
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Rinne, Mikko; Abdullah, Haris; Törmä, Seppo; Nuutila, Esko

Processing Heterogeneous RDF Events with Standing SPARQL Update Rules

Published in:
The 11th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE 2012),
Rome, Italy, September 11-12, 2012

DOI:
10.1007/978-3-642-33615-7_24

Published: 01/01/2012

Document Version
Peer reviewed version

Please cite the original version:
Rinne, M., Abdullah, H., Törmä, S., & Nuutila, E. (2012). Processing Heterogeneous RDF Events with Standing
SPARQL Update Rules. In R. Meersman, & T. Dillon (Eds.), The 11th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE 2012), Rome, Italy, September 11-12, 2012 (pp. 793-802).
DOI: 10.1007/978-3-642-33615-7_24

http://dx.doi.org/10.1007/978-3-642-33615-7_24

Processing Heterogeneous RDF Events with
Standing SPARQL Update Rules

Mikko Rinne, Haris Abdullah, Seppo Törmä, and Esko Nuutila

Department of Computer Science and Engineering,
Aalto University, School of Science, Finland

firstname.lastname@aalto.fi

Abstract. SPARQL query language is targeted to search datasets en-
coded in RDF. SPARQL Update adds support of insert and delete op-
erations between graph stores, enabling queries to process data in steps,
have persistent memory and communicate with each other. When used in
a system supporting incremental evaluation of multiple simultaneously
active and collaborating queries SPARQL can define entire event process-
ing networks. The method is demonstrated by an example service, which
triggers notifications about the proximity of friends, comparing alterna-
tive SPARQL-based approaches. Observed performance in terms of both
notification delay and correctness of results far exceed systems based on
window repetition without extending standard SPARQL or RDF.

Keywords: Complex Event Processing, RDF, SPARQL Update

1 Introduction

Widening adoption of semantic web technologies has fueled interest to extend
the applicability of RDF and SPARQL from static datasets towards processing
of dynamic data [1, 2, 4, 9], with potential applications in smart spaces, mobile
computing, internet-of-things, and the real-time web.

We have implemented a system for processing incrementally changing RDF
data with standing SPARQL queries and Update1 rules denoted Instans2 [1].
Multiple queries and rules can be active simultaneously, enabling them to work
together as a “program”. The queries and rules are parsed into a Rete network
[5]. Instans does not therefore execute queries on demand but rather propagates
data through a query matching network. Each new RDF triple is processed only
once through any part of the network, and the output is produced immediately
when all the conditions of a registered SPARQL query become satisfied.

In this paper we study the use of RDF/SPARQL in complex event processing
– the detection of patterns and derivation of new events from incoming events.
Previous attempts of stream processing with RDF/SPARQL have adopted the
approach of extending RDF triples with time stamps [7, 11, 12], and SPARQL
queries with streams [2, 4], windows [4, 9], or sequences [2].

1 http://www.w3.org/TR/sparql11-update/
2 Incremental eNgine for STANding Sparql, http://cse.aalto.fi/instans/

R. Meersman et al. (Eds.): OTM 2012, Part II, LNCS 7566, pp. 797–806, 2012.
(C) Springer-Verlag Berlin Heidelberg 2012
The original publication is available at www.springerlink.com:
http://link.springer.com/chapter/10.1007/978-3-642-33615-7_24

We have tried to find an alternative to such extensions. Our hypothesis
is that incremental query evaluation (as provided by Instans) using standard

RDF/SPARQL can be as good a platform for event processing as non-incrementally

evaluated RDF/SPARQL with stream processing extensions.
In this paper we test the hypothesis with an example application Close

Friends that produces a “nearby” notification if two friends in a social net-
work come geographically close to each other. For reasons of space and pre-
sentation, we have chosen a simple application, although one which can still
demonstrate essential aspects of event processing: combination of independently
arriving events, filtering based on non-trivial conditions, maintenance of context
to avoid repeated notifications, and selection of the recent incoming events.

We present three approaches to Close Friends: (1) Single SPARQL query as a
reference implementation based on non-incrementally evaluated RDF/SPARQL
without any extensions, (2) Window-based streaming SPARQL which is repeat-
edly re-evaluated RDF/SPARQL with stream processing extensions (based on
C-SPARQL [4], as described below in more detail), and (3) Incrementally eval-

uated RDF/SPARQL without any extensions, executable with Instans.
The solutions are evaluated with event data generated with a mobile user

simulator created by Instans group. The following evaluation criteria are used:

– Correctness: Produce all correct notifications and no incorrect ones.
– No duplication: Avoid duplicate notifications of a same event.
– Timeliness: How fast are notifications given?
– Scalability : How does the system scale with increasing number of events?

The results show that Instans outperforms the other solutions. The problem
cannot be solved with the single SPARQL query at all and streaming SPARQL
is inferior with respect to the criteria above. Instans gives corrent notifications
without duplicates in a fraction of the notification time of Streaming SPARQL.

While the results do not prove our hypothesis, they nonetheless corroborate
it. In the example, which could well be a part of a larger event processing appli-
cation, incremental query matching turned out to be a more powerful solution
enabler than stream processing extensions. The conclusion is that if one wants to
do complex event processing with RDF/SPARQL, incremental query matching
should be considered before language-level extensions.

Below in Section 2 we first review the previous approaches to event process-
ing with RDF/SPARQL and select the comparison systems. Section 3 presents
di↵erent solution approaches. In Section 4 we review how successfully each ap-
proach can meet the criteria. Finally, Section 5 draws conclusions on the general
applicability of the presented methods and discusses topics for future research.

2 Event Processing with RDF and SPARQL

EP-SPARQL described by Anicic et al. [2] is a streaming environment focusing
on the detection of RDF triples in a specific temporal order. The examples given
on EP-SPARQL also support heterogeneous event formats, create aggregation

over sliding windows using subqueries and expressions, and layer events by con-
structing new streams from the results of queries. EP-SPARQL translation to
ETALIS3 does not currently handle our example queries. Due to the other ben-
efits of using standard-based semantic web technologies we did not investigate
the use of the native prolog-based ETALIS further.

C-SPARQL [4], where RDF streams are built based on time-annotated triples,
focuses on relatively homogeneous event streams, where each event is represented
by a single triple, annotated by time. In this study we consider the suitability
of C-SPARQL to process heterogeneous events, and what would be the benefits
and challenges of the approach in such an environment.

CQELS also takes the approach of extending SPARQL with window op-
erators on RDF Streams [9]. Like C-SPARQL, it also supports time-based and
triple-based windowing. The version of CQELS available at the time of preparing
this manuscript does not yet support SPARQL 1.1 Update. Therefore it shares
the C-SPARQL limitation of not supporting communication between queries.
The distributed version of CQELS is also restricted to use the input files pro-
vided by the authors, permitting no comparisons on other example cases to be
carried out at this time.

The only stream processing oriented RDF/SPARQL system that is avail-
able for comparisons is C-SPARQL. One version of Close Friends application is
implemented with it in the next chapter.

A pure performance comparison of Instans would be best made against an-
other RDF/SPARQL system using incremental query evaluation. Sparkweave4

version 1.1 presented by Komazec and Cerri [8] – which is based on Rete-
algorithm – is the only one we have discovered so far. Unfortunately, it does
not support FILTERs or SPARQL 1.1 features, so it was not possible to use it
for comparison of our example.

3 Solution Approaches

The Close Friends application can be approached from multiple angles using
SPARQL. We concentrate on three evolutionary methods: 1) Single SPARQL
1.1 Query, 2) Window-based streaming SPARQL using C-SPARQL and 3) In-
cremental query evaluation with SPARQL 1.1 Query + Update using Instans.
In order to compress our program code, some common formats and fragments
of code are collected here. The following prefixes are used:

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX tl:<http://purl.org/NET/c4dm/timeline.owl#>

PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

PREFIX event:<http://purl.org/NET/c4dm/event.owl#>

The social network is defined by foaf:knows properties:

3 http://code.google.com/p/etalis/
4 https://github.com/skomazec/Sparkweave

:p2 foaf:knows :p1 . :p1 foaf:knows :p2 .

The mobile clients provide location updates in RDF format using Turtle:

:e1 a event:Event ;

event:agent :p3 ;

event:place [geo:lat 60.158776 ; geo:long 24.881490 ;] ;

event:time [a tl:Instant ; tl:at "2012-09-10T08:17:11"^^xsd:dateTime ;] .

The format is flexible and allows clients to add further triples. Some clients could
e.g. add altitude reporting.

The following two macros appear repeatedly in the queries:

<bind events for p1+p2> means:

?event1 event:agent ?person1 ;

event:place [geo:lat ?lat1 ;

geo:long ?long1 ;] ;

event:time [tl:at ?dttm1] .

?event2 event:agent ?person2 ;

event:place [geo:lat ?lat2 ;

geo:long ?long2 ;] ;

event:time [tl:at ?dttm2]

<bind event to variables> means:

?event a event:Event ;

event:agent ?person ;

event:place [geo:lat ?lat ;

geo:long ?long ;] ;

event:time [a tl:Instant ;

tl:at ?dttm ;]

The first fragment is used for comparing locations and times (only necessary
triples matched), whereas the second fragment is used for cleanup.

3.1 Approach 1: Single SPARQL Query

This example illustrates how the Close Friends use case could be approached
using a single SPARQL 1.1 Query without proprietary extensions. It constructs
an RDF graph consisting of triples showing which subscribers were found close
to each other in the data available in the main graph:

CONSTRUCT { ?person1 :nearby ?person2 }
WHERE { # Part 1: Bind event data for pairs of persons who know each other

GRAPH <http://externalgraphstore.org/socialnetwork> {
?person1 foaf:knows ?person2 }

<bind events for p1+p2>

Part 2: Remove events, if a newer event can be found

FILTER NOT EXISTS {
?event3 rdf:type event:Event ;

event:agent ?person1 ;

event:time [tl:at ?dttm3] .

?event4 rdf:type event:Event ;

event:agent ?person2 ;

event:time [tl:at ?dttm4] .

FILTER ((?dttm1 < ?dttm3) || (?dttm2 < ?dttm4)) }
Part 3: Check if the latest registrations were close in space and time

FILTER ((abs(?lat2-?lat1)<0.01) && (abs(?long2-?long1)<0.01) &&

(abs(hours(?dttm2)*60+minutes(?dttm2)-hours(?dttm1)*60-minutes(?dttm1))<10))}

The query produces correct detections within the limits of the simplified filters.
Duplicate matches are removed by filtering out older location events of partic-
ipating persons. We can also confirm that both registrations were within a set
interval of each other.

In order to produce results from a stream the query needs to be executed
repeatedly. If events keep accumulating into the main graph used for input, the
query will quickly slow down. Clearly all the requirements have not been met.
Most of the questions, however, can be answered by C-SPARQL in approach 2.

3.2 Approach 2: Window-Based Streaming SPARQL

Out of the tools for window-based streaming SPARQL C-SPARQL [4] was chosen
for closer inspection due to the availability of a package for testing. Our Close
Friends use case is approached with the following query:

REGISTER QUERY CloseFriends COMPUTED EVERY 2m AS

SELECT ?person1 ?person2

FROM STREAM <http://myexample.org/personlocationupdates> [RANGE 10m STEP 2m]

FROM <http://streams.org/socialnetwork.rdf>

WHERE { # Part 1: Bind event data for all friends

?person1 foaf:knows ?person2

<bind events for p1+p2>

FILTER ((((?lat2-?lat1)*(?lat2-?lat1)) < 0.01*0.01))

FILTER ((((?long2-?long1)*(?long2-?long1)) < 0.01*0.01)) }
ORDER BY ?dttm1 ?dttm2

[Remarks: Property paths are currently not supported in C-SPARQL, so the
paths in p1+p2 need to be expanded. With no support for an Abs()-function
latitudes and longitudes are raised to the power of two.]

The C-SPARQL environment takes care of executing the query at set inter-
vals - in this case every two minutes to keep detection interval reasonably short.
Windowing is also provided, set here to ten minutes with a two-minute step size.
Removal of old location events is handled by the C-SPARQL windowing system,
mitigating any performance penalty due to accumulation of obsolete events in
the main graph. If old location events are requested to be archived, a separate
method is needed for saving those events.

Some challenges remain. The shorter-than-window-length step size will cre-
ate frequent duplicates from the same events, forcing duplicate detection and
removal to be handled outside this query and the C-SPARQL environment. Or-
dering the results by the dateTime fields helps to detect the first matching events
of a new pair of persons matching the nearby-criteria. Only one location event
from every subscriber within one window is needed, but since our event format
and reporting interval are flexible, we have to define long enough time-based
windows so that at least one report per subscriber fits in with reasonable prob-
ability. Other subscribers may submit multiple locations per window, slowing
down processing and creating additional duplicates, which need to be filtered.
Notifications can only be emitted at execution intervals, in this case every two
minutes, leading to increased average and maximum notification delay. Even if

no subscribers are active, the query is still executed at the regulated intervals,
causing unnecessary processing overhead.

3.3 Approach 3: Incremental Query Evaluation Using INSTANS

Our final approach is based on having a set of collaborating queries processed
in parallel. Instead of periodic execution of queries all incoming event triples
propagate in a Rete network [5] immediately upon arrival. Two properties of
Rete make it especially suitable for incremental query evaluation:

State Saving: Computing of partial results for later use. Eliminates the need
to repeatedly process a query from scratch due to new events or time triggers.

Sharing: Network nodes are shared whenever possible. Removes the over-
head of computing results which are already available in the network.

Figure 1 shows an example SPARQL query translated into a Rete-network
and processed. The query extracts some characteristics of Query 2 below to list
events occurring between 10 and 11 am.

The original Rete algorithm performs poorly in case an event has to be
deleted from the network. The e↵ects can be minimized by keeping track of an
event and its partial matches in the Rete network. This does not add significant
processing overhead since the information can be added simultaneously along
with the natural flow of events in the network.

Query 1) Window-query: Creates a window by maintaining the latest
location registration from each participant in the workspace, deleting all older
ones.

DELETE { <bind event to variables> }
WHERE { <bind event to variables>

FILTER EXISTS {
?event2 event:agent ?person ;

event:time [tl:at ?dttm2] .

FILTER (?dttm < ?dttm2) } }

Query 2) Nearby detection: Inserts a “?person1 :nearby ?person2” de-
tection marker into the workspace when conditions match and only if such a
marker did not exist already.

INSERT { ?person1 :nearby ?person2 }
WHERE { ?person1 foaf:knows ?person2 .

<bind events for p1+p2>

Check proximity in space and time

FILTER ((abs(?lat2-?lat1)<0.01) && (abs(?long2-?long1)<0.01) &&

(abs(hours(?dttm2)*60+minutes(?dttm2)-hours(?dttm1)*60-minutes(?dttm1))<10))

Don’t do anything, if the relation already exists

FILTER NOT EXISTS { ?person1 :nearby ?person2 } }

Unlike in C-SPARQL, the time filter for expired location events is necessary,
because there is no other mechanism to delete obsolete location events from the
graph. Another way to do this would be to add one more query to delete old
events, when a subscriber has stopped updating.

!1

Y1

"1: ! a event:event

 ?event

"2: ! event:time !

Y2

 ?event, ?time

"3: ! tl:at !

Y3

 ?time, ?daytime

!2

 ?event

 ?event

!3

 ?event, ?time

 ?event, ?time

filter1

 ?event, ?daytime

select1

 ?event

Query:'

'

SELECT'?event'

WHERE'{'

''?event'a'event:Event';'

'''''''''''''event:7me'?7me'.'

''?7me'tl:at'?d<m'.'

''FILTER'('hours(?day7me)'='10')''}'

1'

2'

3'

4'

5'

6'

7'

8'

:e1'

:e1'_:b1'

Drop'_:b1'

:e1'10:05'

Process'flow:'

'

①  Each'condi7on'corresponds'to'an'αZnode.'α1'matches'

with'sample'input'“:e1%a%event:Event”.'
②  '“:e1”%propagates'to'β2'and'is'stored'there.'
③  'α2'matches'with'“:e1%event:,me%_:b1”,'where'“_:b1”'

is'a'blank'node.'Input'from'β2'matches'with'“?event”'
in'Y2.'

④  '“:e1”'and'“_:b1”'propagate'un7l'β3.'
⑤  'α3'matches'with'input'“_:b1%tl:at%

“2011410403T10:05:00”ˆˆxsd:dateTime”.'
⑥  In'Y3'“_:b1”'is'equal'in'both'incoming'branches'and'

can'be'eliminated.'

⑦  '“:e1”%and'“2011Z10Z03T10:05:00”ˆˆxsd:dateTime'

reach'filter1.'The'condi7on'“hour%=%10”'is'true.'
⑧  '“:e1”'is'selected'as'a'result.'

Fig. 1: The Rete-network generated from an example query in Instans

Query 3) Notification: Looks for “?person1 :nearby ?person2” triples in
the workspace and emits notifications.

SELECT ?person1 ?person2

WHERE { ?person1 :nearby ?person2 }

Query 4) Removal of “nearby” status: Deletes a corresponding “?person1
:nearby ?person2” triple from the workspace, if one existed and if ?person1 and
?person2 register su�ciently far from each other.

DELETE { ?person1 :nearby ?person2 }
WHERE { ?person1 foaf:knows ?person2 .

<bind events for p1+p2>

FILTER ((abs(?lat2-?lat1)>0.02) || (abs(?long2-?long1)>0.02))

FILTER EXISTS { ?person1 :nearby ?person2 } }

4 Comparison of Approaches

Di↵erences of the three approaches presented in Section 3 based on the criteria
defined in Section 1 are summarized in Table 1.

One query C-SPARQL INSTANS

Correctness of
notifications

yes

yes if win-

dows overlap

yes

Duplication
elimination

only within

one query

only inside

window

yes

Timeliness of
notifications

query

triggered

periodically

triggered

event

triggered

Scalability wrt
#events

no yes yes

Table 1: Comparison of One SPARQL Query, C-SPARQL and Instans

Performance of Instans in terms of notification delay was compared to C-
SPARQL5. Notification delay was defined as the “time from the availability of
events triggering a nearby condition to the time the condition is detected by the
system.”

In Instans queries are processed immediately when the data becomes avail-
able, yielding average processing delays of 12 ms on a 2.26 GHz Intel Core 2 Duo
Mac. In C-SPARQL average query processing delay varied between 12 - 253 ms
for window sizes of 5-60 events, respectively, causing the window repetition rate
to be a dominant component of the notification delay for any window repetition

5 Version 0.7.3, http://streamreasoning.org/download

rate longer than a second. Using window repetition rates of 5-60 seconds with 1
event per second inter-arrival time C-SPARQL notification delay was measured
at 1.34-25.90 seconds. Further details on the simulations are available on the
Instans project website.

5 Discussion and Conclusions

Our goal was to study the applicability of RDF and SPARQL for complex event
processing. We were looking for alternatives to language-level extensions to RDF
or SPARQL, such as time-stamps, streams, windows, or sequences used in stream
processing oriented RDF/SPARQL systems.

Our hypothesis was that incremental query evaluation – as provided by the
Instans system – using standard RDF/SPARQL can be as good a platform
for event processing as non-incrementally evaluated RDF/SPARQL with stream
processing extensions. The hypothesis was tested with an example application
Close Friends from mobile/social computing domain.

The comparison against C-SPARQL showed that Close Friends application
could be better implemented in standard RDF/SPARQL using Instans. Instans
gives corrent notifications without duplicates in a fraction of the notification time
of C-SPARQL. All functionality of Instans has been achieved using SPARQL
1.1 Query and SPARQL 1.1 Update without any non-standard extensions, main-
taining compatibility of all building blocks with existing tools.

While the Close Friends example was designed to be simple to make the
analysis self-contained, it exhibits many aspects of complex event processing:
combination of independently arriving events, filtering based on non-trivial con-
ditions, maintenance of context to avoid repeated notifications, and selection of
the most recent incoming events. Even if we cannot say that the results prove our
hypothesis, they nonetheless corroborate it. No stream processing extensions are
necessary to solve that problem if incremental query evaluation is used. The con-
clusion is that if one wants to do complex event processing with RDF/SPARQL,
incremental query matching should be considered before extensions to the al-
ready voluminous specifications of RDF and SPARQL.

We are currently working on defining the principles for creating event pro-
cessing applications with Instans. One important additional mechanism is the
capability to create timed events, that is, events that occur in the future. They
can be used to capture the absence of expected events with a timeout mechanism.

The implementation of applications more complex than Close Friends will
create challenges in the areas of engineering and performance. Engineering con-
cerns create a need for modularization of the event processing application, which
can benefit from the ability of SPARQL 1.1 Update to process data between dif-
ferent RDF graphs. SPARQL Update rules can use local named RDF graphs as
temporary storages. By using such named graphs as workspaces, our queries can
process data into windows or bu↵ers, collecting and maintaining only relevant
pieces of information from an event stream. We can also share information be-
tween queries: all queries can be given access to the same RDF graphs. Finally,

we can cascade queries: like CONSTRUCT creates an RDF graph, an INSERT
can write query output into a graph, which can modify the input of another
query. This gives the possibility to layer the detection of groups of events, which
is a fundamental capability for complex event processing.

The performance issues faced in larger applications can be tackled with con-
current execution or distribution of Rete networks. The concurrent execution
has been studied already when Rete was applied in rule-based systems [6, 3].
Rete network itself is distributable [10], paving the way for a scalable system.
The possibility to create an application out of multiple queries simplifies dis-
tribution further, by allowing to execute di↵erent queries in di↵erent network
nodes. Di↵erent levels of distributability make the approach highly scalable.

References

1. Abdullah, H., Rinne, M., Törmä, S., Nuutila, E.: E�cient matching of SPARQL
subscriptions using Rete. In: 27th Annual ACM Symposium on Applied Comput-
ing. pp. 372–377. Riva del Garda, Italy (Mar 2012)

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified lan-
guage for event processing and stream reasoning. pp. 635–644. WWW ’11, ACM,
Hyderabad, India (2011)

3. Aref, M., Tayyib, M.: Lana–match algorithm: a parallel version of the rete–match
algorithm. Parallel Computing 24(5–6), 763–775 (1998)

4. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment
for C-SPARQL queries. In: 13th International Conference on Extending Database
Technology. p. 441. Lausanne, Switzerland (2010)

5. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17–37 (Sep 1982)

6. Gupta, A., Forgy, C., Newell, A.: High-speed implementations of rule-based sys-
tems. ACM Transactions on Computer Systems (TOCS) 7(2), 119–146 (1989)

7. Gutierrez, C., Hurtado, C., Vaisman, R.: Temporal RDF. In European Conference
on The Semantic Web (ECSW 2005) pp. 93—107 (2005)

8. Komazec, S., Cerri, D.: Towards E�cient Schema-Enhanced Pattern Matching over
RDF Data Streams. In: 10th ISWC. Springer, Bonn, Germany (2011)

9. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: ISWC’11.
pp. 370–388 (Oct 2011)

10. Li, G., Jacobsen, H.: Composite subscriptions in content-based publish/subscribe
systems. Middleware 2005 pp. 249–269 (2005)

11. Lopes, N., Zimmermann, A., Hogan, A., Lukácsy, G., Polleres, A., Straccia, U.,
Decker, S.: RDF needs annotations. In: W3C Workshop - RDF Next Steps (Jun
2010)

12. Tappolet, J., Bernstein, A.: Applied temporal RDF: e�cient temporal querying
of RDF data with SPARQL. pp. 308–322. ESWC 2009 Heraklion, Springer-Verlag
(2009)

