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Abstract—This paper presents Vizzly, a middleware for the
interactive browsing of large sensor network data sets. Provided
map and line plot widgets allow to visualize structured data
from mobile and static sensors. A user is completely free in
selecting sensor data based on time and location, suitable levels of
temporal and spatial detail are automatically chosen by the Vizzly
server. Vizzly automatically adapts to user interactions, new data
is automatically loaded when query parameters change. Request
response times are significantly reduced by the use of caching
techniques, most requests are served from already pre-computed
data that is stored in the memory of the Vizzly server. Vizzly has
already been successfully integrated into the PermaSense and
OpenSense projects, a single instance is currently handling more
than 550 millions of data points.

Index Terms—Visualization, Caching, Big Data, Wireless Sen-
sor Networks, Mobile Sensing

I. INTRODUCTION

Wireless sensor networks (WSNs) have proven their appli-
cability in many different scenarios, e.g., data center monitor-
ing [21], environmental monitoring [16] and building mon-
itoring [8]. By combining several sensing modalities with
on-board communication facilities, current generation smart-
phones are powerful networked sensing systems [7]. The
vision of the Internet of Things (IoT) foresees sensor nodes
being deployed in any area of our everyday life.

With networked embedded sensing systems reaching matu-
rity, a new class of problems is given by the large amounts
of data being generated by today’s and future sensor net-
works. For example, a single sensing device that measures
temperature every two minutes will already generate 262,800
data points per year. After four years, this single sensor will
generate more than 1 million data points. Thinking of large
collections of sensing devices with multiple sensing modali-
ties, it becomes easy to understand that hundreds of millions
or even billions of data points must be processed, stored and
eventually analyzed during a few years of operation. To this
day, more than 600 million data points have been sampled
using more than 60 sensor nodes concurrently deployed across
three long-term deployments in the PermaSense [16] project.

The visual inspection of sensed data is an important use
case, e.g., for system supervision, failure analysis, or during
the development of new data processing algorithms. Ideally, all
data can be viewed at different spatiotemporal scales computed
for a number of different data resolution levels. Reducing the
resolution is needed for limiting the amount of data being
transferred to a user, and for addressing the limitations of the

displaying device used, e.g., the number of displayable pixels.
However, the computation time needed for loading, sorting
and aggregating large amounts of raw data points on-the-fly
often exceeds the tolerable waiting time.

This paper presents Vizzly, a middleware that enables the
interactive browsing of large sensor network data sets that
originate from static and mobile scenarios. The back-end
infrastructure of Vizzly consists of two main components,
namely a cache layer and a web service. The web service
component of Vizzly provides a single point of entry for
retrieving sensor data that may originate from multiple data
repositories. Based on received request parameters, Vizzly
automatically chooses the temporal and spatial levels of detail
in which data is sent to a user. Significant reduction of the
data access times is achieved by the cache layer. Its task is (i)
to continuously monitor and read from multiple repositories of
different kind, e.g., SQL databases, feeds, or CSV files, (ii) to
aggregate received data, and (iii) to store pre-computed results
in data structures that are optimized for time-based access.

The Vizzly front-end library enables the integration of
interactive map and line plot widgets into existing web pages.
A user must only specify the position and size of a new
widget, the setup of required displaying components and visual
control elements is automatically handled by provided library
functions. Additionally, the Vizzly client library handles all
client-server communication, e.g., decides when new data must
be dynamically loaded.

The contribution of this paper is as follows:
• We present Vizzly, a middleware that enables the inter-

active browsing of large sensor network data sets. The
presented client-server architecture focuses on the prob-
lem of adapting to each user by automatically choosing
the temporal and spatial resolution of returned data. For
example, highly aggregated data is loaded when a user
wants to quickly navigate through multiple years of data.
In contrast, raw data points are shown when the selection
is narrowed down to a particular point in time.

• The effectiveness of our approach is evaluated in the con-
text of two distinct static and mobile sensing scenarios.

• We evaluate the performance of Vizzly based on the
instance used in a production environment. The analyzed
instance currently handles more than 550 millions of data
points originating from more than 2,500 different sensing
channels.

The structure of this paper is as follows: Related work



and the positioning of Vizzly are discussed in Section II.
Section III presents the challenges found in the visualization of
large sensor network data sets. The system design of Vizzly is
described in Section IV, implementation details of Vizzly can
be found in Section V. Section VI presents two case studies to
prove applicability and to highlight the conceptual advantages
of our approach. The performance of Vizzly is evaluated in
Section VII. The broader applicability of Vizzly is discussed
in Section VIII. Section IX concludes this paper.

II. RELATED WORK

A. Sensor Data Visualization
A web interface for displaying sensed data is part of many

sensing projects. For example, GlacsWeb1 [22] and LoCal2

[10] provide an interface for visualizing sensed data on a
timeline. Based on Microsoft SensorMap, the interface of Life
Under Your Feet3 [24] also allows to display the locations of
static sensors on a 2D map. A similar solution is provided
by Climaps4, a data visualization interface that is part of the
SensorScope [3] project. PowerTron [18] has been developed
for the visualization of power meter data in the PowerNet
[17] project. Here, the locations of available power meters
are shown on the floor plans of a building. Pachube/Cosm
is a very popular online platform for sensor data streaming.
An exemplary project based on Pachube/Cosm is the Japan
Geigermap5. Apart from displaying the raw measurements
from static and mobile sensors, da_sense6 [23] also includes
a heat map representation of noise pollution measurements.
Within a more general scope, Google Fusion Tables7 is a web
service for visualizing data as maps, timelines and charts.

Vizzly is a middleware for visualizing large sensor net-
work data sets in space and time. Both static and mobile
sensing scenarios are supported, measurements of arbitrary
length can be visualized in any temporal and spatial level of
detail. Independent of a particular front-end component used
for eventually displaying loaded data, Vizzly focuses on the
problem of making sensor data dynamically and efficiently
loadable when request parameters change. For example, less
aggregated data is automatically loaded and displayed when
the length of the time period of interest is decreased.

From a survey of existing approaches based on publicly
available information, e.g., manual analysis of the client-server
communication of public data interfaces and consulting of
available documentation, we find that Vizzly distinguishes
itself from other solutions by dynamically loading data of
varying detail. While similar techniques can be found in map
visualizations, e.g., in the da_sense project, we could not find
other time series visualizations that would allow to display
measurements of arbitrary length in any temporal level of

1http://env.ecs.soton.ac.uk/glacsweb/iceland/graph/
2http://new.openbms.org/
3http://dracula.cs.jhu.edu/luyf/en/tools/VZTool/Default.aspx
4http://climaps.com/
5http://japan.failedrobot.com/
6http://www.da-sense.de/
7http://www.google.com/fusiontables

detail. We find existing solutions to either limit the presentable
time range, or to only offer data on a fixed, reduced level of
detail, i.e., data is only loaded once after the initial request,
but not refined when the user selects a smaller area of interest.
B. Processing and Storage of Time Series Data

The creation of materialized views [14] is a common tech-
nique for continuously pre-computing and storing aggregates
in database systems. Data cubes [13] allow for the efficient
computation of multi-dimensional aggregates. For example,
the Life Under Your Feet Project uses data cubes for aggregat-
ing data over time intervals and other quantities. RasDaMan
[4] is a database system that is optimized for the storage of
multidimensional raster data.

Monitoring tools for IP networks, e.g., Zabbix8 and ntop, of-
ten also include the ability to visualize measured performance
data. In this context, tsdb [11] implements a compressed
database for time series. Using a special storage scheme,
massive data volumes can be efficiently handled and made
available to a user, e.g., for plotting. Probably the closest to
this work is the function of the Archiver Daemon (ARD) that
is part of sMAP9 [9]. The storage layer used by the ARD is
highly optimized for the processing and storage of time series
data.

sMAP, tsdb and Vizzly share the design decision of imple-
menting data processing in an application layer and use the
underlying database system as a key-value store only. Instead
of heavily relying on the support of certain features, e.g., data
cube analysis, flexibility is gained when basically any database
system can be used. While sMAP and tsdb can potentially also
be extended to support this, Vizzly is in particular designed
for data originating from both static and mobile sensors, i.e.,
sensor readings that are annotated with both time and location
information.

III. VISUALIZING LARGE SENSOR NETWORK DATA SETS

Being able to visually inspect recorded data is advantageous
for all stakeholders of a sensing system, e.g., design engineers,
system operators, scientists, and even the general public.

For small data sets that consist of some hundreds of data
points, a simple approach is to just send raw data points
to a client for plotting. However, this approach does not
scale for large multi-year data sets that consist of millions
of data points. The amount of data to be transferred to a user
becomes too large, the client would need to perform extensive
computation, e.g., sorting and down-sampling, for making the
data displayable. Instead, data must already be filtered, sorted
and aggregated before it is transferred to a client that only
displays the already prepared data.

Needed processing steps for making raw data displayable
can be very expensive, e.g., involve large database tables to
be fully read and sorted. The response time of such a request
can easily reach tens of seconds if the underlying system has
not been specifically optimized. This is problematic as the

8http://www.zabbix.com/
9http://code.google.com/p/smap-data/



Various static and mobile sensing applications

Interactive browsing of large data sets
• Time series display with pan and zoom
• Integration with Google Maps

SensorViz backend application
• Caching of aggregated data
• Data interface for interactive browsing

Data streaming servers and data stores
• Input stream processing
• Handling of unaggregated data

Figure 1. Exemplary usage scenario for Vizzly. Without the need of
modifying existing infrastructure (yellow boxes), powerful plotting capabilities
are added by Vizzly (red boxes).

adoption and success of a visualization tool are threatened
when interested users perceive that the front-end responds too
slow [6].

In the context of visualizing large sensor network data
sets, this paper wants to address the following questions:
Which data structures allow for the efficient retrieval of spa-
tiotemporal, structured data at different scales? Which system
design is suited for as many application scenarios as possible
while also satisfying the needs of all user groups? What
can we learn from standard PC memory architectures when
designing a cache application that can choose to either store
pre-aggregated data in different back-ends, i.e., in memory
(RAM) or in a database, or to further aggregate already pre-
aggregated data on-the-fly?

In the following, we present the design and implementa-
tion of Vizzly, a middleware for the interactive browsing of
large sensor network data sets. The applicability of Vizzly is
evaluated in the context of two diverse research projects, the
performance of Vizzly is evaluated based on the traces that
originate from a production environment.

IV. VIZZLY SYSTEM DESIGN

An exemplary usage scenario for Vizzly is shown in Fig-
ure 1. Starting from the bottom, structured data is recorded in
various static and mobile sensing applications. Recorded data
is then uploaded to a streaming server that annotates, e.g.,
adds meta-information, and stores the data received. Vizzly
continuously monitors and reads from multiple streaming
servers, cached aggregates are immediately updated when new
data arrives. The Vizzly back-end can handle multiple clients
in parallel, requests are either served from pre-computed ag-
gregates, from an on-the-fly aggregation of already aggregated
data, or by forwarding the results of raw data requests. The
latter are always served by the lower layer, i.e., the corre-
sponding streaming server. On the client side, the Vizzly front-

Figure 2. Temperature readings from two sensor nodes. The temporal
resolution must be highly reduced for displaying multiple years in a single
view. Less aggregated or even raw readings are shown when the time period
of interest is lessened.

(a) 9.6 km x 9.6 km (b) 148 m x 148 m

Figure 3. Ozone data shown at two different spatial scales. Both excerpts
correspond to the same measurement period, more detail is shown when the
selected map area gets smaller. A user can change the data source of interest,
e.g., select CO measurements instead of ozone measurements, the time period
of interest, and the map area of interest. After each interaction, missing data is
automatically loaded from the Vizzly back-end. Shown data points are within
the accuracy of the GPS receiver used.

end library implements map data and time series displays.
Exemplary screenshots are shown in Figure 2 and Figure 3,
respectively. The time series display can be used standalone,
but is also part of the map data display. Only measurements
taken within the corresponding map area are shown in a line
plot when a user selects a map marker.

Decoupling data visualization from data storage certainly
increases the overall system complexity, e.g., requires data
to be synchronized between two systems. However, adding
missing functionality to an existing data store is often risky or
even impossible. For instance, adding visualization capabilities
may decrease the performance of another important use case.
Organizational issues, e.g., license restrictions, may not allow
for adding modifications. Vizzly is an optimized and central-
ized solution that enables the visualization of sensor data.
Vizzly is not restricted to a certain system, but can potentially
be integrated into many existing platforms.

Detached from the concrete implementation of Vizzly (see
Sec. V), we will now firstly present the overall system de-
sign of Vizzly. The interfacing between front-end and back-
end is described in Section IV-A. Section IV-B presents the
mechanism used for automatically determining the temporal
and spatial resolutions in which data is sent to a user. The
strategy used for aggregating spatiotemporal data in time and
space is presented in Section IV-C. Section IV-D presents data
structures used for caching and persisting aggregated data.
Vizzly is not automatically informed of new sensor data, but



actively polls known repositories. The automated updating of
cached contents is discussed in Section IV-E.

A. Client-server communication

Clients neither store sensor data nor any system state,
e.g., a list of available sensors. Instead, all information is
dynamically loaded from the Vizzly back-end. Apart from
necessary standard request parameters, e.g., the time period of
interest, choosing from large collections of sensors requires
a precise but also flexible specification format. While mix-
ups between similarly named sensors in different repositories
need to be avoided, participatory sensing scenarios on the
other hand require that sensor readings can be selected both
dependent and independent of the recording device, e.g., the
particular smartphone used.

To address this problem, we introduce the notion of “virtual
signals”. In the context of Vizzly, a “virtual signal” can
be described as a tuple (N,C,R) that consists of a sensor
node N , a sensing channel C, and a data repository R.
Selecting a particular sensor node can be omitted by setting
N to a wildcard value. If the wildcard value is set, data is
automatically combined on the equal sensing channel C and
the equal data repository R10. Exemplary virtual signals are
(node 25, temperature, repository 1) and (node ANY, ADC
channel 3, repository 2). Exactly one virtual signal must be
specified in a map data request, arbitrary combinations of one
or more virtual signals can be specified in a time series request.

B. Algorithmic Selection of the Returned Level of Detail

The size of the screen area for displaying map and line plots
varies among different clients. In consequence, the optimal
level of temporal and spatial detail in which data is to be
sent to a client also varies. For example, the doubled number
of data points can be displayed when a user views a map in
full-screen mode instead of restricting the map to only one
half of the screen. The lack of dynamically adapted levels of
detail would lead to either unused space on large screens, or
to overlapping data points on small screens. To overcome this,
the Vizzly back-end first automatically decides if unaggregated
data can be displayed or, if not, calculates suitable temporal
and spatial target resolutions r̂temp and r̂spat. Target resolutions
r̂temp and r̂spat, respectively, then define the window length of
the aggregation operator used.

For this mechanism to work, clients are requested to specify
the dimensions of the displaying widget used. Data included
in the response of a map data request is always reduced to
a dynamically computed r̂spat. Decided separately for each of
multiple included time series, the response of a time series
request can contain both unaggregated data and values that
have been aggregated to a dynamically chosen r̂temp.

Based on a defined size of a grid cell in pixels, determining
r̂spat starts with calculating the number of displayable grid rows
and columns. The geographical dimensions of a quadratic grid
cell are then derived from the map area of interest that is

10Please note that Vizzly expects underlying time series to be normalized
with respect to possibly different sensor types or sensor calibrations used.

specified in geographic coordinates. The optimal spatial target
resolution r̂spat corresponds to the geographic length of the
edges of a grid cell, e.g., r̂spat := 1 km.

Determining the temporal level of detail starts with calcu-
lating the maximum number of data points per time series that
the client can display. This number is obtained by dividing the
reported width of the plotting canvas by a defined maximum
average number of data points per pixel. With the help of con-
tinuously updated estimates of the sampling rate of each virtual
signal (see Sec. IV-E), Vizzly first decides for each virtual
signal if the client can be supplied with unaggregated data. To
decide this, the estimated number of unaggregated data points
is compared with the maximum displayable number of data
points. If the level of temporal detail must be reduced, the
optimal temporal target resolution r̂temp, e.g., r̂temp := 1 hour,
is determined by dividing the time period of interest by the
maximum number of data points per time series.

For being able to further aggregate already aggregated data,
target resolutions r̂spat and r̂temp can not be arbitrarily chosen,
but need to be multiples of defined highest spatial and temporal
target resolutions. Intermediate resolution levels r̂spat and r̂temp
are “rounded” to the next available smaller target resolution.

C. Aggregation of Spatiotemporal data

The level of spatial and temporal detail may need to be
reduced before data is sent to a client. In this case, the data
of higher or equal resolution is loaded from the cache and, if
needed, further aggregated on-the-fly. While users can choose
arbitrary combinations of temporal and spatial levels of detail,
the number of possible combinations is clearly too large for
each combination being stored in a cache.

To address this problem, we propose a location-preserving
aggregation scheme: Temporal aggregation is carried out sep-
arately for each location, the results of the location-preserving
aggregation are then cached. While this strategy certainly
decreases the efficiency of data reduction, i.e., leads to a
smaller reduction in terms of the number of returned samples,
one stored aggregate per virtual signal is sufficient for being
able to choose any level of detail for any later spatial data
aggregation. Additionally, this approach preserves advantages
of aggregating and organizing data in the temporal domain.
Compared to executing the spatial aggregation step first, this
order of aggregating spatiotemporal data in time and space
benefits from the structure of the data. Preserving temporal
locality is much less complex than organizing data in the two-
dimensional spatial domain.

Data series without location information can be described
as a set of tuples (t, v). Each tuple describes a data point
that consists of a timestamp t and a sensor reading v. For
aggregating data in the temporal domain, the first step is to
reduce the resolution of the timestamp t to the target resolution
r̂temp, e.g., r̂temp := 10 minutes.

R(t, r̂temp) :=

⌊
t

r̂temp

⌋
· r̂temp



In case the sensor data is not signed with a location infor-
mation, data points are grouped by their truncated timestamp
t′. Data points with an equal truncated timestamp are put into
the same set G, the aggregated sensor value v′ of the new
tuple (t′, v′) is obtained by applying the aggregation function
A(G). Exemplary aggregation functions are the calculation of
the mean, the sum, the number of elements, or the smallest
value.

v′ := A(G) for G := {v | R(t, r̂temp) ≡ t′}

Already aggregated data, e.g., a set of (t′, v′) tuples, can
be further aggregated, e.g., to obtain (t′′, v′′). Given that data
was reduced to a target resolution r̂temp in the previous step,
the new target resolution r̂′temp has to be a multiple of r̂temp,
i.e., r̂′temp := r̂temp · c with c ∈ N, c > 0.

For measurements from location-aware sensors, the ex-
tended tuple (t, v, llat, llng) also includes the geographical lat-
itude llat and longitude llng of the location of measurement.
11

To preserve a later aggregation by the location of mea-
surement, location information must remain untouched during
temporal aggregation. Data points from location-aware sensors
must therefore be grouped by their truncated timestamp t′

and by their location of measurement that is specified by llat
and llng. Data points with an equal truncated timestamp and
equal location information are put into the same group, the
aggregated sensor value v′ of the new tuple (t′, v′, l̄lat, l̄lng) is
similarly obtained by applying the aggregation function A(G)
to the set of data points G.

v′ := A(G) for G := {v | R(t, r̂temp) ≡ t′∧
llat ≡ l̄lat ∧ llng ≡ l̄lng} (1)

The location of measurement for which v′ is computed is
defined by l̄lat and l̄lng. In practice, l̄lat and l̄lng are automatically
set while iterating over the list of locations.

Aggregating data in the spatial domain starts with reducing
the resolution of the location of measurement. Both llat and
llng are reduced to the same target resolution r̂spat.

R(llat, r̂spat) :=

⌊
llat

r̂spat

⌋
· r̂spat R(llng, r̂spat) :=

⌊
llng

r̂spat

⌋
· r̂spat

Spatiotemporal data that has been recorded within the time
period of interest [ts, te] is grouped by its truncated location
information. Based on the length of the time period of interest,
Vizzly automatically chooses the level of temporal detail that
is used as the input for the spatial aggregation step. Without
further specifying the concrete level of detail used, the data is
taken from the set of tuples (t(n), v(n)).

v′ := A(G) for G := {v(n) | ts ≤ t(n) ≤ te∧
R(llat, r̂spat) ≡ l′lat ∧R(llng, r̂spat) ≡ l′lng}

11As the altitude of the location of measurement is not required for 2D
map plots, this information is currently omitted.

D. Efficient Storage of Pre-Computed Data

When processing a user request, Vizzly first loads all
data that lies within the time period of interest. If location
information is relevant, found records are then filtered to
only include data from the requested map area of interest.
To support this, the caching layer of Vizzly must fulfill the
following three requirements. First, data structures used for
storing aggregated data must be optimized for time-based
access. Second, although data is aggregated before it gets
cached, storing aggregated data can still require considerable
space for large data sets. Third, the operation of Vizzly
requires certain meta-data to be stored, e.g., how often cache
contents were loaded, or when the last update took place.

We propose two diverse back-ends for storing aggregated
data, i.e., storing aggregated data in memory (RAM) and
in a SQL database. While aggregated data that is stored in
memory can be accessed significantly faster, the SQL database
adds cheaper storage capacity and persistence. Infrequently
used data can be offloaded to the slower tier, populating cold
memory from the SQL database is faster than again fetching
unaggregated data from its source. Since only aggregated data
is cached in Vizzly, any time information used in the following
description must be seen in the context of a certain temporal
target resolution r̂temp.

The memory back-end uses multi-dimensional arrays for
storing sensor readings and location information. Timestamps
are not explicitly stored, but are implicitly given by the index
of an array element. The data structure used for storing time
series data without location is depicted in Figure 4(a). Each
instance of this data structure can be described by a tuple
((N,C,R), r̂temp, Tstart) that specifies the corresponding virtual
signal, the temporal resolution r̂temp of the stored data, and the
timestamp Tstart that corresponds to the first array element.

The index of the first element is always 0, the timestamp of
any array element is obtained by multiplying its index by r̂temp
and adding the result to Tstart, i.e., T := Tstart+i·r̂temp. Not only
reducing the amount of stored data, this linear relationship
between array indexes and timestamps allows to access data
very efficiently. Each array element covers a time period of
length r̂temp. Adding new data only requires to either update
the last array element or to append a new element to the end
of the array.

An additional lookup table, see Figure 4(b), is needed for
storing time series data with location information. As location
information is preserved during temporal data aggregation,
there can be multiple aggregates referring to the same times-
tamp. The relationship between array indexes and timestamps
is again linear in the lookup table. Each lookup table record
specifies the start and end of contiguous segment in a second
one-dimensional array that stores sensor readings with location
information. Both arrays must be updated when new data is
added. The scope is again limited to replacing at most the last
array element or the last contiguous segment, respectively.

The database back-end organizes aggregated data in several
database tables. The contents of each database table can be
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Figure 5. The returned temporal level of detail is decided separately for each requested virtual signal. After all data has been collected and put together,
generating the final response may require further aggregation or filtering in the spatial domain. Sampling rate estimations and cached contents used for
generating CSV outputs are continuously updated by a number of concurrently running background threads.
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Figure 4. Data structures used for storing aggregated data in memory. Tstart
is the timestamp of the first array element. Location-preserving temporal
aggregation can yield multiple aggregates for the same time but distinct
locations.

described by a reduced tuple ((N,C,R), r̂temp) that specifies
the source and the temporal resolution r̂temp of the table
contents. Aggregated data without location information is
stored in database tables consisting of two columns, i.e.,
timestamp and aggregated sensor value. Four columns are
necessary for storing aggregated data with location. An index
on the time column is used for faster accessing data based on
time information.

E. Continuous Maintenance of Cached Contents

After Vizzly learned about the existence of a certain virtual
signal, e.g., from a user requesting certain data, it starts
fetching the complete history of this virtual signal from the
respective repository. Received data is then aggregated, the
results of this aggregation step are stored within Vizzly.

Furthermore, unaggregated data is also used for estimating
the sampling rate of sensors used. Vizzly needs this infor-
mation for deciding if a user request can be served with
unaggregated data, or if the response would contain too many
entries (see Sec. IV-B). A simple solution for estimating
the sampling rate is to divide the number of raw samples
by the measurement duration. For achieving more robustness
against configuration changes that might occur over time, we
currently use a window-based approach that maintains monthly
sampling rate estimates.

Both aggregated data and sampling rate estimates get out-
dated when new data is being added to the source repository.
Vizzly continuously polls respective repositories and, if nec-
essary, updates cached contents.

V. VIZZLY IMPLEMENTATION

The Vizzly software package consists of a Java web appli-
cation and a JavaScript library. After the back-end has been
setup once, adding interactive map and line plots to existing
web pages is very easy. Setting up a new plot only requires to
specify the virtual signals of interest and an empty placeholder
object on the web page itself. Size and position of the
placeholder object can be freely chosen in the HTML markup
of the web page, a fully functional visualization widget is
then automatically created by the Vizzly front-end library. The
Vizzly front-end library itself integrates dygraphs, a line plot
library, the Google Maps JavaScript API, and the jQuery UI
user interface library. Event-based communication with the
back-end is established using XMLHttpRequest, loading new
data is triggered by several user interactions, e.g., a change
of the time period of interest. Request details are specified
in the JSON format, requested data is returned in the CSV
(comma-separated values) format.

All back-end functionality is provided by a Java web
application that runs within Jetty, a light-weight HTTP server.
Unaggregated data is fetched from several instances of Global
Sensor Networks [1] (GSN). GSN is a middleware for sensor
networks that allows to access its data streams over HTTP.
Multiple background threads are concurrently updating cached
contents, aggregated data is stored in memory (RAM) and
in a MySQL database. DBCP is used for pooling database
connections, i.e., subsequent database accesses are accelerated
by connection re-usage. By applying a gzip compression filter
before sending a response to a client, the amount of transferred
data is significantly reduced up to a factor of five and more.

Apart from offering a data access interface, the Vizzly
back-end also provides a web-based management console and
a web-based performance probe. The management console
allows to see which objects are currently stored in the cache,
a user can request single cache contents to be removed. The
web-based performance probe exposes certain performance
indicators, e.g., the current cache size. To support system



supervision, this information is periodically sampled by a
network monitoring system.

Integral components of the Vizzly back-end and their
interplay are shown in Figure 5(a) and Figure 5(b). The
organization of cached contents is encapsulated by the Cache
Manager component that only exposes an interface for retriev-
ing aggregated sensor data. The Cache Manager maintains
an internal list of known virtual signals, new virtual signals
are learnt when a user requests a yet unknown virtual signal.
The list of virtual signals is continuously traversed, the Cache
Manager can decide to update related contents, to remove
contents from the cache, or to move contents between different
available cache back-ends.

VI. TWO DIVERSE USE CASES

The requirements for the design of Vizzly originate from
the PermaSense [16]/X-Sense [5] and OpenSense [2] research
projects. For being able to analyze both long-term and short-
term dynamics of monitored processes, the PermaSense project
requires data to be visualizable on arbitrary time scales.
Focusing on mobile sensors, e.g., sensing systems mounted
on vehicles, the OpenSense project requires data to also
be visualizable at varying spatial scales. While more than
600 million data points have already been collected in the
PermaSense project, we also expect the OpenSense project to
collect 100 million data points in the next few years.

A. PermaSense: Dynamics of Varying Temporal Horizons

The PermaSense project strives for the observation of geo-
physical phenomena in high-altitude regions. Since the initial
deployment in 2008, we currently operate four long-term
sensor network deployments [19]. Approximately 60 deployed
low-power sensor nodes fulfill different monitoring tasks, e.g.,
the monitoring of ground temperatures and the monitoring of
ice clefts, data is typically sampled every two minutes. New
generation sensing devices also monitor deformation processes
within rock walls, the movement of rock glaciers is monitored
using around 30 online and offline GPS devices [25].

Apart from scientific data, operating complex, remotely
located systems also requires large amounts of additional
system information to be recorded. Health data is continuously
sampled at all layers of the system architecture that ranges
from low-power sensor nodes up to powerful back-end servers.
Used sampling intervals range from 30 to 120 seconds.

Within the first year of test operation, Vizzly has been
established as an important tool for system supervision. Be-
ing able to visualize data at arbitrary time scales down to
single events allows on the one hand to assess the current
system state, but also to detect long-term trends, e.g., slowly
degrading components. Apart from this specific application,
Vizzly has also proven its usefulness for many other domain
experts. Exemplary applications are the visual inspection of
data quality, e.g., outliers or data gaps, the visual inspection
of signal characteristics, e.g., its value range, and the visual
selection data segments that are the most suited for a particular
analysis.

B. OpenSense: Mobile Sensors of Different Kind

The OpenSense project [2] investigates the challenge of
monitoring urban air quality using (i) mobile sensing stations
installed on top of public transport vehicles and (ii) personal
sensors such as enhanced smartphones and pocket sensors [12]
in the city of Zurich, Switzerland. The long-term goal is to
raise community interest in air pollution data and to foster its
involvement in monitoring air quality in urban areas.

To this date, we equipped five trams with sensing stations
measuring ozone, carbon monoxide (CO) and fine particles
(PM). Ozone and CO concentrations are measured every
minute, the PM sensor generates one sample every 5 sec.
Additionally, we also use the GasMobile system for measuring
ozone concentrations with an Android smartphone [15].

Over the past six months, one sensing station collected
around 2.2 millions of measurements12. We plan to install ten
mobile stations in Zurich by the end of the year and foresee
being able to collect up to 100 millions of data points during
two years of system operation. See [20] for a more detailed
description of the OpenSense dataset.

Interactive browsing though time- and location-sensitive
historical data at any desired level of detail is crucial (i) for
fine-grained analysis of raw data by domain experts and (ii)
for building various data processing and data access services
on top of raw data. In particular, non-expert users are often
interested in summaries on the development of air quality in
a particular region and whether any limit on the concentration
of pollutants was exceeded.

While the success of community-driven sensing highly de-
pends on the interest of individual persons and the possibility
to make data easy accessible and understandable for those
parties, Vizzly helps OpenSense to solve challenges that arise
with the large volumes of gathered data.

VII. PERFORMANCE EVALUATION

The sensor data of both projects, PermaSense and
OpenSense, is currently handled by a single instance of Viz-
zly13. Data of more than 2,500 different virtual signals is read
from six data repositories, the input consists of more than 535
million unaggregated data points. Most data originates from
the PermaSense project and thus does not include location
information. More than 5.5 million data points that originate
from the OpenSense project also include location information.

In the current configuration, unaggregated data points are
first down-sampled to the temporal resolution of r̂temp :=
4 min. The aggregation function used is the calculation of
the mean value. While the temporal resolution could also be
separately chosen for each virtual signal, this static setting is
currently derived from the two minute sampling period used
in PermaSense. Lower levels of detail are retrieved by further
down-sampling already aggregated data.

Aggregated data with the temporal resolution r̂temp of 4 min
is stored in a MySQL database. Currently 306 million stored

12Note, that the stations are usually turned off over night.
13The public data interfaces of both projects can be accessed at

http://data.permasense.ch and http://data.opensense.ethz.ch
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Figure 6. The request execution time is dominated by the data retrieval phase.
From 14,900 measured requests, fulfilling the request without transferring the
result to the client took 0.4 seconds or less in 90% of the cases. More than
97% of the requests could be fulfilled within at most 2.5 seconds.

aggregated data points account for around 11 GB of data on
the MySQL server. Further down-sampled data is additionally
stored in memory, around 230 million aggregated data points
with a temporal resolution of 960 sec occupy circa 880 MB
of RAM. Only two levels of temporal detail are stored, all
other temporal resolutions are computed on-the-fly by down-
sampling already aggregated data. While currently all virtual
signals are treated equally, precious memory will be better
utilized when contents are moved based on some metrics, e.g.,
the number of requests for a particular virtual signal.

For understanding the performance of the Vizzly back-end,
we are measuring the execution time of each request. Three
separate measurements are made for each of the three phases
that are required for serving a request, see Figure 5(a). Serving
a single request can require the data of several virtual signals
to be read in multiple cache accesses, the timing of each
data access is measured separately. Apart from the execution
times itself, other interesting metrics, e.g., the number of
returned data points, are also logged. While directly writing
performance data to a database would significantly increase
the response time of Vizzly, a background thread is in charge
of asynchronously moving collected performance data from
the memory to a MySQL database.

Generating the output usually takes less than a second.
Additional time in the order of a few tenth of a second is added
for compressing the result and eventually sending the result to
the client. The distribution of the request execution time across
the three phases needed for processing a request is shown in
Figure 6. The request execution time is clearly dominated by
the data retrieval phase. While initially processing the input
data is very simple, generating the output may require the
execution of an additional spatial aggregation or filtering.

Figure 7 shows the distribution of data fetch times. Aggre-
gated data that is stored in memory (RAM) can be loaded
very fast, the performance of loading aggregated data from
the MySQL database is also acceptable. In contrast, loading
unaggregated data from a GSN server can take several tens of
seconds. Visible variations show no correlation with the size
of the fetched result, but are caused by variations in the load
of the system and by the changing state of other components,
e.g., the state of the database query cache.

As already aggregated data can be further processed on-
the-fly without a noticeable delay, it is sufficient to cache only
one aggregate of each virtual signal. While the current level of
temporal detail can only be further reduced by down-sampling,
the highest temporal level of detail in which aggregated data
should be available must be cached. If the resulting data is too
large for being completely stored in memory, it is reasonable
to only keep frequently requested data in memory and to load
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Figure 7. Analysis of more than 250,000 data accesses. Retrieving already
aggregated and indexed data from memory takes less than 5 milliseconds in
99% of all cases. Further down-sampling data in the temporal domain takes
less than 4 milliseconds in 99% of the cases. The value of 99th percentile
for loading already aggregated and indexed data from the MySQL database
is 690 milliseconds. Loading unaggregated data from GSN takes 6.9 seconds
or less in 99% of the cases.

all other data from the less constraint MySQL database.

VIII. INTEGRATING AND EXTENDING VIZZLY

Ideally, Vizzly can be deployed out-of-the-box by just
starting the server application and integrating provided front-
end libraries into existing web pages.

However, individual project requirements, e.g., the scheme
used for storing data, might require extending Vizzly. For
allowing us and other parties to easily extend Vizzly, the
implementation of Vizzly follows modular design principles.

Regarding the Vizzly server, new data sources and cache
back-ends can be implemented by either extending already
existing components, e.g., refining an existing MySQL data
source, or by adding new components that follow defined
abstract interfaces. On the front-end side, we find delivering
CSV data as a common denominator that can be used together
with many existing visualization libraries. While any client
implementation must follow the defined request format of
Vizzly, there are no further restrictions concerning platforms
or libraries used for building new clients, e.g., a native
smartphone application.

Vizzly is open source software and free to use. The
Vizzly project repository that is hosted on Google Code
at https://code.google.com/p/vizzly includes all re-
sources needed for installing and extending Vizzly.

IX. CONCLUSIONS

We presented Vizzly, a middleware for the interactive
browsing of large sensor network data sets. Vizzly can be
easily integrated into existing systems, only a web browser is
required for accessing map and line plot widgets. Vizzly has
been successfully applied to both mobile and static sensing
scenarios, its ability to handle very large data sets that consist
of hundreds of millions of data points has clearly been proven
feasible. As next steps, we expect the implementation of suited
cache replacement strategies to further improve response times
while at the same time decreasing the memory consumption
of Vizzly. Another topic is the implementation of other map
representations, e.g., heat maps.
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