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Abstract

One of the limitations of commercially available object-oriented DBMSs is their inability to deal with objects that
may changetheir type during their life and which exhibit a plurality of behaviors. Several proposals have been made
to overcome this limitation. An analysis of these proposals is made to show the impact of more general modeling

functionalities on the object implementation technique.
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1 Introduction

In the last decade many database programming languages and database systems have been defined which are based on
the object paradigm. Some of these systems are based on designing from scratch an object datamodel, and a database
programming language; for example, Gemstone, ObjectStore, Ontos, O2, and Orion. Other systems are based on the
extension of therelational data model with object-oriented features, asin the lllustraand UniSQL systems, and in the
forthcoming new SQL standard, called SQL3. The success of the object datamodel is dueto the high expressive power
which is obtained by combining the notions of object identity, unlimited complexity of object state, class inclusion,
inheritance of definitions, and attachment of methods to objects. However, this data model is not yet completely
satisfactory when entities need to be modeled which change the class they belong to and their behavior during their
life, or entitieswhich can play severa roles and behave according to the role being played.

For example, consider a situation with persons classified either as generic persons, students or employees. This
situationis modeled by three object types Per son, St udent , and Enpl oyee, inany object system. Inthissituation
itisimportant to allow an object of type Per son to become a St udent or an Enpl oyee. However, thismay lead
to problems. Suppose that a Code field has been defined for both students and employees, with a different meaning
and even adifferent type, integer and string respectively. Let a person John first become a student with code 100 and
then an employee with code “ab200”. At least four choices are possible:

1. The new Code overrides the old one, which makes no sense.

2. The dituation is avoided, either statically, by preventing the declaration of a Code field in two subtypes of
Per son, or dynamically by forbidding any object which aready hasa Code field to acquire anew Code field.
These two approaches are unacceptable, sincethey create someform of dependency between two different object
types, St udent and Enpl oyee, which are “unrelated”, i.e. such that they don’t inherit from each other. In
any object oriented methodology it is essentia that a programmer defining a subtype only has to know about
its supertypes, and must not fall into errors, either static or dynamic, which depend on the existence of another
descendent of acommon ancestor.

3. Thesituation can be prevented by stipulating that an object must always have amost specific type, i.e. that it can
acquire a new object type only if this new type is a subtype of its previous most specific type. This solutionis
better than the previous one, since it does not link the possibility of extending an object to the rather irrelevant
event of acommon field name between two unrel ated types, but it imposes too strong a constraint on the object
extension mechanism.

4. A Code message to John gets a different answer depending on whether John is seen as a St udent or as an
Enpl oyee. Thisisthe best solution.

The above problem isnot just aconsequence of using the same name Code for two different things, but isonly one
exampl e of thefact that, when objectsare al owed morethan one most specific type, it isnecessary to avoid interactions
between these unrel ated types, which can best be obtained by allowing objectsto have a“ context dependent” behavior.
Context dependent behavior can be supported in two different ways:

1. By static binding: the meaning of a message sent to an object is determined according to the type that the
compiler assigns to the object, or in some other static way. This solution produces efficient code, since no
method lookupisneeded, but heavily affects the features of code extensibility and reusability which characterize
object-oriented programming and which are due to the combined effect of inheritance with dynamic binding of
methods to messages.

2. By dynamic binding (also cdled “late binding” or “dynamic lookup”): in this case an object may have several
“entry points’, which we cdl “roles’; for example, when a Student is extended to become an Employes, it
acquires a new role (or entry point) which will be used when it is seen as an Employee, without losing its old
Student role. Messages are aways addressed to a specific role of an object, and method lookup starts from the
addressed role. An object whichisaways accessed through its most specific role behaves exactly likean object
inatraditional object oriented language.

The languages proposed to deal with extensible objects may be classified as follows[ABGO93]:
¢ languages with dynamic binding and uniformbehavior (e.g., Gaileo [ACO85], [AGO91));
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o languages with static binding and context dependent behavior (e.g., Clovers [SZ89], Views [SS89], IRIS
[FBC*87] and Aspects [RS91));

¢ languages with both dynamic binding and context dependent behavior (e.g., Fibonacci [AGO95, ABGO93)).

In thispaper we discuss some possi bl elingui sticand i mplementative i ssues whi ch ari se when both dynamic binding
and context dependent behavior are supported. We draw on the experience gained in the design and implementation
of the Galileo and Fibonacci object-oriented database programming languages.

The linguistic model we present is not essentially new, asit is based on the role mechanism of Fibonacci. The
focus of the paper isnot on the mechanism itself, but on its effect on object representation, a point which isnot usually
discussed in the literature. In particular, we show how the various parts of an object representation are related to the
language features by showing how object representation changes when new features are introduced after each other.
We study a basi c representation model, which is neither unrealistic nor optimized, but thisstudy also givesinformation
about optimized object representation techniques. In fact, the basic model only contains the information which is
needed to implement the operational semantics of the object operations. Hence, every time some information must
be added to the structure of the basic model to deal with a new linguistic feature, the same amount of information
must show up, in some way, aso in every optimized object representation. By giving an object representation mode!,
and an implementation of the basic object operations on that model, we a so define an informal semantics for therole
mechani sms we present.

The paper is organized as follows. Section 2 gives a basic linguistic and implementative model for an object-
oriented language without extensible objects. Section 3 extends the linguistic model with extensible objects with
uniform behavior, and shows how extensibility affects theimplementation model. Section 4 studieshow the possibility
of shrinking objects affects the implementation model. Section 5 further extends the language with arole mechanism,
i.e. with context dependent behavior with dynamic binding, showing theeffects ontheimplementationmodel. Section 6
draws some conclusions.

2 Non-extensible Objects

I n this section we define abasi ¢ obj ect-oriented language, without extensibility, with the associ ated object representation
model. To fix anotation, throughout the paper we adapt the syntax and semantics of the Galileo 95 language [AAG95)].

2.1 Thelanguage
211 Object Types

We assume that an object type specifies three pieces of information:

o theobject typeinterface, i.e. (a) the set of messages which can be sent to the object, with the parameter and result
typesfor every message, and (b) the object instance variables, i.e. the components of the object state, which can
be accessed from outside the object;

o the structure of the object state, i.e. the name, type, and mutability of the instance variables;

o the method implementation, i.e. the code that an object of that type executes when it receives a message.

In other languages, such as Fibonacci, an object type only specifies theinterface of objectsof that type, whileevery
object can have, in principle, its own implementation, i.e. its own state structure and method set. We also assume here
that all the components of the state of an object can be accessed from outside the object; these assumptions have some
conseguences on object representation, which we cannot address here for space reasons.

The following exampl e shows the definition of the object type Per son, withamethod | nt r oduce:

let rec type
Person = object [Nane :string;
BirthYear :int;
Phones :[House :string];
Introduce: = fun () :string is
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i mpl ode({"My nane is
sel f. Name })
1

Thedeclarationl et type T = object [F; M definesanew object typeT and afunctionnk T which, given
atuple of type[ F], builds an object of type T. The signature F; Mis composed by a set F of label-type pairs ( a;
: T;) which introduce the components of the object state (the identifiers a; are called attributes), and by a set Mof
label-function pairs (m : = fun(..) ... which define the methods used by the objects of that type to answer
to the corresponding messages. Field sdlection and message passing are expressed, respectively, as obj . a and
obj . m(p1, ..., pn) - A method can recursively access the object which received the message using the predefined
identifier sel f. Finally, [ House :string] isatupletype {"a";"b"} isa sequence of string, i npl ode
concatenates a sequence of strings. Each application of the nk T constructor returns an object of type T with adifferent
identity.

The following piece of code builds an object of type Per son, accesses one of itsfidlds, and sends it a message.

l et John := nkPerson ([Nane := "John Smth";
BirthYear := 1967;
Phones := [House := "06 222444"] ]);

john. BirthYear;
john.Introduce();

2.1.2 Subtypingand Inheritance

Subtyping and inheritance are two different mechanismswhich are often rel ated in object oriented languages. Subtyping
isan order, or preorder, relation among types such that whenever 7" is a subtype of 7', written 7" C 1", any operation
which can be applied to any object of type 7" can also be applied to any object of type 7". Inheritance is a generic
name which describes any situation where an object type, object interface, or object implementation, is not defined
from scratch but is defined on the basis of a previously defined entity of the same kind. For example, in our situation
defining an object type 7’ by inheritance from 7" means defining 7" by only saying which new attributes and methods
must be added, and how the methods and attributes of 7" must be modified. More precisdly, it is only possible to
specialize the type of an attribute (speciaizing means substituting with a subtype), and a method can be substituted by
any other implementation, but its type can only be speciaized.! The constraint that attributes and methods can only be
added or specialized is called strict inheritance, and implies that an object type which is defined by inheritance from
T isaso asubtypeof 7.
We adopt the following syntax for the definition, by inheritance, of asubtype T of an object type T’ :

type T := object is T" and H
H specifies the properties (attributes and methods) to add or redefinein T; below is an example.

let rec type Student := object is Person and
[ Code :string;
Faculty :string;
Introduce := fun () :string is

i mpl ode({super.Introduce();
" | am a student of
sel f.Faculty}) 1;

Itisgenerally possibleto define an object type by inheritance from several objecttypes. T : = object is Ty,
..., T, and [F; M (multipleinheritance). The nkT function expects, in this case, arecord with the attributesin
F and with dl the other attributesinherited from Ty, ..., T,.

If the supertypes have a property with the same name and different types, the property is inherited from the last
(wrt.theTy, ..., T, order) supertypewhich definesit.? In thiscase, strict inheritance means that every property

1Thetype S’ — U’ of amethod m isasubtypeof thetype S — U when S C S’ andU’ C U; theinversion of the direction of the comparison
between S and S’ isexplainedin [Car88].
2In other languages, in this situation the property must be explicitly redefined in F; M
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which is either redefined or inherited from more than one type must have a type which is a subtype of the type of the
same property in all the ancestor types Ty, ..., T,.

2.1.3 Method Lookup and Semantics of Sdf

When a message mis sent to an object O, two problems must be solved: (& which method is used to answer the
message, and (b) which isthe semantics of the pseudo-variablesel f which may appear in the selected method.

In traditional object-oriented languages, with objects that cannot change their type dynamically, the run-timetype
T of an object Oisfixed when the object iscreated. Thisrun-timetypeisgeneraly only a subtype of the compile-time
type of any expression whose evaluation returns O. When a message is sent to O, the method is first searched for in
its run-time type T. If none is found, the method is searched for up the supertype chain of T. The search will stop,
since stati ¢ typechecking ensures that the method has been defined in one of the super-types. The fact that the method
lookup starts from the run-time type O, rather than from the compile-time type of the expression which returns O, is
caled dynamic binding, while the specific agorithm used to look for the method (depth-first upward search, in this
case) is called the lookup algorithm.

Consider now asel f. nmsg(...) invocation found inside a method defined for the message msg2 inside type 7',
and suppose that the method is executed by an object with a run-time type 7", which inherits the method for msg2
from 7. Two choices are possible, in principle, for the semanticsof sel f. nsg(...):

o method lookup for msg may start from the statically determined type 7" (static binding of sdif)

« method lookup for msg may start from the dynamic type 7" of the object which has received the message msg2
(dynamic binding of self).

The second choiceisthe one adopted in all object-oriented languages, and is essential in many typical object-oriented
applications. Hence, when the method wheresel f. nsg(...) isfound istype-checked, the type checker can only
assume that self will be bound to an object whose typeinheritsfrom 7". Thisisnot a problem in languageswhich only
allow strict inheritance, such as the one we are describing, and this is the main justification for the strict inheritance
constraint.

The pseudo-variablesuper can aso be used in a method expression. super isstatically bound, i.e. the method
search for amessage sent to super begins with the supertype of the type where the method is defined.

2.2 AnImplementation Model

We now describe an implementation model for the basic |anguage described so far. We only focus on the information
that must be present in the run-time representation of an object to support the described functionalities.

Abstractly, an object contains three pieces of information: (a) the values of its instance variables (the state), (b)
an attribute lookup structure to map each attribute to its position in the state, and (¢) a method lookup structure to
map each message name to the corresponding method. In some situation, say single inheritance, the compiler can
precompute the attribute and method positions for an object from its static type; we will not consider this possibility
any further, sinceit disappears as soon aswe add object extensibility. The simplest method |ookup structureisobtained
by building, for any object typedefined asobj ect is T1, T2 and [ F; M, astructure containing alookup table
for the methods in Mplus a list of references to T1, T2; we call this structure an “Local Method Table” (LMT). A
method is then searched in the LMT of the run-time type of the recelving object, and, if it is not found there, in the
LMT’s of the ancestor types.

Alternatively, for each object typeatablecan be built which directly maps every message, owned or inherited, tothe
corresponding method, to avoid the graph search; we call this structure a“Full Method Table’ (FMT). This approach
consumes some more space, but makes method lookup more efficient, and is especially convenient in a database
language, where the space taken by the FMT structuresis negligiblewith respect to the space taken by the objects. As
for the attribute lookup structure, the possible structures are the same as for method lookup, but the efficiency tradeoff
isdifferent; in particular, we will ways assume aflat structure mapping attributesto positions, which we call the Full
Attribute Table (FAT).3

Hence, in the basic modd an object is represented by a reference to a structure which contains its Full Method
Tableand itsFull Attribute Table, (we cal it the Full Object Type Descriptor), and by its state, as depicted in Figure 1.
Notice that the Full Object Type Descriptor is shared by all the object with the same run-timetype.

SReal language implementation may vary between the the fastest solution, where positions are statically computed (when possible), to the
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object
Full Object Type {msgy | methody  }a———{ ObjTypDescr| fieldy | ... | fieldy |

Descriptor (shared):

method and attribute § msgp, methody,

tablesfor owned and § fldq | offsety

inherited properties

(FMT + FAT) 1§ fldm, | offsety

Notation (used in al figures): object entry point: — — > shared descriptor: m

Figure 1: The structure of an object which does not change type.

3 Extensible Objects with Uniform Behavior

In this section we add, to the basic model, the possibility of extending objects, but without introducing the notion of a
context dependent behavior. We then show the linguistic and implementative effect of thisfirst extension. This section
is based on the linguistic and implementative modd which underliesthefirst version of Galileo [ACO85].

We first extend the basic language by stipulating that, when an object type T’ is defined by inheritance from type
T, two functions are automatically generated: nkT’ to construct directly new instances of type T’ , and the function
i nT" totransform an instance of type T into an instance of the new type T’ without affecting the object identity; we
call this operation “extension”.

The functioni nT' has two parameters: the value of the object Oto be extended and a record which gives the
vauesof theT' attributeswhich are not inherited from T.

To solve the problem created by the presence of two properties, in two independent subtypes, with the same name
but adifferent type, thefollowing property type specializationruleisadopted: when an object Owith aset of properties
A isextended with anew type T, for every property P whichisbothin .4 andin T, thetypeof Pin T (the new type of
P) must be a subtype of thetype of P in A (the old type of P).

For example, the object j ohn may be extended with thetype St udent asfollows:

let rec type Student = object is Person and
[Code :string;

Faculty :string;

Phones :[House :string; QuestHouse :string];

Introduce := fun () :string is

i mpl ode({super.|ntroduce();

' | am a student of ";
sel f. Facul ty})

I
I et johnAsStudent := inStudent(john,

[ Code := "0123";
Faculty := "Science";
Phones : = [House := "06 222444";
Quest House : = "552244"1]);

The extension operator does not change the object identity.
Suppose now that the following types are a so defined:

let rec type Athlete = object is Person and
[ Code:int;
Sport: string;
Introduce: = fun () :string is
i mpl ode({super.|ntroduce();

simplest solution where the object state is represented by a sequence of name-value pairs.
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" | practice "
self.Sport}) 1;

let rec type Enpl oyee = object is Person and
[ Code: stri ng;
Conpany: string;
Introduce: = fun () :string is
i npl ode({super.|ntroduce();
"1 work at "
sel f. Conpany}) 1;

An object of type Per son which hasnever been extendedtoa St udent can beextended tobecomean At hl et e,
but the property type speciaization rule prevents the extension of a St udent to an At hl et e, since the type of the
Code fieldinthenew typeAt hl et e isnot asubtype of thetypeof thesamefield intheold type St udent . However,
thesamerulealowsa St udent to be extended to an Enpl oyee.

Other operators defined on extensible objectsin this language are:

e Expr isal so T,totest whether an object denoted by the expression Expr aso hasthetype T; for example
bothj ohni sal so St udent andj ohnAsSt udent i sal so St udent aretrue.

e Expr As T, tocoerce an object denoted by the expression Expr to one of its possible types T; for example
j ohn As St udent returnsthe object withtype St udent . Thisoperationraisesarun-timefailureif the object
never acquired type T, but has no other run-time effect in this language.

3.1 Method Determination

In Galileo, method lookup cannot only depend on the minimal type of an object, since, thanksto object extension, an
object may have more than one minimal type. In Galileo, method lookup depends on the whole object type history,

which is defined as the ordered set of types {T1, ..., T, } such that T; isthetypewhere the object has been built,
and every extension operation adds a new type at the end of the history.

When an object with atypehistory {T1, ..., T,} receivesamessage m the method to execute is searched for
in two steps:

1. firgt, the method islooked for among the methodsthat belong to (i.e. are not inherited) thelast type T,, acquired;
if itisnot found there, the search goeson inthe type history, inthe inversetempord order T,,_1, T,_2, ...,
T (history lookup);

2. then, if the method is not even found in the construction type Ty, the search goes up the supertype chain of T,
asinthebasic language. Static typechecking ensures that the search will eventually find the appropriate method
(upward lookup).

For example, an object j ohn created with type Per son, and then extended with the subtypes St udent and
At hl et e, and finally with St udent subtype Gr aduat eSt udent , will answer the message | nt r oduce using
the method defined inthetype Gr aduat eSt udent .

The semantics of sel f and super isthe same as in the basic model: when a message is sent to sel f, itis
dynamically looked up starting from the last acquire type, while a message sent to super is staticaly bound to the
corresponding method.

3.2 Thelmplementation Model

The simplest run-time representation of objects in this language contains the object type history, represented as a
modifiable sequence of references to type descriptors, the attribute table, and the object state. A type descriptor, in
this case, contains the Local Method Table, as defined above, and the type name, which is needed to implement the
i sAl so and As operations. Method search is performed in the type descriptors graph, with the two-phase algorithm
described above. When an object is extended with a new subtype, a new type descriptor is added to its history and the
new fields are added to its state and to its attribute table; if an attribute of the supertypeisredefined, itsvalueisdirectly
replaced by the new value.
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Thissimplerepresentationis shownin Figure 2. Notethat the object isaccessed indirectly to allow the object to be
extended without modifying its identity, so that any externa reference to the object is preserved; any other technique
to dlow identity preserving extensibility (e.g., concatenating new fields to the object tail) would work.

object _ _ _ %D\

Object Type Descr. Y _
(shared): Local Neme[TD'y| [TD'f  |Tq]...|Tj|AttrTable| fieldy | ... | fieldn |
msgp | methody Object Type —»
Method Table and | History fIdName1| posp
pointersto the OTD’s Attribute
of the supertypes msgp | _methodp Table|fldNamen| posy

Figure 2: The structure of an extensible object.

To obtain a more efficient execution of message passing, an object representation can be used which closely
resembles theonein Figure 1. In this case, each object only containsits state and a reference to a Full Type History
Descriptor. The Full Type History Descriptor contains the object history (a list of references to the corresponding
Object Type Descriptors) and the full method table and the full attribute table which correspond to that history. The
system maintains a pool of Full Type History Descriptors, so that they can be shared among objects with the same
history, and creates anew FTHD only when an object is created whose history is new (Figure 3).

object

—

] | -
T1|... [Tj f@———FTHD| fieldy | ... [fieldy|

msg1 | methody

v \ / L \ f msgp | methodp

Name[TD'q| [TD'{ iName[TDq| [TD'¢ ifldNamep] posy

Object Type Descriptors: (shared): fldNamep| posm
typenameand pointersto the
OTD’s of the supertypes

Full Type History Descriptor
(shared): type history
(T1,...,Tj), Full Method Table,
Full Attribute Table.

Figure 3: A better structurefor an extensible object.

Hence, we may conclude that adding extensible objects with uniform behavior, to a language with multiple
inheritance, costsoneindirection level for each object, which allowsit to preserve itsidentity when it is extended, and
some space for the Full Type History Descriptors pool.

4 Extensible and Shrinkable objects

As afurther generalization step, we now add an operator dr opT( Expr) to the language, to cancd thetype T, and
all its subtypes, from the object denoted by the expression Expr . dr opT( Expr) isafunction which is declared
automatically when a subtype is defined, as it happenswithnkT andi nT.

In our linguistic model, object shrinkability adds a first kind of context-dependent behavior. Let | de; be an
identifier bound to an object of typeT; (e.g., | de;: = nkPerson(...)),and | de; anidentifier bound to the same
object extended with the subtype T, (e.g., | de, : =i nStudent (1 dey, ...)). If type T, isremoved from the
object, by executing either dr opT,( | de,) or dr opTo( | dey) , then:*

4Alternative, reasonable, semantics, may be defined, but we do not explore here this issue.
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o if the object is accessed through the identifier | de,, arun-time failure will arise when a message is sent to it,
either to execute a method or to extract the value of an attribute, irrespective of whether the property is defined
inT, or isinherited from Tq;

o if the object is accessed through theidentifier | de;, amessage to execute a method or to extract the value of an
attribute defined in Ty is normally executed. Note that, in awell typed program, it is not possible to extract a
property which isonly defined in T, by going through | de;.

o thei sal so and As operators can still be applied to | de,, to verify whether the object still belongs to some
type and to send messages to the part of the object that is till valid.

Shrinkable objects thus have a behavior which depends on the context they are accessed through, their rolein our
terminology. For this reason, the implementation model must be extended to take into account the fact that an object
can be accessed through many different roles. Every role contains the following information: the creation type (e.g.,
| de; isassociated with the Per son typewhilel de; isassociated with the St udent type), thevalidity (e.g., | de;
isvaidwhile, after thedr opT, operation, | de, isnot valid any more), and areference to the object. The object itsalf
must contain the state and a reference to al of itsroles, both to implement As and i sal so and to find every role
associated with a subtype of T whendr opT is executed.

Thisrepresentation is shown in Figure 4, where an object with two valid roles and one removed roleis represented.

In the previous section we have noticed that an indirection level is needed to alow identity preserving object
extension; in thiscase, theindirection level which is given by the roles can be exploited to thisaim.

Object TypeDescr.. biect rol
LMT and pointersto Rz [TD3| Rem. | Obj] S ouedras
the supertypes — _
Name|TD'y| [TD'r Y . Attribute|aName1[ Posy
msgy [ methody Ro{TDo| valid[ Oh] Tablef aen] 0%
\ g
msgn| methodp, Ry TDll Validl Obj R1 | Ro |AttrTabIe| fieldy | | fieldp |

Object History

Figure 4: The structure of a shrinkable object.

Every value of type object is actually represented by a reference to one of its roles. When an object is extended a
new roleis added, and when an object loses the type T;, the following actions are executed:

o thestatus of the T; role becomesr enpved;
o theT; roleisremoved from the object type history (Ry, Rz in Figure 4);

o thefirst steps are repeated for every role of the object whose typeis a subtypeof T,.

As before, we may modify this implementation by substituting object type descriptors with full message and
attribute tables, and by sharing them between objects with the same history, but in this case the definition of history
sameness is dightly more complex, since dr op operations must be taken into account.

5 Extensible Objects with Context Dependent Behavior

The most general solution to support objects which can dynamicaly acquire new types and exhibit a plurality of
behaviorswas first given in Fibonacci [ABGO93], and then adapted to Galileo 95 [AAG95]. The Fibonacci proposal
has the following main features:

Objectswith roles An object has an immutable identity and is organized as an acyclic graph of roles. Methods and

fields are associated with the roles. Every message is addressed to a specific role of an object, and the answer
may depend on the role addressed (context dependent behaviors);
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Independence of extensions An object can be extended with unrelated subroles without interference;

Plurality of dynamic bindings A message can be sent to a role with two different notations to request a different
lookup method:

o upward lookup: the message is sent with the exclamation mark notation, and the method islooked for in
thereceiving role and in its ancestors,

o double lookup: the message is sent with the dot notation, and the method is first looked for in all the
descendants of the receiving role, visited in reverse tempora order, then in the receiving role, and finally
initsancestors.

Note that atraditional object oriented |anguage can be seen as a role language where no object is ever extended
and every message is always sent to the most specific role of the object. In this situation, upward lookup and
doublelookup coincide, and both coincide with the standard method |ookup technique.

Role casting and roleinspection Operators are provided to inspect the roles of an object and to dynamically change
the role through which an object is accessed.

Multipleimplementations An object type only describes the interface of the corresponding objects, while the im-
plementation (i.e., method implementation and state structure) is defined, for every object, when the object is
built.

We only describe here the Galileo 95 model, which adopts the single implementation approach for objects.
Let us consider again the definitions given above of the Per son subtypes St udent and At hl et e:

let rec
type Student := object is Person and
[ Code :string;
Faculty :string;
Introduce := fun () :string is

i npl ode({(self As Person)!Introduce();
" | ama student of “;
sel f. Faculty}) ];

let rec type Athlete = object is Person and
[ Code:int;
Sport: string;
Introduce: = fun () :string is
i mpl ode({(self As Person)!Introduce();
" | practice ";
self.Sport}) 1;

(sel f As Person)!Introduce() invokesthel nt r oduce method defined for Per son; itssemanticsis
detailed in the next section.

In this model, an object with arolej ohn of type Per son may now be extended with the types St udent and
At hl et e asfollows:

I et j ohnAsStudent
let johnAsAthlete :

i nStudent (john, [...]);
inAthlete(john, [...]);

The answer to the message Code sent to j ohnAs St udent is a string while the answer to the same message
sent toj ohnAsAt hl et e isan integer. The answers to the message | nt r oduce sent toj ohnAsSt udent or to
j ohnAsAt hl et e are also different. We say that j ohn, j ohnAsSt udent andj ohnAsAt hl et e are threeroles
of the same object, of type Per son, St udent , and At hl et e, respectively.

The nkT, i nT,dropT and Expr isal so T operationsare the same as in the previoussection. Cbj As T
fallsif Gbj hasno T role, and returns a reference to the T role of Cbj otherwise. Thisis dightly different from
the version described in the previous section, since in that case, if Cbj As Tisdefined, thenCbj andGhj As T
only differ in their type, while here they refer to two different roles of the same object. Finaly, an operation Expr
i sexactly T isadded, which tests the run-time role type of the role Expr ; for example, j ohn i sexactly
At hl et e isfalsewhilej ohnAsAt hl et ei sexact |y At hl et e istrue.
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51 Method Determination

When aroler with run-timetype T receives a double lookup message r . my the corresponding method is looked for
in two steps:

1. firgt, the method is looked for in the object roles whose type is a subtype of T, in the inverse acquisition time
order, i.e. starting from the last acquired role and going backward (downward |ookup phase);

2. if the method is not found, the search proceeds in the role type T, and finally goes up the supertype chain of T
until theroot typeisreached (upward lookup phase). Static typechecking ensures that the search will eventually
find the appropriate method.

When aroler receives an upward lookup message r ! m only step 2 is performed.

For example, the answer to the double lookup message j ohn. | nt r oduce changes once the object has been
extended withtheroletype St udent ,and onceagain after itsextensionwiththeroletypeAt hl et e. Toreceiveaways
the same answer from j ohn, irrespective of any extensions, the message must be sent with thej ohn! | nt r oduce
notation.

The combination of double lookup with role casting allows static binding, and the super mechanism, to be
simulated. For example, let us consider the following function:

let foo := fun(x:Person) :{string} is
{x.Introduce;
x! I ntroduce;
(x As Person)!lntroduce}

Let j ohnAsSt udent be bound to a value of type St udent , which has been later extended with a role of
type For ei gnSt udent , subtype of St udent which redefines the method | nt r oduce. The value returned by
f oo(j ohnAsSt udent ) isasequenceof threeanswersproduced by themethodsdefinedintypeFor ei gnSt udent
(double lookup), intype St udent (upward lookup), and in type Per son (static binding).

5.2 Sdf-reference Semantics

When a method containing asel f . msg invocation is executed, and the original message was sent to aroler with
runtimetype T, theinterpretation of sel f isdetermined as follows:

¢ if the method was found in the downward lookup phase, hencein atype T’ which isasubtype of thetype T of
r,thensel f isboundtother As T’ rolg

¢ if the method was found by a search in the supertype chain, thensel f isboundtother role.

Hence, sel f behaves as if it were statically bound for methods found during the downward lookup phase, and
dynamically bound for methods found during the upward lookup phase. Infact, if sel f were bound to the T role
insideamethod foundinatype T’ C T duringthe history search phase, run-timetype errors may arise, since, when
the T method has been compiled, the sel f type was assumed to be a subtype of T' , which is not true for T. On
the other hand, this choice does not affect the language's expressive power because the method |ookup mechanism
is equivalent to the one adopted in the basic language for non extended objects. This means that this approach can
represent every classical object-oriented construction based on the dynamic binding of self for non-extensible objects.

5.3 Thelmplementation Model

In this language, when an object is extended, the old methods and attributes are not deleted, since they can till be
accessed usingtheobj ! mnotation. Moreover, if two attributeswith the same name are added to two different subtypes
of a common supertype, as in the Code example in the introduction, both attributes are present in an object which
has been extended to belong to both subtypes. For thisreason, for both methods and attributes, a search structureis
needed which associates a method, or aposition, to each triple“name, role, search technique’, where search technique
may either be“.” (doublelookup) or “!” (upward lookup). The simplest implementation is obtained by dealing with
attributes as if they were methods, associating a different Local Attribute Table to each role, as shown in Figure 5.
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Methods and attributesare then searched using the graph search a gorithm (downward and upward) previously defined,
and attributes can be accessed in the same way. Of course, two different attribute tables may assign two different
positionsto the same attribute, as happens with the Code attribute. In this situation, the object contains the temporal
sequence of the acquired roles plus the object state.

Object Type NAME 1D [1D' “Re[MDg[RemJOB|— = object roles
Descr.: msgl| methody \ —
Local Method § msgy, | methodp, § Ro TD2| Rem. | Obj ’\

Table, L.A.T. fIdName1| posy
and pointersto \

|
the supertypes fldNamen| posn { Ry |[TDy[ Rem. | Obj }le [ Ro [fieldy |... | fieldy|

Figure 5: The structure of an object with aplurality of behaviors.

=

A new role is created when the object is created, and when the object is extended with a new type. Creating an
object in a non-root type is implemented in the same way as creating the object in the root type and then extending
it. Object extension is only valid if the object has al the supertypes of the new type but does not have the type is
acquiring.

Asin the other cases, amethod is represented by a function which takes a“self” parameter which, inthiscase, is
bound as defined in Section 5.2.

This representation may be easily optimized, as in the other cases, by flattening the method and attribute tables,
and by sharing them, and the role history, among the objects with the same history. However, in this case every role
needs two tables, one for doublelookup, and the other one for upward lookup.

6 Conclusion

We have described a sequence of object model s of increasing complexity, starting with the standard model and ending
with amodel with the following features:

o extensible objects;
o shrinkable objects;
o context dependent behavior (roles).

Drawing on our experience in the implementation of Galileo, Galileo 95, and Fibonacci, we have presented a
sequence of implementation models of increasing complexity, to show which implementative features are linked to
every linguisticfeature, and to help to distinguishthe basi ¢ run-timeinformation, which isstrictly needed to implement
every operation, from the structuresthat are added to obtain a faster implementation of message passing.

We did not discuss how multiple implementations of a single type and how private attributes affect object repre-
sentation; theseissues will be studied in amore complete version of this paper.
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