
Agnostic Diagnosis: Discovering Silent Failures

in Wireless Sensor Networks

Xin Miao
1
, Kebin Liu

1,2
, Yuan He

1,2
, Yunhao Liu

1
, Dimitris Papadias

1

1
Department of CSE, Hong Kong University of Science and Technology, Hong Kong, China

2
TNLIST, School of Software, Tsinghua University, Beijing, China

Email: {miao, kebin, heyuan, liu, dimitris}@cse.ust.hk

Abstract— In wireless sensor networks (WSNs), diagnosis is a

crucial and challenging task due to the distributed nature and

stringent resources. Most previous approaches are supervised,

relying on a-priori knowledge of network faults. On the other

hand, our experience with GreenOrbs, a long-term large-scale

WSN system, reveals the need of diagnosis in an agnostic manner.

Specifically, in addition to predefined faults (i.e., with known

types and symptoms), silent failures that are unknown

beforehand, account for a large fraction of network performance

degradation. Currently, there is no effective solution for silent

failures because they are often diverse and highly system-related.

In this paper, we propose Agnostic Diagnosis (AD), an online

lightweight failure detection approach. AD is motivated by the

fact that the system metrics (e.g., radio-on time, number of

packets transmitted) of GreenOrbs sensors usually exhibit

certain correlation patterns. Violations of such patterns indicate

potential silent failures. We accordingly design a correlation

graph, which systematically characterizes internal correlations

inside a node. Silent failures are discovered by tracking the

changes and anomalies of correlation graphs. We implement AD

on a working WSN consisting of 330 nodes. Our experimental

results demonstrate the advantages of AD to discover silent

failures, effectively expanding the capacity and scope of WSN

diagnosis.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely used
in many fields, such as environmental surveillance, emergency
navigation, traffic monitoring, and industrial control
[15][16][22]. WSNs are by nature error-prone and have
unsatisfactory reliability, encountering various faults and
failures during their operation. Consequently, diagnosis has
drawn substantial attention in recent years as a method to
enhance the applicability, reliability, and efficiency of WSNs.

However, diagnosing WSNs is a challenging issue because,
once a WSN is deployed, its inner conditions are not directly
observable. Specifically, since many WSNs reside in harsh or
remote environments, it is difficult to perform in-situ
troubleshooting on the faulty nodes. Furthermore, the
distributed nature and stringent resources of WSNs render it
hard for a network operator to completely monitor the system’s
working status. Due to similar reasons, it is also infeasible to
deploy management tools like SNMP, or other costly
diagnostic modules, on the sensor nodes.

Many existing diagnostic approaches are supervised, i.e.,
they rely on either specific rules or inference models. An
obvious drawback is that they are limited to faults with known
types and symptoms, and hence, they cannot be easily
generalized to different application scenarios. On the other
hand, the interactions within the WSN and the causal
dependencies between root causes and symptoms are usually
unknown. As a result, silent failures remain undetected.

This paper is motivated by the need for long-term reliable
operation of GreenOrbs, a large-scale WSN system in a forest
[16]. Currently, GreenOrbs includes 330 nodes and has been in
continuous operation for over eight months. During the
deployment, we often observe system performance
degradations, e.g., low packet delivery ratio. A portion of faulty
nodes can be easily identified since they generate apparently
abnormal system metrics (e.g., measurements that are clearly
beyond the reasonable scope). The other faulty nodes, however,
cannot be identified in this way. For instance, we adopt low-
power listening mode so the radio is switched on only for
receiving, sending, or idle listening. Consequently, the radio-on
time should be closely correlated with the amount of traffic
passing the node. We noted that during a five-minute period, a
node kept its radio on for 47.5 seconds, transmitting only 3
packets in total. In the next five-minute period, it kept its radio
on for 51.6 seconds and transmitted 550 packets. Any
individual value of the metrics is not abnormal, but the
correlation between radio-on time and number of transmitted
packets clearly suggests inconsistency on that node.

A straightforward solution would be to develop a set of
static correlation rules for identifying the faulty nodes.
However, this is inapplicable for two reasons: (i) usually there
is insufficient domain knowledge to enumerate all the rules; (ii)
WSN deployment is often evolutional, so that the correlation
rules change over time; both software upgrades and
environment conditions may have a great impact on the
correlations.

To overcome these problems, we propose Agnostic
Diagnosis (AD), an online lightweight approach for WSNs. AD
exploits the correlations among metrics of each sensor using a
correlation graph that describes the latent status of the node.
Such a correlation graph is updated periodically using the
node’s metrics. By mining through the correlation graphs, we
identify the underlying rules of a normally running system, and
detect abnormal correlations.

0 2 4 6 8 10 12

4

6

8

10

12

14

Time

N
u
m
b
e
r
o
f
P
a
c
k
e
ts
 T
ra
n
s
m
it
te
d

Time Period One

Time Period Two

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18

Time

N
u
m
b
e
r
o
f
P
a
c
k
e
ts
 T
ra
n
s
m
it
te
d

Sensor Node 2

Sensor Node 4

Sensor Node 24

(a) Number of packets transmitted by node 2 in two time periods (b) Number of packets transmitted by nodes 2, 4, and 24 in a same period

Figure 1. Examples of normal operation and node failure.

Our main contributions are summarized as follows:

• Unlike previous approaches, Agnostic Diagnosis relies
on minimal a-priori knowledge and can be generalized
to a wide variety of WSN applications.

• We propose the correlation graph, a compact structure
that efficiently characterizes the internal correlations
inside a node.

• We implement AD and evaluate it with traces from a
330-node GreenOrbs deployment. Case studies and
statistics demonstrate the effectiveness of AD.

The rest of the paper is organized as follows. Section 2
motivates the problem. Section 3 presents AD. Section 4
evaluates our design and Section 5 surveys related work.
Finally, Section 6 concludes this paper.

II. MOTIVATION

Diagnosis is a fundamental task for long-term large-scale
WSN systems. This section first introduces the basic
information and application requirements of GreenOrbs,
including several observations in the form of concrete
examples. These observations reveal the existence of
correlation patterns among the nodes’ operational metrics and
the feasibility of agonistic diagnosis.

A. GreenOrbs

GreenOrbs is an ecological surveillance project deployed in
a forest. It collects a group of sensory data such as temperature,
humidity, illumination and carbon dioxide concentration to
support various applications. Since the deployment is in a
remote area, the overhead of in-situ debugging and
troubleshooting is very high. Therefore, the diagnostic system
is designed so that each node periodically transmits its current
status to the sink. Specifically, we collect 22 types of metrics
from each node that are classified into four categories: (1)
timing metrics e.g. RadioOnTimeCounter, which denotes the
accumulative radio-on time; (2) traffic metrics, e.g.
TransmitCounter, which records the accumulative number of
packets transmitted by a node; (3) task metrics, e.g.
TaskExecCounter, which is the accumulative number of tasks

executed; (4) other metrics such as ParentChangeCounter,
which counts the number of parent changes.

The difficulty of diagnosis in GreenOrbs stems from the

absence of a-priori knowledge on the possible faults and their

symptoms, which renders general diagnostic rules inapplicable.

Instead, we design a diagnostic system requiring minimal

domain knowledge.

B. Observations

In the following, we demonstrate a set of interesting

failure examples. Figure 1(a) plots the number of packets

transmitted by a node every 15 minutes. During time period

one, the value of this metric changes dramatically, possibly

indicating that the node is faulty. However, a manual analysis

of the whole trace shows that the node works well. On the

other hand, even though the metric appears to be stable during

period two, the node actually encounters routing loops (a fatal

routing problem). This example demonstrates that the

individual examination of metrics on the same sensor node

may overlook silent failures, or may flag failures by mistake.

Figure 1(b) shows another example, where the data curves

correspond to the packet transmissions of different nodes

during the same period. Even though the metrics exhibit

different values and variations, all three nodes in fact perform

well, but the correlation among them is relatively weak. This

example suggests that even if considering multiple sensor

nodes, an individual metric is insufficient to uncover failures.
We then conduct the correlation matrix of the 22 metrics

and visualize them using gray-scale images (the details of the
correlation matrix will be presented later). A square (i,j) in the
image denotes the correlation score between metrics i and j.
Figure 2(a)-(c) displays three images constructed from metrics
of the same node. The node is normal in the first two periods,
but faulty in the third one. Interestingly, the first two gray-scale
images are very similar to each other, whereas they differ
significantly from the third one. Analogous results are observed
in the spatial domain as well. Figure 2 (d)-(f) shows the images
of three nodes in the same period. The first two nodes are
normal, while the third one is faulty. Observe that the first two
images follow a similar pattern, which is clearly
distinguishable from the last one.

(a) Healthy period 1 of sensor node 2 (b) Healthy period 2 of sensor node 2 (c) Faulty period of sensor node 2

(d) Healthy node 1 (e) Healthy node 2 (f) Faulty node

Figure 2. Visualizations of correlation matrices.
The difference of correlation patterns can be explained

with the following example. There are two metrics called
LoopCounter and SuccAckCounter. The former is the number
of times the same packet passes through the current node, and
the latter is the number of packets that are successfully
transmitted by the current node. If the node is normal, the value
of LoopCounter should be zero most of the time. Thus, these
two metrics have weak correlation. If the node is out of order
and produces “routing loops”, the same packet passes multiple
times. Eventually, LoopCounter dominates SuccAckCounter,
and these two metrics are highly correlated, differentiating the
faulty node from of the normal ones.

In summary, proper diagnosis of WSNs, especially long-

term large-scale systems like GreenOrbs, is crucial and

challenging. This is partially due to resource constraints and

hardness to track in-network status. Even a more important,

but often overlooked fact is that the diagnostic capacity is

restricted by our incomplete knowledge of possible failures.

Our experience with GreenOrbs reveals that independent

investigation of metrics is insufficient for capturing all the

problematic nodes. On the other hand, exploiting correlations

of metrics uncovers significantly more failures.

III. AGNOSTIC DIAGNOSIS

We assume a WSN consisting of N sensor nodes. At each
time stamp t, a sensor si measures its working status, obtaining
a status vector Si,t=(m1,t, m2,t, …, mp,t), where p is the number of
metrics and mu,t is the value of the u-th metric at time t, 1≤u≤p.
Table 1 summarizes the symbols used in this paper and their
meanings.

A. Correlation Graphs

The correlation graph is a graph representing the pair-

wise correlations of the metrics. It is constructed and

maintained periodically, for each node in the WSN. Figure 3(a)

illustrates the graph of a healthy node. Each edge has a weight,

which denotes the correlation score between the corresponding

metrics (weights of edges and some other vertices are omitted

in our illustrations, for the sake of simplicity). In Figure 3(b),

the missing correlation between TransmitCounter and

RadioOnTimeCounter suggests that this node might be faulty.

Table 1. Definition of symbols

Symbols Definition

N Number of sensors

p Number of metrics

w Window size

si Sensor node i, 1≤i≤N

Si,t
The p-dimensional status vector of sensor i

at time t, Si,t=(m1,t, m2,t, …, mp,t)

mu,t
The value of the u-th metric at time t,

where 1≤u≤p

ck(u,v)
Correlation score of metrics u and v in

time window k, where 1≤u,v≤p

CGi,k Correlation graph of sensor i in window k

RadioOnCounter

RadioOnTime
Counter

TransmitCounter

NoACKRetransmit
Counter

TaskPostCounter

TaskExecCounter

(a) Graph of a healthy node

RadioOnCounter

RadioOnTime
Counter

TransmitCounter

NoACKRetransmit
Counter

TaskPostCounter

TaskExecCounter

(b) Graph of a faulty node

Figure 3. Correlation graphs of two nodes.

The correlation between metrics are evaluated in each time
window k, which lasts from time (k-1)*w+1 to time k*w, i.e.,
[(k-1)*w+1, k*w]. Suppose Mu,k=(mu,(k-1)*w+1, mu,(k-1)*w+2, …,
mu,k*w) and Mv,k=(mv,(k-1)*w+1, mv,(k-1)*w+2,…, mv,t*w) are the
values of metrics u and v collected in time window k
respectively. We define the correlation score between them
using Pearson’s product-moment coefficient:

c
k
(u,v) =

w m
u,(k−1)*w+i

m
v,(k−1)*w+i

−
i=1

w

∑ m
u,(k−1)*w+i

i=1

w

∑ m
v,(k−1)*w+i

i=1

w

∑
σ
u,k

σ
v,k

where σu,k and σv,k are their standard covariance

σ
u,k

= w m
u,(k−1)*w+i

2
− (m

u,(k−1)*w+i

i=1

w

∑)
2

i=1

w

∑

σ
v,k

= w m
v,(k−1)*w+i

2 − (m
v,(k−1)*w+i

i=1

w

∑)2

i=1

w

∑ .

This correlation score falls within the range [-1,1]. The closer

it is to either -1 or 1, the stronger the correlation between the

variables is. As it approaches zero, the correlation decreases.

Thus, we can construct a matrix where each element ck(u,v) is

the correlation score between metric u and metric v:

Correlation Matrix =

c
k
(1,1) c

k
(1, 2) ... c

k
(1, p)

c
k
(2,1) c

k
(2, 2) ... c

k
(2, p)

...

c
k
(p,1) c

k
(p,1) ... c

k
(p, p)





















.

This matrix is symmetric, i.e., ck(u,v)=ck(v,u). In addition,

since each metric is perfectly correlated with itself, ck(u,u)=1.

The matrix is a representation of the correlation graph. In

Figure 2, the visualization of correlation matrix is achieved by

transforming correlation scores into gray-scale values in the

range of [0,255]. Because the gray value of white is 255,

lighter pixels correspond to more correlated metrics.

B. AD Framework

AD identifies anomalies in the temporal and spatial
dimension. Specifically, temporal detection refers to sudden
changes in the correlation graph of a node. Spatial detection
discovers pattern inconsistencies using multiple nodes. If an
anomaly is identified by both temporal and spatial detection,
then it has a high chance of signifying a real problem.

Temporal detection investigates the evolution of
correlation graphs over time. In every window (e.g., [1,…,w],
[w+1,…,2w]), a correlation graph of sensor si is computed. If
the system operates normally (i.e., no sensor nodes go out of
order, and no events such as link failures, traffic congestions
occur), the correlation graphs of the node should remain
relatively stable. On the other hand, abrupt changes in
consecutive graphs indicate silent failures.

Spatial detection investigates pattern differences in the
graphs of nodes with similar characteristics. Although sensors
are deployed in different areas and connected in an ad-hoc
manner, they still share some intrinsic similarities. For instance,
leaf nodes in the global routing tree only need to transmit data
packets to their parents. The rest are intermediate nodes, which,
in addition to their own data, forward packets originating in
their sub-tree. Sensor nodes may share some similar patterns
according to their roles in the network.

C. Temporal Detection

Given two consecutive correlation graphs CGi,k and CGi,k+1
of the same node (for successive time windows), an abrupt
change may occur at one or more edges. For example, suppose
that two metrics RadioTimeOn and TransmitCounter are highly
correlated in CGi,k, but not in CGi,k+1. Then, even if all the other
edges are the same, the change in correlation is regarded as
abrupt. Therefore, we focus on the timely identification of such
changes in individual edges.

Problem 1. (Abrupt Change Time of Correlation Graphs)
The abrupt change time of CG(i)={CGi,1, CGi,2 , …, CGi,t, …}
is the time when an abrupt change happens in time series
{c1(u,v), c2(u,v), …, ct(u,v), …}, where ct(u,v) is the correlation
score between metrics u and v in time window t, 1≤u,v≤p and
u≠v.

(a) Original time series

(b) Original cumulative sums and cumulative sums after bootstrap

Figure 4. CUSUM example.

Given that GreenOrbs maintains p=22 metrics per sensor,

for each correlation graph sequence CG(i), there are totally p⋅
(p-1)/2=231 different time series. At the end of each time
window, AD computes whether there is an abrupt change for
any edge. If yes, it marks it as a change point of sensor si. The
detection of abrupt change for each edge is modeled as a
change point analysis problem. We adopt a classical CUSUM
algorithm [17] to discover change points for time series. In our
application, this includes three steps.

Step 1: Cumulative Sums Calculation. In this step, CUSUM
charts are constructed based on the original time series. Let
{c1(u,v), c2(u,v), …, cn(u,v)} be the correlation scores of edge
(u,v) from the first time window to the current one. The
cumulative sums CS0, CS1, CS2, …, CSn are calculated as:

• CS
0

= 0 ;

• CS
i
=CS

i−1
+ c

i
(u, v)− c

i
(u, v)

i=1

n

∑ / n .

The intuition behind the cumulative sums is that if there are no
abrupt changes in correlation scores, then the cumulative sums
just shrink near zero. Supposing at the beginning all the scores

are above the average, the term c
i
(u, v)− c

i
(u,v)

i=1

n

∑ / n is always

larger than zero, causing cumulative sums CSi to increase
steadily. If ck+1(u,v) is an abrupt change, CSk+1 should be much
smaller than CSk. Thus, CSk will dominate both the preceding
and the subsequent cumulative sums. The change score is
denoted as CSdiff=max(CSi)-min(CSi).

Step 2: Bootstrap Analysis. Bootstrap analysis provides a
way to test the significance of the change by mimicking the
behavior of CUSUM if there are no change points. In this step,
the time series {c1(u,v),c2(u,v),…,cn(u,v)} are reordered
randomly. Based on the random ordered time series, a new
sequence of cumulative sums CS'0, CS'1, CS'2, …, CS'n are
computed. The new change score is CS'diff = max(CS'i)-
min(CS'i). After performing bootsraps M times, among which
there are X times CSdiff>CS'diff, the confidence level of CSdiff is
calculated as X/M.

Step 3: Change Point Detection. Once the confidence level
of CSdiff is higher than a predefined threshold (e.g., 90%), we
say that an abrupt change happens in the current time series.

We select the index k so that CSk=max|CSi|. Therefore, k is the
last index before the abrupt change, and ck+1(u,v) is the change
point.

In Figure 4, the original time series has an abrupt change in
index 10. At the same position, the CUSUM curve encounters a
sudden change, which is consistent with the original time series.
However, in the CUSUM chats with random ordering, there is
no sudden change, and all the curves tend to shrink near zero.

At the end of this step, the nodes whose correlation graphs
change acutely are detected. However, they are not necessarily
faulty, and are cross-validated by spatial detection.

D. Spatial Detection

Spatial detection takes snapshots of correlation graphs of
all nodes in each time window, and groups similar ones
together. Sensors whose correlation graphs diverge from the
common patterns are considered suspicious.

Problem 2. (Spatial Detection) Given a set of nodes s1,
s2, …, sn, as well as their correlation graphs in window t, i.e.,
CG1,t, CG2,t, …, CGn,t, divide them into K clusters with cluster
centroids C1, C2, …, CK. The confidence level for a sensor node
si to be suspicious is defined as:

min
j
(dist(CG

i,t
,C

j
)) ,

where dist(CGx ,CGy) is the binary distance function between
two correlation graphs.

Considering the symmetry of the correlation matrix, we can
take the upper triangular of it and transform it to a d-

dimensional vector, where d=p⋅(p-1)/2. Therefore, an intuitive
solution is to apply K-Means clustering [19] directly and find
the farthest nodes from the centers. However, this approach is
complicated and inefficient due to the high dimensionality of
correlation graphs. For high dimensionality, the concept of
distance becomes meaningless. Specifically, the difference of
the maximum and minimum distance converges to zero [24]:

lim
d→∞

max(dist(CG
x
,CG

y
))−min(dist(CG

x
, CG

y
))

min(dist(CG
x
,CG

y
))

→ 0,

which causes the clustering results to be imprecise.
Another problem is the dependencies among dimensions.

For instance, suppose metrics u, v, and w are highly correlated
pair-wisely. As a result, the three dimensions c(u,v), c(u,w),
c(u,w) are very likely to be dependent. This suggests that the
actual dimensionality of the correlation graphs is much smaller
than d.

Following the idea of principle component analysis (PCA),
our algorithm first projects correlation graphs to a low-
dimensional space and then performs clustering on the
projected data [18][20][21]. Let X1, X2, …, Xn denote the d-
dimensional column vectors consisting of elements drawn from
the upper triangles of CG1,t, CG2,t, …, CGn,t respectively.
Without loss of generality, assume Xi has zero mean. The
original data matrix can be written as X=[X1, X2, …, Xn], which
is of size d×n. The goal of PCA is to maximize the variance of
data after projection. Define the m×d projection matrix as
P=(u1,u2,…,um)

T
, where ui is a d-dimensional unit column

vector and m is the dimensionality of the subspace.
Accordingly, the projected data of Xi is PXi, which is an m-
dimensional column vector in the low dimensional space, and
the variance is:

1

n
(PX

i
−PX)2

i=1

n

∑ =
1

n
(PX

i
)2 =

i=1

n

∑ PSPT

where X =
1

n
x
i

i=1

n

∑ = (0 0 ... 0)T is the mean of projected data, and

S =
1

n
(X

i
− X)(X

i
− X)

T

=
i=1

n

∑ 1

n
X
i
X
i

T

i=1

n

∑ is the covariance matrix.

We can rewrite the variance PSP
T
 as:

PSP
T =

u
1

T

u
2

T

...

u
m

T





















S(u
1
u
2
... u

m
) = u

i

T
Su

i

i=1

m

∑ ,

which implies that maximizing PSP
T
 is equivalent to

maximizing u
i

TSu
i
independently. Since ui is a unit vector, a

constraint is given by u
i

Tu
i
=1 . As a common strategy, a

Lagrange multiplier can be added to find the maxima of the
objective function subject to constraints. The Lagrange

function is defined by u
i

TSu
i
+ λ

i
(1−u

i

Tu
i
) . When Su

i
= λ

i
u
i
, this

term has a stationary point, i.e., the partial derivatives are zero,

which suggests that u
i
 is the eigenvector of S with eigenvalue

λ
i
. Hence u

i

TSu
i
= λ

i
u
i

Tu
i
= λ

i
. If we take the largest eigenvalue

and its corresponding eigenvector, u
i

T
Su

i
 is maximized. By

induction, if we take the m largest eigenvalues and the
corresponding eigenvectors, the variance PSP

T
 is maximized.

However, the commonly used methods to decompose
eigenvectors of S (e.g., QR decomposition) have a computation
cost of O(d

3
), which is not scalable with d. In our case, if we

collect more status information, d increases in the form of a
quadractic function of p, where p is the number of metrics. On

the other hand, due to packet losses and the hardness of time
synchronization, it is often difficult to ensure that in every time
window, we can collect enough data to compute correlation
graphs for each node. As a result, the number of correlation
graphs to cluster is much smaller than, i.e., n<<d. Based on this
observation, our algorithm computes the eigenvectors of S in

another way [20]. Substituting S in Su
i
= λ

i
u
i
using S=n

-1
XX

T
,

we have

1

n
XX

T
u
i
= λ

i
u
i
.

Then, after multiplying the equation by X
T
 in both sides, we

obtain

1

n
X
T
X(X

T
u
i
) = λ

i
(X

T
u
i
) .

It implies that the vector vi=X
T
ui is the eigenvector of matrix

1

n
X TX .

Moreover, the projected data matrix which lives in a m-
dimensional space can be directly computed based on vi.
Denote the data matrix after projection as Z=[Z1, Z2, …, Zn],
where Zi is the corresponding data point of Xi after projection,
i.e., Zi=PXi, and

Z = [Z
1
Z
2
... Z

n
] =

u
1

TX
1
u
1

TX
2
... u

1

TX
n

u
2

TX
1
u
2

TX
2
... u

2

TX
n

...

u
m

TX
1
u
m

TX
2
... u

m

TX
n





















.

Since v
i
= X

T
u
i
= X

1

T
u
i
X
2

T
u
i
... X

n

T
u
i()

T

, we have

Z = (v
1
v
2
... v

m
)
T
.

This implies that the data matrix after projection Z consists of

eigenvectors of matrix
1

n
X
T
X . Since matrix X

T
X is of size n×n,

the computation cost of its eigenvalue decomposition process is
O(n

3
) rather than O(d

3
).

After projection, we perform K-Means clustering on the
columns of projected data matrix Z. The confidence of Zi to be
suspicious is proportional to its distance to the nearest centroid.
Note that K-Means clustering needs the number of clusters K
beforehand. In our evaluation, we found that K = 3 works well
when we set m = 15. A number of improvements such as QT
clustering [23] have been proposed to remove this constraint.
Another issue worth mentioning is that correlation graphs are
constructed only in each time window, which yields a trade-off
between detection delay and false alarm rate. If we set a long
window, each node transmits a large amount of status data
within the window, and the false alarm rate is low, at the cost
of a long detection delay. On the contrary, if we set a short
window, the detection delay is low, but more false alarms
might be generated.

20:00 14:00 08:00 02:00 20:00 14:00 08:00
0

0.2

0.4

0.6

0.8

1

Time

C
o
rr
e
la
ti
o
n
 S
c
o
re
s

Figure 5. Correlation scores of TransmitCounter and ReceiveCounter.

Figure 6. Rows of correlation matrices for nodes 70, 73 and 100.

IV. EVALUATION

We first present several case studies to show the
effectiveness of Agnostic Diagnosis. Then, we study the
relationship between the correlation graph changes and system
performance. Finally, we statistically assess the results of our
evaluation.

A. Case Studies

We use three months of data collected from 330 nodes in
GreenOrbs. Using AD, we have identified four types of failures,
some of which can be detected by the abnormal values of
metrics, while others are silent ones.

The first type is called ingress drops, which is detected by
the correlation between ReceiveCounter and TransmitCounter.
Since the data rate of a sensor is fixed (i.e., three packets every
fifteen minutes), the number of packets transmitted by a
healthy node should be very close to the number of packets it
receives from its children in the routing tree. However, if
ingress drops occur, a portion of the incoming packets is
dropped. Consequently, a change point in the time series of
correlation score between ReceiveCounter and
TransmitCounter suggests an ingress drop.

Figure 5 illustrates the correlation scores of these two
metrics over time. Since they are always positively correlated,
the correlation scores are larger than 0. In the diagram, there
are four change points detected by temporal detection
algorithm. Each of them is marked with a square, and the
change point detected at 02:00 is the most significant one, i.e.,
with the highest confidence. An inspection of the raw data
reveals that at that time, this sensor received packets from its
children in the routing tree but did not forward all of them to
the sink, causing ingress drops. However, if we investigate
ReceiveCounter and TransmitCounter separately, this failure
cannot be detected since the values of both metrics are within
the normal range.

The second type is routing failures. A typical symptom is a
node changing its parent too frequently. Figure 6 depicts one
row of the correlation matrix for three sensors. Each pixel in
the row stands for the correlation score between
ParentChangeCounter and another metric. Similar to Figure 2,

lighter pixels correspond to higher correlation scores. Node 73
has a quite different pattern compared to the others. As an
example, consider the second pixel in the row, which
corresponds to the correlation between ParentChangeCounter
and RadioOnCounter. For healthy nodes 70 and 100, the two
metrics are not correlated, as they signify the number of times a
node turns on the radio and the number of times it changes its
parent node in the routing tree, respectively. For node 73, the
correlation score is so high that almost every time it turns on its
radio, a parent change happens. Again, if we merely focus on
the values of the two metrics independently, such failures
cannot be found.

The third type is link failures. The detection of link failures
exploits the correlation between RetransmitCounter and other
metrics such as RadioOnTimeCounter. Figure 7 illustrates the
time series of these two metrics. Initially, the metrics are
weakly correlated, since a node may retransmit some packets
when its radio is on, but it does not always happen. Starting at
8:30, the correlation increases, indicating that a large portion of
radio-on time is used to retransmit packets. Thus, the
transmission from this node to its parent suffers from low link
quality. On the other hand, it is difficult to simply set a
threshold for the ratio of retransmitted packets because it may
change depending on the time and the location. For instance, a
threshold equal to 0.5 may be acceptable in an indoor
environment where links are easily interfered, but too low in an
open space where link quality is very good.

08:03 08:18 08:33 08:48 09:03 09:18 09:33 10:03 10:18 10:33
2.5

3

3.5
x 10

4

R
a
d
io
O
n
T
im
e
C
o
u
n
te
r

Time
08:03 08:18 08:33 08:48 09:03 09:18 09:33 10:03 10:18 10:33

0

5

10

R
e
tr
a
n
s
m
it
C
o
u
n
te
r

Figure 7. Time series of RadioOnTimeCounter and RetransmitCounter.

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840
0

0.2

0.4

0.6

0.8

1

Hours

P
a
c
k
e
t
D
e
liv
e
ry
 R
a
ti
o

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840
0

0.2

0.4

0.6

0.8

1

Hours

P
a
c
k
e
t
D
e
liv
e
ry
 R
a
ti
o

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840
0

0.2

0.4

0.6

0.8

1

Hours

P
a
c
k
e
t
D
e
liv
e
ry
 R
a
ti
o

(a) Node 25 (b) Node 50 (c) Node 60

Figure 8. Packet delivery ratios of three nodes over time.

The fourth kind refers to node failures that may be caused
by software or hardware problems. The correlation between
TaskPostCounter and TaskExecuteCounter can be employed to
uncover the internal status of programs. Generally speaking, if
the node is healthy, the number of tasks performed (i.e.,
TaskExecuteCounter) should be highly correlated with the
number of tasks posted (i.e., TaskPostCounter). However, if
bugs occur, this correlation tends to be weak. We do not
address hardware failures because they can be readily detected
through a simple rule: when a node crashes, none of its
neighbors can know its existence any more. Thus, if the node
does not appear in the neighborhood of nearby sensors, it is
highly possible that it has crashed.

B. Effectiveness

To evaluate the effectiveness of our agnostic approach we
investigate data manually and compare them with the results of
our system.

Temporal Detection: We depict both packet delivery ratios
(PDR) and temporal detection results in Figure 8. PDR is
defined as the ratio between the amount of packets received by
the sink and that sent by the source node. For each square, its
x-axis value corresponds to the time when the temporal
detection phase reports change points, while its y-axis value
corresponds to the packet delivery ratio at that time.

When failures occur to a sensor or its links, a possible
symptom is that the node suffers from low packet delivery ratio.
Local minima in the PDR curve are captured by the squares,
suggesting that low PDRs correspond to the time instants when
temporal detection discovers change points in the node’s
correlation graphs. However, some local minima are not
captured by squares, possibly because they do not necessarily
signify failures. For example, if node s is healthy but its parent
is faulty, it also causes node s’s PDR to encounter a local
minimum. Moreover, if the sensor recovers from a temporary
failure, temporal detection also captures these time instants, i.e.,
the red squares that correspond to local maxima of PDR curve.

Spatial Detection: To validate the effectiveness of spatial
detection, we randomly pick 30 faulty nodes that are identified
in this phase. Specifically, 23 of them are flagged because
some failures take place, 5 are false alarms, and the other 2

nodes exhibit a sudden increase in the number of packets
received, leading to different correlation scores between
PacketReceiveCounter and other metrics. However, after
manually inspecting the raw data, we believe that these two
nodes are healthy since the number of packets transmitted by
them increases accordingly. The involved faults include packet
loops, frequent parent changes, link failures, mismatch between
radio-on time and packets transmitted/received, ingress failures,
and stack overflows. These failures are not independent
because several types of failures may occur in the same sensor
node simultaneously. Packet loops is the most frequent type of
failures.

C. Traffic Overhead

Since our diagnostic approach is a proactive one, it incurs
additional traffic overhead. In our implementation, the packets
storing these metrics are sent back to the base station along
with the sensing data packets. Every fifteen minutes, all the
status information can be packed in one packet, which is
reasonable considering the benefits of diagnosis.

V. RELATED WORKS

Diagnosis of wireless sensor networks has been tackled from
various perspectives. The first type aims at software debugging.
Clairvoyant [1] is a GDB-like source-level tool that provides a
suit of standard debugging commands such as break, set, watch
and backtrace. Declarative Tracepoint [2] supports a
declarative, SQL-like language, allowing developers to insert a
set of action-associated rules to applications at runtime.
DustMiner [3] employs a front-end to collect runtime event
logs and a back-end to perform frequent pattern mining to
uncover root causes of failures and performance anomalies.
Our approach differs in that we do not aim at debugging the
source code. Instead, our goal is to discover the silent failures
caused by nodes, ambient environment, and protocols.

The second type of diagnosis is achieved through rule-based
mining, or specific inference models. Sympathy [4]
periodically collects general system metrics such as nodes’ next
hops and neighbors. Decision trees are then used to analyze
root causes of node failures. PAD [8] leverages a packet
marking strategy for constructing and maintaining the inference

model. PowerTracing [9] employs a special power meter and
HMM to identify patterns of power consumption. Our work
addresses the problem when there is little domain knowledge.
Besides, since no specific models are assumed in our system, it
has wider applicability.

There are also works closely related to diagnosis [10][13].
For example, [11] and [12] focus on node failures. LiveNet
uses passive monitoring to reconstruct dynamics of live sensor
networks. PD2 [14] pinpoints the root causes of application
performance problems. SNMS [5] proposes a network
management system designed for wireless sensor networks.
Both MinRoute [6] and EmStar [7] visualize the operational
sensor network.

VI. CONCLUSIONS

Most existing methods rely on pre-defined rules to discover
faults with known types and symptoms. On the other hand, our
experience with a large-scale sensor network reveals that
diagnosis should be agnostic so as to discover silent failures.
This paper presents Agnostic Diagnosis, a novel approach that
relies on minimum domain knowledge. AD explores the
correlation between system metrics using a two-stage cross
validation scheme to detect silent failures. Our evaluation,
based on a dataset collected from 330 nodes over several
months, demonstrates that the two stages indeed capture system
performance degradation and discover potential failures and
network events.

ACKNOWLEDGEMENT

This work is supported in part by National Basic Research
Program of China (973 Program) under Grant No.
2011CB302705, and NSFC/RGC Joint Research Scheme N
HKUST602/08.

REFERENCE

[1] J. Yang, M. L. Soffa, L. Selavo, et al., "Clairvoyant: A
Comprehensive Source-Level Debugger for Wireless Sensor
Networks," In Proc. of ACM SenSys, 2007.

[2] Q. Cao, T. Abdelzaher, J. Stankovic, et al., "Declarative
Tracepoints: A Programmable and Application Independent
Debugging System for Wireless Sensor Networks," In Proc. of
ACM SenSys, 2008.

[3] M. M. H. Khan, H. K. Le, H. Ahmadi, et al., "Dustminer:
Troubleshooting Interactive Complexity Bugs in Sensor
Networks," In Proc. of ACM SenSys, 2008.

[4] N. Ramanathan, K. Chang, L. Girod, et al., "Sympathy for the
Sensor Network Debugger," In Proc. of ACM SenSys, 2005.

[5] P. Dutta, M. Grimmer, A. Arora, et al., "Design of a wireless
sensor network platform for detecting rare, random, and

ephemeral events," presented at the Proceedings of the 4th
international symposium on Information processing in sensor
networks, Los Angeles, California, 2005.

[6] L. Girod, J. Elson, A. Cerpa, et al., "EmStar: A Software
Environment for Developing and Deploying Wireless Sensor
Networks," In Proc. of USENIX Annual Technical Conference,
2004.

[7] A. Woo, T. Tong, and D. Culler, "Taming the underlying
challenges of reliable multihop routing in sensor networks,"
presented at the Proceedings of the 1st international conference
on Embedded networked sensor systems, Los Angeles,
California, USA, 2003.

[8] K. Liu, M. Li, Y. Liu, et al., "Passive Diagnosis for Wireless
Sensor Networks," In Proc. of ACM SenSys, 2008.

[9] M. M. H. Khan, H. K. Le, M. LeMay, et al., "Diagnostic
powertracing for sensor node failure analysis," presented at the
Proceedings of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Networks, Stockholm, Sweden,
2010.

[10] M. M. H. Khan, L. Luo, C. Huang, et al., "SNTS: Sensor
Network Troubleshooting Suite," In Proc. of DCOSS, 2007.

[11] S. Guo, Z. Zhong, and T. He, "FIND: Faulty Node Detection for
Wireless Sensor Networks," In Proc. of ACM SenSys, 2009.

[12] R. Rajagopal, X. Nguyen, S. C. Ergen, et al., "Distributed
Online Simultaneous Fault Detection for Multiple Sensors," In
Proc. of IEEE/ACM IPSN, 2008.

[13] B.-r. Chen, G. Peterson, G. Mainland, et al., "LiveNet: Using
Passive Monitoring to Reconstruct Sensor Network Dynamics,"
In Proc. of IEEE/ACM DCOSS, 2008.

[14] Z. Chen and K. G. Shin, "Post-Deployment Performance
Debugging in Wireless Sensor Networks," In Proc. of IEEE
RTSS, 2009.

[15] M. Li, Y. Liu, J. Wang, et al., "Sensor Network Navigation
without Locations," In Proc. of IEEE INFOCOM, 2009.

[16] L. Mo, Y. He, Y. Liu, et al., "Canopy Closure Estimates with
GreenOrbs: Sustainable Sensing in the Forest," In Proc. of ACM
SenSys, 2009.

[17] M. Basseville and I. Nikiforov, Detection of abrupt changes:
theory and application, 1993.

[18] I. Jolliffe, Principal component analysis: Springer verlag, 2002.

[19] J. MacQueen, Some methods for classification and analysis of
multivariate observations vol. 1: California, USA, 1967.

[20] C. Bishop, "Pattern Recognition and Machine Learning
(Information Science and Statistics)," 2006.

[21] H. Zha, X. He, C. Ding, et al., “Spectral Relaxation for K-means
Clustering”, In Proc. of NIPS, 2001.

[22] G. Werner-Allen, et al., "Lance: optimizing high-resolution
signal collection in wireless sensor networks," 2008, pp. 169-
182.

[23] Heyer, L.J., et al. “Exploring Expression Data: Identification and
Analysis of Coexpressed Genes”. Genome Research, 9:1106-
1115 (1999).

[24] K. Jonathan, J. Goldstein, R. Ramakrishnan, et al., "When Is"
Nearest Neighbor" Meaningful?," In Proc. of ICDT, 1999.

