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ABSTRACT

Identifying moving objects from a video sequence is a fundamental and critical task in many computer-vision
applications. A common approach is to perform background subtraction, which identifies moving objects from
the portion of a video frame that differs significantly from a background model. There are many challenges
in developing a good background subtraction algorithm. First, it must be robust against changes in illumina-
tion. Second, it should avoid detecting non-stationary background objects such as swinging leaves, rain, snow,
and shadow cast by moving objects. Finally, its internal background model should react quickly to changes
in background such as starting and stopping of vehicles. In this paper, we compare various background sub-
traction algorithms for detecting moving vehicles and pedestrians in urban traffic video sequences. We consider
approaches varying from simple techniques such as frame differencing and adaptive median filtering, to more
sophisticated probabilistic modeling techniques. While complicated techniques often produce superior perfor-
mance, our experiments show that simple techniques such as adaptive median filtering can produce good results
with much lower computational complexity.
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1. INTRODUCTION

Identifying moving objects from a video sequence is a fundamental and critical task in video surveillance, traffic
monitoring and analysis, human detection and tracking, and gesture recognition in human-machine interface.
A common approach to identifying the moving objects is background subtraction, where each video frame
is compared against a reference or background model. Pixels in the current frame that deviate significantly
from the background are considered to be moving objects. These “foreground” pixels are further processed for
object localization and tracking. Since background subtraction is often the first step in many computer vision
applications, it is important that the extracted foreground pixels accurately correspond to the moving objects
of interest. Even though many background subtraction algorithms have been proposed in the literature, the
problem of identifying moving objects in complex environment is still far from being completely solved.

There are several problems that a good background subtraction algorithm must solve correctly. Consider a
video sequence from a stationary camera overlooking a traffic intersection. As it is an outdoor environment, a
background subtraction algorithm should adapt to various levels of illumination at different times of the day and
handle adverse weather condition such as fog or snow that modifies the background. Changing shadow, cast by
moving objects, should be removed so that consistent features can be extracted from the objects in subsequent
processing. The complex traffic flow at the intersection also poses challenges to a background subtraction
algorithm. The vehicles move at a normal speed when the light is green, but come to a stop when it turns red.
The vehicles then remain stationary until the light turns green again. A good background subtraction algorithm
must handle the moving objects that first merge into the background and then become foreground at a later time.
In addition, to accommodate the real-time needs of many applications, a background subtraction algorithm must
be computationally inexpensive and have low memory requirements, while still being able to accurately identify
moving objects in the video.

Even though many background subtraction techniques have been proposed, they are typically presented as
parts of a larger computer vision application. In this paper, we focus on the problem of background subtraction



and survey many existing schemes in the literature. In order to have a fair comparison between different schemes,
we analyze them based on how they differ in four different functional steps: preprocessing, background modeling,
foreground detection, and data validation. We have also implemented a number of representative techniques, and
we evaluate their performance on urban traffic video sequences under different conditions. The paper is organized
as follows: the survey of background subtraction algorithms can be found in Section 2. The experimental results
are presented in Section 3. Finally, we conclude our paper and discuss future work in Section 4.

2. BACKGROUND SUBTRACTION ALGORITHMS

Even though there exist a myriad of background subtraction algorithms in the literature, most of them follow
a simple flow diagram shown in Figure 1. The four major steps in a background subtraction algorithm are
preprocessing, background modeling, foreground detection, and data validation. Preprocessing consists of a
collection of simple image processing tasks that change the raw input video into a format that can be processed
by subsequent steps. Background modeling uses the new video frame to calculate and update a background
model. This background model provides a statistical description of the entire background scene. Foreground
detection then identifies pixels in the video frame that cannot be adequately explained by the background model,
and outputs them as a binary candidate foreground mask. Finally, data validation examines the candidate mask,
eliminates those pixels that do not correspond to actual moving objects, and outputs the final foreground mask.
Domain knowledge and computationally-intensive vision algorithms are often used in data validation. Real-time
processing is still feasible as these sophisticated algorithms are applied only on the small number of candidate
foreground pixels. Many different approaches have been proposed for each of the four processing steps. We
review some of the representative ones in the following subsections.

Figure 1. Flow diagram of a generic background subtraction algorithm.

2.1. Preprocessing

In most computer vision systems, simple temporal and/or spatial smoothing are used in the early stage of
processing to reduce camera noise. Smoothing can also be used to remove transient environmental noise such
as rain and snow captured in outdoor camera. For real-time systems, frame-size and frame-rate reduction are
commonly used to reduce the data processing rate. If the camera is moving or multiple cameras are used at
different locations, image registration between successive frames or among different cameras is needed before
background modeling [1, 2].

Another key issue in preprocessing is the data format used by the particular background subtraction algo-
rithm. Most of the algorithms handle luminance intensity, which is one scalar value per each pixel. However,
color image, in either RGB or HSV color space, is becoming more popular in the background subtraction lit-
erature [3–10]. These papers argue that color is better than luminance at identifying objects in low-contrast
areas and suppressing shadow cast by moving objects. In addition to color, pixel-based image features such as
spatial and temporal derivatives are sometimes used to incorporate edges and motion information. For example,
intensity values and spatial derivatives can be combined to form a single state space for background tracking with
the Kalman filter [11]. Pless et al. combine both spatial and temporal derivatives to form a constant velocity
background model for detecting speeding vehicles [12]. The main drawback of adding color or derived features
in background modeling is the extra complexity for model parameter estimation. The increase in complexity is
often significant as most background modeling techniques maintain an independent model for each pixel.



2.2. Background Modeling

Background modeling is at the heart of any background subtraction algorithm. Much research has been devoted
to developing a background model that is robust against environmental changes in the background, but sensitive
enough to identify all moving objects of interest. We classify background modeling techniques into two broad
categories – non-recursive and recursive. They are described in the following subsections. We focus only on
highly-adaptive techniques, and exclude those that require significant resource for initialization. These include
schemes described in [13] and [14], which store tens of seconds of video to construct initial background models that
are characterized by eigen-images [13] or temporal maximum, minimum, and maximum inter-frame differences
of all identified background pixels [14]. For the remainder of this paper, It(x, y) and Bt(x, y) are used to denote
the luminance pixel intensity and its background estimate at spatial location (x, y) and time t. The spatial
coordinate (x, y) may be dropped if it is not relevant in the description.

2.2.1. Non-recursive Techniques

A non-recursive technique uses a sliding-window approach for background estimation. It stores a buffer of the
previous L video frames, and estimates the background image based on the temporal variation of each pixel
within the buffer. Non-recursive techniques are highly adaptive as they do not depend on the history beyond
those frames stored in the buffer. On the other hand, the storage requirement can be significant if a large buffer
is needed to cope with slow-moving traffic. Given a fixed-size buffer, this problem can be partially alleviated
by storing the video frames at a lower frame-rate r. Some of the commonly-used non-recursive techniques are
described below:

Frame differencing Arguably the simplest background modeling technique, frame differencing uses the video
frame at time t − 1 as the background model for the frame at time t. Since it uses only a single previous
frame, frame differencing may not be able to identify the interior pixels of a large, uniformly-colored moving
object. This is commonly known as the aperture problem.

Median filter Median filtering is one of the most commonly-used background modeling techniques [4,10,15–17].
The background estimate is defined to be the median at each pixel location of all the frames in the buffer.
The assumption is that the pixel stays in the background for more than half of the frames in the buffer.
Median filtering has been extended to color by replacing the median with the medoid [10]. The complexity
of computing the median is O(L log L) for each pixel.

Linear predictive filter Toyama et al. compute the current background estimate by applying a linear predic-
tive filter on the pixels in the buffer [18]. The filter coefficients are estimated at each frame time based on
the sample covariances, making this technique difficult to apply in real-time.

Non-parametric model Unlike previous techniques that use a single background estimate at each pixel loca-
tion, Elgammal et al. [5] use the entire history It−L, It−L+1, . . . , It−1 to form a non-parametric estimate of
the pixel density function f(It = u):

f(It = u) =
1

L

t−1
∑

i=t−L

K(u − Ii) (1)

K(·) is the kernel estimator which was chosen to be Gaussian. The current pixel It is declared as foreground
if it is unlikely to come from this distribution, i.e. f(It) is smaller than some predefined threshold. The
advantage of using the full density function over a single estimate is the ability to handle multi-modal
background distribution. Examples of multi-modal background include pixels from a swinging tree or near
high-contrast edges where they flicker under small camera movement. The implementation in [5] uses
the median of the absolute differences between successive frames as the width of the kernel. Thus, the
complexity of building the model is the same as median filtering. On the other hand, the foreground
detection is more complex as it needs to compute Equation (1) for each pixel.



2.2.2. Recursive Techniques

Recursive techniques do not maintain a buffer for background estimation. Instead, they recursively update a
single background model based on each input frame. As a result, input frames from distant past could have
an effect on the current background model. Compared with non-recursive techniques, recursive techniques
require less storage, but any error in the background model can linger for a much longer period of time. Most
schemes include exponential weighting to discount the past, and incorporate positive decision feedback to use
only background pixels for updating. Some of the representative recursive techniques are described below:

Approximated median filter Due to the success of non-recursive median filtering, McFarlane and Schofield
propose a simple recursive filter to estimate the median [19]. This technique has also been used in back-
ground modeling for urban traffic monitoring [20]. In this scheme, the running estimate of the median is
incremented by one if the input pixel is larger than the estimate, and decreased by one if smaller. This
estimate eventually converges to a value for which half of the input pixels are larger than and half are
smaller than this value, that is, the median.

Kalman filter Kalman filter is a widely-used recursive technique for tracking linear dynamical systems under
Gaussian noise. Many different versions have been proposed for background modeling, differing mainly
in the state spaces used for tracking. The simplest version uses only the luminance intensity [3, 21–23].
Karmann and von Brandt use both the intensity and its temporal derivative [24], while Koller, Weber,
and Malik use the intensity and its spatial derivatives [11]. We provide a brief description of the popular
scheme used in [24]. The internal state of the system is described by the background intensity Bt and its
temporal derivative B′

t, which are recursively updated as follows:

[

Bt

B′
t

]

= A ·

[

Bt−1

B′
t−1

]

+ Kt ·

(

It − H · A ·

[

Bt−1

B′
t−1

])

(2)

Matrix A describes the background dynamics and H is the measurement matrix. Their particular values
used in [24] are as follows:

A =

[

1 0.7
0 0.7

]

, H = [1 0] (3)

The Kalman gain matrix Kt switches between a slow adaptation rate α1 and a fast adaptation rate α2 > α1

based on whether It−1 is a foreground pixel:

Kt =

[

α1

α1

]

if It−1 is foreground, and

[

α2

α2

]

otherwise. (4)

Mixture of Gaussians (MoG) Unlike Kalman filter which tracks the evolution of a single Gaussian, the MoG
method tracks multiple Gaussian distributions simultaneously. MoG has enjoyed tremendous popularity
since it was first proposed for background modeling in [25]. Similar to the non-parametric model described
in Section 2.2.1, MoG maintains a density function for each pixel. Thus, it is capable of handling multi-
modal background distributions. On the other hand, since MoG is parametric, the model parameters can
be adaptively updated without keeping a large buffer of video frames. Our description of MoG is based on
the scheme described in [6]. The pixel distribution f(It = u) is modeled as a mixture of K Gaussians:

f(It = u) =

K
∑

i=1

ωi,t · η(u;µi,t, σi,t) (5)

where η(u;µi,t, σi,t) is the i-th Gaussian component with intensity mean µi,t and standard deviation σi,t.
ωi,t is the portion of the data accounted for by the i-th component. Typically, K ranges from three to five,

depending on the available storage. For each input pixel It, the first step is to identify the component î
whose mean is closest to It. Component î is declared as the matched component if |It −µî,t−1

| ≤ D ·σî,t−1
,



where D defines a small positive deviation threshold. The parameters of the matched component are then
updated as follows:

ωî,t = (1 − α)ωî,t−1
+ α

µî,t = (1 − ρ)µî,t−1
+ ρIt (6)

σ2

î,t
= (1 − ρ)σ2

î,t−1
+ ρ(It − µî,t)

2,

where α is a user-defined learning rate with 0 ≤ α ≤ 1. ρ is the learning rate for the parameters and can
be approximated as follows∗:

ρ ≈
α

ωî,t

(7)

If no matched component can be found, the component with the least weight is replaced by a new component
with mean It, a large initial variance σo and a small weight ωo. The rest of the components maintain the
same means and variances, but lower their weights to achieve exponential decay:

ωi,t = (1 − α)ωi,t−1 (8)

Finally, all the weights are renormalized to sum up to one. To determine whether It is a foreground pixel,
we first rank all components by their values of ωi,t/σi,t. Higher-rank components thus have low variances
and high probabilities, which are typical characteristics of background. If i1, i2, . . . , iK is the component
order after sorting, the first M components that satisfy the following criterion are declared to be the
background components:

iM
∑

k=i1

ωk,t ≥ Γ, (9)

where Γ is the weight threshold. It is declared as a foreground pixel if It is within D times the standard
deviation from the mean of any one of the background components. Note that the above formulation can
be easily extended to handle color data. The computational complexity and storage requirement of MoG
is linear in terms of the number of components K.

Recent development in MoG technologies include a sensitivity analysis of parameters [27], improvements
in complexity and adaptation [7, 26,28], and an extension to construct a panoramic background [1].

2.3. Foreground Detection

Foreground detection compares the input video frame with the background model, and identifies candidate
foreground pixels from the input frame. Except for the non-parametric model and the MoG model, all the
techniques introduced in Section 2.2 use a single image as their background models. The most commonly-
used approach for foreground detection is to check whether the input pixel is significantly different from the
corresponding background estimate:

|It(x, y) − Bt(x, y)| > T (10)

Another popular foreground detection scheme is to threshold based on the normalized statistics:

|It(x, y) − Bt(x, y) − µd|

σd

> Ts, (11)

where µd and σd are the mean and the standard deviation of It(x, y) − Bt(x, y) for all spatial locations (x, y).
Most schemes determine the foreground threshold T or Ts experimentally.

Ideally, the threshold should be a function of the spatial location (x, y). For example, the threshold should
be smaller for regions with low contrast. One possible modification is proposed by Fuentes and Velastin [29].

∗Stauffer and Grimson use α · η(It; µî,t, σî,t) to compute ρ in [6], which is incorrect as pointed out in [26]. ρ should be

the product between α/ωî,t and the posterior probability of It belonging to the matched component î. Here, we assume
the posterior probability to be one as It is much closer to the matched component than any other component.



They use the relative difference rather than absolute difference to emphasize the contrast in dark areas such as
shadow:

|It(x, y) − Bt(x, y)|

Bt(x, y)
> Tc (12)

Nevertheless, this technique cannot be used to enhance contrast in bright images such as an outdoor scene under
heavy fog.

Another approach to introduce spatial variability is to use two thresholds with hysteresis [10, 23]. The basic
idea is to first identify “strong” foreground pixels whose absolute differences with the background estimates
exceeded a large threshold. Then, foreground regions are grown from strong foreground pixels by including
neighboring pixels with absolute differences larger than a smaller threshold. The region growing can be performed
by using a two-pass, connected-component grouping algorithm [30].

2.4. Data Validation

We define data validation as the process of improving the candidate foreground mask based on information
obtained from outside the background model. All the background models in Section 2.2 have three main limita-
tions: first, they ignore any correlation between neighboring pixels; second, the rate of adaption may not match
the moving speed of the foreground objects; and third, non-stationary pixels from moving leaves or shadow cast
by moving objects are easily mistaken as true foreground objects.

The first problem typically results in small false-positive or false-negative regions distributed randomly across
the candidate mask. The most common approach is to combine morphological filtering and connected component
grouping to eliminate these regions [6, 18, 21]. Applying morphological filtering on foreground masks eliminates
isolated foreground pixels and merges nearby disconnected foreground regions. Many applications assume that
all moving objects of interest must be larger than a certain size. Connected-component grouping can then be
used to identify all connected foreground regions, and eliminates those that are too small to correspond to real
moving objects.

When the background model adapts at a slower rate than the foreground scene, large areas of false foreground,
commonly known as “ghosts”, often occur [6,14]. If the background model adapts too fast, it will fail to identify
the portion of a foreground object that has corrupted the background model. A simple approach to alleviate
these problems is to use multiple background models running at different adaptation rates, and periodically
cross-validate between different models to improve performance [5, 8, 23]. Sophisticated vision techniques can
also be used to validate foreground detection. Computing optical flow for candidate foreground regions can
eliminate ghost objects as they have no motion [10, 31]. Color segmentation can be used to grow foreground
regions by assuming similar color composition throughout the entire object [18]. If multiple cameras are available
to capture the same scene at different angles, disparity information between cameras can be used to estimate
depth. Depth information is useful as foreground objects are closer to the camera than background [8, 32].

The moving-leaves problem can be addressed by using sophisticated background modeling techniques like
MoG and applying morphological filtering for cleanup. On the other hand, suppressing moving shadow is
much more problematic, especially for luminance-only video. A recent survey and comparison of many shadow
suppression algorithms can be found in [33].

3. EXPERIMENTAL RESULTS

In this section, we compare the performance of a number of popular background modeling techniques. Table 1 lists
all the techniques being tested, in the increasing order of complexity. We fix the buffer size for the median filter
and the number of components for MoG so that they have comparable storage requirements and computational
complexity. In the performance evaluation, we will vary the test parameters to show the performance of each
algorithm at different operation points.

In this paper, we apply the background models to luminance sequences only. For preprocessing, we first apply
a three-frame temporal erosion to the test sequence, that is we replace It with the minimum of It−1, It, and
It+1. This step can reduce temporal camera noise and mitigate the effect of snowfall present in one of our test
sequences. Then, a 3× 3 spatial Gaussian filter is used to reduce spatial camera noise. Simple thresholding with



normalized statistics is used for foreground detection, except for MoG which has a separate foreground detection
process as described in Section 2.2.2. No data validation is performed to postprocess the output foreground
masks.

Schemes Fixed parameters Test parameters
Frame differencing (FD) None Foreground threshold Ts

Approximated median filter (AMF) None Foreground threshold Ts

Kalman filter (KF) None Adaptation rates α1, α2

Foreground threshold Ts

Median filter (MF) Buffer size L = 9 Buffer sampling rate r
Foreground threshold Ts

Mixture of Gaussian (MoG) Number of components K = 3 Adaptation rate α
Initial variance σ2

o = 36 Weight threshold Γ
Initial weight ωo = 0.1 Deviation threshold D

Table 1. Background modeling schemes tested and their parameters.

3.1. Test Sequences

We have selected four publicly-available urban traffic video sequences from the website maintained by KOGS/-
IAKS Universitaet Karlsruhe† A sample frame from each sequence is shown in the first row of Figure 2. The
first sequence is called “Bright”, which is 1500 frames long showing a traffic intersection in bright daylight. This
sequence contains some “stop-and-go” traffic – vehicles come to a stop in front of a red-light and start moving
once the light turns green. The second sequence is called “Fog”, which is 300 frames long showing the same traffic
intersection in heavy fog. The third sequence “Snow” is also 300 frames long and shows the intersection while
snowing. Fog and Snow were originally in color; we have first converted them into luminance and discarded the
chroma channels. The first three sequences all have low to moderate traffic. They are selected to demonstrate
the performance of background subtraction algorithms under different weather conditions. The last sequence
“Busy” is 300 frames long. It shows a busy intersection with the majority of the vehicle traffic flowing from the
top left corner to the right side. A quarter of the intersection is under a shadow of a building. A number of
pedestrians are walking on the sidewalk on the left. The camera appears to be behind a window and the base of
the window is partially reflected at the lower right corner of the video frames. This sequence is selected because
of the large variation in the sizes of the moving objects and the presence of the shadow of a large building.

3.2. Evaluation

In order to have a quantitative evaluation of the performance, we have selected ten frames at regular intervals
from each test sequence, and manually highlighted all the moving objects in them. These “ground-truth” frames
are selected from the latter part of each of the test sequences‡ to minimize the effect of the initial adaptation
of the algorithms. In the manual annotation, we highlight only the pixels belonging to vehicles and pedestrians
that are actually moving at that frame. Since we do not use any shadow suppression scheme in our comparison,
we also include those shadow pixels cast by moving objects. The ground-truth frames showing only the moving
objects are shown in the second row of Figure 2.

We use two information retrieval measurements, recall and precision, to quantify how well each algorithm
matches the ground-truth [34]. They are defined in our context as follows:

Recall =
Number of foreground pixels correctly identified by the algorithm

Number of foreground pixels in ground-truth
(13)

Precision =
Number of foreground pixels correctly identified by the algorithm

Number of foreground pixels detected by the algorithm
(14)

†The URL is http://i21www.ira.uka.de/image sequences. All sequences are copyrighted by H.-H. Nagel of KOGS/IAKS
Universitaet Karlsruhe.

‡The ground-truth frames are selected from the last 1000 frames in the Bright sequence, and the last 200 frames in
the remaining three sequences.



(a) Bright (b) Fog (c) Snow (d) Busy

Figure 2. Sample frames and the corresponding ground-truth frames from the four test sequences: Bright, Fog, Snow,
and Busy.

Recall and precision values are both within the range of 0 and 1. When applied to the entire sequence, the recall
and precision reported are averages over all the measured frames. Typically, there is a trade-off between recall
and precision – recall usually increases with the number of foreground pixels detected, which in turn may lead
to a decrease in precision. A good background algorithm should attain as high a recall value as possible without
sacrificing precision.

In our experiments, we vary the parameters in each algorithm to obtain different recall-precision operating
points. The resulting graphs for the four test sequences are shown in Figures 3(a) to (d). There are four plots
for each sequence. The first plot corresponds to the two simplest algorithms, FD and AMF. The curves are
generated by varying the foreground threshold Ts. The second plot corresponds to MF at buffer sampling rates
of 1, 5, and 10 frames per second. The curves are also generated by varying Ts. The third plot corresponds
to MoG at different combinations of α and Γ. The curves are generated by varying the deviation threshold
D. Compared with the previous two schemes, there are far fewer actual data points on the MoG curves. The
reason is that D directly affects the future states of MoG. To generate a single data point, one needs to run the
algorithm through the entire video sequence at a particular value of D. On the other hand, Ts has no effect on
the internal states of FD, AMF, or MF. To generate the results at different values of Ts, it is sufficient to run
the algorithm once, save the raw difference frames, and then threshold them with different values of Ts. The
final plot contains results from KF at different values of α1 and α2. The curves are also generated by varying Ts.
Note that in the cases when α1 and α2 are equal, the feedback information is not used. The update equation in
(2) reduces to a leaky moving average with exponential decay on past values.

Based on the measurements shown in Figure 3 and visual examination on the resulting foreground masks, we
make the following observations regarding the background algorithms tested in this paper:

1. With the appropriate parameters, MoG achieves the best precision and recall in Figure 3. MF is a very
close second, followed by AMF and KF. FD is significantly worse than all the other schemes.

2. Even though AMF is not as good as MoG and MF, it produces good performance with an extremely simple
implementation. Since the amount of background update (+1 or -1) is independent of the foreground pixels,
it is very robust against moving traffic. The only drawback is that it adapts slowly toward a large change
in background – for example, as shown in the bottom image of Figure 4(c), AMF needs many frames to
learn the new dark background revealed by a white car that moves away after being stationary for a long
time.



3. Visually, KF produces the worst foreground masks among all the schemes. Even with a large foreground
threshold and slow adapting rates, the background model in KF is easily affected by the foreground pixels.
As a result, it typically leaves a long trail after a moving object.

4. All background algorithms tested are sensitive to environmental noise, as evident in the comparatively
lower recall and precision numbers for the Fog and Snow sequences.

5. For our test sequences, algorithms that adapt more slowly often have better performance than those that
adapt quickly. For example, MoG or KF running at a smaller value of α produces better results than the
same algorithm running at a larger α. The same applies to MF with a larger value of r. This can be easily
explained: slow adaptation prevents transient foreground from corrupting the background model. A visual
example is shown in the top row of Figure 4. These images are the results of applying different algorithms
to detecting a fast moving vehicle. There is a “tail” trailing behind the moving car in the leftmost image,
which is produced by a fast-adapting MF. The tail is completely removed in the second image when a
slow-adapting MF is used. Nonetheless, slow adaptation can be a double-edged sword – it also makes the
algorithm less responsive to changes in background. The bottom row shows the same algorithms being
applied to a scene in which a car begins to move after the light has turned green. The fast-adapting MF
in the leftmost image quickly detects the change and updates its background model. In the second image,
the slow-adapting MF still remembers the old location of the car, and produces a “ghost” object behind
the car. The third column shows the results by AMF, which represents a compromise between the slow
and fast-adapting MF. The best results come from MoG which are shown in the last column. This can be
attributed to the multi-modal characteristics of MoG. Even though the old location of the car is still part
of the background model in MoG, the model also captures the newly-revealed background as an alternative
explanation of the input pixels.

6. The MoG method also has its own drawbacks. First, it is computationally intensive and its parameters
require careful tuning. Second, it is very sensitive to sudden changes in global illumination. If a scene
remains stationary for a long period of time, the variances of the background components may become
very small. A sudden change in global illumination can then turn the entire frame into foreground.

4. CONCLUSIONS

In this paper, we survey a number of background subtraction algorithms in the literature. We analyze them
based on how they differ in preprocessing, background modeling, foreground detection, and data validation. Five
specific algorithms are tested on urban traffic video sequences: frame differencing, adaptive median filtering,
median filtering, mixture of Gaussians, and Kalman filtering. Mixture of Gaussians produces the best results,
while adaptive median filtering offers a simple alternative with competitive performance. More research, however,
is needed to improve robustness against environment noise, sudden change of illumination, and to provide a
balance between fast adaptation and robust modeling.
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Figure 3. Precision-recall plots for (a) Bright, (b) Fog, (c) Snow, and (d) Busy.



(a) MF (r = 1) (b) MF (r = 10) (c) AMF (d) MoG (α = 0.01,
Γ = 0.25)

Figure 4. Trailing tails and ghosts observed in the results of various background subtraction algorithms.


