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A graph G is an apex graph if it contains a vertex w such that G − w is
a planar graph. It is easy to see that the genus g(G) of the apex graph G is
bounded above by τ − 1, where τ is the minimum face cover of the neighbors
of w, taken over all planar embeddings of G−w. The main result of this paper
is the linear lower bound g(G) ≥ τ/160 (if G − w is 3-connected and τ > 1).
It is also proved that the minimum face cover problem is NP-hard for planar
triangulations and that the minimum vertex cover is NP-hard for 2-connected
cubic planar graphs. Finally, it is shown that computing the genus of apex
graphs is NP-hard.
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1. INTRODUCTION

The genus of a graph G, denoted by g(G), is the minimum genus of an
orientable surface in which the graph can be embedded. This parameter
has been extensively studied in the literature (cf., e.g. [6, 13]). The original
motivation to study the genus of graphs was the Heawood problem which
concerns the maximum chromatic number of graphs embeddable in a fixed
surface. The solution of the Heawood problem turned out to be equivalent
to determining the genus of complete graphs (cf. [10]). Apart from many
results concerning rather specific families of graphs, there are no general
results available that would enable us to efficiently determine (or lower
bound) genera of general graphs. This mysterious lack of available tools
was explained when Thomassen [11] proved that the genus problem is NP-
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complete. (The genus problem asks if for a given graph G and an integer
g, g(G) ≤ g.)
The main motivation for this paper is the following question: “How does

the addition of a new vertex to the given graph G influence the genus.”
Such influence is most transparent when G is a planar graph. The second
motivation is the study of the genus parameter in minor closed families
of graphs. By the Robertson-Seymour theory of graph minors, generic
cases of minor closed families are: (a) graphs for which the deletion of a
bounded number of vertices yields a graph embeddable in a fixed surface,
(b) graphs embeddable in a fixed nonorientable surface, and (c) graphs of
bounded tree-width. Some recent studies show that the genus problem may
be polynomially solvable for (b) and (c). On the other hand, the results
in Section 5 show, rather surprisingly, that (a) is NP-hard even in the
simplest case of apex graphs.
A graph G is an apex graph if it contains a vertex w (called an apex of

G) such that G − w is a planar graph. Although apex graphs seem to be
close to planar graphs, it is easy to see that their genus can be arbitrarily
large. A general result about the genus of apex graphs, presented here as
Theorem 3.3, was known to the author for several years. However, the
general characterization of obstructions to small genus of apex graphs (by
means of nonexistence of small face covers as presented in Section 3) became
apparent only recently. It is easy to see that the genus g(G) of the apex
graph G is bounded above by τ − 1, where τ is the minimum face cover
of the neighbors of w, taken over all planar embeddings of G − w. The
main result of this paper is Theorem 3.1 which yields linear lower bound
g(G) ≥ τ/160 (proved for the case when G−w is 3-connected and τ > 1).
Observe that g(G) = 0 if τ = 1.
From the computational complexity point of view, the genus of graphs

was one of the toughest open cases from the list of Garey and Johnson
[3]. Thomassen proved in 1989 [11] (and has later found a simpler proof
[12]) that the genus problem is NP-complete. The main result of Section
5 shows that the genus problem remains NP-complete even if we restrict
ourselves to apex graphs. This solves a problem raised by Neil Robertson
in 1988 (private communication). As a side result we also prove that vertex
cover and the (maximum) independent set problem are NP-complete for
planar cubic graphs. Garey, Johnson, and Stockmeyer [4] proved that these
problems are NP-complete for planar graphs of maximum degree 6. Our
results resolve their question [4] how much the degree condition can be
narrowed so that the problem remains NP-complete (if P�=NP).
Our treatment of graph embeddings follows essentially [9]. An embedding

of a connected graph G is a pair Π = (π, λ) where π = {πv | v ∈ V (G)} is a
collection of local clockwise rotations , i.e., πv is a cyclic permutation of the
edges incident with v (v ∈ V (G)), and λ : E(G) → {+1,−1} is a signature.



FACE COVERS AND GENUS OF APEX GRAPHS 3

The local rotation πv describes the cyclic clockwise order of edges incident
with v on the surface, and the signature λ(uv) of the edge uv is positive if
and only if the local rotations πu and πv both correspond to the clockwise
(or both to anticlockwise) rotations when traversing the edge uv on the
surface. An embedding of the graph G is orientable if every cycle of G has
an even number of edges with negative signature.
The embedding Π determines a set of Π-facial walks. If a Π-facial walk

is a cycle, it is also called a Π-facial cycle. Suppose that Π is an ori-
entable embedding. If f is the number of Π-facial walks, then the number
g(G,Π) = 1 − 1

2 (|V (G)| − |E(G)| + f) is called the genus of Π. (The un-
derlying surface of the embedding Π is obtained by pasting discs along the
Π-facial walks in G. Then g(G,Π) is the genus of that surface, by Euler’s
formula.) The minimum of g(G,Π) taken over all orientable embeddings
of G is the genus of the graph G and is denoted by g(G).
If G is a Π-embedded graph and H is a subgraph of G, then Π induces

an embedding Π′ of H which we call the induced embedding of H , or the
restriction of Π to H . Let us observe that g(H,Π′) ≤ g(G,Π), possibly
with strict inequality. We refer to [9] for further definitions and basic
properties of embeddings which are used in the sequel.

2. BOUQUETS OF CYCLES AND EMBEDDINGS

In this section we prove two auxiliary results (which may be of indepen-
dent interest) that are used in the proof of Theorem 3.1.
Let F be a collection of cycles of a graph G. Suppose that there is a

vertex x ∈ V (G) such that the intersection of any two distinct cycles in F
is either x or an edge incident with x. Then we say that F is a bouquet .
The union

⋃
{C ∩ C′ | C,C′ ∈ F , C �= C′} is called the center of F . More

generally, a collection of cycles F is called a collection of bouquets if it is
the union of bouquets such that any two cycles in distinct bouquets are
disjoint.

Lemma 2.1. Let G be a graph embedded in an orientable surface of genus
g and let w ∈ V (G). Let F be a collection of bouquets in G− w such that
each C ∈ F is noncontractible and contains a vertex adjacent to w which
is not in the center of the bouquet containing C. Then |F| ≤ 4g.

Proof. Let C1, . . . , Ck (k = |F|) be the cycles in F , and let F1, . . . ,Fp

be the bouquets in F . We may assume that the center of each bouquet F j is
either empty (if |F j | = 1) or a single vertex, 1 ≤ j ≤ p. (If not, we contract
the edges in the center of Fj .) Let kj = |F j |, 1 ≤ j ≤ p. Cut the surface of
the embedded graph along the cycles C1, . . . , Ck, and let Σ1, . . . ,Σr be the
connected components (surfaces with boundary) resulting in this way. It is
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easy to see that the sum of the Euler characteristics of these components
is equal to

r∑
i=1

χ(Σi) = χ(Σ) + k − p = 2− 2g + k − p. (1)

The component (say Σ1) which contains w has at least p boundary com-
ponents since w is adjacent to a vertex in each bouquet. Each cycle in F
gives rise to two arcs on the boundaries of Σ1, . . . ,Σr. At least k of these
arcs are in Σ1 since every cycle in F contains a neighbor of w distinct from
the centre of the corresponding bouquet. Suppose that some component
Σi (2 ≤ i ≤ r) is a disk. Since none of the cycles in F is contractible,
the boundary of such a disk contains at least two of the arcs. Therefore,
there are at most k/2 disk components. They have Euler characteristic 1.
All other components have nonpositive Euler characteristic. Since Σ1 has
p or more boundary components, χ(Σ1) ≤ 2− p. These properties and (1)
imply that

2 + k − p− 2g =
r∑

i=1

χ(Σi) ≤ χ(Σ1) +
k

2
≤ 2− p+

k

2

and hence k ≤ 4g.

It is not hard to embed a bouquet of 4 cycles in the torus so that the
conditions of Lemma 2.1 are satisfied. By taking g such bouquets on the
surface of genus g, we see that the bound of Lemma 2.1 is best possible.

Lemma 2.2. Let G be a graph embedded in an orientable surface of genus
g and let w ∈ V (G). Let F be a collection of bouquets in G− w such that
each C ∈ F is noncontractible and contains a vertex adjacent to w which
is not in the center of the bouquet containing C. Suppose, moreover, that
any two cycles in F are disjoint. Then |F| ≤ 2g.

Proof. A proof similar to the proof of Lemma 2.1 gives a better bound in
this case since there are no disk components Σi (1 ≤ i ≤ p).

Next we prove that any collection of facial cycles of a 3-connected planar
graph contains a large collection of bouquets.

Lemma 2.3. Let G be a 3-connected planar graph and let F be a collec-
tion of facial cycles of G. Then F contains a subset F0 which is a collection
of bouquets in which no two cycles intersect more than in a vertex and such
that |F0| ≥ 1

40 |F|.
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Proof. Let us observe that any two distinct facial cycles of G are either
disjoint, or they intersect in a vertex or an edge. By applying the 4-
color theorem it is easy to see that there is a subset F ′ of F such that
|F ′| ≥ |F|/4 and such that no two cycles in F ′ have an edge in common.
Then, it suffices to prove that there is a vertex x ∈ V (G) and there is a
bouquet F0 = {C1, . . . , Cr} ⊆ F ′ containing r cycles (r ≥ 1) such that
x ∈ V (C1 ∩ · · · ∩ Cr) and such that the number of cycles in F ′ which
intersect C1 ∪ · · · ∪ Cr (not counting C1, . . . , Cr) is at most 9r. To prove
this claim we may assume that ∪F ′ is connected. We may also assume
that |F ′| ≥ 10.
Let H be a bipartite graph obtained as follows. Its vertex set is F ′ ∪ U

where U is the set of all vertices of G in which two or more of the cycles
from F ′ intersect. There is an edge Cu ∈ V (H) if and only if C ∈ F ′ and
u ∈ U are incident. Then H is connected and has a natural embedding in
the plane obtained from the embedding of G by putting each vertex in F ′

in the corresponding face of G. Since no two cycles in F ′ have more than
a vertex in common, the girth of H is at least 6. Let f = |F ′|, w = |U |,
e = |E(H)|, and let q be the number of facial walks of H . By Euler’s
formula, f + w − e+ q = 2. The girth condition and the assumption that
f ≥ 3 imply that q ≤ e/3, and so

3f + 3w − 2e ≥ 6. (2)

If u ∈ U has degree j in H , then u is called a j-vertex . If C ∈ F ′

has degree j in H , then it is called a j-face. For j ≥ 0, let nj be the
number of j-vertices and let fj be the number of j-faces. Then n =

∑
j nj

and f =
∑

j fj . Since U and F ′ form a bipartition of H , we also have
e =

∑
j jnj =

∑
j jfj . By putting these relations into (2), the following

inequality results:

∑
j

(
3− 3

2
j
)
nj +

∑
j

(
3− 1

2
j
)
fj ≥ 6. (3)

To prove the existence of F0 we will apply the discharging method on
(3). First, we define the charge of each j-vertex to be 3− 3

2 j and the charge
of each j-face to be 3− 1

2 j. By (3), the sum of charges of all vertices of H
is positive. Now, we redistribute the charges in two steps according to the
following rules:

Step 1. If 1 ≤ j ≤ 5 and C ∈ F ′ is a j-face, then send charge 1/2 from C
to each adjacent 3-vertex, send 3/4 to each adjacent 4-vertex or 5-vertex,
and send charge 1 to each 6-vertex adjacent to C.
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Step 2. Suppose that 1 ≤ j ≤ 5 and that C is a j-face which still has
positive charge c > 0 after step 1. If j = 1 and the neighbor of C is an
i-vertex u where i ≥ 11, then send the charge c from C to u. If 2 ≤ j ≤ 5
and C has t ≥ 1 neighbors of degree at least 7 in H , then send equal charges
c/t to each such neighbor.

After the charge redistribution, the total charge remains the same as before.
Therefore, there is a vertex of H with positive charge.
Suppose first that a j-face C has positive charge. Recall that the initial

charge of C was 3 − j/2. Since in steps 1 and 2 the charge is always sent
from F ′ to U , the current charge of C cannot be larger than initially. Hence
j ≤ 5. If j = 5, then C has sent no charge to its neighbors. In particular,
its neighbors are all 2-vertices and hence C intersects only 5 other cycles
in F ′. If j = 4, then C is adjacent to at most one vertex of degree at least
3 in H , and if there is one, its degree is at most 5. Hence, C intersects at
most 7 other faces in F ′. Similarly we see that in the case when j = 3, C
intersects at most 7 other faces in F ′. If j = 2, C is not adjacent to an
i-vertex where i ≥ 7, and it is not adjacent to two 6-vertices. Therefore, it
intersects at most 9 other faces in F ′. Similarly if j = 1. In each of these
cases we may take F0 = {C}.
Suppose now that a j-vertex u has positive charge. Since there are no 1-

vertices, the initial charge 3−3j/2 of u was not positive. No charge is ever
sent to a 2-vertex. Therefore, j ≥ 3. Any i-vertex with 3 ≤ i ≤ 6 receives
additional charge only in step 1. Since they have precisely i neighbors in
H , it is easy to see that their charge cannot become positive. Hence j ≥ 7.
Let us recall that charge c > 1 may be sent from an i-face C to u only in
step 2 and precisely in the following five cases:

(i) C is a 3-face which is adjacent to two 2-vertices and to u. In this case
c = 1.5.
(ii) C is a 2-face which is adjacent to a 2-vertex and to u. In this case

c = 2.
(iii) C is a 2-face which is adjacent to a 3-vertex and to u. In this case

c = 1.5.
(iv) C is a 2-face which is adjacent to a 4-vertex or 5-vertex and to u.

In this case c = 1.25.
(v) C is a 1-face and j ≥ 11. In this case c = 2.5.

If a charge greater than one is sent to u only once, then it is easy to see
that j = 7 and that case (ii) was applied. Then the corresponding 2-face
C intersects only 7 other faces in F ′. Thus we may assume that (at least)
two of the cases (i)–(v) have been applied to u. Consider the bouquet
consisting of the corresponding two cycles in F ′. This bouquet intersects
at most (j − 2)+ 8 = j + 6 other faces in F ′. Hence we are done if j ≤ 12.
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Suppose now that j ≥ 13. The initial charge at u was 3−3j/2 ≤ −j− 3
2

j
6 .

This implies that cases (i)–(v) apply to u more than j/6 times. Let F0 be
the bouquet consisting of the corresponding r = �j/6� cycles in F ′. Each of
the cycles in F0 intersects at most 4 cycles of F ′ in addition to those which
contain u. Therefore F0 intersects at most j−r+4r = j+3r ≤ 9r other cy-
cles in F ′.

3. EMBEDDINGS OF APEX GRAPHS AND FACE COVERS

Let Π be an embedding of the apex graph G, and let Π0 be the induced
embedding of G0 = G − w, where w is the apex of G. Denote by W the
set of all neighbors of w in G. A Π0-face cover (or simply a face cover) of
W is a set of Π0-facial walks such that each vertex in W is contained in
at least one of them. Denote by τ(W,G0,Π0) the smallest cardinality of a
face cover of W . Minimum face covers in plane graphs have been studied
in [1, 2].
Minimum genus embeddings of graphs and minimum face covers are re-

lated as shown below.

Lemma 3.1. Let G be a graph and w ∈ V (G) such that the graph G′ =
G − w is connected. Let W be the set of neighbors of w in G, and let Π′

be an orientable embedding of G′. The minimum genus of all orientable
embeddings of G, whose restriction to G′ is Π′, is equal to g(G′,Π′) +
τ(W,G′,Π′)− 1.

Proof. Let τ = τ(W,G′,Π′). Let F0, . . . , Fτ−1 be a minimum Π′-face
cover of W . Add a vertex vi in Fi and join it to all vertices of W in Fi

(0 ≤ i < τ). By adding the edges v0v1, . . . , v0vτ−1 we get a graph G̃ which
contains G as a minor. Since adding an edge increases the genus by at
most one, G̃ (and hence also G) has an embedding whose restriction to G′

is Π′ and whose genus is at most g(G′,Π′) + τ − 1.
Conversely, let Π be an embedding of G such that the induced em-

bedding of G′ is Π′. Let F1, . . . , Fr be the Π′-facial walks that are not
Π-facial. Then F1, . . . , Fr is a Π′-face cover of W , and hence r ≥ τ .
For each Fi, let ei = viw be an edge of G incident with w such that,
in the local clockwise rotation around vi, the edge ei is placed between
the edges of G′ which are consecutive on Fi (i.e., Fi is not facial in the
induced embedding of G′ + ei). Let G1 = G′ + e1 + · · · + er ⊆ G. It
is easy to prove by induction on r that the genus of the induced em-
bedding of G1 is equal to g(G′,Π′) + r − 1. This completes the proof.
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Lemma 3.1 can also be formulated for the case when G − w is not con-
nected. This implies:

Proposition 3.1. Let G be an apex graph with apex w, and let G1, . . . , Gk

be the connected components of G− w. Then

g(G) =
k∑

i=1

min
{
g(Gi,Πi) + τ(Wi, Gi,Πi)− 1

}

where Wi is the set of neighbors of w in Gi, and the minimum runs over
all orientable embeddings Πi of Gi, i = 1, . . . , k.

Now we are prepared for our main result.

Theorem 3.1. Let G be an apex graph with apex w. Suppose that G0 =
G−w is 3-connected. Denote by W the set of neighbors of w in G. Let Π0

be the plane embedding of G0, and let τ = τ(W,G0,Π0). If τ ≥ 2, then

1
160

τ ≤ g(G) ≤ τ − 1. (4)

Proof. The upper bound g(G) ≤ τ − 1 is clear by Lemma 3.1.
To prove the lower bound, consider an arbitrary orientable embedding

Π of G. Let F ′ be the set of Π0-facial cycles which are not Π-facial. For
every v ∈ W , vw ∈ E(G)\E(G0). This implies that F ′ is a Π0-face cover
of W . Let F ⊆ F ′ be a minimal Π0-face cover of W contained in F ′. Then
|F| ≥ τ . Facial cycles of 3-connected graphs in the plane are induced and
nonseparating (cf., e.g., [9]). Therefore, every C ∈ F is also induced in
G. Since τ > 1, w has a neighbor outside C. This implies that C is also
nonseparating in G. Consequently, C is Π-noncontractible.
By Lemma 2.3, F contains a collection of bouquets F0 which has at least

τ/40 members. Since no proper subset of F is a face cover ofW , each cycle
C ∈ F0 contains a neighbor of w which is not in the centre of the bouquet
containing C. By Lemma 2.1, g(G,Π) ≥ |F0|/4 ≥ τ/160. This completes
the proof.

The lower bound in (4) can be improved (with a more complicated proof)
but the resulting bound is still far from the worst case examples that we
can construct.
At the end of Section 5 we prove that there are apex graphs G with 3-

connected planar subgraph G0 = G − w such that g(G) = 1
2τ(W,G0,Π0),

where Π0 is the plane embedding of G0.
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If the vertices in W are “far apart”, the bound of Theorem 3.1 can be
greatly improved (possibly even to an exact result) as shown below. The
distance that will be used is the following. Let G0 be a plane graph and
u, v distinct vertices of G0. We say that u, v are at face distance at least k
if there are no facial walks F1, . . . , Fk−1 such that u ∈ V (F1), v ∈ V (Fk−1),
and Fi ∩Fi+1 �= ∅ for i = 1, . . . , k− 2. For example, τ(W,G0,Π0) = |W | if
and only if any two vertices in W are at face distance at least 2.

Theorem 3.2. Let G be an apex graph with apex w. Suppose that G0 =
G − w is 3-connected. Denote by W the neighbors of w in G. Let Π0 be
the plane embedding of G0, and suppose that any two vertices in W are at
face distance at least 3. Then

1
2
|W | ≤ g(G) ≤ |W | − 1. (5)

Proof. Face distance at least 3 implies that any two Π0-facial cycles
which contain distinct vertices of W are disjoint. Now, we follow the proof
of Theorem 3.1 and observe that |F| = |W | and that F0 = F . This saves a
factor of 40. Moreover, applying Lemma 2.2 instead of Lemma 2.1 saves an-
other factor of 2. This implies (5).

Theorem 3.3. Let G be an apex graph with apex w. Suppose that G0 =
G − w is 3-connected. Denote by W the neighbors of w in G. Let Π0 be
the plane embedding of G0, and suppose that any two vertices in W are at
face distance at least 4. Then

g(G) = |W | − 1. (6)

Proof. The claim is obvious if |W | = 1, so we may assume that |W | ≥ 2.
Let Π be a minimum genus embedding of G, and let Π′ be the induced
embedding of G0. For each v ∈ W there is a Π0-facial cycle Cv which
is not Π-facial. Since Cv is an induced nonseparating cycle of G0 and
since Cv ∩W = {v} and |W | ≥ 2, Cv is also induced and nonseparating
cycle of G. Therefore, Cv is not surface separating in the embedding Π.
Similarly we see that for any proper subset W ′ ⊂ W , the collection of
disjoint cycles {Cv | v ∈ W ′} is an induced and nonseparating subgraph
of G. (However, the union of all cycles Cv (v ∈ W ) separates w from
the rest of the graph.) This implies (cf. [8, Lemma 2.4]) that g(G) =
g(G,Π) ≥ |W |−1. Clearly, g(G,Π) ≤ |W |−1. This completes the proof.
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FIG. 1. Replacing vertices of degree 2 in G1

4. COMPUTING MINIMUM FACE COVERS

Bienstock and Monma [2] proved that finding minimum face covers of
planar graphs is NP-hard. Their reduction is from planar vertex cover
and implies that the problem remains NP-hard also for instances whose
maximum face size is at most 6. (The authors of [2] claim that their
proof also works for triangulations. However, the premises used for such
a case are based on a wrong interpretation of results of Garey, Johnson,
and Stockmeyer [4].) In this section we prove that finding a minimum face
cover is NP-hard also for 3-connected instances in which each face is of
size 3.

Theorem 4.1. (a) The minimum vertex cover and the maximum inde-
pendent set problem are NP-hard also when restricted to 2-connected cubic
planar graphs.
(b) The minimum face cover problem is NP-hard also when restricted to

planar triangulations.

Proof. Kratochvil [7] proved that the following problem (called planar
3-satisfiability) is NP-complete. Let X be a set of logical variables and C
a set of clauses, each clause containing exactly 3 distinct variables of X .
Let H be the graph whose vertices are the elements of X and C, and whose
edges are xc for every x ∈ X and c ∈ C such that x or ¬x is in c. With the
additional requirement that H is planar and 3-connected, the problem of
deciding whether such a set C of clauses is satisfiable is NP-complete.
Suppose that we are given an instance X, C of planar 3-satisfiability.

Let H be the corresponding planar graph. Define the graph G1 which is
obtained from H by replacing each clause vertex c ∈ C by a triangle Tc

and replacing each vertex x ∈ X by a cycle Cx of length 2k where k is the
number of clauses that contain x or ¬x (i.e., k is the degree of x in H).
Label the vertices of Tc by the three variables occurring in c, and label
the vertices of Cx respectively by c11, c

2
1, c

1
2, c

2
2, . . . , c

1
k, c

2
k where c1, c2, . . . , ck

are the clauses in which x or ¬x appears, enumerated in the cyclic order
determined by the local clockwise rotation around x in the plane embedding
of H . Finally, if x (resp. ¬x) occurs in the clause ci, add the edge joining
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the vertex of Tci corresponding to x with the vertex c1i (resp. c2i ) of Cx. If
C contains p clauses, then H has 3p edges, and the constructed graph G1

has 12p edges. Clearly, G1 is a 2-connected planar graph with 3p vertices
of degrees 2 and 6p vertices of degree 3.
Every vertex cover of G1 contains at least 2 vertices of each Tc and at

least k vertices of each cycle Cx of length 2k. Therefore, it has at least
2p + 3p = 5p vertices. It is easy to see that C is satisfiable if and only if
G1 has a vertex cover of cardinality precisely 5p, or, equivalently, has an
independent set of size 4p. Replace each vertex v of degree 2 in G1 by the
4-vertex graph as shown in Figure 1. Then the resulting cubic graph G2

on 18p vertices has a vertex cover of size 11p if and only if G1 has a vertex
cover of size 5p. This completes the proof of (a).
Note that G1 and G2 are planar graphs. Let G3 be the planar dual of

G2 (with respect to some embedding of G2 in the plane; however, since
H is 3-connected and G1 is a subdivision of a 3-connected graph, any
two such duals G3 are plane isomorphic). Then G3 is a triangulation
(with several parallel edges). Subdivide each edge of G3 by inserting a
vertex of degree 2. Denote by W the set of all vertices of degree 2 ob-
tained in this way. Finally, for each face of the resulting graph add a
3-cycle joining the three vertices of W in that face. The resulting graph
G is a triangulation (without parallel edges and hence 3-connected), and
there is a face cover of W of cardinality r if and only if G2 has a vertex
cover of cardinality r. In particular, G has face cover of W of cardinal-
ity 18p if and only if C is satisfiable. This completes the proof of (b).

Garey, Johnson, and Stockmeyer proved [4] that the vertex cover problem
is NP-complete for planar graphs of maximum degree 6. Theorem 4.1(a)
answers their question what is the strongest degree restriction so that the
problem remains NP-complete for planar graphs.

5. COMPUTING THE GENUS OF APEX GRAPHS

The main result of this section is the following:

Theorem 5.1. It is NP-complete to decide if the genus of the given
apex graph G is smaller or equal to the given integer g.

The proof of Theorem 5.1 occupies the rest of the section. In Section 3
we established a close connection of the genus problem for apex graphs with
the (NP-hard) problem of a minimum face cover. However, the reduction
that we shall use to prove Theorem 5.1 is from an entirely different problem,
proved to be NP-complete by Garey, Johnson, and Tarjan [5].
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FIG. 2. The graph H5,4

Theorem 5.2 (Garey, Johnson, and Tarjan [5]). The decision problem
whether a given cubic planar graph contains a Hamilton cycle is NP-
complete.

We need some preparation. Let Hp,r be the Cartesian product of the
p-cycle with the path on r vertices. It is shown in Figure 2 for p = 5 and
r = 4. Denote by R1, . . . , Rr the nested p-cycles of Hp,r, where R1 is the
outer cycle and Rr is the innermost facial cycle.

Lemma 5.1. Let G be a graph and let H be a subgraph of G isomorphic
to Hp,r (r ≥ 2, p ≥ 3) such that only the vertices of H on the cycle corre-
sponding to R1 may be incident with an edge in E(G)\E(H). If Π is an
orientable embedding of G and r ≥ g(G,Π)+2, then there is an orientable
embedding Π1 of G such that:

(a)The induced embeddings of Π and Π1 on G− V (H) are the same.
(b)The induced embedding of Π1 on H is of genus 0. Moreover, H

contains no Π1-noncontractible cycles.
(c)g(G,Π1) ≤ g(G,Π).

Proof. By induction on r. If r = 2, then g(G,Π) = 0, so we may take
Π1 = Π. Suppose now that r > 2. Let Ci be the cycle of H corresponding
to Ri, i = 1, . . . , r. If Cr is Π-contractible, then we consider the induced
embedding Π′ of G′ = G−∪r−1

i=1E(Ci). Since Cr is an induced and nonsep-
arating cycle of G, it is Π-facial and hence also Π′-facial. Each vertex of Cr

is incident with precisely one edge of G′ −E(Cr). Since all such edges are
Π′-embedded in the Π′-exterior of Cr, it is easy to see how one can extend
Π′ to an embedding Π1 of G in the same surface satisfying (a)–(c).
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FIG. 3. From G0 to G′

Suppose now that Cr is Π-noncontractible. Then the induced embedding
of G − V (Cr) has genus less than g(G,Π), and H − V (Cr) is a subgraph
isomorphic to Hp,r−1 satisfying the premises of the lemma for r−1. By the
induction hypothesis, there is an embedding ofG−V (Cr) under which Cr−1

is contractible. Since Cr−1 is an induced and nonseparating cycle of G −
V (Cr), it is facial. Therefore, we may add Cr and the edges joining Cr with
Cr−1 into the face bounded by Cr−1 to get the desired embedding Π1 of
G.

Let G0 be a (2-connected) cubic planar graph. We shall now introduce
some related graphs and fix some notation that will be used in the sequel
to prove Theorem 5.1. Let n0 = |V (G0)|. Denote by G1 the cubic graph
which is the truncation of G0, i.e., the graph obtained from G0 by first
subdividing each edge of G0 by inserting two vertices of degree 2, and then
Y∆ each vertex v of G0 into a triangle Tv. (Each Y∆ operation deletes
the vertex v and adds the triangle Tv on the vertices adjacent to v in the
subdivided graph.) Denote by T = {Tv | v ∈ V (G0)} the set of triangles
of G1. Let G2 be the plane dual of G1 (with respect to some embedding of
G0 and G1 in the plane). Replace each vertex u of G2 by a distinct copy
of the graph Hr(u) which is isomorphic to Hd,r, where d is the degree of u
in G2 and r = 2n0+1. Now, replace each edge uv of G2 by a new edge euv

joining the outer cycles of Hr(u) and Hr(v) so that no two such edges share
an end and such that the resulting graph is planar. Finally, subdivide each
edge euv, where uv is an edge dual to an edge of some 3-cycle in T , by
inserting a vertex wuv of degree 2. Denote by G′ the resulting graph, and
let W be the set of all vertices wuv (i.e., vertices of degree 2 in G′). The
construction of G′ is locally represented in Figure 3.
Let G be the graph obtained from G′ by adding a new vertex w whose

neighbors are precisely the vertices inW . Let Π′
0 be the plane embedding of

G′. It is easy to see that τ(W,G′,Π′
0) = 2n0 (since two faces are necessary

and sufficient to cover the vertices inW corresponding to any triangle in T ).
Therefore, g(G) ≤ 2n0−1 by Proposition 3.1. Since r = 2n0+1 ≥ g(G)+2,
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Lemma 5.1 implies that the genus of G is attained at an embedding Π whose
induced embedding to G′ satisfies condition (b) of Lemma 5.1 for each of
the subgraphs Hr(u), u ∈ V (G2). The set of all such embeddings of G′ will
be denoted by E .
Two embeddings which have the same set of facial walks are said to be

equivalent . A local change of the embedding Π = (π, λ) at the vertex v
changes πv to its inverse π−1

v and λ(e) is replaced by −λ(e) for edges e that
are incident with v. It is easy to see that two embeddings are equivalent
if and only if one can be obtained from the other by a sequence of local
changes.

Claim 5.1. The set of equivalence classes of embeddings in E is in a
bijective correspondence with the families Q = {Q1, . . . , Qp} (p ≥ 0) of
pairwise disjoint cycles of G1.

Proof. For each wuv ∈ W , let fuv and f ′
uv be the edges incident with

wuv in G′. The embeddings in E have fixed local clockwise rotation at all
vertices and have positive signature on all edges of Hr(u), u ∈ V (G2). The
only freedom is that the signature of edges euv or their subdivision edges
fuv and f ′

uv may be negative or positive. We may also assume that the
signature of f ′

uv is positive for each wuv ∈ W . After these restrictions, the
equivalence classes of embeddings in E are in a bijective correspondence
with selections of positive or negative signatures for the edges euv and fuv

in G′.
Since G2 is a triangulation (possibly with parallel edges), each Π′

0-facial
cycle C contains at most 3 edges with negative signature in the embedding
Π′ ∈ E . Since we only consider orientable embeddings, the number of
such edges on C is even, so it is either 0 or 2. This implies that the
edges euv and fuv with negative signature determine a collection of pairwise
disjoint cycles of G1 whose edges are precisely the edges dual to an edge
uv such that euv or fuv has negative signature. Conversely, each such
family Q of cycles determines an orientable embedding of G′ with the
same local clockwise rotations as the plane embedding Π′

0 of G′ whose
negative edges euv or fuv are precisely those which are dual to the edges
of the cycles in Q. It is easy to see that this correspondence is bijective.

If Q = {Q1, . . . , Qp}, p ≥ 0, is a collection of pairwise disjoint cycles of
G1, let Π′(Q) ∈ E denote the corresponding embedding of G′.
A cycle C of an embedded (cubic) graph is a zig-zag cycle (also known

as a Petrie cycle) if no three consecutive edges of C are consecutive edges
of some facial walk.
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Claim 5.2. Let Q = {Q1, . . . , Qp}, p ≥ 0, be a collection of pairwise
disjoint cycles of G1. Denote by p1 and p2 the number of odd and even
cycles in Q, respectively, and let z2 be the number of even zig-zag cycles in
Q. Let N be the number of vertices in V (Q) = V (Q1) ∪ · · · ∪ V (Qp), and
let N3 be the number of triangles T ∈ T of G1 such that all three vertices
of T are contained in V (Q). If Π′ = Π′(Q), then

g(G′,Π′) =
1
2
N − p+

1
2
p1 (7)

and

τ(W,G′,Π′) = 2n0 −N +N3 + p1 + 2p2 − z2. (8)

Proof. Observe that Π′ is obtained from the plane embedding Π′
0 of G′

by changing the signatures along the edges dual to the cycles in Q. If Qi

(1 ≤ i ≤ p) is an even cycle of length 2l (say), then 2l Π′
0-facial cycles are

replaced by precisely two facial cycles Fi, F
′
i (we fix their notation now for

later reference). Thus, the Euler characteristic drops by 2l − 2, and hence
the genus increases by l − 1 = 1

2 |V (Qi)| − 1. Similarly, if Qi is an odd
cycle of length 2l− 1, then 2l − 1 Π′

0-facial cycles are replaced by a single
Π′-facial cycle Fi. Hence, the Euler characteristic drops by 2l− 2, and the
genus increases by l− 1 = 1

2 |V (Qi)| − 1 + 1
2 . This implies (7).

For each T ∈ T which is disjoint from V (Q), two Π′-facial cycles are
necessary and sufficient to cover the corresponding three vertices of W .
Consider now an odd cycle Qi ∈ Q. Then Fi covers all vertices in W
corresponding to the triangles in T intersected by Qi. If Qi is an even
zig-zag cycle, then one of Fi or F ′

i covers all vertices in W corresponding
to the triangles in T intersected by Qi. If Qi is an even cycle which is not
zig-zag, then Fi and F ′

i do the same. Observe that the number of triangles
T ∈ T which intersect some cycle Qi is equal to nT = 1

2 (N − N3). The
above conclusions show that

τ(W,G′,Π′) ≤ 2(n0 − nT ) + p1 + 2p2 − z2

= 2n0 −N +N3 + p1 + 2p2 − z2. (9)

To prove (8), we have to show that equality holds in (9). It suffices
to see that no single Π′-facial cycle covers all vertices of W correspond-
ing to Qi if Qi is even and not zig-zag. If Qi intersects some T ∈ T
in precisely two vertices, then it is easy to see that neither Fi nor F ′

i

(nor any other Π′-facial walk) contains all three vertices of W correspond-
ing to T . If such T does not exist, then there are adjacent triangles
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T, T ′ ∈ T used by Qi such that the edge connecting T and T ′ and the
two adjacent edges used by Qi are consecutive on a facial cycle of G1.
In this case, each of Fi, F

′
i contains precisely 5 of the 6 vertices of W

corresponding to T and T ′, hence the claim. This completes the proof.

Claim 5.3. The genus of the graph G is at least n0, and g(G) = n0 if
and only if G0 has a Hamilton cycle.

Proof. By Lemma 3.1, Claims 5.1 and 5.2, and the remark preceding
Claim 5.1, the genus of G is equal to

min
Q

(1
2
N − p+

1
2
p1 + 2n0 −N +N3 + p1 + 2p2 − z2 − 1

)
(10)

where the minimum runs over all collections Q = {Q1, . . . , Qp} of disjoint
cycles of G1. Since p1 + p2 = p, (10) is equal to

min
Q

(
2n0 − 1− 1

2
N +N3 +

1
2
p1 + p2 − z2

)
. (11)

If Q contains a 3-cycle Qi, then Q\{Qi} gives the same value in (11) as Q.
Similarly, if some Qi ∈ Q contains 3 vertices of the same triangle T ∈ T ,
then replacing Qi by the cycle, which is the same except that it intersects
T in only two vertices, does not increase the value in (11). Therefore, the
minimum in (11) may be taken only over collections of cycles Q such that
each Qi ∈ Q intersects each T ∈ T in 0 or 2 vertices. Then, clearly, N3 = 0,
p1 = 0, and z2 = 0. Therefore, (11) becomes

2n0 − 1 + min
(
p2 −

1
2
N

)
. (12)

Clearly, for such collections Q, N/2−p2 ≤ n0−1, where the equality holds
if and only if p = p2 = 1 and N = 2n0, i.e., Q = {Q1} where Q1 visits all
n0 3-cycles of G1. Clearly, existence of Q1 is equivalent to the existence of
a Hamilton cycle inG0. This implies that g(G) ≥ n0, and the equality holds
if and only if G0 has a Hamilton cycle.

Starting with an arbitrary (2-connected) cubic planar graph G0 we con-
structed in polynomial time the apex graph G whose genus is equal to
|V (G0)| if and only if G0 contains a Hamilton cycle. Theorem 5.2 then
implies Theorem 5.1.
To show that the genus problem remainsNP-complete for apex graphsG

for which the corresponding planar subgraph G−w is a triangulation (and
hence 3-connected), we apply the following construction. First, subdivide
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also the remaining edges euv of G′ (while keeping W unchanged). Then
triangulate each 9-face of the resulting subdivision of G′ by joining the
three vertices of degree 2 and adding diagonals in the resulting 4-gons.
The obtained graph G′′ is a triangulation. It is easy to see that the genus
of G′′+w is the same as the genus of G. The details are left to the reader.
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