
Name-passing calculi: from fusions to preorders and

types

Daniel Hirschkoff, Jean-Marie Madiot, Davide Sangiorgi

To cite this version:

Daniel Hirschkoff, Jean-Marie Madiot, Davide Sangiorgi. Name-passing calculi: from fusions
to preorders and types. LICS - 28th Annual ACM/IEEE Symposium on Logic in Computer
Science - 2013, 2013, New Orleans, United States. IEEE, pp.378-387, 2013, LICS. .

HAL Id: hal-00904138

https://hal.inria.fr/hal-00904138

Submitted on 22 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00904138

Name-passing calculi:

from fusions to preorders and types

Daniel Hirschkoff, Jean-Marie Madiot

ENS Lyon, U. de Lyon, CNRS, INRIA, UCBL

{daniel.hirschkoff, jeanmarie.madiot}@ens-lyon.fr

Davide Sangiorgi

University of Bologna and INRIA

davide.sangiorgi@cs.unibo.it

Abstract—The fusion calculi are a simplification of the pi-
calculus in which input and output are symmetric and restriction
is the only binder. We highlight a major difference between
these calculi and the pi-calculus from the point of view of
types, proving some impossibility results for subtyping in fusion
calculi. We propose a modification of fusion calculi in which
the name equivalences produced by fusions are replaced by
name preorders, and with a distinction between positive and
negative occurrences of names. The resulting calculus allows us
to import subtype systems, and related results, from the pi-
calculus. We examine the consequences of the modification on
behavioural equivalence (e.g., context-free characterisations of
barbed congruence) and expressiveness (e.g., full abstraction of
the embedding of the asynchronous pi-calculus).

Index Terms—process calculus; fusions; types; subtyping;

I. INTRODUCTION

The π-calculus is the paradigmatical name-passing calculus,

that is, a calculus where names (a synonym for “channels”)

may be passed around. Key aspects for the success of the π-

calculus are the minimality of its syntax and its expressiveness.

Expressiveness comes at a price: often, desirable behavioural

properties, or algebraic laws, fail. The reason is that, when

employing π-calculus to describe a system, one normally

follows a discipline that governs how names can be used. The

discipline can be made explicit by means of types. Types bring

in other benefits, notably the possibility of statically detecting

many programming errors. Types are indeed a fundamental

aspect of the π-calculus theory, and one of the most important

differences between name-passing calculi and process calculi

such as CCS in which names may not be passed.

One of the basic elements in type systems for name-passing

calculi is the possibility of separating the capabilities for

actions associated to a name, e.g., the capability of using a

name in input or in output. The control of capabilities has

behavioural consequences because it allows one to express

constraints on the use of names. For a simple example,

consider a process P that implements two distinct services

A and B, accessible using channels a and b that must be

communicated to clients of the services. We assume here only

two clients, that receive the channels via c1 and c2:

P
def
= (νa, b)

(

c1〈a, b〉. c2〈a, b〉. (A | B)
)

(1)

We expect that outputs at a or b from the clients are eventually

received and processed by the appropriate service. But this

is not necessarily the case: a malign client can disrupt the

expected protocol by simply offering an input at a or b and

then throwing away the values received, or forwarding the

values to the wrong service. These misbehaviours are ruled

out by a capability type system imposing that the clients

only obtain the output capability on the names a and b
when receiving them from c1 and c2. The typing rules are

straightforward, and mimic those for the typing of references

in imperative languages with subtyping.

Capabilities [1] are at the basis of more complex type

systems, with a finer control on names. For instance, type

systems imposing constraints on successive usages of the

names like usage-based type systems and deadlock-detection

systems, session types, and so on [2], [3], [4].

Capabilities are closely related to subtyping. In the exam-

ple (1), P creates names a and b, and possesses both the input

and the output capabilities on them; it however transmits to

the clients only a subset of the capabilities (namely the output

capability alone). The subset relation on capabilities gives rise

to a subtype relation on types. All forms of subtyping for π-

calculus or related calculi in the literature require a discipline

on capabilities. Subtyping can also be used to recover well-

known forms of subtyping in other computational paradigms,

e.g., functional languages or object-oriented languages, when

an encoding of terms into processes is enhanced with an

encoding of types [5].

An interesting family of variants of the π-calculus are —

what we call here — the fusion calculi: Fusion [6], Update [7],

Explicit Fusions [8], Chi [9], Solos [10]. Their beauty is the

simplification achieved, with binding removed from the input

construct. Thus input prefixing becomes symmetric to output

prefixing, and restriction remains as the only binder. The effect

of a synchronisation between an output ab.P and an input

ac.Q is to fuse the two object names b and c, which are

now interchangeable. Thus communications produce, step-by-

step, an equivalence relation on names. Different fusion-like

calculi differ in the way the name equivalence is handled. The

operational theories of these calculi have been widely studied,

e.g. [6], [11], [12], [13], [14].

As for the π-calculus (sometimes abbreviated as π in the

sequel), however, the expressiveness of fusion calculi makes

desirable behavioural properties fail. The same examples for

the π-calculus can be used. For instance, the problems of

misbehaving clients of the services of (1) remain. Actually, in

fusion calculi additional problems arise; for example a client

receiving the two channels a and b along ci could fuse them

using an input ci〈n, n〉.R. Now a and b are indistinguishable,

and an emission on one of them can reach any of the two

services (and if a definition of a service is recursive, a recursive

call could be redirected towards the other service).

In the paper we study the addition of types to fusion calculi;

more generally, to single-binder calculi, where input is not

binding (in fusion calculi, in addition, reductions fuse names).

We begin by highlighting a striking difference between π-

calculus and fusion calculi, proving some impossibility results

for subtyping (and hence for general capability-based type

systems, implicitly or explicitly involving subtyping). In the

statement of the results, we assume a few basic properties of

type systems for name-passing calculi, such as strengthening,

weakening and type soundness, and the validity of the ordinary

typing rules for the base operators of parallel composition

and restriction. These results do not rule out completely the

possibility of having subtyping or capabilities in fusion calculi,

because of the few basic assumptions we make. They do

show, however, that such type systems would have to be more

complex than those for ordinary name-passing calculi such as

the π-calculus, or require modifications or constraints in the

syntax of the calculi.

Intuitively, the impossibility results arise because at the

heart of the operational semantics for fusion calculi is an

equivalence relation on names, generated through name fu-

sions. In contrast, subtyping and capability systems are built

on a preorder relation (be it subtyping, or set inclusion among

subsets of capabilities). The equivalence on names forces one

to have an equivalence also on types, instead of a preorder.

We propose a solution whose crux is the replacement of

the equivalence on names by a preorder, and a distinction on

occurrences of names, between ‘positive’ and ‘negative’. In

the resulting single-binder calculus, πP (‘π with Preorder’),

reductions generate a preorder. The basic reduction rule is

ca.P | cb.Q −→ P | Q | a/b .

The particle a/b, called an arc, sets a to be above b in the name

preorder. Such a process may redirect a prefix at b (which

represents a ‘positive’ occurrence of b) to become a prefix at

a. We show that the I/O (input/output) capability systems of

the π-calculus can be reused in πP, following a generalisation

of the typing rules of the π-calculus that takes into account

the negative and positive occurrences of names. A better

understanding of type systems with subtyping in name-passing

calculi is a by-product of this study. For instance, the study

suggests that it is essential for subtyping that substitutions

produced by communications (in πP, the substitutions pro-

duced by arcs) only affect the positive occurrences of names.

The modification also brings in behavioural differences. For

instance, both in the π-calculus and in πP, a process that

creates a new name a has the guarantee that a will remain

different from all other known names, even if a is communi-

cated to other processes (only the creator of a can break this,

by using a in negative position). This is not true in fusion

calculi, where the emission of a may produce fusions between

a and other names. To demonstrate the proximity with the π-

calculus we show that the embedding of the asynchronous

π-calculus into πP is fully abstract (full abstraction of the

encoding of the π-calculus into fusion calculi fails). We also

exhibit an encoding of Explicit Fusions into πP, where fusions

become bi-directional arcs.

We present two possible semantics for πP that differ on

the moment arcs enable substitutions. In the eager semantics,

arcs may freely act on prefixes; in the by-need semantics,

arcs act on prefixes only when interactions occur. We provide

a characterisation of the reference contextual behavioural

equivalence (barbed congruence) as a context-free labelled

bisimilarity for the by-need semantics. We also compare and

contrast the semantics, both between them and with semantics

based on name fusion.

A property of certain fusion calculi (Fusion, Explicit Fusion)

is a semantic duality induced by the symmetry between input

and output prefixes. In πP, the syntax still allows us to

swap inputs and outputs, but in general the original and final

processes have incomparable behaviours.

We conclude by examining the following syntactic con-

straint in single-binder calculi: each name, say b, may occur

at most once in negative position (this corresponds to input

object, as in ab.P , or to the source of an arc, as in a/b). Under

this constraint, the two semantics for πP, eager and by-need,

coincide. In fusion calculi, the constraint allows us to import

the π-calculus type systems. The constraint is however rather

strong, and, in fusion calculi, breaks the semantic duality

between inputs and outputs.

In summary, πP, while being syntactically similar to fusion

calculi, remains fairly close to the π-calculus (type systems,

management of names).

Further related work: Central to πP is the preorder on

names, that breaks the symmetry of name equivalence in

fusion-like calculi. Another important ingredient for the theory

of πP is the distinction between negative and positive occur-

rences of a name. In Update [7] and (asymmetric versions of)

Chi [9], reductions produce ordinary substitutions on names.

In practice, however, substitutions are not much different from

fusions: a substitution {a/b} fuses a with b and makes a the

representative of the equivalence class. Still, substitutions are

directed, and in this sense Update and Chi look closer to πP
than the other fusion calculi. For instance Update and Chi,

like πP, lack the duality property on computations. Update

was refined to the Fusion calculus [6] because of difficulties

in the extension with polyadicity. Another major difference

for Update and Chi with respect to πP is that in the former

calculi substitutions replace all occurrences of names, whereas

πP takes into account the distinction between positive and

negative occurrences.

The question of controlling the fusion of private names has

been addressed in [15], in the U-calculus. This calculus makes

no distinction between input and output, and relies on two

forms of binding to achieve a better control of scope extrusion,

thus leading to a sensible behavioural theory that encompasses

fusions and π. Thus the calculus is not single-binder. It is

unclear how capability types could be defined in it, as it does

not have primitive constructs for input and output.

Paper outline: Section II gives some background. In

Section III, we present some impossibility results on type

systems for fusion-like calculi. Section IV introduces πP and

its type system. The behavioural theory of πP is explored

in Section V, and we give some expressiveness results in

Section VI. Section VII studies a syntactical restriction that

can be applied to πP and fusions, and we discuss future work

in Section VIII.

II. BACKGROUND ON NAME-PASSING CALCULI

In this section we group terminology and notation that

are common to all the calculi discussed in the paper. For

simplicity of presentation, all calculi in the paper are finite.

The addition of operators like replication for writing infinite

behaviours goes as expected. The results in the paper would

not be affected.

We informally call name-passing the calculi in the π-

calculus tradition, which have the usual constructs of par-

allel composition and restriction, and in which computation

is interaction between input and output constructs. Names

identify the pairs of matching inputs/outputs, and the values

transmitted may themselves be names. Restriction is a binder

for the names; in some cases the input may be a binder too.

Examples of these calculi are the π-calculus, the asynchronous

π-calculus, the Join calculus, the Distributed π-calculus, the

Fusion calculus, and so on. Binders support the usual alpha-

conversion mechanism, and give rise to the usual definitions

of free and bound names.

Convention 1. To simplify the presentation, throughout the

paper, in all statements (including rules), we assume that the

bound names of the entities in the statements are different

from each other and different from the free names (Barendregt

convention on names). Similarly, we say that a name is fresh

or fresh for a process, if the name does not appear in the

entities of the statements or in the process. �

We use a, b, . . . to range over names. In a free input ab.P ,

bound input a(b).P , output ab.P , we call a the subject of the

prefix, and b the object. We sometimes abbreviate prefixes as

a.P and a.P when the object carried is not important. We

omit trailing 0, for instance writing ab in place of ab.0. We

write P{a/b} for the result of applying the substitution of b
with a in P .

When restriction is the only binder (hence the input con-

struct is not binding), we say that the calculus has a single

binder. If in addition interaction involves fusion between

names, so that we have (=⇒ stands for an arbitrary number

of reduction steps, and in the right-hand side P and Q can be

omitted if they are 0)

(νc) (ab.P | ac.Q | R) =⇒ (P | Q | R){b/c} , (2)

we say that the calculus has name-fusions, or, more briefly,

has fusions. (We are not requiring that (2) is among the rules

of the operational semantics of the calculus, just that (2) holds.

The shape of (2) has been chosen so to capture the existing

calculi; the presence of R allows us to capture also the Solos

calculus.) All single-binder calculi in the literature (Update [7],

Chi [9], Fusion [6], Explicit Fusion calculus [11], Solos [10])

have fusions. In Section IV we will introduce a single-binder

calculus without fusions.

In all calculi in the paper, (reduction-closed) barbed con-

gruence will be our reference behavioural equivalence. Its

definition only requires a reduction relation, −→, and a notion

of barb on names, ↓a. Intuitively, a barb at a holds for a process

if that process can accept an offer of interaction at a from

its environment. We omit the definition, which is standard.

We write ≃L for (strong) reduction-closed barbed congruence

in a calculus L. Informally, ≃L is the largest relation that

is context-closed, barb-preserving, and reduction-closed. Its

weak version, written ≅L, replaces the relation −→L with

its reflexive and transitive closure =⇒L, and the barbs ↓La
with the weak barbs ⇓L

a , where ⇓L
a is the composition of the

relations =⇒L and ↓La (i.e., the barb is visible after some

internal actions). See [23] for more details.

III. TYPING AND SUBTYPING WITH FUSIONS

We consider typed versions of languages with fusions. We

show that in such languages it is impossible to have a non-

trivial subtyping, assuming a few simple and standard typing

properties of name-passing calculi.

We use T, U to range over types, and Γ to range over type

environments, i.e., partial functions from names to types. We

write dom(Γ) for the set of names on which Γ is defined.

In name-passing calculi, a type system assigns a type to each

name. Typing judgements are of the form Γ ⊢ P (process P
respects the type assignments in Γ), and Γ ⊢ a : T (name a
can be assigned type T in Γ).1 The following are the standard

typing rules for parallel composition and restriction:

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1 | P2

Γ, x : T ⊢ P

Γ ⊢ (νx : T) P
(3)

The first rule says that any two processes typed in the same

type environment can be composed in parallel. The second

rule handles name restriction.2

In name-passing calculi, the basic type construct is the

channel (or connection) type ♯ T . This is the type of a name

that may carry, in an input or an output, values of type T .

Consequently, we also assume that the following rule for

prefixes ab.P and ab.P is admissible.

Γ(a) = ♯ T Γ(b) = T Γ ⊢ P

Γ ⊢ α.P
α ∈ {ab, ab} (4)

(Prefixes may not have a continuation, in which case P would

be missing from the rule.) In the rule, the type of the subject

1We consider in this paper basic type systems and basic properties for them;
more sophisticated type systems exist where processes have a type too, e.g.,
behavioural type systems.

2In resource-sensitive type systems, i.e., those for linearity [16] and
receptiveness [5], where one counts certain occurrences of the names, the
rule for parallel composition has to be modified. As mentioned earlier, in this
paper we stick to basic type systems, ignoring resource consumption.

and of the object of the prefix are compatible. Again, these

need not be the typing rules for prefixes; we are just assuming

that the rules are valid in the type system. The standard rule

for prefix would have, as hypotheses,

Γ ⊢ a : ♯ T Γ ⊢ b : T .

These imply, but are not equivalent to, the hypotheses in (4),

for instance in presence of subtyping.

Fundamental properties of type systems are:

• Subject Reduction (or Type Soundness): if Γ ⊢ P and

P → P ′, then Γ ⊢ P ′;

• Weakening: if Γ ⊢ P and a is fresh, then Γ, a : T ⊢ P ;

• Strengthening: whenever Γ, a : T ⊢ P and a is fresh for

P , then Γ ⊢ P ;

• Closure under injective substitutions: if Γ, a : T ⊢ P and

b is fresh, then Γ, b : T ⊢ P{b/a}.

Definition 2. A typed calculus with single binder is plain if it

satisfies Subject Reduction, Weakening, Strengthening, Closure

under injective substitutions, and the typing rules (3) and (4)

are admissible.

If the type system admits subtyping, then another funda-

mental property is narrowing, which authorises, in a typing

environment, the specialisation of types:

• (Narrowing): if Γ, a : T ⊢ P and U ≤ T then also

Γ, a : U ⊢ P .

When narrowing holds, we say that the calculus supports

narrowing.

A typed calculus has trivial subtyping if, whenever T ≤
U , we have Γ, a : T ⊢ P iff Γ, a : U ⊢ P . When this is

not the case (i.e., there are T, U with T ≤ U , and T, U are

not interchangeable in all typing judgements) we say that the

calculus has meaningful subtyping.

Under the assumptions of Definition 2, a calculus with

fusions may only have trivial subtyping.

Theorem 3. A typed calculus with fusions that is plain and

supports narrowing has trivial subtyping.

In the proof, given in [23], we assume a meaningful subtyp-

ing and use it to derive a contradiction from type soundness

and the other hypotheses.

One may wonder whether, in Theorem 3, more limited

forms of narrowing, or a narrowing in the opposite direction,

would permit some meaningful subtyping. Narrowing is in-

teresting when it allows us to modify the type of the values

exchanged along a name, that is, the type of the object of a

prefix. (In process calculi, communication is the analogous of

application for functional languages, and changing the type of

an object is similar to changing the type of a function or of its

argument.) In other words, disallowing narrowing on objects

would make subtyping useless. We show that any form of

narrowing, on one prefix object, would force subtyping to be

trivial.

Theorem 4. Suppose a typed calculus with fusions is plain

and there is at least one prefix α with object b, different from

the subject, and there are two types S and T such that S ≤ T
and one of the following forms of narrowing holds for all Γ:

1) whenever Γ, b : T ⊢ α.0, we also have Γ, b : S ⊢ α.0;

2) whenever Γ, b : S ⊢ α.0, we also have Γ, b : T ⊢ α.0.

Then S and T are interchangeable in all typing judgements.

As a consequence, authorising one of the above forms of

narrowing for all S and T such that S ≤ T implies that

the calculus has trivial subtyping. The proof of Theorem 4

is similar to that of Theorem 3.

Remark 5. Theorems 3 and 4 both apply to all fusion

calculi: Fusion, Explicit Fusions, Update, Chi, Solos (where

the continuation P is 0). �

Another consequence of Theorems 3 and 4 is that it is

impossible, in plain calculi with fusions, to have an I/O type

system; more generally, it is impossible to have any capability-

based type system that supports meaningful subtyping.

Actually, to apply the theorems, it is not even necessary

for the capability type system to have an explicit notion

of subtyping. For Theorem 3, it is sufficient to have sets

of capabilities with a non-trivial ordering under inclusion,

meaning that we can find two capability types T and U such

that whenever Γ, a : U ⊢ P holds then also Γ, a : T ⊢ P
holds, but not the converse (e.g., T provides more capabilities

than U). We could then impose a subtype relation ≤ on

types, as the least preorder satisfying T ≤ U . Theorem 3

then tells us that type soundness and the other properties of

Definition 2 would require also U ≤ T to hold, i.e., T and U
are interchangeable in all typing judgements. In other words,

the difference between the capabilities in T and U has no

consequence on typing. Similarly, to apply Theorem 4 it is

sufficient to find two capability types T and U and a single

prefix in whose typing U can replace T .

IV. A CALCULUS WITH NAME PREORDERS

A. Preorders, positive and negative occurrences

We now refine the fusion calculi by replacing the equiva-

lence relation on names generated through communication by

a preorder, yielding πP (‘π with Preorder’). As the preorder on

types given by subtyping allows promotions between related

types, so the preorder on names of πP allows promotions

between related names. Precisely, if a is below a name b in the

preorder, then a prefix at a may be promoted to a prefix at b
and then interact with another prefix at b. Thus an input av.P
may interact with an output bw.Q; and, if also c is below b,
then av.P may as well interact with an output cz.R.

The ordering on names is introduced by means of the arc

construct, a/b, that declares the source b to be below the target

a. The remaining operators are as for fusion calculi (i.e., those

of the π-calculus with bound input replaced by free input).

P ::= 0 | P | P | ab.P | ab.P | νaP | a/b .

The semantics of the calculus is given in the reduction style.

Structural congruence, ≡, is defined as the usual congruence

produced by the monoidal rules for parallel composition and

the rules for commuting and extruding restriction (see [23] for

a complete definition). We explain the effect of reduction by

means of contexts, rather than separate rules for each operator.

Contexts allow us a more succinct presentation, and a simpler

comparison with an alternative semantics (Section V). An

active context is one in which the hole may reduce. Thus

the only difference with respect to ordinary contexts is that

the hole may not occur underneath a prefix. We use C to

range over (ordinary) contexts, and E for active contexts. The

rules for reduction are as follows (the subscript in −→ea, for

“eager”, will distinguish this from the alternative semantics in

Section V-A):

R-SCON :
P ≡ E[Q] Q −→ea Q′ E[Q′] ≡ P ′

P −→ea P ′

R-INTER : ab.P | ac.Q −→ea P | Q | b/c

R-SUBOUT : a/b | bc.Q −→ea a/b | ac.Q

R-SUBINP : a/b | bc.Q −→ea a/b | ac.Q

Rule R-INTER shows that communication generates an arc.

Rules R-SUBOUT and R-SUBINP show that arcs only act on

the subject of prefixes; moreover, they only act on unguarded

prefixes (i.e., prefixes that are not underneath another prefix).

The rules also show that arcs are persistent processes. Acting

only on prefix subjects, arcs can be thought of as particles

that “redirect prefixes”: an arc a/b redirects a prefix at b
towards a higher name a. (Arcs remind us of special π-calculus

processes, called forwarders or wires [17], which under certain

hypotheses allow one to model substitutions; as for arcs, so

the effect of forwarders is to replace the subject of prefixes.)

We write =⇒ea for the reflexive and transitive closure of

−→ea. Here are some examples of reduction.

ac.ca.e.P | ad.de.a.Q
R-INTER −→ea ca.e.P | de.a.Q | c/d

R-SUBINP −→ea ca.e.P | ce.a.Q | c/d
R-INTER −→ea e.P | a.Q | c/d | a/e

R-SUBINP −→ea a.P | a.Q | c/d | a/e
R-INTER −→ea P | Q | c/d | a/e

Reductions can produce multiple arcs that act on the same

name. This may be used to represent certain forms of choice,

as in the following processes:

(νh, k) (bu. cu.u | bh.h.P | ck. k.Q)
=⇒ea (νh, k) (u | h/u | k/u | h.P | k.Q) .

Both arcs may act on u, and are therefore in competition with

each other. The outcome of the competition determines which

process between P and Q is activated. For instance, reduction

may continue as follows:

R-SUBOUT −→ea (νh, k) (k | h/u | k/u | h.P | k.Q)
R-INTER −→ea (νh, k) (h/u | k/u | h.P | Q) .

Definition 6 (Positive and negative occurrences). In an input

ab.P and an arc a/b, the name b has a negative occurrence.

All other occurrences of names in input, output and arcs are

positive occurrences.

An occurrence in a restriction (νa) is neither negative nor

positive, intuitively because restriction acts only as a binder,

and does not stand for an usage of the name (in particular, it

does not take part in a substitution).

Negative occurrences are particularly important, as by prop-

erly tuning them, different usages of names may be obtained.

For instance, a name with zero negative occurrence is a

constant (i.e., it is a channel, and may not be substituted);

and a name that has a single negative occurrence is like a

π-calculus name bound by an input (see Section VI-B).

The number of negative occurrences of a name is invariant

under reduction.

Lemma 7. If P −→ea P ′ then for each b, the number of

negative occurrences of b in P and P ′ is the same.

B. Types

We now show that the I/O capability type system and its

subtyping can be transplanted from π to πP. In all typed calculi

in the paper, binding occurrences of names are annotated with

their type — we are not concerned with type inference.

In the typing rules for I/O-types in the (monadic) π-

calculus [1], two additional types are introduced: o T , the type

of a name that can be used only in output and that carries

values of type T ; and i T , the type of a name that can be

used only in input and that carries values of type T . The

subtyping rules stipulate that i is covariant, o is contravariant,

and ♯ is invariant. Subtyping is brought up into the typing rules

through the subsumption rule. The most important typing rules

are those for input and output prefixes; for input we have:

T-INPBOUND :
Γ ⊢ a : i T Γ, b : T ⊢ P

Γ ⊢ a(b : T).P

The π-calculus supports narrowing, and this is essential in the

proof of subject reduction.

The type system for πP is presented in Table I. With respect

to the π-calculus, only the rule for input needs an adjustment,

as πP uses free, rather than bound, input. The idea in rule T-

INPFREE of πP is however the same as in rule T-INPBOUND

of π: we look up the type of the object of the prefix, say T ,

and we require i T as the type for the subject of the prefix.

To understand the typing of an arc a/b, recall that such an arc

allows one to replace b with a. Rule T-ARC essentially checks

that a has at least as many capabilities as b, in line with the

intuition for subtyping in capability type systems.

Common to all premises of T-INPBOUND, T-INPFREE

and T-ARC is the look-up of the type of names that occur

negatively (the source of an arc and the object of an input

prefix): the type that appears for b in the hypothesis is precisely

the type found in the conclusion (within the process or in Γ).

In contrast, the types for positive occurrences may be different

(e.g., because of subsumption Γ ⊢ a : i T may hold even if

Γ(a) 6= i T). We cannot type inputs like outputs: consider

T-INPFREE2-WRONG :
Γ ⊢ a : i T Γ ⊢ b : T

Γ ⊢ ab
Rule T-INPFREE2-WRONG would accept, for instance, an

input ab in an environment Γ where a : i i 1 and b : ♯ 1. By

Types (1 is the unit type): T ::= i T | o T | ♯ T | 1

Subtyping rules:

♯ T ≤ i T ♯ T ≤ o T

S ≤ T

i S ≤ i T

S ≤ T

o T ≤ o S T ≤ T

S ≤ T T ≤ U

S ≤ U

Typing rules:

TV-NAME

Γ, a : T ⊢ a : T

SUBSUMPTION

Γ ⊢ a : S S ≤ T

Γ ⊢ a : T

T-RES

Γ, a : T ⊢ P

Γ ⊢ νaP

T-PAR

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

T-NIL

Γ ⊢ 0

T-OUT

Γ ⊢ a : o T Γ ⊢ b : T Γ ⊢ P

Γ ⊢ ab.P

T-INPFREE

Γ ⊢ a : i Γ(b) Γ ⊢ P

Γ ⊢ ab.P

T-ARC

Γ ⊢ a : Γ(b)

Γ ⊢ a/b

TABLE I
THE TYPE SYSTEM OF πP

subtyping and subsumption, we could then derive Γ ⊢ b : i 1 .

In contrast, rule T-INPFREE, following the input rule of the π-

calculus, makes sure that the object of the input does not have

too many capabilities with respect to what is expected in the

type of the subject of the input. This constraint is necessary

for subject reduction. As a counterexample, assuming rule T-

INPFREE2-WRONG, we would have a : ♯ i 1, b : ♯ 1, c : i 1 ⊢

P , for P
def
= ab | ac | b. However, P −→ea c/b | b −→ea c/b | c,

and the final derivative is not typable under Γ (as Γ only

authorises inputs at c).
In πP, the direction of the narrowing is determined by the

negative or positive occurrences of a name.

Theorem 8 (Polarised narrowing). Let T1 and T2 be two types

such that T1 ≤ T2.

1) If a occurs only positively in P , then Γ, a : T2 ⊢ P
implies Γ, a : T1 ⊢ P .

2) If a occurs only negatively in P , then Γ, a : T1 ⊢ P
implies Γ, a : T2 ⊢ P .

3) If a occurs both positively and negatively in P , then it

is in general unsound to replace, in a typing Γ ⊢ P , the

type of a in Γ with a subtype or supertype.

Theorem 8 (specialised to prefixes) does not contradict

Theorem 4, because in πP, reduction does not satisfy (2) (from

Section II). Our system enjoys subject reduction:

Theorem 9. If Γ ⊢ P and P −→ea P ′ then also Γ ⊢ P ′.

Remark 10. Theorem 8 may be seen as a refinement of

the standard narrowing result for name-passing calculi. In

the π-calculus, for instance, a free name only has positive

occurrences. Hence the usual narrowing corresponds to The-

orem 8(1). And in an input a(b : T).P , the binder for b
represents a negative occurrence, so that if b is free in P then

b has both positive and negative occurrences, which means

that the type T may not be modified, as by Theorem 8(3). In

contrast, Theorem 8(2) is vacuous in π, as a name b with only

negative occurrences is found in an input a(b : T).P where b

is not free in P .

In general, in a name-passing calculus, if a name has only

positive occurrences, then its type (be it declared in the typing

environment, or in the binding occurrence of that name within

the process) may be replaced by a subtype, and conversely for

names with only negative occurrences, whereas the type of

names with both positive and negative occurrences may not

be changed. Defining rules that distinguish between negative

and positive occurrences in name-passing calculi is beyond the

scope of this paper. A rule of thumb however seems that if the

occurrence of a name generates a substitution acting on that

name (i.e., a replacement of the name), then the occurrence

is negative; if it does not, then it is positive. Thus in a fusion

a = b of the Explicit Fusion calculus, the occurrences of a
and b are both positive and negative, as a fusion may produce

a substitution a/b or a substitution b/a (which, incidentally,

gives another explanation of the impossibility of narrowing in

presence of an explicit fusion construct). �

Remark 11. For the Subject Reduction theorem for πP it is

critical that an arc a/b only acts on positive occurrences of

b. Provided this is respected, the theorem remains valid under

different behaviours for arcs (e.g., simultaneously replacing all

positive occurrences of b, not only at top-level). �

V. BEHAVIOURS

A. An alternative semantics

The operational semantics given to πP in Section IV allows

arcs to act locally, at any time. The effect of an arc is irre-

versible: the application of an arc a/b to a prefix at b commits

that prefix to interact along a name that is greater than, or equal

to, a in the preorder among names. A commitment may disable

certain interactions, even block a prefix for ever. Consider, e.g.,

(νa, c) (bv.P | cw.Q | a/b | c/b) (5)

There is a competition between the two arcs; if the first wins,

the process is deadlocked:

−→ea (νa, c) (av.P | cw.Q | a/b | c/b)

since a and c are unrelated in the preorder.

We consider here an alternative semantics, in which the

action of arcs is not a commitment: arcs come about only

when interaction occurs. For this reason we call the new

semantics by-need (arcs act only when ‘needed’), whereas

we call eager the previous semantics (arcs act regardless of

matching prefixes). In this semantics, as in the π-calculus, an

interaction involves both a synchronisation and a substitution;

however unlike in the π-calculus where the substitution is

propagated to the whole term, here substitution only replaces

the subject of the interacting prefixes.

The formalisation of the new semantics makes use of the

partial order on names induced by arcs. In a process, an arc

is active if it is unguarded, i.e., it is not underneath a prefix.

We write preor(P) for the preorder on names produced by

the active arcs in P (i.e., the least preorder ≤ that includes

b ≤ a for each active arc a/b in P). Similarly, preor(C) is

the preorder produced by the active arcs of the context C.

Note that this definition relies on the Barendregt convention

on names (Convention 1), as it is purely syntactic, i.e., if P and

P ′ are alpha convertible then preor(P) and preor(P ′) may

be different. A definition that does not rely on the convention

is given in [23].

We write P ⊲ a g b if {a, b} has an upper bound in the

preorder preor(P), that is, there is a name that is above both

a and b; in this case we also say that a and b are joinable.

Similarly we write C ⊲ a g b for contexts. For instance, we

have νu(u/a | u/b | Q) ⊲ a g b, and νv(vt | (νw)(w/v | a/w |
[·]) ⊲ ag v. We have P ⊲ ag b iff P ′ ⊲ ag b if P and P ′ are

alpha convertible and a and b occur free in P .

Example 12. A process Mfg = (νc)(c/f | c/g) acts like a

mediator: it joins names f and g (we have Mfg ⊲ f g g).

Mediators remind us of equators in the π-calculus, or of

fusions in the Explicit Fusion calculus, but lack the transitivity

property (e.g., Mfg | Mgh ⊲ f g h does not hold).

Definition 13 (By-need reduction). The by-need reduction

relation, P −→bn P ′, is defined by the following rules, where

≡ is as in the eager semantics:

BN-SCON :
P ≡ E[Q] Q −→bn Q′ E[Q′] ≡ P ′

P −→bn P ′

BN-RED :
E ⊲ ag b

E[ac.P | bd.Q] −→bn E[P | d/c | Q]

Relation =⇒bn is the reflexive transitive closure of −→bn.

While the eager semantics has simpler rules, the by-need

semantics avoids ‘too early commitments’ on prefixes. For

instance, the only immediate reduction of the process in (5) is

−→bn (νa, c) (P | w/v | Q | a/b | c/b)

where prefixes bv.P and cw.Q interact because their subjects

are joinable in the preorder generated by the two arcs.

Lemma 14 (Eager and by-need). P −→bn P ′ (by-need

semantics) implies P =⇒ea P ′ (eager semantics).

Corollary 15. Theorem 9 holds for the by-need semantics.

B. Behavioural equivalence

We contrast barbed congruence in πP under the two se-

mantics we have given, eager and by-need. We have already

defined reduction relations, we only need to define barbs.

This requires some care, as the interaction of a process with

its environment may be mediated by arcs. For this, and to

have a uniform definition of barbs under the eager and by-

need semantics, we follow the definition of success in testing

equivalence [18], using a special signal ω that we assume may

not appear in processes: thus for any name a, the barb ↓a
holds for a process P if there is a prefix α with subject a
such that P | α.ω reduces in one step to a process in which ω
is unguarded (i.e., the offer of the environment of an action at

a may be accepted by P). Weak barbs and barbed congruence

are then defined in the standard way, as outlined in Section II.

We write ≃ea and ≅ea (resp. ≃bn and ≅bn) for the strong and

weak versions of eager (resp. by-need) barbed congruence.

The eager and by-need semantics of πP yield incomparable

equivalences. The two following laws are valid in the by-need

case, and fail in the eager case:

(νa)a/c = 0 a | a = a. a .

To see the failure of the first law in the eager semantics, con-

sider a context C
def
= [·] | (νb)(b/c) | c | c.w; then C[(νa)(a/c)]

can lose the possibility of emitting at w, by reducing in two

steps to (νa)(a/c | a) | (νb)(b/c | b.w), because of a commit-

ment determined by arcs; this cannot happen for C[0]. There

are no early commitments in the by-need semantics, for which

the two processes are hence equal.

Similarly, in the eager semantics, it is possible to put a | a
in a context where two arcs rewrite each a prefix differently,

while one can only rewrite the topmost prefix in a. a. This

scenario cannot be played in the by-need semantics.

On the other hand, the following law is valid for strong (and

weak) eager equivalence, but fails to hold in the by-need case:

(νabu)(a/u | b/u | u | a.w) = (νv)(v | v. τ .w | v.0) .

(τ .w stands for νc(c | c.w)). The intuition is that concurrent

substitutions are used on the left-hand side to implement

internal choice. As a consequence of the law (νa)a/c = 0,

in the by-need case, process b/u can be disregarded on the

left, so that the process on the left must do the output on w.

We have introduced πP with the eager semantics for rea-

sons of simplicity, but we find the by-need semantics more

compelling. Below, unless otherwise stated, we work under

by-need, though we also indicate what we know under eager.

C. Context-free characterisations of barbed congruence

When it comes to proving behavioural equalities, the def-

inition of barbed congruence is troublesome, as it involves

a heavy quantification on contexts. One therefore looks for

context-free coinductive characterisations, as labelled bisim-

ilarities that take into account not only reductions within a

process, but also the potential interactions between the process

and its environment (e.g., input and output actions). We present

such characterisation for the by-need equivalence; currently we

do not have one for the eager.

As actions for the by-need labelled bisimilarity, we use,

besides τ -actions, only free input and free output:

µ ::= τ | ab | ab .

In by-need, labelled transitions are written P
µ

−→bn P ′.

Internal transitions have already been defined, in the reduction

semantics, thus we can take relation
τ

−→bn to coincide with

the reduction relation −→bn. Input and output transitions are

defined by these rules:

BN-INP :
E ⊲ ag b E does not bind b and d

E[ac.P]
bd
−→bn E[d/c | P]

BN-OUT :
E ⊲ ag b E does not bind b and d

E[ac.P]
bd
−→bn E[c/d | P]

The purpose of the two rules is to define the input and output

transitions, with labels as simple as possible, with which to

derive a labelled bisimilarity. The two rules are not supposed to

be composed together to derive τ -actions (which are computed

from the rules of reduction). We leave the definition of a pure

SOS semantics, which avoids the structural manipulations of

structural congruence, for future work.

To understand rules BN-INP and BN-OUT, suppose the

environment is offering an action at b. Since a and b are

joinable, there is a name, say e, that is above both a and b in

the preorder; hence the prefix at a in the process and the prefix

at b in the environment can be transformed into prefixes at e,

and can interact. The need for the preorder explains why we

found it convenient to express actions via active contexts. In

the action, the use of a free object d allows us to ignore name

extrusion and thus simplifies the bisimulation checks. As an

example of BN-OUT, we have (similar observations can be

made for BN-INP):

(νu)
(

u/b | (νa, c)(u/a | ac.P)
)

bd
−→bn (νu)

(

u/b | (νa, c)(u/a | c/d | P)
)

.

Here the process can interact with the environment at b (and

hence perform a transition where b is the subject), because a
and b are joinable. Name c is not extruded; instead the arc c/d
redirects interactions on d to c.

The labelled bisimulation requires, besides the invariance

for actions, invariance under the addition of arcs; moreover a

check is made on the visible effects of arcs. In the clause for

actions, no extrusion or binding on names is involved; further,

it is sufficient that the objects of the actions are fresh names.

Definition 16 (Bisimulation). A by-need bisimulation R is a

set of pairs (P,Q) s.t. PRQ implies:

1) P | a/b R Q | a/b, for each name a, b (invariance under

arcs);

2) if a and b appear free in P , then P ⊲ a g b implies

Q ⊲ ag b;
3) if P

µ
−→bn P ′, then Q

µ
−→bn Q′ and P ′RQ′ (where

the object part of µ is fresh);

4) the converse of clauses (2) and (3).

Bisimilarity, written ∼bn, is the largest bisimulation.

We now present some examples and laws that are proved

using the coinductive proof method of labelled bisimilarity.

All equalities and inequalities also hold under the eager

semantics, though for some equalities only in the weak case

(e.g., Lemma 19).

Any input and output of πP can be transformed into a bound

prefix, by introducing a new restricted name:

Lemma 17. We have ax.P ∼bn (νx′)ax′. (x′/x | P) and

by.Q ∼bn (νy′)by′. (y/y′ | Q), for fresh x′ and y′.

If these laws are applied to all inputs and outputs of a

process P , then the result is a process P ′ that is behaviourally

the same as P , and in which all names exchanged in an

interaction are fresh. Thus P ′ reminds us of a variant of π
that achieves symmetry between input and output constructs,

namely πI , the π-calculus with internal mobility [19].

Lemma 18. We have (νb, c)ac. ab.0 6∼bn (νc)ac. ac.0, and

(νb, c)ac. ab.0 ∼bn (νc)ac. ac.0.

These laws show a difference between input and output in

behavioural equalities. The reason for the inequality is that

the first process can produce two transitions with objects e, f

yielding P
def
= νc (c/f | c/e), and then P ⊲ eg f .

Lemma 19 (Substitution and polarities).

1) If name a has only positive occurrences in P , then

(νa)(P | b/a) ∼bn P{b/a};

2) if name a has only negative occurrences in P , then

(νa)(P | a/b) ∼bn P{b/a};

3) (νa)(P | b/a | a/b) ∼bn P{b/a}.

For the comparison between labelled bisimilarity and barbed

congruence, the most delicate part is the proof of congruence

for bisimilarity. This is due to the shape of visible transitions,

where an arc is introduced and the object part is always a fresh

name, and to the use of ≡ in the definition of transitions. The

proof can be found in [23].

Theorem 20. Bisimilarity is a congruence.

Theorem 21 (Characterisation of barbed congruence). In πP,

relations ∼bn and ≃bn coincide.

Hence all the laws stated above for ∼bn hold for ≃bn.

VI. EXPRESSIVENESS OF πP

We compare πP with a few other calculi, both as examples

of the use of the calculus and as a test for its expressiveness.

When useful, we work in a polyadic version of πP; the addition

of polyadicity goes as for other name-passing calculi in the

literature. All results in this section use the by-need semantics;

we do not know their status under the eager semantics.

A. Explicit Fusions

Bi-directional arcs, e.g., a/b | b/a, work as name fusions (cf,

Lemma 19(3)). We thus can encode calculi based on name

fusion into πP. As an example, we consider the Explicit Fusion

calculus [8]. Its syntax extends the Fusion calculus with a

fusion construct a = b. The encoding is defined as follows

for prefixes and explicit fusions, the other constructs being

encoded homomorphically:

[[a〈v〉.P]] = (νw)a〈v, w〉.wv. [[P]]
[[ax.Q]] = (νy)a〈x, y〉. y〈x〉. [[Q]]
[[a = b]] = a/b | b/a

In Explicit Fusions, an interaction introduces a name fusion.

In the πP encoding, this is mimicked in two steps so to be able

to produce bidirectional arcs. The second step is the reverse

of the original interaction, and is realised by means of an

extra private name. We have operational correspondence for

the encoding (we do not know whether it is is fully abstract).

Theorem 22. Let P , Q be processes of the Explicit Fusion

calculus, and −→EF the reduction relation in the calculus.

1) If P ≡ Q then [[P]] ≃bn [[Q]];
2) if P −→EF P ′ then [[P]] −→bn ≅bn [[P ′]];
3) conversely, if [[P]] −→bn Q, then Q ≅bn [[P ′]] for some

P ′ such that P −→EF P ′.

A similar result holds for the Fusion calculus, though for

Explicit Fusions the statement is simpler because in the latter

calculus a restriction is not necessary for fusions to act.

B. π-calculus

The embedding of the π-calculus into a fusion calculus is

defined by translating the bound input construct as follows:

[[a(x).P]] = (νx) ax. [[P]]

(the other constructs being translated homomorphically). The

same encoding can be used for πP.

The encoding of π-calculus into Fusions is not fully abstract

for barbed congruence. For instance, in the π-calculus, a

new channel is guaranteed to remain different from all other

existing channels. Thus in a process νa (ba. (a.P | c.Q)), the

two prefixes a.P and c.Q may never interact with each other,

in any context, even if a is exported. This property does not

hold in the Fusion calculus, as a recipient of the newly created

name a could equate it with any other name (e.g., using the

context bc.0 | [·]).
We do not know whether the encoding of the full π-calculus

into πP is fully abstract. However, at least the encoding is fully

abstract on the asynchronous subset (where no continuation is

allowed after the output prefix).

Theorem 23. Suppose P,Q are processes from the asyn-

chronous π-calculus, Aπ. Then P ≃Aπ Q iff [[P]] ≃bn [[Q]].

In the theorem, ≃Aπ could be replaced by ≃π (barbed

congruence in the full π-calculus). Note that ≃Aπ is the stan-

dard barbed congruence, as opposed to asynchronous barbed

congruence, where output barbs are visible but input barbs are

not. We believe the theorem also holds under asynchronous

barbed congruence.

For the proof of the theorem, we first establish results of

operational correspondence between source and target terms

of the encoding. Then the direction from right to left is easy

because contexts of the π-calculus are also contexts of πP
(under the encoding). The delicate direction is the opposite.

Here we use Theorem 21, and the characterisation of π-

calculus barbed congruence on the subset of asynchronous

processes as ground bisimilarity [5]. We also make use of

some up-to techniques, notably ‘by-need bisimulation up to

∼bn and restriction’ whose soundness is proved along the

lines of soundness proofs of similar techniques for other forms

of bisimilarity. We finally consider the relation defined as

{([[P]] | σ, [[Q]] | σ) | P ∼g Q}, where σ is a parallel compo-

sition of arcs, and prove that it is a by-need bisimulation up

to ∼bn and up to restriction.

Regarding translations in the opposite direction, both for

fusion calculi and for πP, the encoding into π is not possible

in general. However, for πP some results can be obtained under

constraints such as asynchrony and locality. Something similar

has been done by Merro [20] for the Fusion calculus.

VII. UNIQUE NEGATIVE OCCURRENCES OF NAMES

In this section we consider a constrained version of the

calculi discussed in the paper, where each name may have

at most one negative occurrence in a process. In the fusion

calculus [6] the constraint means that each name appears at

most once as the object of an input. In πP, the constraint

affects also arcs (as their source is a negative occurrence).

The constraint is rather draconian, bringing the calculi closer

to the π-calculus (where the constraint is enforced by having

binding input). Still, the constraint is more generous than tying

the input to a binder as in π. For instance, we have more

complex forms of causality involving input, as in νx(ax.wt |
bx), where the input at a blocks the output at w, and can be

triggered before or after the output at b takes place. We call

πP1 and FU1 the constrained versions of πP and Fusions; in

both languages the constraint is preserved by reduction.

We show that the constraint makes certain differences be-

tween calculi or semantics disappear. In πP1 the eager and the

by-need semantics of πP coincide, at least in a weak semantics.

Theorem 24. In πP1, relations ≅πP1ea and ≅πP1bn coincide.

The following property is useful in the proof (see [23]).

Lemma 25. For P ∈ πP1, suppose P −→ea P ′ where the

reduction is a rewrite step involving an arc. Then P ≅πP1ea P
′.

The calculi πP1 and FU1 resulting from the constraint are

behaviourally similar. For instance, in πP1 the directionality

of arcs is irrelevant, as shown by the following law (where we

omit the subscripts ‘ea’ and ‘bn’ in the light of Theorem 24).

Lemma 26. a/b ≅πP1 b/a.

Another difference that disappears under the constraint of

unique negative occurrences of names is the one concerning

capabilities and subtyping in fusion calculi with respect to π
and πP, exposed in Sections III and IV. Indeed, to equip FU1
with an I/O type system and subtyping, we can use exactly the

rules of πP in Section IV-B — with the exception of T-ARC

as FU1 does not have arcs. This intuitively because FU1 is,

syntactically, a subset of πP (each process of FU1 is also a

process of πP), and the Subject Reduction theorem for πP in

Section IV-B holds regardless of when and how arcs generate

substitutions (Remark 11); making an arc a/b act immediately

and on all positive occurrences of b is similar to substitution

as in FU1. This may however involve changing the type of a

name c into a smaller type when c is used in input object;

e.g., in ac | (νb : T)ab.P −→FU1 P{c/b} (where −→FU1

is reduction in FU1), name c is used at type T , which is a

smaller type than Γ(c).

Theorem 27. Let P be a FU1 process. If Γ ⊢ P and

P −→FU1 P ′, then Γ′ ⊢ P ′, where for at most one name c,
Γ′(c) ≤ Γ(c); for other names b, Γ′(b) = Γ(b).

Note that FU1 does not satisfy the conditions of Definition 2

because well-typed processes may not be freely put in parallel,

as this could break the constraint on unique input objects.

We leave for future work a thorough comparison between

πP1, FU1, and π-calculus.

VIII. FUTURE WORK

Here we mention some lines for future work, in addition to

those already mentioned in the main text.

The coinductive characterisation of behavioural equivalence

in πP has been presented in the strong case, and should be

extended to the weak case. We have presented and compared

two semantics for πP, eager and by-need. While we tend

to consider the advantages so far uncovered for the by-

need superior, more work is needed to draw more definite

conclusions. For instance, it would also be interesting to

contrast axiomatisations of the semantics, rules for pure SOS

presentations of the operational semantics, the expressiveness

of the subcalculus in which the two semantics agree, and

implementations. We do not expect, in contrast, significant

differences to arise from type systems.

Another possible advantage of by-need is a smoother ex-

tension with dynamic operators like guarded choice, in which

an action may discard a component. (In the eager case it is

unclear what should be the effect of an arc that acts on one

of the summands of a choice.) Choice would be useful for

axiomatisations. In by-need, we would have for instance

(νb, c)ab. ac. (b|c) ∼ (νb, c)ab. ac. (b. c+ c. b).

The law, valid in both πP and π, illustrates the possibility

of generating fresh names that cannot be identified with other

names even if exported. The law fails in fusion calculi as a

recipient might decide to equate b and c (cf. Section VI-B).

Solos calculus is the polyadic Fusion calculus without

continuations. Solos can encode continuations [10]. We believe

the same machinery would work for the ‘Solos version’ of πP.

It could also be interesting to study the representation of

πP into Psi calculi [21]. This may not be immediate because

the latter make use of on an equivalence relation on channels,

while the former uses a preorder. One could then see whether

the move from Fusions and π to πP in this paper, and the

corresponding results on types, can be lifted at the level of Psi

calculi, by comparing them with variants based on preorders.

[24] presents type systems for Psi calculi, and for explicit

fusions, but does not address subtyping.

ACKNOWLEDGEMENT

The authors acknowledge support from the ANR projects

2010-BLAN-0305 PiCoq and 12IS02001 PACE.

REFERENCES

[1] B. Pierce and D. Sangiorgi, “Typing and subtyping for mobile pro-
cesses,” Math. Str. in Comp. Sci., vol. 6, no. 5, pp. 409–453, 1996.

[2] N. Kobayashi, “Type systems for concurrent programs,” in 10th Anniver-

sary Colloquium of UNU/IIST, ser. LNCS, vol. 2757. Springer, 2003,
pp. 439–453.

[3] ——, “A new type system for deadlock-free processes,” in CONCUR,
ser. LNCS, vol. 4137. Springer, 2006, pp. 233–247.

[4] K. Honda, V. T. Vasconcelos, , and M. Kubo, “Language primitives and
type discipline for structured communication-based programming,” in
ESOP, ser. LNCS, vol. 1381. Springer, 1998, pp. 122—-138.

[5] D. Sangiorgi and D. Walker, The Pi-Calculus: a theory of mobile

processes. Cambridge University Press, 2001.
[6] J. Parrow and B. Victor, “The fusion calculus: expressiveness and

symmetry in mobile processes,” in LICS. IEEE, 1998, pp. 176 –185.
[7] ——, “The update calculus (extended abstract),” in AMAST, ser. LNCS,

vol. 1349. Springer, 1997, pp. 409–423.
[8] L. Wischik and P. Gardner, “Explicit fusions,” Theor. Comput. Sci., vol.

340, no. 3, pp. 606–630, 2005.
[9] Y. Fu, “The χ-calculus,” in APDC. IEEE Comp. Soc., 1997, pp. 74–81.

[10] C. Laneve and B. Victor, “Solos in concert,” Math. Str. in Comp. Sci.,
vol. 13, no. 5, pp. 657–683, 2003.

[11] P. Gardner and L. Wischik, “Explicit fusions,” in MFCS, ser. LNCS,
vol. 1893. Springer, 2000, pp. 373–382.

[12] J. Parrow and B. Victor, “The tau-laws of fusion,” in CONCUR, ser.
LNCS, vol. 1466. Springer, 1998, pp. 99–114.

[13] G. L. Ferrari, U. Montanari, E. Tuosto, B. Victor, and K. Yemane,
“Modelling Fusion Calculus using HD-Automata,” in CALCO, ser.
LNCS, vol. 3629. Springer, 2005, pp. 142–156.

[14] F. Bonchi, M. G. Buscemi, V. Ciancia, and F. Gadducci, “A presheaf
environment for the explicit fusion calculus,” J. Autom. Reasoning,
vol. 49, no. 2, pp. 161–183, 2012.

[15] M. Boreale, M. G. Buscemi, and U. Montanari, “A general name binding
mechanism,” in TGC, ser. LNCS, vol. 3705. Springer, 2005, pp. 61–74.

[16] N. Kobayashi, B. Pierce, and D. Turner, “Linearity and the pi-calculus,”
TOPLAS, vol. 21, no. 5, pp. 914–947, 1999.

[17] K. Honda and N. Yoshida, “On reduction-based process semantics,”
Theor. Comp. Sci., vol. 152, no. 2, pp. 437–486, 1995.

[18] R. De Nicola and M. Hennessy, “Testing equivalences for processes,”
Theor. Comput. Sci., vol. 34, pp. 83–133, 1984.

[19] D. Sangiorgi, “Pi-calculus, internal mobility, and agent-passing calculi,”
Theor. Comput. Sci., vol. 167, no. 1&2, pp. 235–274, 1996.

[20] M. Merro, “Locality in the pi-calculus and applications to distributed
objects,” Ph.D. dissertation, École des Mines, France, 2000.

[21] J. Bengtson, M. Johansson, J. Parrow, and B. Victor, “Psi-calculi: Mobile
processes, nominal data, and logic,” in LICS. IEEE, 2009, pp. 39—48.

[22] B. Victor, “The fusion calculus : Expressiveness and symmetry in mobile
processes,” Ph.D. thesis, Uppsala University, 1998.

[23] Web appendix to this paper, available from http://hal.inria.fr/
hal-00818068, 2013.

[24] H. Hüttel, “Typed ψ-calculi,” in CONCUR, ser. LNCS, vol. 6901.
Springer, 2011, pp. 265–279.

