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Abstract

One of the limitations of commercially available object-oriented DBMSs is their inability to deal with objects that
may change their type during their life and which exhibit a plurality of behaviors. Several proposals have been made
to overcome this limitation. An analysis of these proposals is made to show the impact of more general modeling
functionalities on the object implementation technique.
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1 Introduction

In the last decade many database programming languages and database systems have been defined which are based on
the object paradigm. Some of these systems are based on designing from scratch an object data model, and a database
programming language; for example, Gemstone, ObjectStore, Ontos, O2, and Orion. Other systems are based on the
extension of the relational data model with object-oriented features, as in the Illustra and UniSQL systems, and in the
forthcoming new SQL standard, called SQL3. The success of the object data model is due to the high expressive power
which is obtained by combining the notions of object identity, unlimited complexity of object state, class inclusion,
inheritance of definitions, and attachment of methods to objects. However, this data model is not yet completely
satisfactory when entities need to be modeled which change the class they belong to and their behavior during their
life, or entities which can play several roles and behave according to the role being played.

For example, consider a situation with persons classified either as generic persons, students or employees. This
situation is modeled by three object types Person, Student, and Employee, in any object system. In this situation
it is important to allow an object of type Person to become a Student or an Employee. However, this may lead
to problems. Suppose that a Code field has been defined for both students and employees, with a different meaning
and even a different type, integer and string respectively. Let a person John first become a student with code 100 and
then an employee with code “ab200”. At least four choices are possible:

1. The new Code overrides the old one, which makes no sense.

2. The situation is avoided, either statically, by preventing the declaration of a Code field in two subtypes of
Person, or dynamically by forbidding any object which already has a Code field to acquire a new Code field.
These two approaches are unacceptable, since they create some form of dependency between two different object
types, Student and Employee, which are “unrelated”, i.e. such that they don’t inherit from each other. In
any object oriented methodology it is essential that a programmer defining a subtype only has to know about
its supertypes, and must not fall into errors, either static or dynamic, which depend on the existence of another
descendent of a common ancestor.

3. The situation can be prevented by stipulating that an object must always have a most specific type, i.e. that it can
acquire a new object type only if this new type is a subtype of its previous most specific type. This solution is
better than the previous one, since it does not link the possibility of extending an object to the rather irrelevant
event of a common field name between two unrelated types, but it imposes too strong a constraint on the object
extension mechanism.

4. A Code message to John gets a different answer depending on whether John is seen as a Student or as an
Employee. This is the best solution.

The above problem is not just a consequence of using the same name Code for two different things, but is only one
example of the fact that, when objects are allowed more than one most specific type, it is necessary to avoid interactions
between these unrelated types, which can best be obtained by allowing objects to have a “context dependent” behavior.
Context dependent behavior can be supported in two different ways:

1. By static binding: the meaning of a message sent to an object is determined according to the type that the
compiler assigns to the object, or in some other static way. This solution produces efficient code, since no
method lookup is needed, but heavily affects the features of code extensibility and reusability which characterize
object-oriented programming and which are due to the combined effect of inheritance with dynamic binding of
methods to messages.

2. By dynamic binding (also called “late binding” or “dynamic lookup”): in this case an object may have several
“entry points”, which we call “roles”; for example, when a Student is extended to become an Employee, it
acquires a new role (or entry point) which will be used when it is seen as an Employee, without losing its old
Student role. Messages are always addressed to a specific role of an object, and method lookup starts from the
addressed role. An object which is always accessed through its most specific role behaves exactly like an object
in a traditional object oriented language.

The languages proposed to deal with extensible objects may be classified as follows [ABGO93]:

� languages with dynamic binding and uniform behavior (e.g., Galileo [ACO85], [AGO91]);
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� languages with static binding and context dependent behavior (e.g., Clovers [SZ89], Views [SS89], IRIS
[FBC+87] and Aspects [RS91]);

� languages with both dynamic binding and context dependent behavior (e.g., Fibonacci [AGO95, ABGO93]).

In this paper we discuss some possible linguistic and implementative issues which arise when both dynamic binding
and context dependent behavior are supported. We draw on the experience gained in the design and implementation
of the Galileo and Fibonacci object-oriented database programming languages.

The linguistic model we present is not essentially new, as it is based on the role mechanism of Fibonacci. The
focus of the paper is not on the mechanism itself, but on its effect on object representation, a point which is not usually
discussed in the literature. In particular, we show how the various parts of an object representation are related to the
language features by showing how object representation changes when new features are introduced after each other.
We study a basic representation model, which is neither unrealistic nor optimized, but this study also gives information
about optimized object representation techniques. In fact, the basic model only contains the information which is
needed to implement the operational semantics of the object operations. Hence, every time some information must
be added to the structure of the basic model to deal with a new linguistic feature, the same amount of information
must show up, in some way, also in every optimized object representation. By giving an object representation model,
and an implementation of the basic object operations on that model, we also define an informal semantics for the role
mechanisms we present.

The paper is organized as follows. Section 2 gives a basic linguistic and implementative model for an object-
oriented language without extensible objects. Section 3 extends the linguistic model with extensible objects with
uniform behavior, and shows how extensibility affects the implementation model. Section 4 studies how the possibility
of shrinking objects affects the implementation model. Section 5 further extends the language with a role mechanism,
i.e. with context dependent behavior with dynamic binding, showing the effects on the implementationmodel. Section 6
draws some conclusions.

2 Non-extensible Objects

In this section we define a basic object-oriented language,without extensibility,with the associated object representation
model. To fix a notation, throughout the paper we adapt the syntax and semantics of the Galileo 95 language [AAG95].

2.1 The language

2.1.1 Object Types

We assume that an object type specifies three pieces of information:

� the object type interface, i.e. (a) the set of messages which can be sent to the object, with the parameter and result
types for every message, and (b) the object instance variables, i.e. the components of the object state, which can
be accessed from outside the object;

� the structure of the object state, i.e. the name, type, and mutability of the instance variables;

� the method implementation, i.e. the code that an object of that type executes when it receives a message.

In other languages, such as Fibonacci, an object type only specifies the interface of objects of that type, while every
object can have, in principle, its own implementation, i.e. its own state structure and method set. We also assume here
that all the components of the state of an object can be accessed from outside the object; these assumptions have some
consequences on object representation, which we cannot address here for space reasons.

The following example shows the definition of the object type Person, with a method Introduce:

let rec type
Person = object [Name :string;

BirthYear :int;
Phones :[House :string];
Introduce:= fun () :string is
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implode({"My name is ";
self.Name })

];

The declaration let type T = object [F;M] defines a new object typeT and a functionmkT which, given
a tuple of type [F], builds an object of type T. The signature F;M is composed by a set F of label-type pairs (ai
:Ti) which introduce the components of the object state (the identifiers ai are called attributes), and by a set M of
label-function pairs (mi := fun(: : :) : : :) which define the methods used by the objects of that type to answer
to the corresponding messages. Field selection and message passing are expressed, respectively, as obj.a and
obj.m(p1,: : :,pn). A method can recursively access the object which received the message using the predefined
identifier self. Finally, [House :string] is a tuple type, f"a";"b"g is a sequence of string, implode
concatenates a sequence of strings. Each application of the mkT constructor returns an object of typeT with a different
identity.

The following piece of code builds an object of type Person, accesses one of its fields, and sends it a message.

let John := mkPerson ([Name := "John Smith";
BirthYear := 1967;
Phones := [House := "06 222444"] ]);

john.BirthYear;
john.Introduce();

2.1.2 Subtyping and Inheritance

Subtyping and inheritance are two different mechanisms which are often related in object oriented languages. Subtyping
is an order, or preorder, relation among types such that whenever T 0 is a subtype of T , written T

0 � T , any operation
which can be applied to any object of type T

0 can also be applied to any object of type T . Inheritance is a generic
name which describes any situation where an object type, object interface, or object implementation, is not defined
from scratch but is defined on the basis of a previously defined entity of the same kind. For example, in our situation
defining an object type T

0 by inheritance from T means defining T
0 by only saying which new attributes and methods

must be added, and how the methods and attributes of T must be modified. More precisely, it is only possible to
specialize the type of an attribute (specializing means substituting with a subtype), and a method can be substituted by
any other implementation, but its type can only be specialized.1 The constraint that attributes and methods can only be
added or specialized is called strict inheritance, and implies that an object type which is defined by inheritance from
T is also a subtype of T .

We adopt the following syntax for the definition, by inheritance, of a subtype T of an object type T’:

type T := object is T’ and H

H specifies the properties (attributes and methods) to add or redefine in T; below is an example.

let rec type Student := object is Person and
[Code :string;
Faculty :string;
Introduce := fun () :string is

implode({super.Introduce();
" I am a student of ";
self.Faculty}) ];

It is generally possible to define an object type by inheritance from several object types: T := object is T1,
: : :, Tn and [F;M] (multiple inheritance). The mkT function expects, in this case, a record with the attributes in
F and with all the other attributes inherited from T1, : : :, Tn.

If the supertypes have a property with the same name and different types, the property is inherited from the last
(w.r.t. the T1, : : :, Tn order) supertype which defines it.2 In this case, strict inheritance means that every property

1The type S0 ! U
0 of a methodm is a subtype of the type S ! U when S � S0 andU 0 � U ; the inversion of the direction of the comparison

between S and S0 is explained in [Car88].
2In other languages, in this situation the property must be explicitly redefined in F;M.
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which is either redefined or inherited from more than one type must have a type which is a subtype of the type of the
same property in all the ancestor types T1, : : :, Tn.

2.1.3 Method Lookup and Semantics of Self

When a message m is sent to an object O, two problems must be solved: (a) which method is used to answer the
message, and (b) which is the semantics of the pseudo-variable self which may appear in the selected method.

In traditional object-oriented languages, with objects that cannot change their type dynamically, the run-time type
T of an object O is fixed when the object is created. This run-time type is generally only a subtype of the compile-time
type of any expression whose evaluation returns O. When a message is sent to O, the method is first searched for in
its run-time type T. If none is found, the method is searched for up the supertype chain of T. The search will stop,
since static typechecking ensures that the method has been defined in one of the super-types. The fact that the method
lookup starts from the run-time type O, rather than from the compile-time type of the expression which returns O, is
called dynamic binding, while the specific algorithm used to look for the method (depth-first upward search, in this
case) is called the lookup algorithm.

Consider now a self.msg(: : :) invocation found inside a method defined for the message msg2 inside type T ,
and suppose that the method is executed by an object with a run-time type T

0, which inherits the method for msg2
from T . Two choices are possible, in principle, for the semantics of self.msg(: : :):

� method lookup for msg may start from the statically determined type T (static binding of self)

� method lookup for msg may start from the dynamic type T
0 of the object which has received the message msg2

(dynamic binding of self).

The second choice is the one adopted in all object-oriented languages, and is essential in many typical object-oriented
applications. Hence, when the method where self.msg(: : :) is found is type-checked, the type checker can only
assume that self will be bound to an object whose type inherits from T . This is not a problem in languages which only
allow strict inheritance, such as the one we are describing, and this is the main justification for the strict inheritance
constraint.

The pseudo-variable super can also be used in a method expression. super is statically bound, i.e. the method
search for a message sent to super begins with the supertype of the type where the method is defined.

2.2 An Implementation Model

We now describe an implementation model for the basic language described so far. We only focus on the information
that must be present in the run-time representation of an object to support the described functionalities.

Abstractly, an object contains three pieces of information: (a) the values of its instance variables (the state), (b)
an attribute lookup structure to map each attribute to its position in the state, and (c) a method lookup structure to
map each message name to the corresponding method. In some situation, say single inheritance, the compiler can
precompute the attribute and method positions for an object from its static type; we will not consider this possibility
any further, since it disappears as soon as we add object extensibility. The simplest method lookup structure is obtained
by building, for any object type defined as object is T1,T2 and [F;M], a structure containing a lookup table
for the methods in M plus a list of references to T1,T2; we call this structure an “Local Method Table” (LMT). A
method is then searched in the LMT of the run-time type of the receiving object, and, if it is not found there, in the
LMT’s of the ancestor types.

Alternatively, for each object type a table can be built which directly maps every message, owned or inherited, to the
corresponding method, to avoid the graph search; we call this structure a “Full Method Table” (FMT). This approach
consumes some more space, but makes method lookup more efficient, and is especially convenient in a database
language, where the space taken by the FMT structures is negligible with respect to the space taken by the objects. As
for the attribute lookup structure, the possible structures are the same as for method lookup, but the efficiency tradeoff
is different; in particular, we will always assume a flat structure mapping attributes to positions, which we call the Full
Attribute Table (FAT).3

Hence, in the basic model an object is represented by a reference to a structure which contains its Full Method
Table and its Full Attribute Table, (we call it the Full Object Type Descriptor), and by its state, as depicted in Figure 1.
Notice that the Full Object Type Descriptor is shared by all the object with the same run-time type.

3Real language implementation may vary between the the fastest solution, where positions are statically computed (when possible), to the
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msg1

msgn

method1

methodn
fld1

fldm

offset1

offsetm

Full Object Type

Descriptor (shared):

method and attribute

tables for owned and

inherited properties

(FMT + FAT)

ObjTypDescr field1 fieldm…

object

Notation (used in all figures): object  entry point:                     shared descriptor:

Figure 1: The structure of an object which does not change type.

3 Extensible Objects with Uniform Behavior

In this section we add, to the basic model, the possibility of extending objects, but without introducing the notion of a
context dependent behavior. We then show the linguistic and implementative effect of this first extension. This section
is based on the linguistic and implementative model which underlies the first version of Galileo [ACO85].

We first extend the basic language by stipulating that, when an object type T’ is defined by inheritance from type
T, two functions are automatically generated: mkT’ to construct directly new instances of type T’, and the function
inT’ to transform an instance of type T into an instance of the new type T’ without affecting the object identity; we
call this operation “extension”.

The function inT’ has two parameters: the value of the object O to be extended and a record which gives the
values of the T’ attributes which are not inherited from T.

To solve the problem created by the presence of two properties, in two independent subtypes, with the same name
but a different type, the followingproperty type specialization rule is adopted: when an object Owith a set of properties
A is extended with a new type T, for every property P which is both in A and in T, the type of P in T (the new type of
P) must be a subtype of the type of P in A (the old type of P).

For example, the object john may be extended with the type Student as follows:

let rec type Student = object is Person and
[Code :string;
Faculty :string;
Phones :[House :string; GuestHouse :string];
Introduce := fun () :string is

implode({super.Introduce();
" I am a student of ";
self.Faculty})

];
let johnAsStudent := inStudent(john,

[Code := "0123";
Faculty := "Science";
Phones := [House := "06 222444";

GuestHouse := "552244"]]);

The extension operator does not change the object identity.
Suppose now that the following types are also defined:

let rec type Athlete = object is Person and
[Code:int;
Sport: string;
Introduce:= fun () :string is

implode({super.Introduce();

simplest solution where the object state is represented by a sequence of name-value pairs.
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" I practice ";
self.Sport}) ];

let rec type Employee = object is Person and
[Code:string;
Company: string;
Introduce:= fun () :string is

implode({super.Introduce();
" I work at ";
self.Company}) ];

An object of type Personwhich has never been extended to aStudent can be extended to become an Athlete,
but the property type specialization rule prevents the extension of a Student to an Athlete, since the type of the
Code field in the new typeAthlete is not a subtype of the type of the same field in the old typeStudent. However,
the same rule allows a Student to be extended to an Employee.

Other operators defined on extensible objects in this language are:

� Expr isalso T, to test whether an object denoted by the expression Expr also has the type T; for example
both john isalso Student and johnAsStudent isalso Student are true.

� Expr As T, to coerce an object denoted by the expression Expr to one of its possible types T; for example
john As Student returns the object with typeStudent. This operation raises a run-time failure if the object
never acquired type T, but has no other run-time effect in this language.

3.1 Method Determination

In Galileo, method lookup cannot only depend on the minimal type of an object, since, thanks to object extension, an
object may have more than one minimal type. In Galileo, method lookup depends on the whole object type history,
which is defined as the ordered set of types fT1, : : :, Tng such that T1 is the type where the object has been built,
and every extension operation adds a new type at the end of the history.

When an object with a type history fT1, : : :, Tng receives a message m, the method to execute is searched for
in two steps:

1. first, the method is looked for among the methods that belong to (i.e. are not inherited) the last type Tn acquired;
if it is not found there, the search goes on in the type history, in the inverse temporal order Tn�1, Tn�2, : : :,
T1 (history lookup);

2. then, if the method is not even found in the construction type T1, the search goes up the supertype chain of T1
as in the basic language. Static typechecking ensures that the search will eventually find the appropriate method
(upward lookup).

For example, an object john created with type Person, and then extended with the subtypes Student and
Athlete, and finally with Student subtype GraduateStudent, will answer the message Introduce using
the method defined in the type GraduateStudent.

The semantics of self and super is the same as in the basic model: when a message is sent to self, it is
dynamically looked up starting from the last acquire type, while a message sent to super is statically bound to the
corresponding method.

3.2 The Implementation Model

The simplest run-time representation of objects in this language contains the object type history, represented as a
modifiable sequence of references to type descriptors, the attribute table, and the object state. A type descriptor, in
this case, contains the Local Method Table, as defined above, and the type name, which is needed to implement the
isAlso and As operations. Method search is performed in the type descriptors graph, with the two-phase algorithm
described above. When an object is extended with a new subtype, a new type descriptor is added to its history and the
new fields are added to its state and to its attribute table; if an attribute of the supertype is redefined, its value is directly
replaced by the new value.
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This simple representation is shown in Figure 2. Note that the object is accessed indirectly to allow the object to be
extended without modifying its identity, so that any external reference to the object is preserved; any other technique
to allow identity preserving extensibility (e.g., concatenating new fields to the object tail) would work.

msg1

msgn

method1

methodn

T1 AttrTable …field1 fieldnTD'1 TD'nName
Object Type Descr.

(shared): Local

Method Table and

pointers to the OTD’s

of the supertypes

object

… Tj
Object Type

History fldName1 pos1

posnfldNamen
Attribute

Table

Figure 2: The structure of an extensible object.

To obtain a more efficient execution of message passing, an object representation can be used which closely
resembles the one in Figure 1. In this case, each object only contains its state and a reference to a Full Type History
Descriptor. The Full Type History Descriptor contains the object history (a list of references to the corresponding
Object Type Descriptors) and the full method table and the full attribute table which correspond to that history. The
system maintains a pool of Full Type History Descriptors, so that they can be shared among objects with the same
history, and creates a new FTHD only when an object is created whose history is new (Figure 3).

msg1

msgn

method1

fldName1 pos1

Full Type History Descriptor

(shared): type history

(T1,…,Tj), Full Method Table,

Full Attribute Table.

FTHD field1 …

object

fieldm

methodn

fldNamem posm

T1 … Tj

TD'1 TD'nName

Object Type Descriptors: (shared):

type name and  pointers to the

OTD’s of the supertypes

TD'1 TD'nName

Figure 3: A better structure for an extensible object.

Hence, we may conclude that adding extensible objects with uniform behavior, to a language with multiple
inheritance, costs one indirection level for each object, which allows it to preserve its identity when it is extended, and
some space for the Full Type History Descriptors pool.

4 Extensible and Shrinkable objects

As a further generalization step, we now add an operator dropT(Expr) to the language, to cancel the type T, and
all its subtypes, from the object denoted by the expression Expr. dropT(Expr) is a function which is declared
automatically when a subtype is defined, as it happens with mkT and inT.

In our linguistic model, object shrinkability adds a first kind of context-dependent behavior. Let Ide1 be an
identifier bound to an object of type T1 (e.g., Ide1 := mkPerson(...)), and Ide2 an identifier bound to the same
object extended with the subtype T2 (e.g., Ide2 := inStudent(Ide1, ...)). If type T2 is removed from the
object, by executing either dropT2(Ide2) or dropT2(Ide1), then:4

4Alternative, reasonable, semantics, may be defined, but we do not explore here this issue.
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� if the object is accessed through the identifier Ide2, a run-time failure will arise when a message is sent to it,
either to execute a method or to extract the value of an attribute, irrespective of whether the property is defined
in T2 or is inherited from T1;

� if the object is accessed through the identifier Ide1, a message to execute a method or to extract the value of an
attribute defined in T1 is normally executed. Note that, in a well typed program, it is not possible to extract a
property which is only defined in T2 by going through Ide1.

� the isalso and As operators can still be applied to Ide2, to verify whether the object still belongs to some
type and to send messages to the part of the object that is still valid.

Shrinkable objects thus have a behavior which depends on the context they are accessed through, their role in our
terminology. For this reason, the implementation model must be extended to take into account the fact that an object
can be accessed through many different roles. Every role contains the following information: the creation type (e.g.,
Ide1 is associated with the Person type while Ide2 is associated with the Student type), the validity (e.g., Ide1
is valid while, after the dropT2 operation, Ide2 is not valid any more), and a reference to the object. The object itself
must contain the state and a reference to all of its roles, both to implement As and isalso and to find every role
associated with a subtype of T when dropT is executed.

This representation is shown in Figure 4, where an object with two valid roles and one removed role is represented.
In the previous section we have noticed that an indirection level is needed to allow identity preserving object

extension; in this case, the indirection level which is given by the roles can be exploited to this aim.

R3

R1 R2

TD3 Rem. Obj

TD2 Valid Obj

R1 TD1 Valid Obj

R2

object roles

AttrTable …field1 fieldn

fldName1 pos1

posnfldNamen

Attribute
Tablemsg1

msgn

method1

methodn

TD'1 TD'nName

Object Type Descr.:

LMT and pointers to

the supertypes

Object History

Figure 4: The structure of a shrinkable object.

Every value of type object is actually represented by a reference to one of its roles. When an object is extended a
new role is added, and when an object loses the type Ti, the following actions are executed:

� the status of the Ti role becomes removed;

� the Ti role is removed from the object type history (R1, R2 in Figure 4);

� the first steps are repeated for every role of the object whose type is a subtype of Ti.

As before, we may modify this implementation by substituting object type descriptors with full message and
attribute tables, and by sharing them between objects with the same history, but in this case the definition of history
sameness is slightly more complex, since drop operations must be taken into account.

5 Extensible Objects with Context Dependent Behavior

The most general solution to support objects which can dynamically acquire new types and exhibit a plurality of
behaviors was first given in Fibonacci [ABGO93], and then adapted to Galileo 95 [AAG95]. The Fibonacci proposal
has the following main features:

Objects with roles An object has an immutable identity and is organized as an acyclic graph of roles. Methods and
fields are associated with the roles. Every message is addressed to a specific role of an object, and the answer
may depend on the role addressed (context dependent behaviors);
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Independence of extensions An object can be extended with unrelated subroles without interference;

Plurality of dynamic bindings A message can be sent to a role with two different notations to request a different
lookup method:

� upward lookup: the message is sent with the exclamation mark notation, and the method is looked for in
the receiving role and in its ancestors;

� double lookup: the message is sent with the dot notation, and the method is first looked for in all the
descendants of the receiving role, visited in reverse temporal order, then in the receiving role, and finally
in its ancestors.

Note that a traditional object oriented language can be seen as a role language where no object is ever extended
and every message is always sent to the most specific role of the object. In this situation, upward lookup and
double lookup coincide, and both coincide with the standard method lookup technique.

Role casting and role inspection Operators are provided to inspect the roles of an object and to dynamically change
the role through which an object is accessed.

Multiple implementations An object type only describes the interface of the corresponding objects, while the im-
plementation (i.e., method implementation and state structure) is defined, for every object, when the object is
built.

We only describe here the Galileo 95 model, which adopts the single implementation approach for objects.
Let us consider again the definitions given above of the Person subtypes Student and Athlete:

let rec
type Student := object is Person and

[Code :string;
Faculty :string;
Introduce := fun () :string is

implode({(self As Person)!Introduce();
" I am a student of ";
self.Faculty}) ];

let rec type Athlete = object is Person and
[Code:int;
Sport: string;
Introduce:= fun () :string is

implode({(self As Person)!Introduce();
" I practice ";
self.Sport}) ];

(self As Person)!Introduce() invokes the Introduce method defined for Person; its semantics is
detailed in the next section.

In this model, an object with a role john of type Person may now be extended with the types Student and
Athlete as follows:

let johnAsStudent := inStudent(john, [...]);
let johnAsAthlete := inAthlete(john, [...]);

The answer to the message Code sent to johnAsStudent is a string while the answer to the same message
sent to johnAsAthlete is an integer. The answers to the message Introduce sent to johnAsStudent or to
johnAsAthlete are also different. We say that john, johnAsStudent and johnAsAthlete are three roles
of the same object, of type Person, Student, and Athlete, respectively.

The mkT, inT, dropT and Expr isalso T operations are the same as in the previous section. Obj As T
fails if Obj has no T role, and returns a reference to the T role of Obj otherwise. This is slightly different from
the version described in the previous section, since in that case, if Obj As T is defined, then Obj and Obj As T
only differ in their type, while here they refer to two different roles of the same object. Finally, an operation Expr
isexactly T is added, which tests the run-time role type of the role Expr; for example, john isexactly
Athlete is false while johnAsAthlete isexactly Athlete is true.
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5.1 Method Determination

When a role r with run-time type T receives a double lookup message r.m, the corresponding method is looked for
in two steps:

1. first, the method is looked for in the object roles whose type is a subtype of T, in the inverse acquisition time
order, i.e. starting from the last acquired role and going backward (downward lookup phase);

2. if the method is not found, the search proceeds in the role type T, and finally goes up the supertype chain of T
until the root type is reached (upward lookup phase). Static typechecking ensures that the search will eventually
find the appropriate method.

When a role r receives an upward lookup message r!m, only step 2 is performed.
For example, the answer to the double lookup message john.Introduce changes once the object has been

extended with the role typeStudent,and once again after its extension with the role typeAthlete. To receive always
the same answer from john, irrespective of any extensions, the message must be sent with the john!Introduce
notation.

The combination of double lookup with role casting allows static binding, and the super mechanism, to be
simulated. For example, let us consider the following function:

let foo := fun(x:Person) :{string} is
{x.Introduce;
x!Introduce;
(x As Person)!Introduce}

Let johnAsStudent be bound to a value of type Student, which has been later extended with a role of
type ForeignStudent, subtype of Student which redefines the method Introduce. The value returned by
foo(johnAsStudent) is a sequence of three answers produced by the methods defined in typeForeignStudent
(double lookup), in type Student (upward lookup), and in type Person (static binding).

5.2 Self-reference Semantics

When a method containing a self.msg invocation is executed, and the original message was sent to a role r with
run time type T, the interpretation of self is determined as follows:

� if the method was found in the downward lookup phase, hence in a type T’ which is a subtype of the type T of
r, then self is bound to the r As T’ role;

� if the method was found by a search in the supertype chain, then self is bound to the r role.

Hence, self behaves as if it were statically bound for methods found during the downward lookup phase, and
dynamically bound for methods found during the upward lookup phase. In fact, if self were bound to the T role
inside a method found in a type T’ � T during the history search phase, run-time type errors may arise, since, when
the T’ method has been compiled, the self type was assumed to be a subtype of T’, which is not true for T. On
the other hand, this choice does not affect the language’s expressive power because the method lookup mechanism
is equivalent to the one adopted in the basic language for non extended objects. This means that this approach can
represent every classical object-oriented construction based on the dynamic binding of self for non-extensible objects.

5.3 The Implementation Model

In this language, when an object is extended, the old methods and attributes are not deleted, since they can still be
accessed using theobj!m notation. Moreover, if two attributes with the same name are added to two different subtypes
of a common supertype, as in the Code example in the introduction, both attributes are present in an object which
has been extended to belong to both subtypes. For this reason, for both methods and attributes, a search structure is
needed which associates a method, or a position, to each triple “name, role, search technique”, where search technique
may either be “.” (double lookup) or “!” (upward lookup). The simplest implementation is obtained by dealing with
attributes as if they were methods, associating a different Local Attribute Table to each role, as shown in Figure 5.
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Methods and attributes are then searched using the graph search algorithm (downward and upward) previously defined,
and attributes can be accessed in the same way. Of course, two different attribute tables may assign two different
positions to the same attribute, as happens with the Code attribute. In this situation, the object contains the temporal
sequence of the acquired roles plus the object state.

R3

R1 R2

TD3 Rem. Obj

R1

R2

object roles

…field1 fieldn

fldName1 pos1

posnfldNamen

msg1

msgn

method1

methodn

TD'1 TD'nNameObject Type

Descr.:

Local Method

Table, L.A.T.

and pointers to

the supertypes

TD2 Rem. Obj

TD1 Rem. Obj

Figure 5: The structure of an object with a plurality of behaviors.

A new role is created when the object is created, and when the object is extended with a new type. Creating an
object in a non-root type is implemented in the same way as creating the object in the root type and then extending
it. Object extension is only valid if the object has all the supertypes of the new type but does not have the type is
acquiring.

As in the other cases, a method is represented by a function which takes a “self” parameter which, in this case, is
bound as defined in Section 5.2.

This representation may be easily optimized, as in the other cases, by flattening the method and attribute tables,
and by sharing them, and the role history, among the objects with the same history. However, in this case every role
needs two tables, one for double lookup, and the other one for upward lookup.

6 Conclusion

We have described a sequence of object models of increasing complexity, starting with the standard model and ending
with a model with the following features:

� extensible objects;

� shrinkable objects;

� context dependent behavior (roles).

Drawing on our experience in the implementation of Galileo, Galileo 95, and Fibonacci, we have presented a
sequence of implementation models of increasing complexity, to show which implementative features are linked to
every linguistic feature, and to help to distinguish the basic run-time information, which is strictly needed to implement
every operation, from the structures that are added to obtain a faster implementation of message passing.

We did not discuss how multiple implementations of a single type and how private attributes affect object repre-
sentation; these issues will be studied in a more complete version of this paper.
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