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Abstract— In wireless sensor networks (WSNs), diagnosis is a 

crucial and challenging task due to the distributed nature and 

stringent resources. Most previous approaches are supervised, 

relying on a-priori knowledge of network faults. On the other 

hand, our experience with GreenOrbs, a long-term large-scale 

WSN system, reveals the need of diagnosis in an agnostic manner. 

Specifically, in addition to predefined faults (i.e., with known 

types and symptoms), silent failures that are unknown 

beforehand, account for a large fraction of network performance 

degradation. Currently, there is no effective solution for silent 

failures because they are often diverse and highly system-related. 

In this paper, we propose Agnostic Diagnosis (AD), an online 

lightweight failure detection approach. AD is motivated by the 

fact that the system metrics (e.g., radio-on time, number of 

packets transmitted) of GreenOrbs sensors usually exhibit 

certain correlation patterns. Violations of such patterns indicate 

potential silent failures. We accordingly design a correlation 

graph, which systematically characterizes internal correlations 

inside a node. Silent failures are discovered by tracking the 

changes and anomalies of correlation graphs. We implement AD 

on a working WSN consisting of 330 nodes. Our experimental 

results demonstrate the advantages of AD to discover silent 

failures, effectively expanding the capacity and scope of WSN 

diagnosis. 

I.  INTRODUCTION 

Wireless sensor networks (WSNs) have been widely used 
in many fields, such as environmental surveillance, emergency 
navigation, traffic monitoring, and industrial control 
[15][16][22]. WSNs are by nature error-prone and have 
unsatisfactory reliability, encountering various faults and 
failures during their operation. Consequently, diagnosis has 
drawn substantial attention in recent years as a method to 
enhance the applicability, reliability, and efficiency of WSNs.  

However, diagnosing WSNs is a challenging issue because, 
once a WSN is deployed, its inner conditions are not directly 
observable. Specifically, since many WSNs reside in harsh or 
remote environments, it is difficult to perform in-situ 
troubleshooting on the faulty nodes. Furthermore, the 
distributed nature and stringent resources of WSNs render it 
hard for a network operator to completely monitor the system’s 
working status. Due to similar reasons, it is also infeasible to 
deploy management tools like SNMP, or other costly 
diagnostic modules, on the sensor nodes.  

Many existing diagnostic approaches are supervised, i.e., 
they rely on either specific rules or inference models. An 
obvious drawback is that they are limited to faults with known 
types and symptoms, and hence, they cannot be easily 
generalized to different application scenarios. On the other 
hand, the interactions within the WSN and the causal 
dependencies between root causes and symptoms are usually 
unknown. As a result, silent failures remain undetected. 

This paper is motivated by the need for long-term reliable 
operation of GreenOrbs, a large-scale WSN system in a forest 
[16]. Currently, GreenOrbs includes 330 nodes and has been in 
continuous operation for over eight months. During the 
deployment, we often observe system performance 
degradations, e.g., low packet delivery ratio. A portion of faulty 
nodes can be easily identified since they generate apparently 
abnormal system metrics (e.g., measurements that are clearly 
beyond the reasonable scope). The other faulty nodes, however, 
cannot be identified in this way. For instance, we adopt low-
power listening mode so the radio is switched on only for 
receiving, sending, or idle listening. Consequently, the radio-on 
time should be closely correlated with the amount of traffic 
passing the node. We noted that during a five-minute period, a 
node kept its radio on for 47.5 seconds, transmitting only 3 
packets in total. In the next five-minute period, it kept its radio 
on for 51.6 seconds and transmitted 550 packets. Any 
individual value of the metrics is not abnormal, but the 
correlation between radio-on time and number of transmitted 
packets clearly suggests inconsistency on that node. 

A straightforward solution would be to develop a set of 
static correlation rules for identifying the faulty nodes. 
However, this is inapplicable for two reasons: (i) usually there 
is insufficient domain knowledge to enumerate all the rules; (ii) 
WSN deployment is often evolutional, so that the correlation 
rules change over time; both software upgrades and 
environment conditions may have a great impact on the 
correlations. 

To overcome these problems, we propose Agnostic 
Diagnosis (AD), an online lightweight approach for WSNs. AD 
exploits the correlations among metrics of each sensor using a 
correlation graph that describes the latent status of the node. 
Such a correlation graph is updated periodically using the 
node’s metrics. By mining through the correlation graphs, we 
identify the underlying rules of a normally running system, and 
detect abnormal correlations. 
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(a) Number of packets transmitted by node 2 in two time periods (b) Number of packets transmitted by nodes 2, 4, and 24 in a same period 

Figure 1. Examples of normal operation and node failure. 

 

Our main contributions are summarized as follows: 

• Unlike previous approaches, Agnostic Diagnosis relies 
on minimal a-priori knowledge and can be generalized 
to a wide variety of WSN applications. 

• We propose the correlation graph, a compact structure 
that efficiently characterizes the internal correlations 
inside a node.  

• We implement AD and evaluate it with traces from a 
330-node GreenOrbs deployment. Case studies and 
statistics demonstrate the effectiveness of AD. 

The rest of the paper is organized as follows. Section 2 
motivates the problem. Section 3 presents AD. Section 4 
evaluates our design and Section 5 surveys related work. 
Finally, Section 6 concludes this paper. 

II. MOTIVATION 

Diagnosis is a fundamental task for long-term large-scale 
WSN systems. This section first introduces the basic 
information and application requirements of GreenOrbs, 
including several observations in the form of concrete 
examples. These observations reveal the existence of 
correlation patterns among the nodes’ operational metrics and 
the feasibility of agonistic diagnosis. 

A. GreenOrbs 

GreenOrbs is an ecological surveillance project deployed in 
a forest. It collects a group of sensory data such as temperature, 
humidity, illumination and carbon dioxide concentration to 
support various applications. Since the deployment is in a 
remote area, the overhead of in-situ debugging and 
troubleshooting is very high. Therefore, the diagnostic system 
is designed so that each node periodically transmits its current 
status to the sink. Specifically, we collect 22 types of metrics 
from each node that are classified into four categories: (1) 
timing metrics e.g. RadioOnTimeCounter, which denotes the 
accumulative radio-on time; (2) traffic metrics, e.g. 
TransmitCounter, which records the accumulative number of 
packets transmitted by a node; (3) task metrics, e.g. 
TaskExecCounter, which is the accumulative number of tasks 

executed; (4) other metrics such as ParentChangeCounter, 
which counts the number of parent changes.  

The difficulty of diagnosis in GreenOrbs stems from the 

absence of a-priori knowledge on the possible faults and their 

symptoms, which renders general diagnostic rules inapplicable. 

Instead, we design a diagnostic system requiring minimal 

domain knowledge.  

B. Observations 

In the following, we demonstrate a set of interesting 

failure examples. Figure 1(a) plots the number of packets 

transmitted by a node every 15 minutes. During time period 

one, the value of this metric changes dramatically, possibly 

indicating that the node is faulty. However, a manual analysis 

of the whole trace shows that the node works well. On the 

other hand, even though the metric appears to be stable during 

period two, the node actually encounters routing loops (a fatal 

routing problem). This example demonstrates that the 

individual examination of metrics on the same sensor node 

may overlook silent failures, or may flag failures by mistake. 

Figure 1(b) shows another example, where the data curves 

correspond to the packet transmissions of different nodes 

during the same period. Even though the metrics exhibit 

different values and variations, all three nodes in fact perform 

well, but the correlation among them is relatively weak. This 

example suggests that even if considering multiple sensor 

nodes, an individual metric is insufficient to uncover failures. 
We then conduct the correlation matrix of the 22 metrics 

and visualize them using gray-scale images (the details of the 
correlation matrix will be presented later). A square (i,j) in the 
image denotes the correlation score between metrics i and j. 
Figure 2(a)-(c) displays three images constructed from metrics 
of the same node. The node is normal in the first two periods, 
but faulty in the third one. Interestingly, the first two gray-scale 
images are very similar to each other, whereas they differ 
significantly from the third one. Analogous results are observed 
in the spatial domain as well. Figure 2 (d)-(f) shows the images 
of three nodes in the same period. The first two nodes are 
normal, while the third one is faulty. Observe that the first two 
images follow a similar pattern, which is clearly 
distinguishable from the last one. 



   

(a) Healthy period 1 of sensor node 2 (b) Healthy period 2 of sensor node 2 (c) Faulty period of sensor node 2 
 

   

(d) Healthy node 1 (e) Healthy node 2 (f) Faulty node 

Figure 2. Visualizations of correlation matrices.  
The difference of correlation patterns can be explained 

with the following example. There are two metrics called 
LoopCounter and SuccAckCounter. The former is the number 
of times the same packet passes through the current node, and 
the latter is the number of packets that are successfully 
transmitted by the current node. If the node is normal, the value 
of LoopCounter should be zero most of the time. Thus, these 
two metrics have weak correlation. If the node is out of order 
and produces “routing loops”, the same packet passes multiple 
times. Eventually, LoopCounter dominates SuccAckCounter,  
and these two metrics are highly correlated, differentiating the 
faulty node from of the normal ones. 

In summary, proper diagnosis of WSNs, especially long-

term large-scale systems like GreenOrbs, is crucial and 

challenging. This is partially due to resource constraints and 

hardness to track in-network status. Even a more important, 

but often overlooked fact is that the diagnostic capacity is 

restricted by our incomplete knowledge of possible failures. 

Our experience with GreenOrbs reveals that independent 

investigation of metrics is insufficient for capturing all the 

problematic nodes. On the other hand, exploiting correlations 

of metrics uncovers significantly more failures.  

III. AGNOSTIC DIAGNOSIS 

We assume a WSN consisting of N sensor nodes. At each 
time stamp t, a sensor si measures its working status, obtaining 
a status vector Si,t=(m1,t, m2,t, …, mp,t), where p is the number of 
metrics and mu,t is the value of the u-th metric at time t, 1≤u≤p. 
Table 1 summarizes the symbols used in this paper and their 
meanings. 

A. Correlation Graphs 

The correlation graph is a graph representing the pair-

wise correlations of the metrics. It is constructed and 

maintained periodically, for each node in the WSN. Figure 3(a) 

illustrates the graph of a healthy node. Each edge has a weight, 

which denotes the correlation score between the corresponding 

metrics (weights of edges and some other vertices are omitted 

in our illustrations, for the sake of simplicity). In Figure 3(b), 

the missing correlation between TransmitCounter and 

RadioOnTimeCounter suggests that this node might be faulty. 

Table 1. Definition of symbols 

Symbols Definition 

N Number of sensors 

p Number of metrics 

w Window size 

si Sensor node i, 1≤i≤N 

Si,t 
The p-dimensional status vector of sensor i 

at time t, Si,t=(m1,t, m2,t, …, mp,t) 

mu,t 
The value of the u-th metric at time t, 

where 1≤u≤p 

ck(u,v) 
Correlation score of metrics u and v in 

time window k, where 1≤u,v≤p 

CGi,k Correlation graph of sensor i in window k 
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(b) Graph of a faulty node 

Figure 3. Correlation graphs of two nodes. 

 

The correlation between metrics are evaluated in each time 
window k, which lasts from time (k-1)*w+1 to time k*w, i.e., 
[(k-1)*w+1, k*w]. Suppose Mu,k=(mu,(k-1)*w+1, mu,(k-1)*w+2, …, 
mu,k*w) and  Mv,k=(mv,(k-1)*w+1, mv,(k-1)*w+2,…, mv,t*w) are the 
values of metrics u and v collected in time window k 
respectively. We define the correlation score between them 
using Pearson’s product-moment coefficient: 

c
k
(u,v) =

w m
u,(k−1)*w+i

m
v,(k−1)*w+i

−
i=1

w

∑ m
u,(k−1)*w+i

i=1

w

∑ m
v,(k−1)*w+i

i=1

w

∑
σ
u,k

σ
v,k

 
where σu,k and σv,k are their standard covariance 

σ
u,k

= w m
u,(k−1)*w+i

2
− ( m

u,(k−1)*w+i

i=1

w

∑ )
2

i=1

w

∑

σ
v,k

= w m
v,(k−1)*w+i

2 − ( m
v,(k−1)*w+i

i=1

w

∑ )2

i=1

w

∑ .

 

This correlation score falls within the range [-1,1]. The closer 

it is to either -1 or 1, the stronger the correlation between the 

variables is. As it approaches zero, the correlation decreases. 

Thus, we can construct a matrix where each element ck(u,v) is 

the correlation score between metric u and metric v: 

Correlation Matrix =

c
k
(1,1) c

k
(1, 2) ... c

k
(1, p)

c
k
(2,1) c

k
(2, 2) ... c

k
(2, p)

... ... ... ...

c
k
(p,1) c

k
(p,1) ... c

k
(p, p)





















. 

This matrix is symmetric, i.e., ck(u,v)=ck(v,u). In addition, 

since each metric is perfectly correlated with itself, ck(u,u)=1. 

The matrix is a representation of the correlation graph. In 

Figure 2, the visualization of correlation matrix is achieved by 

transforming correlation scores into gray-scale values in the 

range of [0,255]. Because the gray value of white is 255, 

lighter pixels correspond to more correlated metrics. 

B. AD Framework 

AD identifies anomalies in the temporal and spatial 
dimension. Specifically, temporal detection refers to sudden 
changes in the correlation graph of a node. Spatial detection 
discovers pattern inconsistencies using multiple nodes. If an 
anomaly is identified by both temporal and spatial detection, 
then it has a high chance of signifying a real problem.   

Temporal detection investigates the evolution of 
correlation graphs over time. In every window (e.g., [1,…,w], 
[w+1,…,2w]), a correlation graph of sensor si is computed. If 
the system operates normally (i.e., no sensor nodes go out of 
order, and no events such as link failures, traffic congestions 
occur), the correlation graphs of the node should remain 
relatively stable. On the other hand, abrupt changes in 
consecutive graphs indicate silent failures. 

Spatial detection investigates pattern differences in the 
graphs of nodes with similar characteristics. Although sensors 
are deployed in different areas and connected in an ad-hoc 
manner, they still share some intrinsic similarities. For instance, 
leaf nodes in the global routing tree only need to transmit data 
packets to their parents. The rest are intermediate nodes, which, 
in addition to their own data, forward packets originating in 
their sub-tree. Sensor nodes may share some similar patterns 
according to their roles in the network. 

C. Temporal Detection 

Given two consecutive correlation graphs CGi,k and CGi,k+1 
of the same node (for successive time windows), an abrupt 
change may occur at one or more edges. For example, suppose 
that two metrics RadioTimeOn and TransmitCounter are highly 
correlated in CGi,k, but not in CGi,k+1. Then, even if all the other 
edges are the same, the change in correlation is regarded as 
abrupt. Therefore, we focus on the timely identification of such 
changes in individual edges. 

Problem 1. (Abrupt Change Time of Correlation Graphs) 
The abrupt change time of CG(i)={CGi,1, CGi,2 , …, CGi,t, …} 
is the time when an abrupt change happens in time series 
{c1(u,v), c2(u,v), …, ct(u,v), …}, where ct(u,v) is the correlation 
score between metrics u and v in time window t, 1≤u,v≤p and 
u≠v. 



 

(a) Original time series 

 

(b) Original cumulative sums and cumulative sums after bootstrap 

Figure 4. CUSUM example. 

 

Given that GreenOrbs maintains p=22 metrics per sensor, 

for each correlation graph sequence CG(i), there are totally p⋅ 
(p-1)/2=231 different time series. At the end of each time 
window, AD computes whether there is an abrupt change for 
any edge. If yes, it marks it as a change point of sensor si. The 
detection of abrupt change for each edge is modeled as a 
change point analysis problem. We adopt a classical CUSUM 
algorithm [17] to discover change points for time series. In our 
application, this includes three steps. 

Step 1: Cumulative Sums Calculation. In this step, CUSUM 
charts are constructed based on the original time series. Let 
{c1(u,v), c2(u,v), …, cn(u,v)} be the correlation scores of edge 
(u,v) from the first time window to the current one. The 
cumulative sums CS0, CS1, CS2, …, CSn are calculated as: 

• CS
0

= 0 ; 

• CS
i
=CS

i−1
+ c

i
(u, v)− c

i
(u, v)

i=1

n

∑ / n . 

The intuition behind the cumulative sums is that if there are no 
abrupt changes in correlation scores, then the cumulative sums 
just shrink near zero. Supposing at the beginning all the scores 

are above the average, the term c
i
(u, v)− c

i
(u,v)

i=1

n

∑ / n  is always 

larger than zero, causing cumulative sums CSi to increase 
steadily. If ck+1(u,v) is an abrupt change, CSk+1 should be much 
smaller than CSk. Thus, CSk will dominate both the preceding 
and the subsequent cumulative sums. The change score is 
denoted as CSdiff=max(CSi)-min(CSi). 

Step 2: Bootstrap Analysis. Bootstrap analysis provides a 
way to test the significance of the change by mimicking the 
behavior of CUSUM if there are no change points. In this step, 
the time series {c1(u,v),c2(u,v),…,cn(u,v)} are reordered 
randomly. Based on the random ordered time series, a new 
sequence of cumulative sums CS'0, CS'1, CS'2, …, CS'n are 
computed. The new change score is CS'diff = max(CS'i)-
min(CS'i). After performing bootsraps M times, among which 
there are X times CSdiff>CS'diff, the confidence level of CSdiff is 
calculated as X/M.  

Step 3: Change Point Detection. Once the confidence level 
of CSdiff is higher than a predefined threshold (e.g., 90%), we 
say that an abrupt change happens in the current time series. 

We select the index k so that CSk=max|CSi|. Therefore, k is the 
last index before the abrupt change, and ck+1(u,v) is the change 
point. 

In Figure 4, the original time series has an abrupt change in 
index 10. At the same position, the CUSUM curve encounters a 
sudden change, which is consistent with the original time series. 
However, in the CUSUM chats with random ordering, there is 
no sudden change, and all the curves tend to shrink near zero.  

At the end of this step, the nodes whose correlation graphs 
change acutely are detected. However, they are not necessarily 
faulty, and are cross-validated by spatial detection. 

D. Spatial Detection 

Spatial detection takes snapshots of correlation graphs of 
all nodes in each time window, and groups similar ones 
together. Sensors whose correlation graphs diverge from the 
common patterns are considered suspicious. 

Problem 2. (Spatial Detection) Given a set of nodes s1, 
s2, …, sn, as well as their correlation graphs in window t, i.e., 
CG1,t, CG2,t, …, CGn,t, divide them into K clusters with cluster 
centroids C1, C2, …, CK. The confidence level for a sensor node 
si to be suspicious is defined as: 

min
j
(dist(CG

i,t
,C

j
)) , 

where dist(CGx ,CGy ) is the binary distance function between 
two correlation graphs. 

Considering the symmetry of the correlation matrix, we can 
take the upper triangular of it and transform it to a d-

dimensional vector, where d=p⋅(p-1)/2. Therefore, an intuitive 
solution is to apply K-Means clustering [19] directly and find 
the farthest nodes from the centers. However, this approach is 
complicated and inefficient due to the high dimensionality of 
correlation graphs. For high dimensionality, the concept of 
distance becomes meaningless. Specifically, the difference of 
the maximum and minimum distance converges to zero [24]: 

lim
d→∞

max(dist(CG
x
,CG

y
))−min(dist(CG

x
, CG

y
))

min(dist(CG
x
,CG

y
))

→ 0, 



which causes the clustering results to be imprecise. 
Another problem is the dependencies among dimensions. 

For instance, suppose metrics u, v, and w are highly correlated 
pair-wisely. As a result, the three dimensions c(u,v), c(u,w), 
c(u,w) are very likely to be dependent. This suggests that the 
actual dimensionality of the correlation graphs is much smaller 
than d. 

Following the idea of principle component analysis (PCA), 
our algorithm first projects correlation graphs to a low-
dimensional space and then performs clustering on the 
projected data [18][20][21]. Let X1, X2, …, Xn denote the d-
dimensional column vectors consisting of elements drawn from 
the upper triangles of CG1,t, CG2,t, …, CGn,t respectively. 
Without loss of generality, assume Xi has zero mean. The 
original data matrix can be written as X=[X1, X2, …, Xn], which 
is of size d×n. The goal of PCA is to maximize the variance of 
data after projection. Define the m×d projection matrix as 
P=(u1,u2,…,um)

T
, where ui is a d-dimensional unit column 

vector and m is the dimensionality of the subspace. 
Accordingly, the projected data of Xi is PXi, which is an m-
dimensional column vector in the low dimensional space, and 
the variance is: 

1

n
(PX

i
−PX)2

i=1

n

∑ =
1

n
(PX

i
)2 =

i=1

n

∑ PSPT  

where X =
1

n
x
i

i=1

n

∑ = (0 0 ... 0)T  is the mean of projected data, and 

S =
1

n
(X

i
− X)(X

i
− X)

T

=
i=1

n

∑ 1

n
X
i
X
i

T

i=1

n

∑  is the covariance matrix.  

We can rewrite the variance PSP
T
 as: 

PSP
T =

u
1

T

u
2

T

...

u
m

T





















S( u
1
u
2
... u

m
) = u

i

T
Su

i

i=1

m

∑ , 

which implies that maximizing PSP
T
 is equivalent to 

maximizing u
i

TSu
i
independently. Since ui is a unit vector, a 

constraint is given by u
i

Tu
i
=1 . As a common strategy, a 

Lagrange multiplier can be added to find the maxima of the 
objective function subject to constraints. The Lagrange 

function is defined by u
i

TSu
i
+ λ

i
(1−u

i

Tu
i
) . When Su

i
= λ

i
u
i
, this 

term has a stationary point, i.e., the partial derivatives are zero, 

which suggests that u
i
 is the eigenvector of S with eigenvalue 

λ
i
. Hence u

i

TSu
i
= λ

i
u
i

Tu
i
= λ

i
. If we take the largest eigenvalue 

and its corresponding eigenvector, u
i

T
Su

i
 is maximized. By 

induction, if we take the m largest eigenvalues and the 
corresponding eigenvectors, the variance PSP

T
 is maximized. 

However, the commonly used methods to decompose 
eigenvectors of S (e.g., QR decomposition) have a computation 
cost of O(d

3
), which is not scalable with d. In our case, if we 

collect more status information, d increases in the form of a 
quadractic function of p, where p is the number of metrics. On 

the other hand, due to packet losses and the hardness of time 
synchronization, it is often difficult to ensure that in every time 
window, we can collect enough data to compute correlation 
graphs for each node. As a result, the number of correlation 
graphs to cluster is much smaller than, i.e., n<<d. Based on this 
observation, our algorithm computes the eigenvectors of S in 

another way [20]. Substituting S in Su
i
= λ

i
u
i
using S=n

-1
XX

T
, 

we have 

1

n
XX

T
u
i
= λ

i
u
i
. 

Then, after multiplying the equation by X
T
 in both sides, we 

obtain 

1

n
X
T
X(X

T
u
i
) = λ

i
(X

T
u
i
) . 

It implies that the vector vi=X
T
ui is the eigenvector of matrix 

1

n
X TX . 

Moreover, the projected data matrix which lives in a m-
dimensional space can be directly computed based on vi. 
Denote the data matrix after projection as Z=[Z1, Z2, …, Zn], 
where Zi is the corresponding data point of Xi after projection, 
i.e., Zi=PXi, and 

Z = [ Z
1
Z
2
... Z

n
] =

u
1

TX
1
u
1

TX
2
... u

1

TX
n

u
2

TX
1
u
2

TX
2
... u

2

TX
n

... ... ... ...

u
m
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1
u
m
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2
... u

m

TX
n



















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Since v
i
= X

T
u
i
= X

1

T
u
i
X
2

T
u
i
... X

n

T
u
i( )

T

, we have 

Z = ( v
1
v
2
... v

m
)
T
. 

This implies that the data matrix after projection Z consists of 

eigenvectors of matrix 
1

n
X
T
X . Since matrix X

T
X is of size n×n, 

the computation cost of its eigenvalue decomposition process is 
O(n

3
) rather than O(d

3
).  

After projection, we perform K-Means clustering on the 
columns of projected data matrix Z. The confidence of Zi to be 
suspicious is proportional to its distance to the nearest centroid. 
Note that K-Means clustering needs the number of clusters K 
beforehand. In our evaluation, we found that K = 3 works well 
when we set m = 15. A number of improvements such as QT 
clustering [23] have been proposed to remove this constraint. 
Another issue worth mentioning is that correlation graphs are 
constructed only in each time window, which yields a trade-off 
between detection delay and false alarm rate. If we set a long 
window, each node transmits a large amount of status data 
within the window, and the false alarm rate is low, at the cost 
of a long detection delay. On the contrary, if we set a short 
window, the detection delay is low, but more false alarms 
might be generated. 
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Figure 5. Correlation scores of TransmitCounter and ReceiveCounter. 

 

Figure 6. Rows of correlation matrices for nodes 70, 73 and 100. 

 

IV. EVALUATION 

We first present several case studies to show the 
effectiveness of Agnostic Diagnosis. Then, we study the 
relationship between the correlation graph changes and system 
performance. Finally, we statistically assess the results of our 
evaluation. 

A. Case Studies 

We use three months of data collected from 330 nodes in 
GreenOrbs. Using AD, we have identified four types of failures, 
some of which can be detected by the abnormal values of 
metrics, while others are silent ones.  

The first type is called ingress drops, which is detected by 
the correlation between ReceiveCounter and TransmitCounter. 
Since the data rate of a sensor is fixed (i.e., three packets every 
fifteen minutes), the number of packets transmitted by a 
healthy node should be very close to the number of packets it 
receives from its children in the routing tree. However, if 
ingress drops occur, a portion of the incoming packets is 
dropped. Consequently, a change point in the time series of 
correlation score between ReceiveCounter and 
TransmitCounter suggests an ingress drop.  

Figure 5 illustrates the correlation scores of these two 
metrics over time. Since they are always positively correlated, 
the correlation scores are larger than 0. In the diagram, there 
are four change points detected by temporal detection 
algorithm. Each of them is marked with a square, and the 
change point detected at 02:00 is the most significant one, i.e., 
with the highest confidence. An inspection of the raw data 
reveals that at that time, this sensor received packets from its 
children in the routing tree but did not forward all of them to 
the sink, causing ingress drops. However, if we investigate 
ReceiveCounter and TransmitCounter separately, this failure 
cannot be detected since the values of both metrics are within 
the normal range. 

The second type is routing failures. A typical symptom is a 
node changing its parent too frequently. Figure 6 depicts one 
row of the correlation matrix for three sensors. Each pixel in 
the row stands for the correlation score between 
ParentChangeCounter and another metric. Similar to Figure 2, 

lighter pixels correspond to higher correlation scores. Node 73 
has a quite different pattern compared to the others. As an 
example, consider the second pixel in the row, which 
corresponds to the correlation between ParentChangeCounter 
and RadioOnCounter. For healthy nodes 70 and 100, the two 
metrics are not correlated, as they signify the number of times a 
node turns on the radio and the number of times it changes its 
parent node in the routing tree, respectively. For node 73, the 
correlation score is so high that almost every time it turns on its 
radio, a parent change happens. Again, if we merely focus on 
the values of the two metrics independently, such failures 
cannot be found.  

The third type is link failures. The detection of link failures 
exploits the correlation between RetransmitCounter and other 
metrics such as RadioOnTimeCounter. Figure 7 illustrates the 
time series of these two metrics. Initially, the metrics are 
weakly correlated, since a node may retransmit some packets 
when its radio is on, but it does not always happen. Starting at 
8:30, the correlation increases, indicating that a large portion of 
radio-on time is used to retransmit packets. Thus, the 
transmission from this node to its parent suffers from low link 
quality. On the other hand, it is difficult to simply set a 
threshold for the ratio of retransmitted packets because it may 
change depending on the time and the location. For instance, a 
threshold equal to 0.5 may be acceptable in an indoor 
environment where links are easily interfered, but too low in an 
open space where link quality is very good. 
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Figure 7. Time series of RadioOnTimeCounter and RetransmitCounter. 
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(a) Node 25 (b) Node 50 (c) Node 60 

Figure 8. Packet delivery ratios of three nodes over time. 
 

The fourth kind refers to node failures that may be caused 
by software or hardware problems. The correlation between 
TaskPostCounter and TaskExecuteCounter can be employed to 
uncover the internal status of programs. Generally speaking, if 
the node is healthy, the number of tasks performed (i.e., 
TaskExecuteCounter) should be highly correlated with the 
number of tasks posted (i.e., TaskPostCounter). However, if 
bugs occur, this correlation tends to be weak. We do not 
address hardware failures because they can be readily detected 
through a simple rule: when a node crashes, none of its 
neighbors can know its existence any more. Thus, if the node 
does not appear in the neighborhood of nearby sensors, it is 
highly possible that it has crashed. 

B. Effectiveness 

To evaluate the effectiveness of our agnostic approach we 
investigate data manually and compare them with the results of 
our system.  

Temporal Detection: We depict both packet delivery ratios 
(PDR) and temporal detection results in Figure 8. PDR is 
defined as the ratio between the amount of packets received by 
the sink and that sent by the source node. For each square, its 
x-axis value corresponds to the time when the temporal 
detection phase reports change points, while its y-axis value 
corresponds to the packet delivery ratio at that time.  

When failures occur to a sensor or its links, a possible 
symptom is that the node suffers from low packet delivery ratio. 
Local minima in the PDR curve are captured by the squares, 
suggesting that low PDRs correspond to the time instants when 
temporal detection discovers change points in the node’s 
correlation graphs. However, some local minima are not 
captured by squares, possibly because they do not necessarily 
signify failures. For example, if node s is healthy but its parent 
is faulty, it also causes node s’s PDR to encounter a local 
minimum. Moreover, if the sensor recovers from a temporary 
failure, temporal detection also captures these time instants, i.e., 
the red squares that correspond to local maxima of PDR curve.  

Spatial Detection: To validate the effectiveness of spatial 
detection, we randomly pick 30 faulty nodes that are identified 
in this phase. Specifically, 23 of them are flagged because 
some failures take place, 5 are false alarms, and the other 2 

nodes exhibit a sudden increase in the number of packets 
received, leading to different correlation scores between 
PacketReceiveCounter and other metrics. However, after 
manually inspecting the raw data, we believe that these two 
nodes are healthy since the number of packets transmitted by 
them increases accordingly. The involved faults include packet 
loops, frequent parent changes, link failures, mismatch between 
radio-on time and packets transmitted/received, ingress failures, 
and stack overflows. These failures are not independent 
because several types of failures may occur in the same sensor 
node simultaneously. Packet loops is the most frequent type of 
failures.  

C. Traffic Overhead 

Since our diagnostic approach is a proactive one, it incurs 
additional traffic overhead. In our implementation, the packets 
storing these metrics are sent back to the base station along 
with the sensing data packets. Every fifteen minutes, all the 
status information can be packed in one packet, which is 
reasonable considering the benefits of diagnosis. 

V. RELATED WORKS 

Diagnosis of wireless sensor networks has been tackled from 
various perspectives. The first type aims at software debugging. 
Clairvoyant [1] is a GDB-like source-level tool that provides a 
suit of standard debugging commands such as break, set, watch 
and backtrace. Declarative Tracepoint [2] supports a 
declarative, SQL-like language, allowing developers to insert a 
set of action-associated rules to applications at runtime. 
DustMiner [3] employs a front-end to collect runtime event 
logs and a back-end to perform frequent pattern mining to 
uncover root causes of failures and performance anomalies. 
Our approach differs in that we do not aim at debugging the 
source code. Instead, our goal is to discover the silent failures 
caused by nodes, ambient environment, and protocols. 

The second type of diagnosis is achieved through rule-based 
mining, or specific inference models. Sympathy [4] 
periodically collects general system metrics such as nodes’ next 
hops and neighbors. Decision trees are then used to analyze 
root causes of node failures. PAD [8] leverages a packet 
marking strategy for constructing and maintaining the inference 



model. PowerTracing [9] employs a special power meter and 
HMM to identify patterns of power consumption. Our work 
addresses the problem when there is little domain knowledge. 
Besides, since no specific models are assumed in our system, it 
has wider applicability. 

There are also works closely related to diagnosis [10][13]. 
For example, [11] and [12] focus on node failures. LiveNet 
uses passive monitoring to reconstruct dynamics of live sensor 
networks. PD2 [14] pinpoints the root causes of application 
performance problems. SNMS [5] proposes a network 
management system designed for wireless sensor networks. 
Both MinRoute [6] and EmStar [7] visualize the operational 
sensor network.  

VI. CONCLUSIONS 

Most existing methods rely on pre-defined rules to discover 
faults with known types and symptoms. On the other hand, our 
experience with a large-scale sensor network reveals that 
diagnosis should be agnostic so as to discover silent failures. 
This paper presents Agnostic Diagnosis, a novel approach that 
relies on minimum domain knowledge. AD explores the 
correlation between system metrics using a two-stage cross 
validation scheme to detect silent failures. Our evaluation, 
based on a dataset collected from 330 nodes over several 
months, demonstrates that the two stages indeed capture system 
performance degradation and discover potential failures and 
network events.  
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