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ROGER WIEGAND AND SYLVIA WIEGAND

Abstract. We consider the structure of the partially ordered set of prime
ideals in a Noetherian ring. The main focus is Noetherian two-dimensional
integral domains that are rings of polynomials or power series.

0. Introduction

The authors have been captivated by the partially ordered set of prime ideals for

about four decades. Their initial motivation was interest in Kaplansky’s question,

phrased about 1950: “What partially ordered sets occur as the set of prime ideals of

a Noetherian ring, ordered under inclusion?” This has turned out to be an extremely

difficult question, perhaps a hopeless one.

Various mathematicians have studied Kaplansky’s question and related ques-

tions. In 1971, M. Hochster [12] characterized the topological spaces X such that

X ∼= Spec(R) for some commutative ring R, where Spec(R) is considered as a

topological space with the Zariski topology. In this topology, the sets of the form

V(I) := {P ∈ Spec(R) | P ⊇ I}, where I is an ideal of R, are the closed sets.

Of course the topology determines the partial ordering, since P ⊆ Q if and only if

Q ∈ {P}.
In 1973, W. J. Lewis showed that every finite partially ordered set is the prime

spectrum of a commutative ring R, and, in 1976, Lewis and J. Ohm found necessary

and sufficient conditions for a partially ordered set to be the prime spectrum of a

Bézout domain [19],[20]. In [42], S. Wiegand showed that for every rooted tree U ,

there is a Bézout domain R having prime spectrum order-isomorphic to U and such

that each localization Rm of R at a maximal ideal m of R is a maximal valuation

domain. (A rooted tree is a finite poset U , with unique minimal element, such that

for each x ∈ U the elements below x form a chain.) The construction in [42] was

motivated by another problem of Kaplansky: Characterize the commutative rings
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for which every finitely generated module is a direct sum of cyclic modules. The

solution, which makes heavy use of the prime spectrum, is in [40].

In general, the topology carries more information than the partial ordering. For

example, one can build a non-Noetherian domain R with non-zero Jacobson radical

J (R), but whose spectrum is order-isomorphic to Spec(Z). The partial ordering

does not reveal the fact that the radical is non-zero, but the topology does: For this

domain R, the set of maximal elements of Spec(R) is closed, whereas in Spec(Z)

it is not. On the other hand, if a ring is Noetherian, the partial order determines

the topology. To see this, we recall that for every ideal I of a Noetherian ring R

there are only finitely many prime ideals minimal with respect to containing I; if

P1, . . . , Pn are those primes, then V(I) =
⋃n

i=1 V(Pi) =
⋃n

i=1 {Pi}. Therefore the

closed subsets of Spec(R) are exactly the finite unions of the sets {P}, as P ranges

over Spec(R).

We establish some notation and terminology for posets (partially ordered sets).

Notation 0.1. The height of an element u in a poset U is ht(u) := sup{n |
there is a chain x0 < x1 < · · · < xn = u in U}. The dimension of U is dim(U) =

sup{ht(u) | u ∈ U}. For a subset S of U , min(S) denotes the set of minimal

elements of S, and max(S) its set of maximal elements. For u ∈ U , we define

u↑ := {v | u ≤ v} and u↓ := {v | v ≤ u}.

The exactly less than set for a subset S ⊆ U is Le(S) := {v ∈ U | v↑−{v} = S}. For

elements u, v ∈ U , their minimal upper bound set is the set mub(u, v) := min(u↑∩v↑)

and their maximal lower bound set is Mlb(u, v) := max(u↓ ∩ v↓).

We say v covers u (or v is a cover of u) and write “u << v” provided u < v and

there are no elements of U strictly between u and v. A chain u0 < u1 < · · · < un

is saturated provided ui+1 covers ui for each i.

To return to Kaplansky’s problem, we begin by listing some well-known prop-

erties of a partially ordered set U if U is order-isomorphic to Spec(R), for R a

Noetherian ring:

Proposition 0.2. Let R be a Noetherian commutative ring and let U be a poset

order-isomorphic to Spec(R) for some Noetherian ring R. Then

(1) U has only finitely many minimal elements,

(2) U satisfies the ascending chain condition.

(3) Every element of U has finite height; in particular, U satisfies the descend-

ing chain condition.
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(4) mub(u, v) is finite, for every pair of elements u, v ∈ U .

(5) If u < v < w, then there exist infinitely many vi with u < vi < w.

Proof. Items (1) and (2) are clear, and (3) comes from the Krull Height Theorem

[24, Theorem 13.5], which says that in a Noetherian ring a prime ideal minimal over

an n-generated ideal has height at most n. For (4), let P and Q be prime ideals of

R, and note that mub(P, Q) is the set of minimal prime ideals of the ideal P + Q.

To prove (5), suppose we have a chain P < V < Q of prime ideals in a Noetherian

ring R, but that there are only finitely many prime ideals V1, . . . , Vn between P and

Q. By localizing at Q and passing to RQ/PRQ, we may assume that R is a local

domain of dimension at least two, with only finitely many non-zero prime ideals

Vi properly contained in the maximal ideal Q. By “prime avoidance” [2, Lemma

1.2.2], there is an element r ∈ Q− (V1 ∪ · · · ∪ Vn). But then Q is a minimal prime

of the principal ideal (r), and Krull’s Principal Ideal Theorem (the case n = 1 of

the Krull Height Theorem) says that ht(Q) ≤ 1, a contradiction. ¤

In 1976 [39], the present authors characterized those partially ordered sets that

are order-isomorphic to the j-spectrum of some countable Noetherian ring. (The

j-spectrum is the set of primes that are intersections of maximal ideals.) A poset

U arises in this way if and only if

(1) U is countable and has only finitely many minimal elements,

(2) U has the ascending chain condition,

(3) every element of U has finite height,

(4) mub(u, v) is finite for each u, v ∈ U , and

(5) min(u↑ − {u}) is infinite for each non-maximal element u ∈ U .

An equivalent way of stating the theorem is: A topological space X is homeomorphic

to the maximal ideal space of some countable Noetherian ring if and only if

(1) X has only countably many closed sets,

(2) X is T1 and Noetherian, and

(3) for every x ∈ X there is a bound on the lengths of chains of closed irre-

ducible sets containing x.

It is still unknown whether or not the theorem is true if all occurrences of “count-

able” are removed.

1. Bad Behavior

Recall that a Noetherian ring R is catenary provided, for every pair of primes

P and Q, with P ⊂ Q, all saturated chains of primes between P and Q have the
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same length. Every ring finitely generated as an algebra over a field, or over Z, is

catenary. More generally, excellent rings are, by definition, catenary, and the class

of excellent rings is closed under the usual operations of passage to homomorphic

images, localizations, and finitely generated algebras, cf. [24, p. 260]. Since fields,

complete rings (e.g. rings of formal power series over a field), and the ring of integers

are all excellent, the rings one encounters in nature are all catenary. Perhaps the

first indicator of the rich pathology that can occur in a Noetherian ring was Nagata’s

example [29] of a Noetherian ring that is not catenary. Every two-dimensional

integral domain is catenary, and so Nagata’s example is a Noetherian local domain

of dimension three; it has saturated chains of length two and length three between

(0) and the maximal ideal. Later, in 1979, R. Heitmann [11] showed that every

finite poset admits a saturated (i.e., cover-preserving) embedding into Spec(R) for

some Noetherian ring R.

The catenary condition has a connection with the representation theory of lo-

cal rings. As Hochster observed in 1972 [13], the existence of a maximal Cohen-

Macaulay module (a finitely generated module with depth equal to dim(R)) and

with support equal to Spec(R) forces R to be universally catenary, that is, every

finitely generated R-algebra is catenary. In particular, an integral domain with a

maximal Cohen-Macaulay module must be universally catenary. G. Leuschke and

R. Wiegand used this connection in [18] to manufacture a two-dimensional domain

R with no maximal Cohen-Macaulay modules but whose completion R̂ has infinite

Cohen-Macaulay type. (This gave a negative answer to a conjecture of Schreyer [34]

on ascent of finite Cohen-Macaulay type to the completion.) For other connections

between prime ideal structure and representation theory we refer the reader to the

survey paper [41] by the present authors.

In Nagata’s example, the catenary condition fails because a height-one prime

has a cover that has height three. A theorem of McAdam [25] guarantees that such

behavior cannot be too widespread:

Theorem 1.1. [25] Let P be a prime of height n in a Noetherian ring. Then all

but finitely many covers of P have height n + 1.

In response to a question raised by Hochster in 1974 [14], Heitmann [10] and S.

McAdam [26] showed independently that there exists a two-dimensional Noetherian

domain R with maximal ideals P and Q of height two such that P ∩ Q contains

no height-one prime ideal. Later, in 1983, S. Wiegand [43] combined Heitmann’s

procedure with a method for producing non-catenary rings due to A. M. de Souza-

Doering and I. Lequain [3], to prove the following:
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Theorem 1.2. [43, Theorem 1] Let F be an arbitrary finite poset. There exist

a Noetherian ring R and a saturated embedding ϕ : U → Spec(R) such that ϕ

preserves minimal upper bounds sets and maximal lower bound sets. In detail, for

u, v ∈ U , we have

(i) u < v if and only if ϕ(u) < ϕ(v);

(ii) v covers u if and only if ϕ(v) covers ϕ(u);

(iii) ϕ(mub(u, v)) = mub(ϕ(u), ϕ(v)); and

(iv) ϕ(Mlb(u, v)) = Mlb(ϕ(u), ϕ(v)).

Using this theorem, one can characterize the spectra of two-dimensional semi-

local Noetherian domains:

Corollary 1.3. [43, Theorem 2] Let U be a countable poset of dimension two.

Assume that U has a unique minimal element and max(U) is finite. Then U ∼=
Spec(R) for some Noetherian domain R if and only if Le(u) is infinite for each

element u with ht(u) = 2.

Conjecture 1.4. Let U be a two-dimensional poset in which both min(U) and

max(U) are finite. Then U ∼= Spec(R) for some Noetherian ring R if and only if

(1) Le(u) is infinite for each element u with ht(u) = 2, and

(2) mub(u, v) is finite for all u, v ∈ min(U).

2. Affine Domains of Dimension Two

We begin with an example that illustrates the effect of the ground field on delicate

properties of the prime spectrum.

Example 2.1. Let k be an algebraically closed field, let R = k[X, Y ], let P =

(X3 − Y 2), and let m be a maximal ideal containing P . There exists a height-one

prime ideal Q such that P ↑ ∩Q↑ = {m} if and only if either

(i) m = (X,Y ), or

(ii) char(k) 6= 0.

A geometric interpretation is helpful. Let C be the cuspidal curve y2 = x3, and

let p ∈ C − {(0, 0)}. Then there is an irreducible plane curve D with D ∩ C = {p}
(set-theoretically) if and only k has non-zero characteristic.

Proof. The curve C is parametrized by

x = t2, y = t3 (t ∈ k).

Since m ⊃ P , the point corresponding to m (via the Nullstellensatz) is on C, and

we can write m = (X − a2, Y − a3), where a ∈ k.
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Suppose (i) and (ii) fail, that is, char(k) = 0 and a 6= 0. Suppose there is a

height-one prime ideal Q such that P ↑ ∩Q↑ = {m}. Let g be a monic irreducible

polynomial generating Q, and note that g(t2, t3) = 0 if and only if t = a. With

h(T ) = g(T 2, T 3), we see that a is the only root of h. Since k is algebraically closed,

h(T ) = (T − a)n for some positive integer n. But then h(T ) has a non-zero linear

term, contradicting the fact that h(T ) ∈ k[T 2, T 3].

For the converse, we note that if m = (X,Y ), then (X)↑∩P ↑ = V(X, Y 2) = {m}.
Now assume that char(k) = p > 0 and that m 6= (X, Y ), that is, a 6= 0. Write

p = 2r + 3s with r, s ≥ 0, and let g = XrY s − ap. Then g is irreducible (linear, if

p = 2 or 3). Since g(T 2, T 3) = (T − a)p, (a2, a3) is the only point on C where g

vanishes. Thus P ↑ ∩ (g)↑ = {m}. ¤

There is a slightly fancier way to verify the assertions in the example. Notice

that there exists a height-one prime Q = (g) of R with P ↑ ∩ Q↑ = {m} if and

only if m := m/P is the radical of a principal ideal of R/P . The following lemma,

from W. Krauter’s 1981 Ph.D. dissertation [16] (cf. also [36, Lemma 3] and [31])

explains what’s going on:

Lemma 2.2. Let R be a one-dimensional Noetherian ring such that Rred has only

finitely many singular maximal ideals. Then Pic(R) is a torsion group if and only

if every maximal ideal of R is the radical of a principal ideal.

Proof. Since nilpotents have no effect on either of the two conditions, we may as-

sume that R is reduced. Suppose Pic(R) is torsion, and let m be a maximal ideal

of R (possibly of height zero). Choose an element f ∈ m and outside every singular

maximal ideal (except possibly m) and outside every minimal prime (except possi-

bly m). Write (f) = I ∩ I1 ∩ · · · ∩ It, an intersection of primary ideals with distinct

radicals, and with
√

I = m. Then (f) = IJ , where J = I1 . . . It. Each prime

containing J is non-singular and of height one, so J is invertible (check locally).

Then Jn = (g) for some n ≥ 1, and Ing = (fn). Since g is a non-zerodivisor, it

follows that In is principal.

Conversely, assume every maximal ideal is the radical of a principal ideal, and

let I be an invertible ideal. Then I is isomorphic to an invertible ideal J outside

the union of the singular maximal ideals, [28, Lemma 4.3]. Let m1, . . . ,ms be the

maximal ideals containing J . The rings Rmi are discrete valuation rings, and we

let Jmi = mei
i Rmi . By checking locally, we see that J = me1

1 . . .mes
s . Now let

mi =
√

(xi), and write xiRmi = mfi

i Rmi . Checking locally again, we have (xi) =

mfi

i . Now let gi = f1 . . . f̂i . . . fs, and check that Jf1...fs = (xe1g1
1 . . . xesgs

s ). ¤
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We now state the axioms that characterize the posets U that are order-isomorphic

to Spec(R) for an affine domain R over a field k that is algebraic over a finite field:

Axioms 2.3.

(P0) U is countable.

(P1) U has a unique minimal element.

(P2) U has dimension two.

(P3) For each element x of height one, x↑ is infinite.

(P4) For each two distinct elements x, y of height one, x↑ ∩ y↑ is finite.

(P5) Given a finite set S of height-one elements and a finite set T of height-two

elements, there is a height-one element w such that

(1) w < t for each t ∈ T ; and

(2) if x ∈ U, s ∈ S and w < x > s, then x ∈ T .

Axioms (P0) - (P4) are obviously satisfied for any two-dimensional domain that

is finitely generated as an algebra over a countable Noetherian Hilbert ring. (A

Hilbert ring is a ring in which each prime ideal is an intersection of maximal ideals,

and any finitely generated algebra over a Hilbert ring is again a Hilbert ring.) It

is Axiom (P5) that makes a difference. In the special case where S := {s} and

T = {t} with s < t, (P5) provides a height-one element w such that s↑ ∩w↑ = {t}.
Thus Example 2.1 shows that Spec(k[X,Y ]) has no such element if char(k) = 0. In

fact, much more is true:

Theorem 2.4. Let k be a field, and let R be a two-dimensional affine domain over

k. If Spec(R) satisfies (P5), then k is an algebraic extension of a finite field.

Proof. Suppose first that R = k[X, Y ]. Let P = (X3 +XY −Y 2), the kernel of the

map R ³ S := k[T (T−1), T 2(T−1)] taking X to T (T−1) and Y to T 2(T−1). Let

m be an arbitrary maximal ideal containing P . Since Spec(R) satisfies (P5), there

is a height-one prime Q such that P ↑ ∩ Q↑ = {m}. Writing Q = (f), we see that

m/P is the radical of the principal ideal (f + P ). This shows that every maximal

ideal of R/P is the radical of a principal ideal. By Lemma 2.2, Pic(R/P ) is torsion.

We can easily compute Pic(R/P ) = Pic(S) from the Mayer-Vietoris sequence [27]

associated to the conductor square for S:

(2.4.1)

S↪→ k[T ]
y

y
k↪→ k[T ]

T (T−1)
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By [27], Pic(S) ∼= G/H, where G = ( k[T ]
T (T−1) )

×
, the group of units of k[T ]

T (T−1) , and

H is the join of the images of the horizontal and vertical maps on groups of units.

Since G = k× × k× and H is the diagonal embedding of k× in G, we see that

Pic(S) ∼= k×. Thus k× is a torsion group. Therefore char(k) = p > 0 (else 2 has

infinite order in k×), and every non-zero element is algebraic over the prime field.

This shows that k is an algebraic extension of a finite field.

In the general case, we use the Noether Normalization Lemma to express R as

an integral extension of a subring T ∼= k[X,Y ] and apply the next lemma, with

A = A′ = T and A′′ = R. ¤

Lemma 2.5. [37, Lemma 3] Let A′ ⊆ A ⊆ A′′ be integral extensions of Noetherian

domains of dimension two, and assume that A′ is integrally closed. If Spec(A′′)

satisfies (P5) of (2.3), so does Spec(A).

Proof. Let S be a finite set of height-one prime ideals of A and T a finite set of max-

imal ideals of A. Let T ′′ be the finite set of prime ideals, necessarily maximal, lying

over primes in T , and let S′′ = {Q′′ ∈ Spec(A′′) | Q′′∩A′ = Q∩A′ for some Q ∈ S}.
Let P ′′ be a height-one prime ideal of A′′ satisfying (1) and (2) of (P5) for the sets

S′′ and T ′′ (cf. Axioms 2.3). We claim that P := P ′′ ∩ A satisfies (1) and (2) for

the sets S and T . For (1), let m ∈ T , and choose any m′′ ∈ Spec(A′′) lying over

m. Then m′′ ∈ T ′′, so P ′′ ⊂ m′′; hence P ⊂ m. As for (2), suppose P ⊂ M and

Q ⊂ M, where M ∈ Spec(A) and Q ∈ S. We must show that M ∈ T . By “going

up”, there is a prime M′′ of A′′ such that P ′′ ⊂M′′ and M′′∩A = M. Now apply

“going down” to the extension A′ ⊆ A′′ to get a prime Q′′ such that M′′ ⊃ Q′′ and

Q′′ ∩ A′ = Q ∩ A′. Since Q′′ ∈ S′′, (P5)(2) (for the prime P ′′ and the sets S′′ and

T ′′) implies that M′′ ∈ T ′′, whence M = M′′ ∩A ∈ T . ¤

As we shall see, the converse of Theorem 2.4 is true, though the proof is more

difficult. At this point, it is not even clear that there exist posets satisfying Ax-

ioms 2.3. (Try building one from scratch; it’s not easy!) The next theorem shows

that there is at most one such poset. Before stating the theorem, we define an

operation A 7→ A# on subsets of a poset X satisfying Axioms 2.3. Given a subset

A of X, let A# be obtained by adjoining to A the unique minimal element of X

and the sets x↑ ∩ y↑, where x and y range over distinct height-one elements in A.

(Clarification: Here and in the sequel “height” always refers to height in X, not the

relative height in A.) Clearly A## = A#. Moreover Axiom (P4) guarantees that

A# is finite if A is finite.
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Theorem 2.6. [36, Theorem 1] Let U and V be posets satisfying Axioms 2.3.

Given finite subsets A and B of U and V , respectively, every height-preserving

isomorphism from A# onto B# can be extended to an isomorphism from U onto

V . (In particular, U and V are isomorphic: take A = B = ∅.)

Proof. We may assume that A = A# and B = B#. It suffices to prove the following:

For each height-preserving isomorphism θ : A
∼=→ B and each x ∈ U −A, θ extends

to a height-preserving isomorphism θ′ from A′ := (A ∪ {x})# onto some set B′ =

(B′)# ⊂ Y . For then, by symmetry, we can extend the domain of (θ′)−1 so that

it includes an arbitrary y ∈ V − B′. Since U and V are countable, we will get the

desired extension of θ by iterating this back-and-forth stepwise procedure. We refer

the reader to the proof of [36, Theorem 1] for the details, which are elementary and

boring. ¤

The proof of the converse of Theorem 2.4 has two main ingredients. The first is a

variant of the finiteness theorem for the class number of an algebraic number field.

We refer the reader to [37] for the technical shenanigans that reduce the following

theorem to the classical result on the class number:

Theorem 2.7. Let R be a finitely generated Z-algebra of dimension one. Then

Pic(R) is finite. ¤

Corollary 2.8. Let R be a one-dimensional Noetherian ring that is finitely gener-

ated as an algebra over Z or over a field k that is an algebraic extension of a finite

field. Then every maximal ideal of R is the radical of a principal ideal.

Proof. By Lemma 2.2 it is enough to prove that Pic(R) is torsion. In view of Theo-

rem 2.7, it will suffice to show that Pic(R) is torsion when R is a finitely generated k-

algebra and k is algebraic over a finite field. Write R = k[X1, . . . , Xm]/(f1, . . . , fn),

and choose a finite field F such that each fj is in F[X1, . . . , Xm]. For each inter-

mediate field F between F and k, let RF = F [X1, . . . , Xm]/(f1, . . . , fm). Then

Pic(R) = Pic(lim
→

RF ) = lim
→

(Pic(RF )). Since each Pic(RF ) is finite by Theorem

2.7, Pic(R) is torsion. ¤

The second main ingredient is the following Bertini-type theorem:

Theorem 2.9. [36, Lemma 4] Let k be an algebraically closed field, let A =

k[x1, . . . , xn] be a two-dimensional affine domain over k, and let (f, g) be an A-

regular sequence. Then there is a non-empty Zariski-open subset U of An+1(k) such

that
√

(f + (α +
∑n

i=1 βixi)g) is a prime ideal whenever (α, β1, . . . βn) ∈ U . ¤
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Here is the main result of this section.

Theorem 2.10. [37, Theorem 2] Let k be a field, and let R be a two-dimensional

affine domain over k. These are equivalent:

(1) Spec(R) satisfies (P5).

(2) Spec(R) is order-isomorphic to Spec(Z[X])

(3) k is an algebraic extension of a finite field.

Proof. In view of Theorem 2.4 and Theorem 2.6, it will suffice to show that Spec(R)

satisfies (P5) whenever R = Z[X] or R is an affine domain over a field k that is

algebraic over a finite field. Let S and T := {m1 . . . ,mt} be the finite sets of

primes we are given in Axiom (P5). We may harmlessly assume that T 6= ∅ and,

by enlarging S if necessary, that each mj contains some prime in S. Put I =
⋂

S,

and choose, by Corollary 2.8, fj ∈ mj such that mj =
√

I + (fj). Put f = f1 · · · ft

and J =
⋂

T ; then
√

I + (f) = J . We seek a height-one prime ideal P such that√
I + P = J .

Suppose first that k is the algebraic closure of a finite field and that R is a

two-dimensional Cohen-Macaulay domain, finitely generated as a k-algebra. Since

I + (f) has height two, there is an element g ∈ I such that (f, g) is A-regular. By

Theorem 2.9 there is an element λ ∈ A such that P :=
√

(f + λg) is a prime ideal.

Then
√

I + P = J , and so P satisfies (1) and (2) of (P5).

Suppose, now, that k is an algebraic extension of a finite field and that R is a

two-dimensional affine domain over k. By the Noether Normalization Lemma [24,

§33, Lemma 2] there are elements ξ, η ∈ A, algebraically independent over k, such

that A is an integral extension of A′ := k[ξ, η]. Let k̄ be the algebraic closure of k,

and let B = (A ⊗k k̄)/Q, where the prime ideal Q is chosen so that dim(B) = 2.

Finally, let A′′ be the integral closure of B. Then A′′ satisfies Serre’s condition (S2)

[24, Theorem 23.8] and hence is Cohen-Macaulay. By what we have just shown,

Spec(A′′) satisfies (P5), and now Lemma 2.5 shows that A satisfies (P5) as well.

Finally, we suppose that R = Z[X]. We seek a height-one prime ideal P of

Z[X] such that J =
√

I + P . Since I + (f) has height two, there is a polynomial

g ∈ I such that f and g are relatively prime. Then, for each j ≥ 1 the polynomial

fk + Y g is irreducible in Z[X, Y ], and hence irreducible in Q[X, Y ] (cf., e.g., [15,

Exercise 2, p. 102]). Since Bertini’s Theorem is not available, we use a version of

Hilbert’s Irreducibility Theorem, as formulated in Chapter VIII of [17]. Combining

Corollary 3 of [17, §2, p. 148] with the corollary in [17, §3, p. 152], we find that

there are infinitely many prime integers p for which each of the t + 1 polynomials

f j + pg, 1 ≤ j ≤ t + 1, is irreducible in Q[X]. Choose such a prime p with the
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additional property that pZ 6= mj ∩ Z for 1 ≤ j ≤ t. For each j ≤ t + 1, let cj be

the greatest common divisor of the coefficients of f j + pg; then hj := 1
cj

(f j + pg)

is irreducible in Z[X].

We claim that there exists j ≤ t + 1 such that hj ∈ J = m1 ∩ · · · ∩mt. For

suppose not; then there exist i, j, `, with 1 ≤ i < j ≤ t + 1 and 1 ≤ ` ≤ t such

that hi /∈ m` and hj /∈ m`. Let m` ∩ Z = qZ. Since cihi and cjhj are both in

J ⊆ m`, we see that the prime q is a common divisor of both ci and cj . Therefore

q | (cihi− cjhj). Now cihi− cjhj = f i− f j = f i(1− f j−i). Since q and f j−i are in

m`, it follows that q | f . But also pg = cihi − f i is a multiple of q, and our choice

of p now forces q | g. This contradicts the assumption that f and g are relatively

prime, and the claim is proved.

To complete the proof, we choose j as in the claim and put P = hjZ[X]. Then

P ⊂ J , and f j = −pg + hjcj ∈ I + P . It follows that J =
√

I + P as desired. ¤

Actually, Theorem 1 of [37] says a bit more:

Theorem 2.11. [37, Theorem1] Let D be an order in an algebraic number field.

Then Spec(D[X]) satisfies (P5) and therefore is order-isomorphic to Spec(Z[X]).

We have put in quite a bit of detail in this chapter in order to reawaken interest

in the following conjecture from [37]:

Conjecture 2.12. Let R be a two-dimensional domain finitely generated as a Z-

algebra. Then Spec(R) satisfies (P5) and hence is order-isomorphic to Spec(Z[X]).

It is easy to see that if Spec(R) satisfies (P5) so does Spec(R[ 1
f ]) for each non-

zero f ∈ R. Thus Spec(D[X, 1
f ]) is order-isomorphic to Spec(Z[X]) whenever D is

an order in an algebraic number field. A stronger result is proved in [33]:

Theorem 2.13. [33, Main Theorem 1.2] Let D be an order in an algebraic number

field, let X an indeterminate, let g1, . . . , gn be nonzero elements of the quotient

field of D[X], and let R = D[X, g1, . . . , gn]. Then Spec(R) is order-isomorphic to

Spec(Z[X]).

(The somewhat simpler case where D = Z is worked out in [22].)

Suppose k is a field that is not algebraic over a finite field. By Theorem 2.10,

Spec(k[X,Y ]) is not isomorphic to Spec(Z[X]). Still, one can ask whether or not all

two-dimensional affine domains over k have order-isomorphic spectra. The answer,

in general, is “No”:
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Example 2.14. [37, Corollary 7] Let k be an algebraically closed field with infinite

transcendence degree over Q, and let V be the surface in A3(k) defined by the

equation X4 + Y 4 + Z4 + 1 = 0. Then not every point of V is the set-theoretic

intersection of two curves on V . Therefore, in the two-dimensional affine domain

R = k[X, Y, Z]/(X4 + Y 4 + Z4 + 1), there is a maximal ideal m such that, for

each pair P, Q of height-one prime ideals, {m} 6= P ↑ ∩Q↑. On the other hand, in

k[X,Y ] every maximal ideal is of the form (X − a, Y − b), and {(X − a, Y − b)} =

(X − a)↑ ∩ (Y − b)↑. Thus Spec(R) and Spec(k[X, Y ] are not order-isomorphic.

We know very little about the order-isomorphism classes of two-dimensional

affine domains over k if k is not algebraic over a finite field. The following questions

indicate the depths of our ignorance:

Questions 2.15. (1) Let k be an algebraic extension of Q, and let R be a two-

dimensional affine domain over k. Is Spec(R) order-isomorphic to Spec(k[X, Y ])?

(2) At the other extreme, if R and S are two-dimensional affine domains over k and

Spec(R) and Spec(S) are order-isomorphic, are R and S necessarily isomorphic as

k-algebras? (3) Let ` be another algebraic extension of Q. If Spec(k[X,Y ]) and

Spec(`[X,Y ]) are order-isomoprhic, must k and ` be isomorphic fields?

3. Polynomial rings over semilocal one-dimensional domains

Naively one might suppose, since Spec(Q[X]) is order-isomorphic to Spec(Z),

that also Spec(Q[X, Y ]) is order-isomorphic to Spec(Z[Y ]). The surprising negation

of that conclusion, as discussed in the previous section, as well as the mystery

surrounding Spec(Q[X,Y ]), led W. Heinzer and S. Wiegand to investigate spectra

for “simpler” two-dimensional polynomial rings. What if you started with a one-

dimensional ring with spectrum even simpler than Spec(Z)? Would the spectrum

of the ring of polynomials be easier to fathom?

In particular Heinzer and S. Wiegand considered the question: What partially

ordered sets arise as Spec(R[X]) for R a one-dimensional semilocal Noetherian do-

main? Just as Z[X] played a special role in Section 2, the rings Z(p1)∪···∪(pn)[X]

play a special role in the current section. (Here p1, . . . , pn are distinct prime inte-

gers, and Z(p1)∪···∪(pn) consists of rational numbers whose denominators are prime

to each pi.) Their investigation led to the following theorem:

Theorem 3.1. [9] Let R be a countable Noetherian one-dimensional domain with

exactly n maximal ideals. Then there exist exactly two possibilities for Spec(R[x]):
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(1) If R is not Henselian, then Spec(R[X]) ∼= Spec(Z(p1)∪···∪(pn)[X]), for dis-

tinct prime integers p1, . . . , pn.

(2) If R is Henselian, then n = 1 and Spec(R[X]) ∼= Spec(H[X]), where H is

the Henselization of Z(2).

Examples of each are shown in Figures 3.2.1 and 3.3.1 below.

Example 3.2. The spectrum of Z(2)[X] (where Z(2) consists of rationals with odd

denominators) is crudely drawn in Figure 3.2.1 below.

(2, x) (2, x + 1) (2, x2 + x + 1) ∞

∞(A) (2) ∞(B)

(0)

Figure 3.2.1. Spec(Z(2)[X])

Diagram Notes: The “infinity box” symbol ∞ indicates that infinitely many points

are in that spot. The relations between the prime ideals in ∞(B) and the top

primes are too complicated to draw accurately. Each of the primes in ∞(B) is

contained in just finitely many maximal ideals. For example, the two irreducible

polynomials X and X2 + X + 2 each generate height-one prime ideals in ∞(B) ;

(X) is contained in (2, X) only, but (X2 + X + 2) is contained in both (2, X) and

(2, X+1). The special height-one prime ideal (2) is in all of the height-two maximal

primes. The box ∞(A) represents the infinitely many height-one maximal ideals.

Each height-two prime contains infinitely many height-one primes.

When n = 1, what distinguishes Spec(Z(2)[X]) from Spec(H[X]) is the following:

In Spec(Z(2)[X]), infinitely many height-one primes are contained in more than

one maximal ideal. However, in Spec(H[X]), m[X] is the only height-one prime

contained in more than one maximal ideal (and it is contained in infinitely many).

Example 3.3. Although similar to the first picture, the illustration in Figure 3.3.1.

of Spec(H[X]), for H a countable Noetherian Henselian discrete rank-one valuation

domain with maximal ideal m, is cleaner:
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∞ m[X] ∞ ∞ · · ·

• • • · · ·

(0)

Figure 3.3.1. Spec(H[X])

Remarks 3.4. (1) Loosely speaking, Henselian rings are rings for which the con-

clusion of Hensel’s Lemma holds. Complete local rings, e.g., power series rings over

a field, are Henselian. (These will come up again in the next section.) Forming

the Henselization of a local ring is less drastic than going to the completion. For

example, the Henselization of a countable local ring is countable, whereas complete

local rings of positive dimension are always uncountable. The precise definition of

“Henselian” and the construction of the Henselization are given in [30, Section 33].

(2) In [35] C. Shah gave complete sets of invariants for Spec(R[X]) for an ar-

bitrary Noetherian semilocal domain R. If R is Henselian, with maximal ideal P ,

the two invariants are r := |R| and k := |(R/P )[X]|. If R is not Henselian, with

maximal ideals P1, . . . , Pn, the invariants are r := |R|, n (the number of maximal

ideals of R), and k1, . . . , kn, where ki := |(R/Pi)[X]|. Shah gave examples to show

that some combinations of invariants actually occur. There are some restrictions:

Clearly ki ≤ r for each r. Also, r ≤ kℵ0
i for each i, by Lemma 4.2 below.

As pointed out by Kearnes and Oman [23], Shah assumed, incorrectly, that

aℵ0 = a for each cardinal a ≥ 2ℵ0 . In the proof of Theorem 3.1 of [8], Heinzer,

Rotthaus and S. Wiegand refer to [35]; the arguments in Section 4 of this paper

show that the statement of [8, Theorem 3.1] is correct.

(3) There are axioms similar to Axioms 2.3 that characterize the posets Spec(H[X])

and Spec(Z(p1)∪···∪(pn)[X]) of Theorem 3.1 up to order-isomorphism. Of course (P3)

is missing, and axioms analogous to (P5) distinguish the two cases (see Remark 3.5).

Remark 3.5. To state the distinguishing property between the two possibilities in

Theorem 3.1 precisely, we use the “exactly less than” notation introduced in (0.1):

In Spec(R[X]), when R as above is not Henselian, we have:

(P5′) Le(T ) is infinite for every finite set T of height-two maximal ideals.
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If H is Henselian, however, we have:

(P5H) Let T be a set of height-two maximal ideals. If |T | ≥ 2, then Le(T ) = ∅;
if |T | = 1, then Le(T ) is infinite.

Remarks 3.6. Other Related Spectra

• Let R be a one-dimensional local Noetherian ring and let g, f be elements of

R[X] that either generate the unit ideal or form a regular sequence. W. Heinzer, D.

Lantz and S. Wiegand characterized j-Spec(R[X][ g
f ]), and showed its relationship

to the polynomials f and g. In some cases (for example, when R is a discrete

valuation ring such as Z(2), or when R is Henselian), they were able to characterize

Spec(R[X][ g
f ]). Knowing j-Spec(R[X][ g

f ]) is not sufficient, however, to characterize

Spec(R[X][ g
f ]) in general [5], [6], [7].

• In [38], R. Wiegand and W. Krauter found axioms that characterize the pro-

jective plane P2(k) over the algebraic closure k of a finite field. The axioms are the

same, regardless of the characteristic. A surprising consequence of the characteri-

zation is that a non-empty proper open subset U of P2(k) is homeomorphic either

to P2(k)− {point} (the complement of a single point) or to A2(k).

The projective line over Z has been studied too, in [1], [5], [21]. The poset

structure is considerably more complex than that of the projective plane over the

algebraic closure of a finite field. It is currently being investigated by S. Wiegand

and her (current and former) students E. Celikbas and C. Eubanks-Turner.

4. Two-dimensional power series rings

As part of an extensive project using power series rings to construct examples of

rings with various properties, W. Heinzer, C. Rotthaus and S. Wiegand described

the prime spectra of rings of the form R[[Y ]], for R a one-dimensional Noetherian

domain and Y an indeterminate [8]. They completely characterized Spec(R[[Y ]])

in the case where R is a countable domain. They did not, however, work through

the cardinality arguments needed for the uncountable case. We review their results

here and incidentally fill in the cardinality gap to obtain a characterization for the

uncountable case as well.

First observe that, given variables X and Y , one can form “mixed polyno-

mial/power series rings” over a field k in two ways—the second is of infinite tran-

scendence degree over the first:

(1) k[[Y ]][X] and (2) k[X][[Y ]].

Since k[[Y ]] is a Henselian ring, Spec(k[[Y ]][X]) is characterized in Theorem 3.1(2)

of the previous section (actually this is Shah’s extension from Remark 3.2(2), cf.
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[35]). The interesting fact is that Spec(k[X][[Y ]]) is pretty similar to Spec(k[[Y ]][X])—

it just lacks the height-one maximals. Then Spec(k[X][[Y ]]) in turn is an example

of Spec(R[[Y ]]), for R a general one-dimensional Noetherian domain. As we show

in Theorem 4.3, the only variations in the partially ordered sets that occur as

Spec(R[[Y ]]) for different one-dimensional Noetherian domains R of a given cardi-

nality are the numbers of height-two maximal ideals of R[[Y ]]. This number is the

same as the number of maximal ideals of R (of k[X] for that example), because

each maximal ideal of R[[Y ]] has the form (m, Y )R[[Y ]] where m is a maximal ideal

of R, by [30, Theorem 15.1]. In particular, Spec R[[Y ]] has the following picture,

by Theorem 4.3 below:

(Y ) κ κ κ · · ·

• • • · · ·

(#{ bullets} = α)

(0)

Spec(R[[Y ]])

In the diagram α is the cardinality of the set of maximal ideals of R. The boxed

cardinals κ (one for each maximal ideal of R) indicate that there are κ prime ideals

in these positions; that is, |Le((m, Y ))| = κ. The upshot of the cardinality addition

to the result of [8], which is now included in Theorem 4.3, is that κ = |R[[Y ]]| and

that |Le((m, Y ))| = |Le((m′, Y ))|, for every pair m,m′ of maximal ideals of R.

We first use a remark from [8].

Remark 4.1. [8] Suppose that T is a commutative ring of cardinality δ, that m

is a maximal ideal of T and that γ is the cardinality of T/m. Then

(1) The cardinality of T [[Y ]] is δℵ0 , because the elements of T [[Y ]] are in one-

to-one correspondence with ℵ0-tuples having entries in T . If T is Noetherian, then

T [[Y ]] is Noetherian, and so every prime ideal of T [[Y ]] is finitely generated. Since

the cardinality of the set of finite subsets of T [[Y ]] is δℵ0 , it follows that T [[Y ]] has

in all at most δℵ0 prime ideals if T is Noetherian.
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(2) If T is Noetherian, there are at least γℵ0 distinct height-one prime ideals of

T [[Y ]] contained in (m, Y )T [[Y ]]. To see this, following the argument of [8], choose

a subset C = {ci | i ∈ I} of T so that {ci + m | i ∈ I} is a complete set of distinct

coset representatives for T/m. Then |C| = γ, and, for ci, cj ∈ C with ci 6= cj , we

have ci − cj /∈ m. Choose a ∈ m, a 6= 0. Consider the set

G := {a +
∑

n∈N
dnY n | dn ∈ C for each n ∈ N}.

Each of the elements of G is in (m, Y )T [[Y ]] \ Y T [[Y ]] and hence each element of

G is contained in a height-one prime belonging to Le((m, Y )). Moreover, |G| =

|Cℵ0 | = γℵ0 .

Let P ∈ Le((m, Y )). Suppose that two distinct elements of G are both in P ,

say f = a +
∑

n∈N dnY n and g = a +
∑

n∈N enY n are in P , where each dn, en ∈ C.

Then we have

f − g =
∑

n∈N
dnY n −

∑

n∈N
enY n =

∑

n∈N
(dn − en)Y n ∈ P.

Let t be the smallest power of Y so that dt 6= et. Then (f − g)/Y t ∈ P , since P is

prime and Y /∈ P . However, the constant term, dt − et is not in m, contradicting

the fact that P ⊆ (m, Y )T [[Y ]]. Thus there must be at least |C|ℵ0 = γℵ0 distinct

height-one primes contained in Le((m, Y )T [[Y ]]), that is, |Le((m, Y )T [[Y ]])| ≥ γℵ0 .

(3) Putting parts (1) and (2) together, we see that, for each maximal ideal m of

T , γℵ0 ≤ |Le((m, Y )T [[Y ]])| ≤ δℵ0 , if T is Noetherian.

Lemma 4.2. Let R be a Noetherian domain, Y an indeterminate and I a proper

ideal of R. Let δ = |R| and γ = |R/I|. Then δ ≤ γℵ0 , and |R[[Y ]]| = δℵ0 = γℵ0 .

Proof. The first equality holds by Remark 4.1, and of course δℵ0 ≥ γℵ0 . For the

reverse inequality, we note that the Krull Intersection Theorem [24, Theorem 8.10

(ii)] implies that
⋂

n≥1 In = 0. Therefore there is a monomorphism

(4.2.1) R ↪→
∏

n≥1

R/In.

Now R/In has a finite filtration with factors Ir−1/Ir for each r with 1 ≤ r ≤ n.

Since Ir−1/Ir is a finitely generated (R/I)-module, |Ir−1/Ir| ≤ γℵ0 . Therefore

|R/In| ≤ (γℵ0)n = γℵ0 , for each n. Thus (4.2.1) implies δ ≤ (γℵ0)ℵ0 = γ(ℵ2
0) = γℵ0 .

Finally, δℵ0 ≤ (γℵ0)ℵ0 = γℵ0 , and so δℵ0 = γℵ0 . ¤

Theorem 4.3. Suppose that R is a one-dimensional Noetherian domain with car-

dinality δ := |R|, and that the cardinality of the set of maximal ideals of R is α (α
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can be finite). Let U = Spec R[[Y ]], where Y is an indeterminate over R. Then the

poset U is characterized by the following axioms:

(1): |U | = δℵ0 .

(2): U has a unique minimal element, namely (0).

(3): dim(U) = 2 and |{ height-two elements of U }| = α.

(4): There exists a unique height-one element uY ∈ U (namely uY = (Y ))

such that u is contained in every height-two element of U .

(5): Every height-one element of U except for uY is in exactly one height-two

element.

(6): For every height-two element t ∈ U , |Le(t)| = |R[[Y ]]| = δℵ0 . If t1, t2 ∈
U are distinct height-two elements, then the element uY from (4) is the

unique height-one element less than both.

(7): There are no height-one maximal elements in U . Every maximal element

has height two. (This property, implicit in (5), is stated for emphasis.)

Proof. Most of the proof is done in [8]. It remains to check the statement |Le(t)| =
|R[[Y ]]| = δℵ0 in item (6). This is immediate from Remark 4.1 and Lemma 4.2. ¤

Remarks 4.4. C. Eubanks-Turner, M. Luckas, and S. Saydam (former Ph.D. stu-

dents of S. Wiegand) have characterized Spec(R[[X]][g/f ]), for R a one-dimensional

Noetherian domain with infinitely many maximal ideals and g, f a generalized

R[[X]]-sequence, in their recent work [4]. They specify various possibilities for

the j-spectrum that depend upon f and g.

For example the following diagram shows the partially ordered set j-Spec(B),

for B := Z[[X]][
g

f
], f = 11880 +

∞∑

i=1

Xi and g = 9900 +
∞∑

i=1

Xi:

ℵ0 ℵ0 ℵ0 (X, 5, Y )B ℵ0 (X, 11, 6Y − 5)B ℵ0

c (X, 2)B (X, 3)B (X, 5)B (X, 11)B (X, 6Y − 5)B

(0)

Figure 4.4.1: Spec(Z[[x]][ 9900+
∑∞

i=1 Xi

∑∞
i=1 11880+Xi ])
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Notes 4.5. [8, Remarks 3.6, Corollary 3.7] It is evident from Theorem 4.3 that

Spec(Z[[Y ]]) ∼= Spec(Q[X][[Y ]]) ∼= Spec((Z/2Z)[X][[Y ]]) 6∼= Spec(R[X][[Y ]]).

(The last has uncountably many maximal ideals.) As Theorem 2.10 indicates,

Spec(Z[Y ]) ∼= Spec((Z/2Z)[X][Y ]) 6∼= Spec(Q[X][Y ]).

Thus the situation for power series rings is different from the polynomial case.
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