitRootTests.SADF(data(:,3j), T, swindowO, Xk, v
Eq);
end;

end
end

function simResults = SimGSADF (~, data, T, M, swindowO, k, Eq, UseMex)
simResults = zeros (T-swindowO+1,M) ;
if UseMex
parfor j=1:M;
simResults(:,3j) = UnitRootTestsCaller mex (UnitRootTestType.GSADF, 4
data(:,3), T, swindowO, k, Eq);
end;

12/05/16 1:13 PM \\econ.usyd....\UnitRootNullSimulator.m 3 of 3

else
parfor j=1:M;
simResults(:,j) = UnitRootTests.GSADF (data(:,j), T, swindow0, k, ¢«

Eq);
end;
end
end
function data = GenerateData (self)
% Generate M lots of data samples of length T
% according to the null specification equation (see egqn. 3 in PSY)
% y t = d*T"-eta + theta*y (t-1) + e t, where e t is i.i.d. (0,sigma”2) 4
and theta 1
T = self.NumSamps;
M = self.NumSims;
rng ('default');
rng (M) ;
e=randn (T, M) ;
a=self.d*T" (-self.eta);
data=cumsum (e+a) ;
end
end

end

12/05/16 1:13 PM \\econ.usyd.e...\UnitRootNullTestType.m

1 of 1

classdef UnitRootNullTestType < uintlé
enumeration
UnitRoot (1)
UnitRootWithDrift (2)
UnitRootWithDriftAndTrend (3)
end

methods
function val = AsInt(self)
val = uintl6(self);
end

function val = AsDouble (self)
val = double(self);
end
end
end

12/05/16 1:13 PM \\econ.usyd.ed...\CriticalValuesCache.m 1 of

classdef (Sealed) CriticalValuesCache < handle

$CRITICALVALUESCACHE Singleton class for managing the cache of test critical ¢
values

% Unit root tests rely on simulating the null hypothesis model many times

% to determine the critical value sequences for a fixed set of model and test ¢
parameters.

% Since this process can be time consuming, it is preferable to cache the¥
results

% of simulations for quick retrieval at a later time when conducting¥
significance tests.

©

5

% CriticalValuesCache is a single-instance class (singleton) which providesk'
methods for

% interacting with the cached critical value sequences, as well as generating«
new

% entries for the cache when no existing match is found.

% Typical usage is to get a handle to the cache and then query it for values, ¢
optionally

)

% asking the cache to generate the required values if they don't exist.
properties (Access = private)

cachePath % The location of the cache in the file system
end

properties (Constant)

CacheFolder = 'CriticalValues'; % The cache folder name
end

methods (Access = private)
function obj = CriticalValuesCache
% Private constructor for CriticalValuesCache
obj.InitialiseCacheFolder;

end

function InitialiseCacheFolder (self)

o

% Initialises the cache folder location in the file system
% Find the filesystem path to the cache

folder = fileparts(which (mfilename)) ;

self.cachePath = fullfile(folder, self.CacheFolder);

% If the cache directory doesn't exist, create it
if ~isdir(self.cachePath)
mkdir (self.cachePath);
end
end
end

methods (Static)
function CVCache = getInstance
persistent localCVCache
if isempty(localCVCache) || ~isvalid(localCVCache)
localCVCache = CriticalValuesCache;
end
CVCache = localCVCache;

12/05/16 1:13 PM \\econ.usyd.ed...\CriticalValuesCache.m 2 of 3

end
end

methods
function cachePath = getCachePath(self)
% Returns the location of the cache in the file system
cachePath = self.cachePath;
end

function ClearCache (self)

% Clears the cached files from the cache directory
cacheFiles = fullfile(self.cachePath, '*.mat');
delete (cacheFiles);

end

function [TestCVs, simResults, fileWasCreated] = getCVs(self, TType, T, M, 4
EqgType, Tw, d, eta, lag, rebuild, quants, useMex)
Gets the critical values sequence for the supplied parameters
Conducts M simulations of the null model specification.
The null model is defined as:
y t = d*T"-eta + theta*y (t-1) + e t, where e t is i.i.d. (0, ¢
sigma”2) and theta =1

o° d° o° o

TType is an instance of the UnitRootTestType enumeration

T is the sample size

M is the number of simulations to perform

EgqType is an instance of the UnitRootNullModelType enumeration
Tw is the minimum test window size

d and eta are the null model parameters

lag is the ADF lag order

o0 % e o° A O o° o° oP

rebuild is a logical value which will cause the simulations to run ¢
again when set to true

% quants is a row vector of quantiles to use when calculating criticalv
values

% useMex is a boolean value, set to true to use the compiled mex file ¥

when simulating

oe

oe

Unless rebuild is set to true, getCVs will attempt to locate a cached?
copy of the simulated

% results from a previous run. If no match is found in the cache, or if¢
rebuild is set to true,

% getCVs will force-run the simulation using the supplied parameters and¥
add the values to the

% cache upon completion

Construct the results file name from the supplied parameters
The filename format is;
TType T M EqType Tw d eta lag.mat
resultsFile = strcat(TType.char,'7',int2str(T),'7',int2str(M),'7',int23tr(
(EqType.AsInt), "' ',int2str(Tw));
resultsFile = strcat(resultsFile, ' ',num2str(d),' ',num2str(eta),' ', 4
int2str(lag), '.mat');
resultsFile = fullfile(self.cachePath, resultsFile);

ol o oe

o

% If the file exists, and we are not forcing a rebuild, load the results¢

12/05/16 1:13 PM \\econ.usyd.ed...\CriticalValuesCache.m 3 of 3

from file
% Otherwise, compute the results and store in the cache.
if ~rebuild && exist(resultsFile, 'file') == 2
load (resultsFile, 'simResults');
fileWasCreated = false;
else

URNS = UnitRootNullSimulator (TType, T, M, EqType, Tw, d, eta, lag, ¥

useMex) ;
simResults = URNS.PerformSimulation () ;
save (resultsFile, 'simResults');
fileWasCreated = true;
end
% Results are now stored in simResults.
% Compute the critical values for the supplied quantiles
switch (TType)
case UnitRootTestType.ADF
TestCVs = quantile (simResults, quants) ;
case UnitRootTestType.SADF
sadf = max(simResults, [],1);
TestCVs = quantile (sadf, quants);
case UnitRootTestType.GSADF
gsadf = max(simResults);
TestCVs = quantile (gsadf,quants);
end
end
end

end

12/05/16 1:14 PM \\econ.usyd.ed...\UnitRootTestsCaller.m 1 of 1

function [simResults] = UnitRootTestsCaller (TType, data, T, swindowO, k, EqType)
SUNITROOTTESTSCALLER A wrapper function for calling the methods of the UnitRootTests¥
class

% This function exists primarily for the purpose of the MATLAB Coder MEX generator, v
which

% requires the entry point to the code to be a function (not a class method).

simResults = [];

switch (TType)
case UnitRootTestType.ADF
simResults = UnitRootTests.ADF(data(:,1), k, EgType):;
case UnitRootTestType.SADF;
simResults = UnitRootTests.SADF (data(:,1), T, swindowO, k, EqgType);
case UnitRootTestType.GSADF
simResults = UnitRootTests.GSADF (data(:,1), T, swindowO, k, EqType);
end

end

12/05/16 1:14 PM \\econ.usyd.edu.a...\UnitRootTestType.m 1 of 1

classdef UnitRootTestType < uintlé
enumeration
ADF (1)
SADF (2)
GSADF (3)
end
end

