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On the Weibull distribution appeared in chaotic systems

Yoji Aizawa

Department of Applied Physics, Faculty of Science and Engineering,
Advanced Institute for Complex Systems, Waseda University, Tokyo, Japan

Various kinds of scaling laws are often observed in complex dynamical systems; for instance,
SOC and punctuated equilibrium near the edge of chaos, 1/f spectrum, long time tails and
anomalous diffusion in non-hyperbolic systems, where the self-similarity structures play essen-
tial roles in dynamical space and induce the breaking of central limit theorem for gaussian
regime.

In the present paper we discuss three complex dynamical systems with non-gaussian scaling
regime described by the Weibull distribution. Though the universality of Weibull distribution
functions has not yet been made clear, but it is surmised that the Weibull regime is omnipresent
in the systems under consideration.

1. Hamiltonian systems

Weibull distributions in hamiltonian dynamics were studied in (1): Mixmaster universe model
[Prog. Theor. Phys. 98 No.6 (1997), 1225], and in (2) Cluster formation [Prog. Theor. Phys.
103 (2000), 519 ; Suppl. No.139 (2000), 1]. In particular, it was shown that the Arnold diffusion
can be explained in terms of the universality of Log-Weibull distributions.

Here we discuss a new simplified model of random potential scattering, where Weibull distri-
butions are numerically obtained.

2. Time dependent non-stationary chaotic map

It is known that the modified Bernoulli map reveals strong intermittency and anomalous large
deviation properties [Prog. Theor. Phys. 99 (1989), 149 and 90 No.3 (1993), 547].

Here we consider the time dependent process where the system parameter is varying in the
course of time. Surprising results are the followings ; the time dependent intermittency obeys
the Weibull distribution in the intermediate long time scale, but in the intrinsic long time scale
it obeys the Log-Weibull distribution.

3. A model of financial market

It is known in econophysics studies that the distribution of returns (change of price) obeys
the stable (Lévy) distribution, but many theoretical models for financial market do not always
display the stable law.

Here we study a multi-agent model [Chaos, Solitons & Fractals 11 (2000), 1077 ; 1739, Physica
A 287 (2000), 507], and point out that the return distributions are well adjusted by the Weibull
distribution function in wide parameter range.
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Quantum chaos: Universal versus system-specific
fluctuations

Oriol Bohigas

LPTMS, Université Paris-Sud, Orsay, France

It is by now well established that spectral fluctuations of quantum systems whose underlying
classical motion is chaotic exhibit universalities. On the other hand, it is also well known
that there are parameters characterizing a particular chaotic system. The purpose of the
two lectures will be to illustrate, partly by studying particular examples, what makes some
properties system-dependent and other universal. The general framework will be periodic orbit
and random matrix theories.

Emphasis will be put on two properties not so widely discussed so far: i) spectral spacing
autocorrelations, ii) total energies of (non-interacting) fermion systems. Besides a general
discussion, two cases will be treated in detail: 1) zeros of the Riemann zeta function (an example
of a ’chaotic’ system for which all ’classical’ information is well known), 2) the fluctuation of
the binding energy of atomic nuclei (a system which is mainly regular but for which there is
evidence that a (small) chaotic part is present).

References
O. Bohigas, P. Leboeuf, M.-J. Sanchez, ’On the distribution of the total energy of a system of
non-interacting fermions: random matrix and semiclassical estimates’, Physica D 131 (1999)
186-204
O. Bohigas, P. Leboeuf, M.-J. Sanchez, ’Spectral spacing correlations for chaotic and disordered
systems’, Foundations of Phys., 31 (2001) 489-517
P. Leboeuf, A.G. Monastra, O. Bohigas, ’The Riemannium’, Regular and Chaot. Dyn. 6 (2001)
205-210
O. Bohigas, P.Leboeuf, ’Nuclear masses: evidence of chaos-order coexistence’, Phys. Rev. Lett.
88 (2002) 092502-1-4
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Soliton–like solutions of higher order wave equations of
the KdV type

E. Tzirtzilakis, V. Marinakis, C. Apokis and Tassos Bountis

Department of Mathematics and Center for Research and Application of Nonlinear Systems
University of Patras, 26500 Patras, Greece

In this work we study second and third order approximations of water wave equations of the
KdV type. First we derive analytical expressions for solitary wave solutions for some special sets
of parameters of the equations. Remarkably enough, in all these approximations, the form of the
solitary wave and its amplitude–velocity dependence are identical to the sech2–formula of the
one–soliton solution of the KdV. Next we carry out a detailed numerical study of these solutions
using a Fourier pseudospectral method combined with a finite–difference scheme, in parameter
regions where soliton–like behavior is observed. In these regions, we find solitary waves which
are stable and behave like solitons in the sense that they remain virtually unchanged under
time evolution and mutual interaction. In general, these solutions sustain small oscillations in
the form of radiation waves (trailing the solitary wave) and may still be regarded as stable,
provided these radiation waves do not exceed a numerical stability threshold. Instability occurs
at high enough wave speeds, when these oscillations exceed the stability threshold already at
the outset, and manifests itself as a sudden increase of these oscillations followed by a blowup
of the wave after relatively short time intervals.

References
A.S. Fokas, “On a Class of Physically Important Integrable Equations”, Physica 87D (1995),
145–150; see also A.S. Fokas and Q.M. Liu, PRL 77(12) (1996), 2347.
V. Marinakis, T.C. Bountis, “Special Solutions of a new Class of Water Wave Equations”,
Comm. in Appl. Anal. 4(3) (2000), 433–445.
E. Tzirtzilakis, M. Xenos, V. Marinakis, T.C. Bountis, “Interactions and Stability of Solitary
Waves in Shallow Water”, Chaos, Solitons and Fractals, 14 (2000), 87–95.
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Localized oscillations in 1-dimensional nonlinear media
and homoclinic orbits of invertible maps

Tassos Bountis

Department of Mathematics and Center for Research and Application of Nonlinear Systems
University of Patras, 26500 Patras, Greece

In recent years, a very interesting phenomenon has captured the imagination of many nonlinear
scientists: The occurrence of stable, localized oscillations in 1 - and 2 - dimensional lattices.
These oscillations have been termed discrete breathers, in analogy to similar solutions found
in certain completely integrable continuous systems, like the sine Gordon and the Nonlinear
Schrödinger partial differential equations.

In these lectures, we will first review the physical models in which discrete breathers were first
discovered and studied. We will then outline the work of Aubry and MacKay who rigorously
established the existence of stable discrete breathers in a wide class of infinite chains of linearly
coupled anharmonic oscillators. It is interesting that, in many cases, breathers are indeed a
discrete phenomenon, as they are not expected to exist in the continuum limit. Furthermore,
they have also been recently observed in several experiments, notably some involving arrays of
coupled Josephson junctions.

We shall demonstrate that discrete breathers correspond, in fact, to homoclinic orbits at the
intersections of invariant manifolds of a saddle point, lying at the origin of a 2N - dimensional
map in Fourier space. Exploiting this geometric approach, we will show that discrete breathers
can be accurately approximated and even classified using ideas of symbolic dynamics.

In this way, a great variety of such forms (also called multibreathers) can be constructed most
of which are found to be linearly unstable. Thus, developing methods for computing homoclinic
orbits of invertible maps allows us to obtain accurate representations of discrete breathers and
stabilize (or destabilize) them using techniques of continuous feedback control.

References
M. Kollmann, H.W. Capel and T. Bountis, ”Breathers and Multi-Breathers in a Damped, Pe-
riodically Driven Discretized NLS Equation”, Phys. Rev. E 60, 1195 (1998).
T. Bountis, H.W. Capel, M. Kollmann, J.C. Ross, J.M. Bergamin and J.P. van der Weele,
”Multibreathers and Homoclinic Chaos in 1-Dimensional Lattices”, Phys. Lett. 268A, 50-
60(2000).
J. Bergamin, T. Bountis and C. Jung, ”A Method for Locating Symmetric Homoclinic Orbits
Using Symbolic Dynamics”, J. Phys. A: Math. Gen.,33, 8059-8070 (2000).
J. Bergamin, T. Bountis and M. Vrahatis, ”Homoclinic Orbits of Invertible Maps”, preprint
submitted for publication (2002).
T. Bountis, J. Bergamin and V. Basios, ”Breather Stabilization Using Continuous Feedback
Control”, to appear in Phys. Lett. A (2002).
J. M. Bergamin, Sp. Kamvyssis and T. Bountis,”A Numerical Study of the Perturbed Semi-
classical Focusing Nonlinear Schrodinger Equation”, Phys. Lett. A, to appear (2002).
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Efficient quantum computing of complex dynamics

Giulio Casati

Center for Nonlinear and Complex Systems,
University of Insubria, Como, Italy

In interacting many body systems such as nuclei, complex atoms, quantum dots, and quantum
spin glasses, the interaction leads to quantum chaos characterized by ergodicity of eigenstates
and level spacing statistics as in Random Matrix Theory. In this regime, a quantum computer
eigenstate is composed by an exponentially large number of quantum register states and the
computer operability is destroyed. Here we model an isolated quantum computer as a two-
dimensional lattice of qubits (spin halves) with fluctuations in individual qubit energies and
residual short-range inter-qubit couplings. We show that above a critical inter-qubit coupling
strength, quantum chaos sets in and this results in the interaction induced dynamical ther-
malization and the occupation numbers well described by the Fermi-Dirac distribution. This
thermalization destroys the noninteracting qubit structure and sets serious requirements for the
quantum computer operability. We then construct a quantum algorithm which uses the number
of qubits in an optimal way and efficiently simulates a physical model with rich and complex
dynamics. The numerical study of the effect of static imperfections in the quantum computer
hardware shows that the main elements of the phase space structures are accurately reproduced
up to a time scale which is polynomial in the number of qubits. The errors generated by these
imperfections are more significant than the errors of random noise in gate operations.

References
G. Benenti, G. Casati and D.L. Shepelyansky 2001 Eur. Phys. J. D. 17 265.
G. Benenti,G. Casati, S. Montangero and D. L. Shepelyansky 2001 Phys. Rev. Lett. 87 227901
G. Benenti and G. Casati Quantum-classical Correspondence in perturbed chaotic Systems. To
appear in Phys Rev E.
G. Benenti, G. Casati, S. Montangero and D.L. Shepelyansky Eigenstates of Operative Quan-
tum Computer: Hypersensitivity to Static Imperfections. Preprint
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M-theory and particle physics

Mirjam Cvetič

Department of Physics and Astronomy,
University of Pennsylvania, Philadelphia, USA

Recent developments in string and M-theory are reviewed with an emphasis on particle physics
implications. Aspects of non-perturbative extended objects - branes are introduced. The
focus is on the role these objects play in the construction of new four-dimensional solutions
of string theory with the structure of the standard model and three families of quarks and
leptons. A beautiful relationship of these constructions to purely geometric one, as an M-
theory compactified on special holonomy spaces is highlighted.

References
M. Cvetič, G. W. Gibbons, H. Lu and C. N. Pope, “M-theory conifolds,” Phys. Rev. Lett. 88,
121602 (2002) [arXiv:hep-th/0112098].
M. Cvetič, G. Shiu and A. M. Uranga, “Three-family supersymmetric standard like models
from intersecting brane worlds,” Phys. Rev. Lett. 87, 201801 (2001) [arXiv:hep-th/0107143].
M. Cvetič, G. Shiu and A. M. Uranga, “Chiral four-dimensional N = 1 supersymmetric type IIA
orientifolds from intersecting D6-branes,” Nucl. Phys. B 615, 3 (2001) [arXiv:hep-th/0107166].
J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75, 4724
(1995) [arXiv:hep-th/9510017].
E. Witten, “String theory dynamics in various dimensions,” Nucl. Phys. B 443, 85 (1995)
[arXiv:hep-th/9503124].
C. M. Hull and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys. B 438, 109 (1995)
[arXiv:hep-th/9410167].
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Chaos and what to do about it: An overview

Predrag Cvitanović

School of Physics, Georgia Tech
Atlanta, GA 30332-0430, USA

That deterministic dynamics leads to chaos is no surprise to anyone who has tried pool, billiards
or snooker - that is what the game is about - so we start our course about what is chaos and
what to do about it by a game of pinball. This might seem a trifle trivial, but a pinball is
to chaotic dynamics what a pendulum is to integrable systems: thinking clearly about what
is “chaos” in a pinball will help us tackle more difficult problems, such as computing diffusion
constants in deterministic gases, or computing the Helium spectrum.

We all have an intuitive feeling for what a pinball does as it bounces between the pinball
machine disks, and only highschool level Euclidean geometry is needed to describe the trajec-
tory. Turning this intuition into calculation will lead us, in clear physically motivated steps,
to almost everything one needs to know about deterministic chaos: from unstable dynamical
flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning, discrete symmetries,
periodic orbits, averaging over chaotic sets, evolution operators, dynamical zeta functions, Fred-
holm determinants, cycle expansions, quantum trace formulas and zeta functions, and to the
semiclassical quantization of helium.

Reference
Read chapter 1 and appendix A of P. Cvitanović, R. Artuso, R. Mainieri, G. Vattay et al.,
Classical and Quantum Chaos, http://www.nbi.dk/ChaosBook/.
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Dynamics, qualitative

Predrag Cvitanović

School of Physics, Georgia Tech
Atlanta, GA 30332-0430, USA

Confronted with a potentially chaotic dynamical system, we analyze it through a sequence of
three distinct stages; diagnose, count, measure. First, we determine the intrinsic dimension
of the system - the minimum number of degrees of freedom necessary to capture its essential
dynamics. If the system is very turbulent (its attractor is of high dimension) we are, at present,
out of luck. We know only how to deal with the transitional regime between regular motions and
weak turbulence. In this regime the chaotic dynamics is restricted to a space of low dimension,
the number of relevant parameters is small, and we can proceed to the second step; we count
and classify all possible topologically distinct trajectories of the system. If successful, we can
proceed with the third step: investigate the weights of the different pieces of the system.

In this lecture qualitative dynamics of simple stretching and mixing flows is used to introduce
Smale horseshoes and symbolic dynamics, and the topological dynamics is encoded by means
of transition matrices/Markov graphs.

We learn how to count and describe itineraries. While computing the topological entropy from
transition matrices/Markov graphs, we encounter our first zeta function.

By now we have covered for the first time the whole distance from diagnosing chaotic dynamics
to computing zeta functions. Historically, these topological zeta functions were the inspira-
tion for injecting statistical mechanics into computation of dynamical averages; Ruelle’s zeta
functions are a weighted generalization of the counting zeta functions.

Reference
Read chapters 2, 3, 10 and 11 of P. Cvitanović, R. Artuso, R. Mainieri, G. Vattay et al.,
Classical and Quantum Chaos, http://www.nbi.dk/ChaosBook/.
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Global dynamics

Predrag Cvitanović

School of Physics, Georgia Tech
Atlanta, GA 30332-0430, USA

This lecture is the core of the course: we discuss the necessity of studying the averages of
observables in chaotic dynamics, and cast the formulas for averages in a multiplicative form
that motivates the introduction of evolution operators.

In chaotic dynamics detailed prediction is impossible, as any finitely specified initial condition,
no matter how precise, will fill out the entire accessible phase space (similarly finitely grained) in
finite time. Hence for chaotic dynamics one does not attempt to follow individual trajectories
to asymptotic times; what is possible (and sensible) is description of the geometry of the
set of possible outcomes, and evaluation of the asymptotic time averages. Examples of such
averages are transport coefficients for chaotic dynamical flows, such as the escape rate, mean
drift and the diffusion rate; power spectra; and a host of mathematical constructs such as the
generalized dimensions, Lyapunov exponents and the Kolmogorov entropy. We shall now set up
the formalism for evaluating such averages within the framework of the periodic orbit theory.
The key idea is to replace the expectation values of observables by the expectation values of
generating functionals. This associates an evolution operator with a given observable, and leads
to formulas for its dynamical averages.

If there is one idea that you should learn about dynamics, it happens in this lecture(s) and it is
this: there is a fundamental local - global duality which says that (global) eigenstates are dual
to the (local) periodic geodesics. For dynamics on the circle, this is called Fourier analysis; for
dynamics on well-tiled manifolds this is called Selberg trace formulas and zeta functions; and for
generic nonlinear dynamical systems the duality is embodied in trace formulas, zeta functions
and spectral determinants that we will now introduce. These objects are to dynamics what
partition functions are to statistical mechanics. The bold claim is that once you understand
this, classical ergodicity, wave mechanics and stochastic mechanics are nothing but special
cases, to be worked out at your leisure.

The strategy is this: Global averages such as escape rates can be extracted from the eigenvalues
of evolution operators. The eigenvalues are given by the zeros of appropriate determinants. One
way to evaluate determinants is to expand them in terms of traces, log det = tr log. The traces
are evaluated as integrals over Dirac delta functions, and in this way the spectra of evolution
operators become related to periodic orbits.

The rest of the course is making sense out of this objects and learning how to apply them to
evaluation of physically measurable properties of chaotic dynamical systems.

Reference
Read chapters 5, 6, 7, 8 and 9 of P. Cvitanović, R. Artuso, R. Mainieri, G. Vattay et al.,
Classical and Quantum Chaos, http://www.nbi.dk/ChaosBook/.
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Cycle expansions: Semiclassical quantum mechanics

Predrag Cvitanović

School of Physics, Georgia Tech
Atlanta, GA 30332-0430, USA

In last lecture we have derived a plethora of periodic orbit trace formulas, spectral determinants
and zeta functions. Now we learn how to expand these as cycle expansions, series ordered by
increasing topological cycle length, and evaluate average quantities like escape rates. These
formulas are exact, and, when the winds are kind, highly convergent. The pleasant surprise
is that the terms in such expansions fall off exponentially or even faster, so that a handful of
shortest orbits suffices for rather accurate estimates of asymptotic averages.

The course now shifts gear to recent advances in the periodic orbit theory of chaotic, non-
integrable systems, and the modern generalization of the De Broglie - Bohr quantization of
hydrogen atom.

Instead of quantizing by suspending standing-wave configurations on stable Keplerian orbits,
one suspends the standing-wave configurations on the infinity of unstable orbits. Such unstable
periodic orbits are observed experimentally in the helium atom, the hydrogen in strong external
fields, and other systems.

This is what could have been done with the old quantum mechanics if physicists of 1910’s
were as familiar with chaos as you by now are. The Gutzwiller trace formula together with
the corresponding spectral determinant, the central results of the semiclassical periodic orbit
theory, are derived.

The helium atom spectrum can then be computed via spectral determinants.

Reference
Read chapters 13, 21 and 22 of P. Cvitanović, R. Artuso, R. Mainieri, G. Vattay et al., Classical
and Quantum Chaos, http://www.nbi.dk/ChaosBook/.
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Trace formulas for stochastic evolution operators

Predrag Cvitanović

School of Physics, Georgia Tech
Atlanta, GA 30332-0430, USA

Intuitively, the noise inherent in any realistic system washes out fine details and makes chaotic
averages more robust. Quantum mechanical h̄ resolution of phase space implies that in semi-
classical approaches no orbits longer than the Heisenberg time need be taken into account.
We explore these ideas in some detail by casting stochastic dynamics into path integral form
and developing perturbative and nonperturbative methods for evaluating such integrals. In the
weak noise case the standard perturbation theory is expansion in terms of Feynman diagrams.
Now the surprise; we can compute the same corrections faster and to a higher order in pertur-
bation theory by integrating over the neighborhood of a given saddlepoint exactly by means of
a nonlinear change of field variables. The new perturbative expansion appears more compact
than the standard Feynman diagram perturbation theory; whether it is better than traditional
loop expansions for computing field-theoretic saddlepoint expansions remains to be seen, but
for a simple system we study the result is a stochastic analog of the Gutzwiller trace formula
with the h̄ corrections so far computed to five orders higher than what has been attainable in
the quantum-mechanical applications.

Resume

A motion on a strange attractor can be approximated by shadowing the orbit by a sequence of
nearby periodic orbits of finite length. This notion is here made precise by approximating orbits
by primitive cycles, and evaluating associated curvatures. A curvature measures the deviation of
a longer cycle from its approximation by shorter cycles; the smoothness of the dynamical system
implies exponential (or faster) fall-off for (almost) all curvatures. The technical prerequisite for
implementing this shadowing is a good understanding of the symbolic dynamics of the classical
dynamical system. The resulting cycle expansions offer an efficient method for evaluating
classical and quantum periodic orbit sums; accurate estimates can be obtained by using as
input the lengths and eigenvalues of a few prime cycles.

To keep exposition simple we have here illustrated the utility of cycles and their curvatures by
a pinball game. Glancing back, we see that the formalism is very general, and should work for
any average over any chaotic set which satisfies two conditions: 1. the weight associated with
the observable under consideration is multiplicative along the trajectory; 2. the set is organized
in such a way that the nearby points in the symbolic dynamics have nearby weights.

Reference
Read articles in the ”Chaotic Field Theory” section of
http://www.nbi.dk/~predrag/papers/preprPOT.html

and the take-home problem set for the next millennium in P. Cvitanović, R. Artuso, R. Mainieri,
G. Vattay et al., Classical and Quantum Chaos, http://www.nbi.dk/ChaosBook/.
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Relaxation dynamics described by nonlinear
Fokker-Planck equations: applications to human

movement sciences

Till D. Frank

Faculty of Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands, and
Institute for Theoretical Physics, University of Muenster, Muenster, Germany

Mesoscopic stochastic descriptions of many particle systems have frequently been used in the
context of mean field nonlinear Fokker-Planck equations (Desai and Zwanzig 1978; Kuramoto
1984) and nonlinear Fokker-Planck equations related to nonextensive entropies (Plastino and
Plastino 1995). We discuss a recent attempt to obtain a unified description for stochastic
relaxation processes that are characterized by mean field interactions, on the one hand, and
nonextensivity, on the other hand (Frank 2001b).

First, we consider the stationary case. To this end, we introduce the concept of inverse distortion
functions (Frank, Daffertshofer 1999). For mean field models we obtain from inverse distortion
functions implicit descriptions of stationary distributions that involve transcendent equations
and can be used to address the phenomenon of multistability. For nonextensive systems we
obtain cut-off and power-law distributions.

Second, we examine the transient case. We briefly discuss exact time-dependent solutions of
systems related to the Sharma-Mittal entropy (Frank, Daffertshofer 2000). Then, H-theorems
are developed on the basis of (i) inverse distortion functions and (ii) free energy measures
(Shiino 1987,2001; Bonilla et al. 1998; Frank 2001a,b,2002; Kaniadakis 2001).

Third and finally, we study the stability of stationary distributions for a stochastic mean field
model that is in line with the field theoretical description of neural activity proposed by Haken
(1996) and Jirsa and Haken (1996) and can describe neural activity during rhythmic finger
movements (Frank et al. 2000). We focus on two approaches: the transcendent equation
approach and Lyapunov’s direct method (Frank et al. 2001).

References
Bonilla L L, Perez-Vicente C J, Ritort F, and Soler J 1998 Phys. Rev. Lett. 81 3643
Desai R C and Zwanzig R 1978 J. Stat. Phys. 19 1
Frank T D and Daffertshofer A 1999 Physica A 272 497
Frank T D and Daffertshofer A 2000 Physica A 285 129
Frank T D 2001a Phys. Lett. A 280 91
Frank T D 2001b Phys. Lett. A 290 93
Frank T D, Daffertshofer A, Peper C E, Beek P J and Haken H 2000 Physica D 144 62
Frank T D, Daffertshofer A, Peper C E, Beek P J and Haken H 2001 Physica D 150 219
Frank T D 2002 Physica A, in press.
Haken H 1996 Principles of brain functioning (Springer, Berlin)
Jirsa V K and Haken H 1996 Phys. Rev. Lett. 77 960
Kaniadakis G 2001 Physica A 296 405
Kuramoto Y 1984 Chemical oscillations, waves, and turbulence (Springer, Berlin)
Plastino A R and Plastino A 1995 Physica A 222 347
Shiino M 1987 Phys. Rev. A 36 2393
Shiino M 2001 J. Math. Phys. 42 2540
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Generalized extended self-similarity in turbulence and
its scaling hypothesis

Hirokazu Fujisaka

Department of Applied Analysis and Complex Dynamical Systems,
Graduate School of Informatics,

Kyoto University, Japan

One of eminent statistical characteristics of homogeneous, isotropic developed turbulence in
the three dimensional system is the self-similar energy cascade in the wavenumber space. This
results in the power law behavior Sq(r) ∼ rζ(q) for the velocity structure function Sq(r), the q-th
moment of the velocity difference at two positions separated by r. ζ(q) is a universal function
of q. Several years ago, it was found that even when the turbulence is not fully developed,
i.e., the Reynolds number is not extremely high and the the scaling range where the above
scaling law holds is not wide enough, scaling behaviors of Sq(r) which has an extended form of
that in developed turbulence holds. They are called the extended self-similarity (ESS) and the
generalized extended self-similarity (GESS). I will talk about a phenomenological derivation of
ESS and GESS, proposing a new scaling hypothesis on the basis of the large deviation theory
of probability theory. Furthermore, using numerical and experimental data, I will examine the
validity of the present approach.

References
Kolmogorov A N 1941, Dokl. Akad. Nauk SSSR 30 9
Kolmogorov A N 1962, J. Fluid Mech. 13 82
Obukhov A M 1962, J. Fluid Mech. 13 77.
Parisi G and Frisch U 1985, in Turbulence and Predictability in Geophysical Fluid Dynamics,
Proceed. Intern. School of Physics ‘Enrico Fermi’, 1983, Varenna, Italy, p.84, eds. M. Ghil, R.
Benzi and G. Parisi, (Amsterdam: North-Holland)
Frisch U 1995, Turbulence: The legacy of A. N.Kolmogorov (Cambridge: Cambridge Univ.
Press)
Benzi R, Ciliberto S, Tripiccione R, Baudet C and Succi S 1993, Phys. Rev. E 48 R29
Benzi R, Ciliberto S, Baudet C and Chavarria G R 1995, Physica D 80 385
Benzi R, Biferale L, Ciliberto S, Struglia M V and Tripiccione R 1996, Phys. Rev. E 53 R3025;
Benzi R, Biferale L, Ciliberto S, Struglia M V, Tripiccione R 1996, Physica D 96 162.
Fujisaka H and Inoue M 1987, Prog. Theor. Phys. 77 1334
Watanabe T and Fujisaka H 2000, J. of Phys. Soc. Japan 69 1672
Fujisaka H and Grossmann S 2001, Phys. Rev. E 63 026305
Fujisaka H, Nakayama Y, Watanabe T and Grossmann S 2002, Phys. Rev. E 65 046307.
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Noise-induced pattern dynamics and intermittency

Hirokazu Fujisaka

Department of Applied Analysis and Complex Dynamical Systems,
Graduate School of Informatics,

Kyoto University, Japan

Intermittency is a quite ubiquitous phenomenon in nonlinear dynamics. The intermittency
observed when a particular dynamical state undergoes the instability is called the modulational
(often called the on-off) intermittency. Recently, an experimental confirmation of the on-off
intermittency in the electrohydrodynamic convection in nematics under dichotomous noise was
reported by John et al.. An eminent statistics of the observation is the intermittent generation
of convective pattern.
In my talk, in order to elucidate the experiment I will first propose a phenomenological nonlinear
stochastic model which has the structure of the Swift-Hohenberg equation for local convection
variable with fluctuating threshold. Then, I will discuss results of numerical integration of the
model equation associated with the intermittent emergence of convective pattern. Detailed
analysis on the statistics of the intermittent pattern dynamics will be addressed.

References
Behn U, Lange A and John Th 1998, Phys. Rev. E 58 2047
John Th, Stannarius R and Behn U 1999, Phys. Rev. Lett. 83 749
Fujisaka H, Ouchi K and Ohara H 2001, Phys. Rev. E 64 036201
John Th, Behn U and R Stannarius 2002, Phys. Rev. E 65 046229
For the modulational intermittency (on-off intermittency), see the following references:
Fujisaka H and Yamada T 1985, Prog. Theor. Phys. 74 918
Fujisaka H and Yamada T 1986, Prog. Theor. Phys. 75 1087
Yamada T and Fujisaka H 1986, Prog. Theor. Phys. 76 582
Fujisaka H and Yamada T 1987, Prog. Theor. Phys. 77 1045
Platt N, Spiegel E A and Tresser C 1993, Phys. Rev. Lett. 70 279
Heagy J F, Platt N and Hammel S M 1994, Phys. Rev. E 49 1140
Yamada T, Fukushima K and Yazaki T 1989, Prog. Theor. Phys. Suppl. No.99, 120
Ott E and Sommerer J C 1994, Phys. Lett. A 188 39
Lai Y C and Grebogi C 1995, Phys. Rev. E 52 R3313
Čenys A, Namajunas A, Tamserius A and Schneider T 1996, Phys. Lett. A 213 259
Venkataramani S C, Antonsen Jr. T M, Ott E and Sommerer J C 1996, Physica D 96 66
Lai Y C 1996, Phys. Rev. E 54 321
Rödelsperger F, Čenys A and Benner H 1995, Phys. Rev. Lett. 75 2594
Becker J, Rödelsperger F, Weyrauch Th, Benner H, Just W and Čenys A 1999, Phys. Rev. E
59 1622
Fujisaka H, Ouchi K, Hata H, Masaoka B and Miyazaki S 1998, Physica D 114 237
Pikovsky A, Rosenblum M and Kurths J 2001, Synchronization: A universal concept in non-
linear sciences (Cambridge: Cambridge Univ. Press)
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Hamiltonian chaos and statistical mechanics

Pierre Gaspard

Center for Nonlinear Phenomena and Complex Systems,
Université Libre de Bruxelles, Belgium

In systems of statistical mechanics, the chaotic dynamics is characterized by Lyapunov expo-
nents which are of the order of the inverse of the intercollisional time between the particles.
This time scale is the one of kinetics. Instead, the relaxation toward the thermodynamic equi-
librium occurs on the longer time scale of hydrodynamics which is determined by transport
properties such as diffusion, viscosity, or heat conductivity.

The connection between the chaotic and transport properties can be established thanks to
the escape-rate theory or a newer theory which allows us to directly construct the hydrody-
namic modes of diffusion and reaction-diffusion [1,2]. These hydrodynamic modes turn out to
present fractal properties with a fractal dimension given in terms of the transport coefficients.
The fractal character of the hydrodynamic modes results from the stretching and folding of
nonequilibrium inhomogeneities induced by the chaotic dynamics. This mixing naturally leads
to the entropy production expected from nonequilibrium thermodynamics [3].

The first lecture will be devoted to the relationship between chaos, transport properties, and
entropy production. The second lecture will present the results of recent work on chaos in
systems composed of many interacting particles [4].
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Experimental modeling of chaotic fields

Igor Grabec

Faculty of Mechanical Engineering
University of Ljubljana, Ljubljana, Slovenia

Physical description of natural laws is based on evolution equations of fields but their analytical
formulation is often not possible for very complex chaotic phenomena [1]. In the lecture we
show how a method of chaotic time series prediction can be generalized to statistical modeling
of chaotic fields [2, 3]. For this purpose we assume that a record of the field is provided by an
experiment and that the field amplitude φ(s) at a point of observation s is related to amplitudes
in a surrounding region. We represent the field values in the surrounding region by the vector
g(s), and describe the field evolution by the mapping equation

φ(s) = G(g(s)), (1)

in which the function G is estimated statistically. For this purpose N samples of the joint state
vector {(φ(si),g(si)) = (φi,gi); i = 1 . . . N} are first extracted from the given record. As an
optimal non-parametric estimator of the field at point s we employ the conditional average,
which is expressed by

φ̂(s) = E[φ(s)|g(s)] =
1

N

N∑
n=1

Bn(g(s))φn (2)

Here Bn(g(s)) = w(g(s) − gn)/
∑N
k=1 w(g(s − gk)) describes a similarity between the given

vector g(s) and a sample gn, while w denotes a kernel function, such as Gaussian. The vector
g(s) is considered as a given condition and is comprised from field values in the surrounding
of point s. During the calculation of the conditional average the surrounding can be arbitrary
selected, which is an advantage of non-parametric estimator. To calculate a field distribution
in some domain, the field must be first specified in a sub-domain. From given values the field
distribution in the surrounding of sub-domain can be estimated by Eq. 2. The estimated values
are then considered as given ones and the procedure of field estimation is iteratively continued.
In the lecture optimal statistical methods for selection of surrounding region of a point s
and self-organized determination of number N are explained. Various examples of estimated
chaotic filed distributions, such as profiles of a rough surface [3, 4], charge density and electron
temperature in turbulent ionization waves in plasma, etc, are demonstrated. The performance
of the proposed statistical modeling is described by comparing correlation functions and spectra
of experimentally recorded and estimated fields.
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Turbulent diffusion

Siegfried Großmann

Fachbereich Physik der Philipps-Universität
Marburg, Germany

Dust, aerosoles, smoke and other air pollutions spread, in still air, by molecular diffusion. In
addition there can be advection by atmospheric flow, either well directed in jets or winds, or
nondirected in air turbulence. Diffusional spreading by turbulence is extraordinary effective.
Instead of the well known linear growth of the mean square particle distance with time t

σ2
t = 6Kt , regular diffusion ,

σ2
t grows much faster under turbulent advection, according to a cubic t dependence

σ2
t = cεt3 , turbulent diffusion .

This was discovered by Lewis Fry Richardson (1926, 1929) when he performed his ingenious
study of the turbulent diffusivity Kturb . He presented data on impressively many scales. A
bulk of later measurements confirmed his results, as e.g. balloon campaignes, cf. Lundgren
(1981).

The anomalously fast particle distance growth could be explained from fluid dynamics (Navier-
Stokes equations) by Grossmann and Procaccia (1984), Effinger and Grossmann (1984), Gross-
mann (1990) in mean field approximation. New results on dynamical Lagrangian time cor-
relation decay (numerical, Grossmann and Wiele 1997 and analytical, Daems et al. 1999)
stimulated efforts to even determine the absolute magnitude as characterized by the prefactor
c in addition to the scaling exponent (Grossmann 2002).

In particular the memory effects in the time correlation decay have turned out to be very
important. And turbulent intermittency implies additional scale dependence of the turbulent
diffusivity (Grossmann 2002). A survey on the past development and on the most recent
surprising findings is offered in the lecture.
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Turbulent correlation decay

Siegfried Großmann

Fachbereich Physik der Philipps-Universität
Marburg, Germany

The appropriate tool to study the dynamics of a statistical system is its (stationary) time
correlation function. This has also proven to be true for turbulent fluid flow. The observable
quantities of interest are here the Lagrangian, scale dependent eddies v(r), i.e., the Eulerian
velocity differences v(r; x, t) = u(x + r, t)− u(x, t). These objects are statistically time t and
space x independent in stationary and homogeneous turbulence, but depend besides on scale
r on the time lapse τ between two observations of an r-eddy at times t and t + τ . By means
of a continued fraction expansion the time correlation function can be uniquely expressed in
terms of the static, stationary, time independent structure functions; but all orders of those are
needed.

Analysis of the dynamical time correlation function D(r, τ) = 〈v(r)v(r, τ)〉 is presented. D(r, τ)
was first studied in 1-pole approximation (Grossmann and Thomae 1982), because no estimate
of higher order stationary structure functions was available then. Since Grossmann and Wiele
(1997) provided numerical data for large Reynolds number, highly turbulent flow, it became
clear that the memory effects surprisingly reduce the decorrelation time. The additional effects
of turbulent intermittency were elucidated analytically in Daems et al. (1999). The main,
rather unexpected results are:

i. The static multifractality of turbulent flow destroys dynamical scaling despite good scaling
of stationary moments, i.e., of power laws in r of all pth order structure functions. ii. The
deviations from dynamical scaling are a direct measure of the strength of intermittency. iii.
The scale dependence of the correlation decay rate can be expressed approximately in terms of
the turbulent structure function of 2nd order (Grossmann 2002).
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Turbulent heat convection

Siegfried Großmann
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Turbulent heat transport in fluid layers heated from below is one of the most intensely studied
fluid flow problems. In 1900 Bénard detected interesting pattern formation in this system, in
1916 Rayleigh calculated the underlying instability. If the heating is increased further, chaotic
motion and finally turbulence is observed in the bulk , surrounded by Blasius type boundary
layers near the plates and walls. In the 50th and 60th power laws for the heat transport as a
function of the thermal driving were suggested for the Rayleigh-Bénard system in accordance
with other scaling behavior in turbulence,

Nu ∝ RaβPrβ
′
.

The Nusselt number Nu is the effective heat current including turbulent advection, nondimen-
sionalised with the molecular heat current. The Rayleigh number Ra measures the thermal
driving due to the temperature difference ∆ across the fluid layer of height L, originating from
buoyancy in the gravitational field g by thermal expansion α, which is counteracted by the
fluid’s kinematic viscosity ν and its thermal diffusivity κ,

Ra =
αgL3∆

νκ
.

The Prandtl number Pr = ν/κ weighs the ratio of the space and time scales according to
molecular momentum (ν) and energy (κ) transport. Recent measurements of increasing accu-
racy (Libchaber group (Castaing et al. 1989), Cioni et al. (1997), Chavanne et al. (1997),
Niemela et al. (2000), Xu et al. (2000), Ahlers et al. (2001), Xia et al. (2002)) led to various
unexpected results. A unifying theory explains all these data (Grossmann and Lohse 2000,
2001, 2002). In particular the theory’s prediction is confirmed that simple power laws are in-
sufficient to describe Nu versus Ra adequately. In the lecture the theory of heat convection in
a very extended Ra − Pr−parameter space of up to 10 orders of magnitude is presented and
discussed.

References
Ahlers G and Xu X 2001 Phys Rev Lett 86 3320
Castaing B, Gunaratne G, Heslot F, Kadanoff L, Libchaber A, Thomae S, Wu X, Zaleski S and
Zanetti G 1989 J Fluid Mech 204 1
Chavanne X, Chilla F, Castaing B, Hebral B, Chaboud B and Chaussy J 1997 Phys Rev Lett
79 3648
Cioni S, Ciliberto S and Sommeria J 1997 J Fluid Mech 335 111
Grossmann S and Lohse D 2000 J Fluid Mech 407 27
Grossmann S and Lohse D 2001 Phys Rev Lett 86 3316
Grossmann S and Lohse D 2002 to be published
Niemela J, Skrbek L, Sreenivasan K R and Donnelly R 2000 Nature 404 837
Xia K Q, Lam S and Zhou S Q 2002 Phys Rev Lett 88 064501
Xu X, Bajaj K M S and Ahlers G 2000 Phys Rev Lett 84 4357

20



Introduction to decoherence

Fritz Haake

Fachbereich Physik,
Universität Essen, Essen, Germany

Quantum superpositions tend to decohere to mixtures, due to dissipative environmental influ-
ence. In particular, two superposed wave packets loose their relative coherence the faster the
larger is their distance d. For sufficiently large d, the relative phase of packets is lost before any
deformation of the shapes of the individual packets and any change of their distance become
noticeable.

I shall illustrate the phenomenon by discussing recent efforts to take decoherence under ex-
perimental control (diffraction of Fullerenes in Vienna; superpositions of coherent states of
microwave resonator modes in Paris; superpositions of wave packets of Be ions in Paul traps
in Boulder; superpositions of states with counterpropagating supercurrents in Delft and Stony
Brook).

All of these experiments observe superpositions of packets whose distance d is larger than
the individual width λ, but the ratio d/λ achieved is still so moderate that the environment
imposed decoherence time τdec is, while shorter than the time scale τdiss of dissipative changes of
d, still longer than typical oscillation periods τsys of the isolated system, i.e. τsys < τdec < τdiss.
The appropriate theoretical treatment is thus based on Fermi’s Golden Rule or, equivalently,
Markovian master equations.

I illustrate golden rule type decoherence for the damped harmonic oscillator, using the simple
master equation familiar from quantum optics. The important prediction is τdec/τdiss = (λ/d)2.
The underlying perturbative treatment of the system-environment interaction requires the self-
consistency condition τsys � τdec.
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Emergence of classical behavior in the macroworld:
meso- and macroscopic superpositions

Fritz Haake

Fachbereich Physik,
Universität Essen, Essen, Germany

The golden-rule prediction breaks down once the distance d between the superposed wave
packets is so large, compared to the quantum scale of reference λ, that τdec ∼< τsys. The golden
rule can therefore not be invoked to explain the notorious absence of quantum interference
effects from the macroworld. In the limit τdec < τsys decoherence obviously no longer is a weak-
damping phenomenon. A simple solution of the system ⊕ environment Schrödinger equation
becomes possible when τdec � τsys, the limit of relevance for superpositions of macroscopically
distinct wave packets. The simplicity of that limit rests on the fact that in the full Hamiltonian
H = Hsys + Hbath + Hint the free-system part Hsys becomes an effectively small perturbation.
The decoherence time scale is then found to obey the power law τdec ∝ h̄µ/dν with positive
exponents µ, ν. That law is a universal one, independent of the character of the system and
the environment. It is only based on the interaction Hamiltonian Hint additively involving a
large number of degrees of freedom such that the central limit theorem holds for the reservoir
means met with.

After treating the universal asymptotics of the limit τdec � τsys I shall briefly discuss the
crossover from that interaction dominated regime to golden-rule type decoherence. The crossover
is system specific; I shall rely on an exactly solvable model system, an harmonic oscillator cou-
pled to a reservoir which itself consists of harmonic oscillators.
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Quantum measurement

Fritz Haake
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Textbook wisdom has it that superpositions |ψ〉 =
∑
i
ci|ψi〉 of eigenstates ψi of some observ-

able of a microscopic object “collapse”, under measurement of that observable, to a mixture,
|ϕ|〉〈ϕ| collapse−→ ∑

i
|ci|2|ϕi〉〈ϕi|, with probabilities |ci|2 as in the original pure state but all coher-

ences c∗i cj for i 6= j gone. Such collapse can be understood as due to unitary time evolution of
a tripartite system comprising, besides the micro-object, a macroscopic pointer (idealizable as
having a single degree of freedom), and a many-freedom environment. The Hamiltonian must
allow micro-object and pointer to become entangled as

ϕobj(0)ψpoint(0) =
(∑

i
ciϕi

)
ψpoint(0)

→ ∑
i ciϕiψ

point

i ,

with the various pointer states ψpoint

i corresponding to macroscopically distinct pointer displace-
ments. Concomitantly, the many-freedom environment will decohere the superposition to the
mixture

∑
i |ci|2|ϕi 〉〈ϕi| ⊗ |ψpoint

i 〉〈ψpoint

i |; inasmuch as the pointer states |ψpoint

i 〉 are macroscop-
ically distinct, the decay of the coherences c∗i cj will occur with τdec � τsyst, τdiss, i.e. might
appear as practically instantaneous. By disregarding all information about (i.e. tracing over)
the pointer, one has the textbook-wisdom mixture for the micro-object.

I shall present exactly solvable models both for both processes involved, entanglement and
decoherence.
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Brain dynamics

Hermann Haken
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University of Stuttgart, Germany

Lecture 1: Some basic facts about the brain

The human brain is a highly complex system that is composed of about hundred billion neurons
each of which may interact with up to ten thousand other neurons. The brain serves many
purposes as recognition of our surrounding, steering of movement, emotions, etc. Roughly
speaking, the brain consists of individual areas that serve specific purposes. But these areas
are again strongly interconnected. The neurons can fulfill the tasks only by a high degree of
cooperation. But who or what steers the neurons? Since two decades I have been propagating
the idea that the brain acts by self-organization; a point of view that is accepted more and
more in the scientific community. In particular, concepts of synergetics can be applied to brain
function. Some typical aspects will be illustrated by examples from visual perception, such as
recognition of faces and facial expressions, perception of ambiguous figures, hysteresis, etc.

Lecture 2: Some forms of integrate and fire models

I first present some basic features about the structure and dynamics of individual neurons
including cell body, axons, dendrites, and synapses. The signal processing via spikes will be
discussed. Then I will study the interplay between dendritic currents and axonal spikes (pulses)
via the light-house model. The spikes are described by a phase angle, increasing in the course
of time in analogy to a rotating light beam from a light- house through which the intervals
between spikes are determined. The rotation speed depends on the inputs from other neurons.
After elimination of the dendritic currents, we find a special form of an integrate and fire model,
whereupon I will discuss a number of different forms that take into account arbitrary strengths
of synapses and time-lags.

Lecture 3: Phase locking

I analytically study the solutions of a network of integrate and fire neurons of a general form. In
particular, I study the circumstances under which phase locking becomes possible and discuss
cases of coexistence between phase-locked neurons and other neurons.
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Lecture 4: Associative memory

The general equations of the integrate and fire neurons under different sensory inputs are time-
averaged over short intervals. It is shown how by suitable choices of the synaptic connections
these models give rise to associative memory. Associative memory means that a set of incom-
plete data is completed by the system to a well-defined set depending on the partly given data.
A connection with Kaniza figures is established, as well as with other models of associative
memory.

Lecture 5: Activity patterns

Again using suitable time-averages instead of the equations for spikes, rate equations for spike
sequences as well as for dendritic currents are established. Such equations are related to the
Nunez equations in a simplified form and have been derived along different lines by Jirsa and
Haken. When the dendritic currents are eliminated, we reobtain the Wilson- Cowan equations
that in turn allow the derivation of spatio-temporal patterns of brain activity in terms of firing
rates. If, on the other hand, the axonal pulses or pulse-rates are eliminated, we obtain a new
type of equation first derived by Jirsa and Haken for the dendritic currents, which, in turn, are
responsible for the electric and magnetic fields measured in EEGs and MEGs.
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Intermediate quantum-level statistics by means of
quaternion representation of distributions

Hiroshi Hasegawa

Institute of Quantum Science, Nihon University,
Chiyoda-ku, Tokyo 101-8308, Japan

There has been a long-standing subject in quantum-chaos studies to achieve a framework of
energy-level statistics which interplolates between Poisson for integrable systems and those of
Gaussian random matrix ensembles (GOE, GUE and GSE) for fully chaotic systems by means of
a parameter [1]. In 1985, Yukawa [2] gave an excellent idea to construct such a one-parameter
family of N -level distributions, based on the so-called level dynamics [3]: one considers an
N × N Hermitian matrix of the form H = H0 + tV (a perturbation of H0 by another V with
perturbation strength t which is regarded as the“time”). His result can be summarized by a
special form

PN,β(x1, x2, .., xN) = CN,β
∏
j<k

(
(xj − xk)2

a2 + (xj − xk)2

)β/2
β = 1 GOE, 2 GUE, 4 GSE. (1)

Here, the parameter that appears is a which interpolates the two limits as

a→ 0 Poisson limit, a→∞ Gaussian limit (Wigner-Dyson limit). (2)

A further treatment of the distribution (1) to deduce concrete statistics (the spacing distribu-
tion, long-range 2-level correlations, etc.) is a hard problem, and have so far produced little
fruits. However, for the unitary symmetry class β = 2, a fully analytic method was devised by
Forrester [4]: he showed that for this class expression (1) can be rewritten as a determinant

W
(β=2)
N (x1, .., xN) ≡ a−N

∏
1≤j<k≤N

(
(xj − xk)2

a2 + (xj − xk)2

)
= det

[
1

a− i(xj − xk)

]
j,k=1,..,N

, (3)

where the right-hand side allows an infinite sum over N with coefficient ζ, called the grand
canonical series with fugacity ζ. In the present talk, it will be extended to the other two classes
i.e. orthogonal and symplectic classes by using quaternion representation [5] which replaces the
two opposite limits in (2) by ζ → 0 and ζ → ∞, respectively. It is based on our recent work
[6].
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Dynamics of nonlocally coupled oscillators I

Yoshiki Kuramoto

Department of Physics, Graduate School of Sciences,
Kyoto University, Kyoto 606-8502, Japan

The dynamics of large assemblies or extended fields of coupled nonlinear elements depends
crucially on the interaction range involved. Most foregoing studies have been confined to the
limiting cases of either local coupling or global coupling, while systematic studies of more general
nonlocally coupled systems remain few. In this series of lectures, I will discuss some remarkable
features in the dynamics which can arise peculiarly to nonlocally coupled systems, working
mainly with oscillatory dynamics. The first lecture will be devoted to general discussions on
what are essentially new with nonlocally coupled systems as contrasted with locally coupled
systems. Some points to be discussed include the following:

1. Effective nonlocality in coupling arising from locally coupled systems (typically reaction-
diffusion systems) as a result of elimination of some variables.

2. Proposal of a 3-component reaction-diffusion model as a canonical model covering the
local, global and nonlocal regimes of the effective coupling, thus providing an ideal model
for the study of the effects of nonlocality on the dynamics.

3. Pointing out the fact that nonlocal coupling has its own asymptotic regeme, not being
merely something intermediate between the local and global.

4. Applicability of center-manifold reduction and phase reduction leading to some new forms
of universal equations.

5. General conditions under which the effects of nonlocality become overt.

6. Mean-field picture applicable to nonlocally coupled systems.

7. Onset of spatial discontinuity of patterns as a general feature of nonlocally coupled sys-
tems.
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Dynamics of nonlocally coupled oscillators II
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In this second lecture, the impact of the nonlocality in coupling will be demonstrated by showing
a variety of curious dynamics exhibited by the canonical model introduced in the first lecture
or by its reduced forms. Our emphasis will be placed upon how the types of behavior observed
are peculiar to the coupling nonlocality and how they can naturally be understood in terms of
the general notions developed in the first lecture. In particular, the mean-field picture valid for
nonlocally coupled elements turns out quite useful for interpreting certain features of behavior.
Some problems involving stochasticity are also discussed for which a theory can be formulated
by virtue of the same mean-field picture. The types of behavior discussed are:

A. Self-sustained pacemakers in monostable excitable media whose origin is completely dif-
ferent from those proposed in the past.

B. Two-dimensional spiral waves with a strongly turbulent core which is initiated by a break-
donw of synchronization of a small group of central oscillators to the periodic internal
forcing.

C. Coexistence of coherent and incoherent domains. This is a generalization of case B.

D. Spatio-temporal chaos with multi-scaling properties for which the pattern is fractalized
with its fractal dimension changing continuously with the system parameter.

E. Soft-mode turbulence which occurs right at the Turing instability in the presence of a
Goldstone mode.

F. Sawtooth turbulence characterized by persistent creations and annihilations of wave sources
and sinks.

G. Transmission of waves in random media for which a statistical theory can be formulated
in terms of a Boltzmann type kinetic equation.
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Frequency Map Analysis, theory and practice

Jacques Laskar
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Introduction. Frequency Map Analysis is a numerical method based on refined Fourier tech-
niques which provides a clear representation of the global dynamics of many multi-dimensional
systems, and which is particularly adapted for systems of 3-degrees of freedom and more. This
method relies heavily on the possibility of making accurate quasiperiodic approximations of
quasiperiodic signal given in a numerical way.

In these lectures, we will describe the basis of the frequency analysis method. This is intended
to be of practical use for any researcher who is willing to explore and use the frequency map
analysis methods for the understanding of the dynamics of Hamiltonian systems.

Applications to several examples will be provided, in Solar System, or Particle Accelerator
Dynamics.

1. Quasi periodic approximation

2. Convergence of the quasi periodic approximation, asymptotic expansion

3. Numerical examples

4. Frequency Map Analysis

5. Application of Frequency Map Analysis in Solar System and Particle Accelerator
dynamics
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Dynamics and structure of granular flow through a

vertical pipe
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Static, dynamic and statistical properties of granular materials are one of the most important
topics in current science and its application to technology. In some situations granules behave
like ordinary fluid or ordinary solid. On the other hand, a variety of unusual motions peculiar
to granules can be observed, such as size segregation, bubbling, standing waves and localized
excitations under vertical vibrations, avalanche and other unusual motions in a rotating mill,
chute flow down a slope and a fluidized bed due to air injected inside a box containing granules.
Emergence of density waves of granules flowing through a vertical pipe is also a typical and the
simplest example of unusual features of granular motion.

We have shown how density waves of granular particles (ordinary sand) emerge, while they flow
through a vertical glass pipe, by controlling air flow out of a flask attached to the bottom-end
of the pipe. When the cock attached to the flask is fully open, air is dragged by falling granules
and flows together with them. No density waves are observed for this situation. As the cock is
gradually closed, however, the pressure gradient of air inside the pipe becomes gradually large,
inducing the velocity difference between granules and air. As a result, density waves emerge
from the lower part of the pipe. The smaller the rate of air flow, i.e., the more the cock is
closed, the higher the onset point (along the pipe) of density waves. The onset of density waves
is characterized by the growth of the lower frequency part of the power spectra of time-series
signals of density waves. The power spectra of density waves display a clear power-law form
P (f) ∼ f−α with the value of the exponent α = 1.33 ± 0.06, which is very close to 4/3. The
value of α is robust even under the medium flow or variation of the pipe diameter, as far as
density waves can be seen.

Very recently we have also controlled the flow rate of granules under the condition that the
cock is completely closed, i.e., medium air does not flow with granules. When the flow rate
of granules is small, they flow homogeneously with no density waves. The power spectra of
the flow exhibit white-noise-like behavior. This is an expected result, just as raindrops fall
homogeneously. What we observed rather unexpectedly is the following. If you gradually
increase the flow rate of granules, density waves emerge suddenly at some threshold value of
the flow rate. Above this threshold the power spectra exhibit clear power-law form with the
same exponent α = 4/3 robustly.
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Pattern formation in bacterial colonies
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We have studied the growth mechanism and morphological change in colony formation of bac-
teria from the viewpoint of physics of pattern formation. Even very small number of bacterial
cells, once they are inoculated on the surface of an appropriate medium such as semi-solid and
nutrient-rich agar plate and incubated for a while, repeat the growth and cell division many
times. Eventually the cell number of the progeny bacteria becomes huge, and they swarm on
the medium to form a visible colony. The colony changes its form sensitively with the variation
of environmental conditions. This implies that although usual bacteria such as Escherichia
coli are regarded as single cell organisms, they never make their colony independently and ran-
domly but somehow collaborate multicellularly. We have thus tried to extract some simple and
universal behavior in growth from such complex bacterial systems.

Here we varied only two parameters to investigate the colony growth; concentrations of nutrient
Cn and agar Ca in a thin agar plate as the incubation medium. Other parameters specifying
experimental conditions such as temperature were kept constant. We mainly used a typical
bacterial species Bacillus subtilis. Otherwise the experimental procedures are standard. It
was found that colonies show characteristic patterns in the specific regions of values of Cn
and Ca in the morphological diagram and the patterns change drastically from one region to
another. They were classified into five types; fractal DLA-like, compact Eden-like, concentric
ring-like, simple disk-like and densely branched DBM-like. We have experimentally elaborated
characteristic properties for each of these colony patterns.

We have also examined colony formation of a species Proteus mirabilis, which forms concentric-
ring-like colonies that look much more regular than those produced by Bacillus subtilis. The
colony grows cyclically with the interface repeating an advance (migration) and a stop (consoli-
dation) alternately. Our experimental results suggest that macroscopically the most important
factor for its repetitive growth is the cell population density, i.e., that there seem to be higher
threshold of the cell population density to start migrating and lower one to stop migrating.

We have tried to construct a phenomenological model which produces characteristic colony
patterns observed in our experiments. The basic idea is that the main features of individual
biological organisms are, if focusing on their population behavior, reproduction and active
motion. Our modeling is, therefore, based on the reaction-diffusion-type approach for the
population density of bacterial cells and the concentration of nutrient.
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Optimal fluctuations and the control of chaos

Peter V.E. McClintock
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Large fluctuations are responsible for many important physical phenomena, including e.g.
stochastic resonance and transport in Brownian ratchets. They usually proceed along opti-
mal paths. Starting from Boltzmann (1904), a huge body of theory was developed during
the last century; the modern understanding dates from Onsager and Machlup (1953). The
introduction of the prehistory probability distribution established optimal paths as physical
observables (Dykman et al, 1992), and the corresponding optimal force driving the fluctua-
tions was measured for the first time by Luchinsky (1997). Recent developments, centered on
nonequilibrium systems, will be discussed, including extensions of the work has to encompass
escape from chaotic attractors (Khovanov et al, 2000; Luchinsky et al, 2002). In particular,
it has been established that fluctuational escape from a chaotic attractor involves the system
passing between unstable saddle cycles – thus paving the way for an analytic theory. Mea-
surements of the optimal force can be used to determine the energy-optimal control function
needed to effect escape in the deterministic system in the absence of fluctuations.
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Quantized turbulence
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Turbulence in superfluids – e.g. the superfluid states of liquid 4He and 3He, the electron gas
in superconductors, the nucleonic fluids in neutron stars, and Bose-Einstein condensates in
laser-cooled gases – is quantized. It consists of a tangle of vortex lines, each element of which
is identical to every other in any given system. Apart from its intrinsic scientific interest it is
of importance because (a) being in some ways a very simple form of turbulence one can hope
to understand in considerable detail, and (b) it is the state believed to be created during a
fast passage through a second order phase transition. Two ongoing research programmes on
superfluid turbulence will be reviewed and discussed. First, the initial experiments (Davis et al,
2000) on the decay of turbulence in superfluid 4He at mK temperatures will be considered. The
vortices are created with a electrostatically-driven vibrating grid, and detected by the use of
negative ions travelling near the Landau critical velocity in isotopically pure 4He. Preliminary
results indicate that the vortex decay rate apparently becomes temperature-independent below
about 70 mK. It is believed (Vinen, 2000) that the corresponding decay mechanism may involve
a Kolmogorov cascade, Kelvin waves and, ultimately, phonon creation. Secondly, the status of
superfluid helium experiments modelling the GUT transition in the early universe 10−35 s after
the Big Bang (Dodd et al, 1998) will be reviewed.
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Synchronization phenomena in the kidney
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The pressure and flow regulation in the individual functional unit of the kidney (the nephron)
tends to operate in an unstable regime. For normal rats, the regulation displays regular self-
sustained oscillations, but for rats with high blood pressure the oscillations become chaotic.
The lecture explains the mechanisms responsible for this behavior and discusses the involved
bifurcations. Experimental data show that neighboring nephrons adjust their pressure and
flow regulation in accordance with one another. For rats with normal blood pressure, in-phase
as well as anti-phase synchronization can be observed. For spontaneously hypertensive rats,
indications of chaotic phase synchronization are found. Accounting for a hermodynamics as
well as for a vascular coupling between nephrons that share a common interlobular artery, the
lecture presents a model of the interaction of the pressure and flow regulation between adjacent
nephrons. It is shown that this model, with physiologically realistic parameter values, can
reproduce the different types of experimentally observed synchronization.
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Chaotic synchronization of time-continuous oscillators
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Considering two coupled identical Rössler oscillators the lecture first discusses the necessary
and sufficient conditions for stability of the synchronized chaotic state. The lecture continues
to examine the transitions through which low periodic orbits embedded in the synchronized
chaotic state lose their transverse stability and produce the characteristic picture of riddled
basins of attraction. We also discuss the distinction between local and global riddling and
illustrate the further development of the asynchronous periodic orbits.

A similar approach is applied to a model of two interacting biological cells. Considering a pro-
totypic model of the bursting oscillations in insulin producing pancreatic cells, we first present
one- and two-dimensional bifurcation diagrams of the individual cell. These diagrams reveal
a squid-formed area of chaotic dynamics in parameter space with period-doubling bifurcations
on one side and saddle-node bifurcations on the other. The transition from this structure to
the so-called period-adding structure is found to involve a subcritical period-doubling and the
emergence of type-III intermittency. Finally, the lecture addresses the issue of the robustness
of the synchronized chaotic state to a mismatch of the parameters between the interacting
oscillators.
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Quantum transport in chaotic quantum dots: orbit
bifurcations, Arnold diffusion and fractals
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I talk about three interesting sub-themes bridging between nonlinear dynamics and quantum
transport in mesoscopic billiards.

Firstly, triangular antidot lattices are investigated. We analyze the semiclassical conductivity
of fully-chaotic triangular antidots in the low but intermediate magnetic field. Taking into
account both a smooth classical part evaluated by the mean density of states and an oscillation
part evaluated by periodic orbits, we find that the resistivity of the system yields a monotonic
decrease with respect to the magnetic field. But when including the effect of orbit bifurcation
due to the overlapping of a pair of periodic orbits, several distinguished peaks of resistivity
appear. The theoretical results nicely explain both the locations and intensities of the anoma-
lously large peaks observed in the experiment by NEC group (Phys. Rev. B51(1995)4649)
[1].

Then, we shall proceed to investigation of open three-dimensional (3-d) quantum dots. Mixed
phase-space structures of 3-d billiards show the Arnold diffusion that cannot be seen in 2-
d billiards. A semiclassical conductance formula for ballistic 3-d billiards is derived. We find
that, for partially- or completely-broken ergodic 3-d billiards such as SU(2) symmetric billiards,
the dependence of the conductance on the Fermi wavenumber is dramatically changed by the
lead orientation. As a symmetry-breaking weak magnetic field is applied, the conductance
shows a tendency to grow. We conclude: In contrast to the 2-d case, the anomalous increment
of the conductance should include a contribution arising from the (classical) Arnold diffusion
as well as the (quantum) weak localization correction [2].

Finally, within a formalism of the semiclassical Kubo formula for conductivity, we give a
periodic-orbits picture for the fractal magneto-conductance fluctuations recently observed in
submicron-scale phase coherent ballistic billiards [3]. The self-similar conductance fluctuations
are shown to be caused by the self-similar unstable periodic orbits which are generated through
a sequence of isochronous pitchfork bifurcations of straight-line orbits oscillating towards har-
monic saddles. The saddles are universally created right at the point of contact with the leads
or at certain places in the cavity as a consequence of the softwall confinement. Our mecha-
nism is able to explain all the fractal-like magneto-conductance fluctuations in general softwall
billiards [3].

Many other interesting themes in this field will be described in [4].
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Some classes of self-similar planar fractals
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We present some well known classes of planar fractals, based on regular polygons, and introduce
a new class of fractals, appearing from the construction of simple branching trees. Most of the
studied objects are self-similar in a strong sense. Therefore, the self-similar dimension dS = lnN

ln k
,

where N is the total number of congruent sub objects and k is the coefficient of similarity, is
introduced and its properties are studied.

Besides the dimension dS, various other characteristics of the presented fractals are examined,
for instance, when the overlapping occurs, what is the equation of the boundary curve, and
what is the density of the embedded object. We also explain the concept of an iterated function
system and give the IFS-codes for some of the studied fractals. Most of the results can be
generalized to the 3-dimensional space (starting, for instance, with regular solids) and into the
higher dimensions.
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Buchges.)
Zeitler H and Pagon D 2000 Fraktale Geometrie: Eine Einführung (Braunschweig: Vieweg Ver.)
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From independent particle towards collective motion in
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A basic question in quantum many body theory is to know how one goes from independent
particle motion towards collective motion when one decreases the density ns of a system of
charged particles repelling each other via a U/r Coulomb repulsion. The motivation to re-visit
nowadays this question comes from the possibility to create two dimensional gases of charges in
high quality field effect devices and to decrease by a gate the carrier density ns down to a very
dilute limit. Conductance measurements for different densities as a function of the temperature,
of the bias voltage, of a parallel magnetic field, etc, show the existence of an unexpected low
temperature metallic behavior when one goes towards the dilute limit. This raises the question
of the existence of an intermediate metallic phase between two insulating phases of different
nature: the Fermi glass of Anderson localized states at large ns and the pinned Wigner solid
at low ns. This question is numerically investigated using mesoscopic lattice models with and
without disorder.

In lecture 1, the recent experimental results motivating to re-visit the Fermi-Wigner crossover
will be reviewed.

In lecture 2, detailed exact numerical studies of a few electron mesoscopic lattice models will
be presented, showing a specific intermediate regime between the weak and strong coupling
limits.

In lecture 3, the conjecture of an intermediate phase between the Fermi liquid and the Wigner
solid, first proposed by Andreev-Lifshitz, will be discussed in relation with the numerical results.
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Transport of strongly correlated electrons
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One of the central open theoretical problems in the solid state physics is the understanding of
strongly correlated electrons, where the properties are dominated by strong electron-electron
repulsion and Pauli exclusion principle. We discuss the quantum electronic transport in such
systems [1], in particular electrical conductivity, spin diffusion and heat conductivity. The
concept of charge stiffness is introduced which makes qualitative distinction between conductors
and insulators in the quantum ground state, while at finite temperatures it leads to possibilities
of usual resistors, but also of anomalous ideal conductors and ideal insulators [2,3]. It is shown
that the singular transport appears in many integrable systems of interacting fermions, even
when the current is not a conserved quantity. The evidence comes from the relation with
level dynamics [3], the existence of conserved quantities [4], from exact results as well as from
numerical studies of small correlated systems using exact diagonalization method and finite-
temperature Lanczos method [5]. Several open theoretical problems in this connection will be
addressed: a) necessary ingredients for the quantum dissipationless transport, b) transport in
systems close to integrability, and c) the existence of ideal insulators at finite temperatures.
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Stability of quantum motion and correlation decay I & II
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In this two-hour lecture we will make a review of the theory and the (numerical) experiments
on the behavior of quantum fidelity of classically chaotic and regular hamiltonian systems.

We will derive a simple and general relation between the fidelity of quantum motion, charac-
terizing the stability of quantum dynamics with respect to arbitrary static perturbation of the
unitary evolution propagator, and the integrated time auto-correlation function of the gener-
ator of perturbation. Quite surprisingly, this relation predicts the slower decay of fidelity the
faster decay of correlations. In particular, for non-ergodic and non-mixing dynamics, where
asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity
is predicted on a time scale ∝ 1/δ as opposed to mixing dynamics where the fidelity is found
to decay exponentially on a time-scale ∝ 1/δ2, where δ is proportional to the strength of per-
turbation. A detailed discussion of a semi-classical regime of small effective values of Planck
constant h̄ is given where classical correlation functions can be used to predict quantum fidelity
decay. Note that the correct and intuitively expected classical stability behavior is recovered
in the classical limit h̄ → 0, as the two limits δ → 0 and h̄ → 0 do not commute. In addition
we also discuss a non-trivial dependence on the number of degrees of freedom and the role of
the thermodynamic limit.

The theoretical predictions will be demonstrated mainly in two families of models: (i) a quan-
tized kicked top and a quantized pair of coupled kicked tops where the semiclassical regime is
emphasized, and (ii) kicked Ising spin 1/2 chain where the thermodynamic regime is empha-
sized. We also need to stress that these results have important implications for the stability
of quantum computation, and may be used in order to optimize the accuracy of quantum
algorithms.
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Chaotic resonances in quantum many-body dynamics
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The questions about the mechanisms and the conditions for the relaxation to equilibrium in
the thermodynamic limit of a generic isolated hamiltonian system constitute important open
problems in statistical mechanics. In this talk we consider an established technique in describing
relaxation of strongly chaotic single-particle classical systems, namely the concept of Perron-
Frobenius-Ruelle resonance spectrum, and use it for the dynamical description of non-integrable
quantum many-body systems in thermodynamic limit.

We define a quantum Perron-Frobenius master operator over a suitable normed space of trans-
lationally invariant states adjoint to the quasi-local C∗ algebra of quantum lattice gasses (e.g.
spin chains), whose spectrum determines the exponents of decay of time correlation functions.
The gap between the leading eigenvalue and the unit circle signals the exponential mixing (uni-
versal asymptotic exponential decay of arbitrary time correlation functions), whereas closing
the gap typically corresponds to a transition to non-ergodic dynamics, which may as a conse-
quence, lead to important anomalous transport properties. In particular, the conservation laws
of completely integrable quantum lattices represent degenerate eigenvalue 1 eigenvectors of the
Perron-Frobenius operator.

Theoretical ideas are applied and validated in a generic example of kicked Ising spin 1/2 chains,
namely a one dimensional spin 1/2 lattice with nearest neighbor Ising interaction kicked with
periodic pulses of a tilted homogeneous magnetic field. We show that the ’chaotic eigenmodes’
corresponding to leading Perron-Frobenius-Ruelle eigenvalue resonances have fractal structure
in the basis of local operators.
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We shall review the basic aspects of complete integrability and complete chaos (ergodicity)
in classical Hamiltonian systems, as well as all the cases in between, the generic, mixed type
systems, where KAM Theory is applicable, and shall illustrate it using the billiard model
systems.

Then we shall proceed to the quantum chaos and its stationary properties, that is the structure
and the morphology of the solutions of the underlying Schroedinger equation which in case of
2-dim billiards is just the 2-dim Helmholtz equation. We shall discuss the statistical properties
of chaotic eigenfunctions, the statistical properties of the energy spectra, and show arguments
and results in support of the so-called universality classes of spectral fluctuations, where in the
fully chaotic case the Random Matrix Theory (RMT) is applicable.

First we discuss the universality classes of spectral fluctuations (GOE/GUE for ergodic sys-
tems, and Poissonian for integrable systems). We explain the problems in the calculation of
the invariant (Liouville) measure of classically chaotic components, which has recently been
studied by Robnik et al (1997) and by Prosen and Robnik (1998). Then we describe the Berry-
Robnik (1984) picture, which is claimed to become exact in the strict semiclassical limit h̄→ 0.
However, at not sufficiently small values of h̄ we see a crossover regime due to the localization
properties of stationary quantum states where Brody-like behaviour with the fractional power
law level repulsion is observed in the corresponding quantal energy spectra.

We shall mention the rich variety of applications in the domain of physics.
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Introduction to computational algebra

Valery Romanovski
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Consider a system of polynomials

f1(x1, x2, . . . , xn) = 0,
..................................
fk(x1, x2, . . . , xn) = 0

(1)

where f1, . . . , fk are polynomials with coefficients from some field k (usually, k is the field of
real or complex numbers). In algebraic geometry the solution space of system (1) is called
the variety. There are many numerical algorithms for solving non-linear systems such as (1).
These algorithms solve for one solution at a time, and find an approximation to the solution.
They ignore the geometric properties of the solutions space (the variety), and do not take
into consideration possible alternate descriptions of the variety (using a different system of
polynomials). However recently efficient computational algorithms have been developed which
enable us to get algebraic and geometric information about the entire solution space of system
(1). They are based on the Gröbner bases theory worked out by B.Buchberger around the
middle of 60th of last century. The idea of the methods is to find the ”best” representation of
the corresponding variety. To illustrate this recall that the Gauss-Jordan elimination method
transforms a system of linear equations into the so-called row echelon form. The system thus
obtained has exactly the same solutions (the variety) as the original system, but it is trivial
to solve. The other example is the system (1) with fi being polynomials in a single variable,
fi = fi(x). In this case there is a polynomial f(x) such that the system (1) is equivalent to the
equation f(x) = 0. The polynomial f(x) is the greatest common divisor of {f1, . . . , fk} and it
can be found using the Euclidean Algorithm. Although the Gauss-Jordan elimination method
cannot be directly expanded to the case of non-linear polynomials and the Euclidean Algorithm
– to the case of multivariable polynomials, it turns out that an expansions of these methods
is possible, and, in a sense, the Gröbner bases theory is a generalization of the Gauss-Jordan
method and the Euclidean Algorithm to the case of non-linear multivariable polynomials.

In the lecture we give an introduction to the Gröbner bases theory, discuss some algorithms
implemented in computer algebra systems (e.g. in Mathematica) and consider a few applications
to the theory of dynamics systems, in particular, to the investigation of the time-reversible
systems of ODE.
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Synchronization of irregular oscillators: from theory to
data analysis

Michael Rosenblum

Department of Physics,
University of Potsdam, Potsdam, Germany

In the classical sense, synchronization of coupled oscillating systems means appearance of cer-
tain relations between their phases and frequencies due to weak coupling. After giving brief
introduction into the classical theory we review its recent extension to the case of chaotic
systems. We discuss how the phase and mean frequency can be determined and consider syn-
chronization effects in two- or many-oscillator systems.

Next, we discuss how synchronization theory can be used in data analysis. In particular, we
consider how the phases and frequencies can be estimated from time series and how the intensity
and directionality of interaction can be estimated. The methods are illustrated by the results
of the investigation of cardiorespiratory interaction in humans.
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Ladder operators and moment problems

Andreas Ruffing

Department of Mathematics
Munich University of Technology, Munich, Germany

Ladder operator formalisms typically arise in factorization approaches to Schrödinger opera-
tors. There, they serve to an algebraic understanding of spectral problems like finding suitable
eigenvalues of the linear operators under consideration. Also when it comes to describing su-
persymmetric Schrödinger operators in quantum mechanics, the concept of lowering and raising
operators turns out to have an important meaning. So far, typical scenarios when ladder oper-
ators arise are briefly sketched. In recent contributions it has become apparent that methods
involving ladder operators can also be used to deal with moment problems in context of special
functions in analysis. We give several examples for this application. It remains a fascinat-
ing task and also a kind of challenge to investigate the interactions between related analytic
and stochastic structures. For instance, the role of discrete Hermite polynomials and their
connections with discrete martingale theory has to be understood in detail.

References
C. Berg, A. Ruffing: Generalized q-Hermite Polynomials, Communications in Mathematical
Physics 223, (2001), 29-46
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Adaptivity or chaoticity of strongly driven natural
multiphase systems?

Synergetics as a transdisciplinary set of paradigms explaining amphidynamic
behaviour vacillating between procedural coherency (”order”) and

”Self-Organised Criticality” (”pseudochaotic coordination”)

Holger Schmid-Schönbein M.D., in cooperation with
Birol Cotuk M.D., Reinhard Grebe M.D. Sc.D, Horst Kaesmacher M.D.,
Volker Perlitz M.D., Ralph Vandenhouten Ph.D. and Stefan Ziege M.D.

Working Group on Physiological Synergetics, Departments of Physiology, RWTH Aachen,
University of Magdeburg, Marmara University Istanbul and Université de Picardie Amiens

Subsequent to Edward LORENZ’es, David RUELLE’s and Florin TALKEN’s secular discov-
eries of ”pseudochaotic coordination” in hydro-aero-dynamic systems, the strange coexistence
of indeterminate kinematics and apparently deterministic dynamics has become the topic of
intensive, computer based research in the physical sciences. Using the mere phenomenological
analogy between evolution of systems with sensitive dependency on the initiating conditions,
positive LYAPUNOV exponents and fractal multi-dimensionality, sterile extrapolations from
idealising physicalism to profound natural sciences became popular, inter alia by search for
”chaoticity” in the time series of cardio-vascular, endocrinological and/or skeletomuscular re-
actions. All of these are long known in their microscopic details and behavioural traits of
”re-exitable membrane channels”, the most important element for ”non-linear-non-equilibrium
phase transitions”. These were systematically studied since the days of SHERRINGTON, one
of the founding fathers of physiological synergetics around the turn of the 19th century. Her-
mann HAKEN, here cooperating with Hans Peter KOEPCHEN, the leading authority of the
autonomous nervous system in the 1990ies: the two authors postulated that neurodynamic
behavioural traits are characterised by only transient, self-limiting phases of coherent perfor-
mance. To paraphrase the latter in a intuitive manner, they proposed to use the term ”quasi
attractor” in describing such short lived emergence and subsequent submergence of procedural
coherency: methods to display this ”natural behaviour” have now been developed.

Using time series obtained in awake human subjects exposed to cold environment, in patients
undergoing psychomotor relaxation, in patients and volunteers undergoing pain stimuli and
in subjects undergoing a specific regimen of bicycle ergometry, multiple base-line time series
(skeletomotor cardiovascular, respiratory, continuous skin galvanic response) were analysed by
a comprehensive algorithm based on primary MORLET-wavelet analysis, ARMA-procedures
(moving average) and were then plotted as time frequency plots (”prosodograms” depicting
in intuitive manner the emergence and submergence of preferred attractors). The combined
data clearly corroborated the basic assumptions of the HAKEN-KOEPCHEN paradigm: in
addition, clear indicators of n:m synchronisation (see Lecture TASS) became evident in even
short lived coherency separated by likewise clearly detectable transient. In proposing that a
moratorium should be it placed on the future publication of dynamic portraits from ”single
base-line” recordings, it can be anticipated that the ”adaptive nature” of normal physiological
reactions will become evident to the educated (and soon the general public) ending a ”short
lived historical transient” where natural adaptivity was misconceived as ”chaos”.
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Self-limiting passive discharge followed by transfer
blockade:

On putative microscopic causes of ”non-linear” reactions in multiphase systems
operated under robustly sustained dysequilibrated boundary conditions

(BERTALANFFian ”flow equilibria”)

Holger Schmid-Schönbein M.D., in cooperation with
C. Jaeger, M.Sc., H. Kaesmacher M.D. and M. Wußling Ph.D.

HAKEN’s proposal that rapidly emerging and subsequently submerging ”dominance” of pre-
ferred ”attractor” behaviour were the cause of apparent ”chaoticity” of biological systems is
guiding the project of physiological synergetics: it can be put it into the proper perspective by
postulating, that owing to well known behavioural traits of ensembles of membrane channels
on the microscopic, and of ensembles of effector neurons and inhibitor neurons, rapid ”phase
synchronisation” on the one hand, and automatic re-inhibition on the other forms the basis of
functional adaptivity.

These concepts also apply - under boundary conditions with steep potential gradients mim-
icking those prevailing in vivo - , to prebiotic systems capable of undergoing ”drive dependent
consensualisation of a priori independent movements” (our rheological definition for the vague
term ”self-organisation”). In studying a wide spectrum of prebiotic (putatively) chaotic prebi-
otic systems (ranging form sand pile kinematics and hour glass behaviour, over dripping faucets
and water clocks, the holocoherent BENARD-MARANGONI hyper-stability and various new
versions of the BELOUSOV-ZHABOTINSKI reaction as paradigmatic example of self-organised
catalytic activity, the HAKEN-KOEPCHEN-quasi attractor concept could be verified. In the
latter, the well known ”periodicity” could be enhanced, blurred or even abolished completely
by the appropriate choice of ”setting” providing ”sinks” for products (CO2, electrons). Lastly,
calcium waves in isolated cells (beating myocardiocytes) and in suspension of sarcoplasmatic
reticulum in agar were studied: they all showed identical behaviour, i.e. autowaves due to self-
limiting discharge, refractorisation with restitution of the ”kinetic threshold” allowing ”critical
slowing” and ”enthalpy peaking” as basis for BRILLOIN’s negentropy principle of information.

Using disarmingly simple cellular automata simulating eruptive, self-limiting discharge and
variable length of refractory periods, the above described (putatively universal) behavioural
traits could be modelled, the resulting patterns displaying the very same ”apparent kinematic
indeterminancy” (due to spatio-temporal in-homogeneities) which can be easily corrected by
choosing the proper combination (and homogeneity) of parameters reflecting the well known
determinants for resonance prone behaviour, namely generalised inertance, generalised capac-
itive resilience and generalised inhibitance. We propose that, eruptivity abounds in ”nature”
(in highly ”non-linear” reactions) due to the multiphase nature of natural materials, especially
when systems are driven into the strongly dysequilibrated modes of operation first identified
by BERTALANFFY as ”cause” of sustained transfer of energy and matter ”feeding the negen-
tropy” postulated by SCHRÖDINGER for living systems.
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Clustering of passive tracers in free-surface flows

Jörg Schumacher
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Philipps-Universität Marburg, Germany

Experimental and numerical studies of turbulent fluid motion in a free surface are presented.
The flow is realized experimentally on the surface of a tank filled with water stirred by a
vertically oscillating grid positioned well below the surface (Goldburg et al 2001). The effect
of surface waves appears to be negligible so that the flow can numerically be realized with
a flat surface and stress-free boundary conditions above three-dimensional volume turbulence
(Eckhardt and Schumacher 2001).

The two-dimensional free surface flow, v(x, y, t), is unconventional: it is not incompressible, i.e.
∂xvx + ∂yvy 6= 0, and neither kinetic energy, nor squared vorticity (enstrophy) are conserved in
the limit of zero fluid viscosity and of absence of external driving as it is the case for “usual”
two-dimensional turbulent flows (Lesieur 1990). According to both experiment and numerical
simulation, statistical properties of the surface flow are closer to those of three-dimensional
turbulence.

The dynamics of passive Lagrangian tracers that are advected in such flows is dominated by
rapidly changing patches of the surface flow divergence. Single particle and pair dispersion
show different behavior for short and large times: on short times particles cluster exponentially
rapidly until patches of the size of the divergence correlation function are depleted; on larger
times the pair dispersion is dominated by subdiffusive hopping between clusters. We also
find that the distribution of particle density is algebraic, and not lognormal as predicted for
flows that are delta-correlated in time (Klyatskin and Saichev 1997). The latter so-called
Kraichnan flows are rather synthetic but allow for making analytical progress. Our results can
be traced back to the exponential distribution of the divergence field of the surface flow. Very
recently, physical mechanisms for the formation of rain drops were discussed by Balkovsky et
al (2001). They considered the motion of tracers that have inertia (Maxey and Riley 1983) but
are advected in an incompressible turbulent Kraichnan flow. The relation of our findings to
this problem is discussed.
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Chaos, integrability, entanglement and decoherence

Thomas H. Seligman

Centro Internacional de Ciencias, and
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Cuernavaca, Mexico

We shall give an unexpected view of the relation of decoherence and entanglement to the
integrability or chaoticity of the underlying classical systems.

This view stems from the fact, that we shall consider separately the dependence on the dynamics
from the dependence of the initial state, and not limit ourselves to the usual coherent states, as
initial conditions. This has two reasons: First we believe that the phenomenon can be better
understood in this fashion and second in the context of quantum computing we are certainly
more interested in the evolution of a random initial state, than in the one of a Gaussian packet.
We shall use both random matrix methods and correlation function techniques, as presented in
the lectures of Dr. Prosen, to illuminate the problem at hand. We shall give close attention to
the question, when decoherence follows the trend of the corresponding autocorrelation function
(including fidelity in echo situations), and when not. We shall also inquire, if other correlation
functions become relevant in situations where the autocorrelation function does not explain the
behaviour of decoherence or entanglement.
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Quantum chaos in the mixed phase space
and the Julia set

Akira Shudo

Department of Physics, Tokyo Metropolitan University,
Tokyo, Japan

Phase space of multi-dimensional Hamiltonian systems is generally composed of infinitely many
invariant components. Chaotic trajectories have the largest dimension as an invariant set, while
the periodic orbits have the lowest. Coexistence of qualitatively different ergodic components,
which are usually intermingled in a self-similar way in the phase space, characterizes a generic
situation which is so complicated that our understanding is far from accomplished. The orbits
in classical mechanics are always confined on the corresponding invariant set by definition, in
particular, except in case of ideal chaotic systems, there are orbits with positive measure that
move only on the limited subspace whose dimension is less than that of full phase space.

On the other hand, the wavepacket of quantum mechanics is not forced to stay on a certain
limited classical manifold, but spreads over or shares different invariant subsets simultaneously.
The spreading is a consequence of the wave effect which is the most marked difference be-
tween classical and quantum mechanics. There is not any obstacle in principle preventing the
transition between arbitrary two points in the phase space and the quantum wavepacket can
penetrate into any kinds of barriers. Such a classically forbidden process does not have classical
counterparts. The penetration into the energy barrier is especially called tunneling, which is
understood as the most typical quantum effect and plays important roles in many physical and
chemical phenomena. The existence of chaos in the phase space crucially affects the nature of
tunneling (Shudo & Ikeda 1995, 1998).

In this lecture, after introducing recent developments of the theory of multi-dimensional com-
plex dynamical systems, with some technical tools necessary to construct the theory (Bedford
& Smillie 1991a, 1991b 1992), we will give numerical and mathematical evidences which show
that the orbits on the Julia set in the complex phase space can just be regarded as the classical
counterparts of the quantum wave effects (Shudo, Ishii & Ikeda 2001). More precisely, arbitrary
two regions in the phase space are necessarily connected via the orbits on the Julia set even in
the mixed system. This remarkable property, which is absent in the real classical dynamics,
comes from the transitivity of the Julia set, which has rigorously been proved for the complex
Hénon map, and conjectured for the standard and semi-standard map. The measure whose
support gives the Julia set is a unique ergodic measure, and unstable saddles are dense on
it. Our arguments are based on the complex semiclassical description of quantum forbidden
processes.
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Complication of linear spatial socio-economies
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The purpose of this lecture is to provide an explanation of the process of complication, i.e. the
deepening and evolution of complexity in evolving complex linear systems. The complication
means the transfer from complex structure to much more complex structure in the evolution of
complex systems. The main feature of the evolution of a complex system is the emergence of
new properties which did not exist in previous trends and which add new information to the
system. The growth of complexity means the appearance and increase of information and there-
fore the decrease of the (Shannon) entropy. Even the simplification of the system is the part of
process of complication, since simplification is clearing the room for the further adoption of new
information. This clearing presents the essential force acting against the modern information
explosion and playing the important role in the process of self-organization. Spread of informa-
tion within the complex system presents the essence of the process of complication. This spread
shows itself through the partial adoption of new information and through the path dependent
process of self-organization within socio-spatial complex system. In this study we will concen-
trate ourselves only on the forms of complication and self-organization in linear socio-economic
systems, leaving behind the innovation diffusion and bifurcation analysis. The concept of com-
plication is pointed out on the deficiency of purely economic considerations of socio-economic
systems and stresses the necessity to widen the concept of ”Homo Oeconomicus” to the concept
of ”Homo Socialis”. Such a widening is radical in the study of complex socio-economic processes
because of the important difference between the economic and socio-economic rationality: the
traditional identification of economic rationality of ”Homo Oeconomicus” as the optimization
is complementary to socio-economic rationality of ”Homo Socialis” as parsimony. In our lecture
we will apply the paradigm of complexity and complication to several main branches spatially
connected with the augmentation and development of flows, networks and superposition of their
hierarchies in linear systems. We are using the concept of complication as the unifying frame
for theories of linear spatial analysis of complex socio-economic systems: the Push-Pull theory
of Migration Streams, the theory of Central Place hierarchies, the spatial production cycles
and trade feedback loops, the Dynamic Input-Output Analysis and the theory of the Fields of
Influence of changes in Input-Output systems, the classical Key Sector Analysis, the Structural
Q-analysis and the Miyazawa model of income distribution within Input-Output systems and
their ”onion skins” extensions.
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Signals derived from the human cardiovascular system are well known to exhibit highly complex,
nearly periodic, oscillatory behaviour whose nature is something of an enigma and still the
subject of vigorous debate. The variation of cardiac frequency with time, known as heart rate
variability (HRV), has been intensively investigated using both deterministic and stochastic
methods. It has, for example, been variously described as chaotic, fractal, stochastic, and
subject to 1/f fluctuations and it was proposed that the state of the system can be classified
by the slope of its power spectrum on a log-log plot.

We illustrate some problems in characterising slow modes in real measurements and show that
oscillatory dynamics under the influence of strong noise, coupled with a limited time of obser-
vation, can lead to a 1/f -like behaviour. We review and describe some recent experiments that
illuminate the problem and discuss a combination of almost periodic and stochastic frequency
modulation as a signature of the system dynamics.
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In a healthy subject in repose a volume of blood equivalent to the total amount in the body
returns to the heart every minute. Several oscillatory processes characterise cardiovascular
dynamics within this circulation time. Cardiac and respiratory activities act on higher frequency
scales, with characteristic frequencies of 1 Hz and 0.2 Hz, respectively. The lowest frequency
component, at around 0.01 Hz, has been associated with the activity of the layer of endothelial
cells forming the inner surfaces of all blood vessels.

The characteristic frequencies of all the cardiovascular oscillations are found to vary in time, ap-
parently because the oscillatory processes mutually interact. Hales and Ludwig independently
described the modulation of cardiac frequency by respiration, in 1773 and 1847 respectively,
a process that today is known as respiratory sinus arrhythmia. The occurrence of episodes of
synchronization between the cardiac and respiratory rhythms has also been demonstrated.

Recent developments of methods based on dynamical and information theory are facilitating
studies of synchronization and of the directionality of couplings between the cardiovascular os-
cillations. We review and discuss their characteristics in health and disease. The characteristics
of the cardiac and respiratory interaction during paced respiration are used to illustrate the
role of directionality of coupling in the interplay between synchronization and modulation.

References
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In a sequence of two talks microwave experiments on spectra, line widths, and field distribu-
tions in various closed and open microwave resonators are presented with special emphasis on
universal features common to all chaotic systems.

1. The random-superposition-of-plane-waves approach

According to a conjecture of Berry (1977) at any point in a chaotic billiard the wave function
may be described by a random superposition of plane waves,

ψ(r) =
∑
n

ane
ıknrn ,

where the modulus k = |kn| of the incoming waves is fixed, but directions kn/k and amplitudes
an are considered as random. As an consequence of the central-limit theorem the approach pre-
dicts Gaussian distributions for the wave function amplitudes, or, equivalently, Porter-Thomas
distributions for their squares. Such distributions have been observed for the first time for wave
functions of chaotic billiards (McDonald and Kaufman 1988), and subsequently in numerous
simulations and experiments on chaotic and disordered systems.

In this lecture microwave experiments are presented, exploiting further consequences of the
Berry conjecture. Results for field distributions and spatial correlation functions in three-
dimensional Sinai resonators (Dörr et al 1998) are presented. For spectral level dynamics in
a disordered system with the position of one impurity as the parameter the approach allows
to calculate velocity distributions and velocity autocorrelation functions which are in complete
agreement with the experiment (Barth et al 1999). In open billiards and billiards with broken
time-reversal symmetry the distributions of currents and vortices, as well as the vortex distance
distribution are measured and compared with the prediction from the Berry conjecture (Barth
and Stöckmann, Vraničar et al).
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2. Open microwave billiards as scattering systems

Whenever a microwave experiment is performed, the system has to be opened either by attach-
ing wave guides or introducing antennas. This has the unavoidable consequence that the system
is perturbed, and the measurement always yields an unwanted combination of properties of the
system and the apparatus. A tailor-made approach to cope with this situation is provided by
scattering theory. For the case of isolated resonances an expression for the matrix elements of
the scattering matrix is obtained,

Sij = δij − 2ıγ
∑
n

ψn(ri)ψn(rj)

k2 − k2
n + ı

2
Γn

,

which is a direct equivalent of the Breit-Wigner formula known from nuclear physics for many
years (Stein et al 1995, see chapter 6 of Stöckmann 1990 for details). In the equation ψn(ri) is
the value of the wave function of the billiard (with Dirichlet boundary conditions at the wall,
and Neumann ones at the opening) at the coupling position ri. γ is a parameter describing the
coupling to the wave guide or the antenna.

This correspondence of microwave billiards with atomic nuclei can be used to check predictions
from theory which are unaccessible in nuclear physics. As an example the first unambiguous
demonstration of resonance trapping is presented, namely the phenomenon that with increasing
coupling strength the widths of the resonances do not increase unlimited but finally decrease
again (Persson et al 2000). If the transmission through a cavity with a number of incoming and
outgoing channels is measured as a function of frequency, irregular fluctuations are observed, an
equivalent to the Ericson fluctuations observed in nuclear scattering processes. The distribution
of these fluctuations was studied in an open microwave billiard in dependence of the number
of channels, both for systems with and without time-reversal symmetry, and the results were
compared with random matrix predictions (Schanze et al 2001). A new parameter comes
into play if absorption is involved, which is unavoidable in experiments anyway, but has been
considered by theory only recently (Beenakker and Brouwer 2001). Again the experiment is
able to verify the theoretical predictions perfectly (Méndez et al).
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Quantum graphs have recently been introduced as model systems to study quantum problems
with chaotic classical limit (Kottos and Smilansky 1997). The most fascinating features of
quantum graphs are that they can be constructed easily and almost at will covering a variety of
classical limits such as chaotic dynamics, scattering or diffusive behaviour. Yet, the quantum
mechanics can be formulated in terms of unitary propagators on finite Hilbert spaces. In
addition, quantum graphs show many of the phenomena observed in more general quantum
systems such as universality of the spectral statistics or Anderson localisation.

I will review recent developments on quantum graphs and generalise these concepts to quantum
propagation on arbitrary, directed graphs (Tanner 2000). In its simplest version, the wave
dynamics on the graph is solely determined by the topology of the graph given by the adjacency
matrix, metric properties, that is, the length of the edges, and dynamical properties entering as
(complex) transition amplitudes describing transitions between edges at the vertices. Necessary
and sufficient conditions for a graph to be ‘quantisable’ can be given (Pakoński et al 2002).

A specific quantum graph can in a natural way be associated with an ensemble of unitary
matrices (Tanner 2001). The ‘classical’ dynamics on the graph can be interpreted as a Markov
chain defined on the graph with stochastic transition matrix T obtained from the unitary
propagator on the graph (Kottos and Smilansky 1997, Pakoński et al 2001). I will formulate
a conjecture linking universality of the statistical properties of the unitary matrix ensemble
after ensemble average to the spectral gap of the stochastic transition matrix. More precisely,
it is expected that the matrix ensemble follows random matrix statistics in the limit of large
network size, if the spectral gap ∆, that is, the minimal distance of eigenvalues of T from the
unit circle, scales like (Tanner 2001)

lim
N→∞

logN

∆(N)N
= 0

where N is the number of edges in the graph. Some examples will be presented. Results on
correlation functions for eigenvalues and spectral determinants will be discussed (Tanner 2002).

References
Kottos T and Smilansky U 1997 Phys. Rev. Lett. 79 4794
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Intermittency is a typical phenomenon on the transition from order to chaos. The existence
of intermittent behaviour in dynamical systems can in general be traced back to the presence
of marginal stability either at a single periodic orbit or along the boundary of stable islands.
This leads to nearly regular together with strongly chaotic dynamics in connected components
of the phase space. Intermittency is typically accompanied by algebraic decay of correlation
and long tail memory effects. In this talk, I will present techniques to calculate the spectra of
Frobenius-Perron operators for intermittent systems in terms of periodic orbits. Implications
for a periodic orbit quantisation of intermittent dynamics using Gutzwiller’s trace formula will
be discussed briefly.

Periodic orbits, which approach the marginal stable regime in phase space are characterised by
a vanishing Lyapunov exponent

λp =
log Λp

Tp
→ 0, for Tp →∞

with Λp the largest eigenvalue of the Monodromy matrix along the orbit. The algebraic decay
in the eigenvalues Λp induces divergences in trace formula, which need to be removed sys-
tematically (in addition to the usual problem of overcoming convergence problems due to the
exponential proliferation of periodic orbits). This leads to periodic orbit expansions of the trace
of the Frobenius Perron operator in terms of families of periodic orbits converging towards the
marginal stable region.

The talk is mainly based on the chapter on intermittency in the web-book by Cvitanović et
al. I will introduce the method for a specific 1d-piecewise linear map for which the algebraic
decay behaviour can be calculated explicitly. Generalisations to arbitrary uni-model maps will
be given. The stadium billiard will serve as an example to discuss modifications of the method
for semiclassical periodic orbit formulas (Tanner 1997).
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Pathological cerebral synchronization may severely perturb brain function as observed in several
neurological diseases like Parkinson’s disease and essential tremor. In patients that do no longer
respond well to drug therapy, depth electrodes are chronically implanted in target areas located
in the thalamus or the basal ganglia. To suppress the pathologically synchronized firing, a
permanent high-frequency (> 100 Hz) stimulation is performed (Benabid et al. 1991, Blond
et al. 1992). Although the therapeutic effects are impressive, there are nevertheless significant
drawbacks: (i) The energy consumption of the permanent stimulation is quite high. Thus, the
generator (plus battery) has to be exchanged after 1-3 years by means of an operation. (ii)
Even more important is the fact that the permanent high-frequency input is an unphysiological
type of stimulation which causes the stimulated target areas to adapt. In a number of patients
the amplitude of the stimulation has to be increased over the years, in order to maintain the
tremor suppressive effect. With increasing stimulation amplitude, however, the probability of
the occurence of severe side effects (like dysarthria, dysaesthesia, cerebellar ataxia, psychotic
symptoms) increases.

With methods from synergetics (Haken 1983) and statistical physics (Kuramoto 1984) the
concept of phase resetting (Winfree 1984) was extended to populations of interacting oscillators
subjected to random forces (Tass 1999). This stochastic phase resetting approach has lead to
the development of demand-controlled deep brain stimulation techniques (Tass 2001a-2001c,
2002a, 2002b). The latter work in a completely different way compared to the standard high-
frequency stimulation: While the standard technique probably simply suppresses the neuronal
firing in the target area (Wielepp et al. 2001), the novel techniques only desynchronize the
firing whenever it gets pathologically synchronized. In this way, the novel methods intent to
bring the neurons’ dynamics as close to the physiological state (i.e. to the uncorrelated firing)
as possible. The talk is about both theory and first experimental results.
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Cerebral synchronization processes play an essential role under both physiological (Freeman
1975) and pathological (Llinás and Jahnsen 1982, Bergman et al. 1994) conditions. To detect
and localize phase synchronization and stochastic phase resetting dynamics in the human brain
non-invasively with magnetoencephalography novel methods have been developed:

1. Synchronization tomography (Tass et al. 2002): First, the cerebral current source density
is reconstructed in each cerebral voxel (i.e. volume element) for each time t by means of the
magnetic field tomography (MFT) (Ioannides et al. 1990). Next, the phase synchronization
analysis (Tass et al. 1998) is applied to each voxel and to external reference signals such
as muscular activity. In this way brain/brain- and brain/muscle phase synchronization are
determined. It turns out that phase synchronization is a fundamental coordination principle in
cerebral motor control (Tass et al. 2002).

2. Phase resetting tomography: The cerebral current source density is reconstructed with
MFT. Next, a stochastic phase resetting analysis (Tass 1999, 2002a, 2002b) is applied to each
voxel as well as to all pairs of voxels and external signals. This enables the detection of
transient stimulus-locked response clustering and transient stimulus-locked synchronization and
desynchronization. In contrast, standard techniques like cross-trial averaging or cross-trial
cross-correlation are not able to detect such processes and may even produce artifacts.

The talk is about the theoretical background of the novel methods, their application to exper-
imental data, and their diagnostic relevance.
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The key feature of a granular gas, making it fundamentally different from any ordinary molec-
ular gas, is its tendency to form clusters (Goldhirsch and Zanetti, 1993; Kudrolli et al., 1997).
This can be traced back to the inelasticity of the collisions between the particles. In appli-
cations such as conveyor belts and sorting machines, the clustering is an unwanted and very
costly effect. Here we study the phenomenon in the setting of the so-called Maxwel Demon
experiment (Eggers, 1999).

Granular material in N connected compartments is brought into a gaseous state through ver-
tical shaking. For sufficiently strong shaking the particles are uniformly distributed over the
compartments, but if the shaking intensity is lowered this uniform distribution gives way to a
clustered state. The clustering transition is experimentally shown to be of 2nd order for N = 2
and of 1st order for N ≥ 3. In particular, the latter is hysteretic, involves long-lived transient
states, and exhibits a striking lack of time reversibility (Van der Weele et al., 2001; Van der
Meer et al., 2001).

In the strong shaking regime, a cluster breaks down very abruptly (sudden death) and in its
further decay shows anomalous diffusion, with the length scale going as t1/3 rather than the
standard t1/2 (Van der Meer et al., 2002). We focus upon the self-similar nature of this process.
The observed phenomena are all accounted for within a dynamical flux model.
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Ko van der Weele

Department of Applied Physics, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

There are many extensions of the Maxwell Demon experiment. First we consider a bi-disperse
mixture consisting of large and small particles (Mikkelsen et al., 2002). This is done with an
eye to practical applications, where granular material is rarely mono-disperse. For moderate
shaking the material clusters into the compartment which initially contained most of the large
particles: Goliath wins. For very mild shaking, however, the cluster goes into the compartment
originally dominated by small particles: David wins. These experimental observations are
quantitatively explained within a bi-disperse version of the flux model.

Second, we study a system in which the compartments are arranged in the form of a staircase,
resembling an industrial conveyor belt. The central topic here is the competition between
the clustering effect and the natural tendency of the particles to stream downwards. When a
cluster is formed, one can get rid of it by shaking sufficiently hard. The ensuing transition to
the desired uniform flow is found to be a self-similar process involving Burgers-like shockwaves
(Kloosterman et al., 2002).

Finally, we discuss two related clustering phenomena from other fields: the traffic jam problem
(Helbing, 2001) and the formation of sand ripples at the beach (Andersen et al., 2001). Both
turn out to be well described by flux models markedly similar to our own.
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Dissipation is the irreversible transfer of energy into a reservoir, having a large number of
degrees of freedom. I will consider the case where the reservoir is a system of nearly independent
fermions. This includes dissipation by electrical conduction and dissipation in the dynamics of
the nucleus. The lectures will demonstrate that this is a rich subject for investigation, with
significant problems outstanding.

Lecture 1: Physical applications, and the standard approach (the Kubo formula). Energy
diffusion as an alternative approach to dissipation. Classical-quantum correspondence. Limi-
tations of the Kubo formula approach.

Complex quantum systems. Random matrix theory, and universality hypotheses. Dimension-
less parameters describing response of complex systems. Parametric random matrix models.
Matrix element sum-rules, and semiclassical estimates. Some parametric statistics.

Lecture 2: Estimates for energy diffusion constant in Landau-Zener and Kubo formula regimes.
Predictions of various anomalous effects. Numerical experiments testing these predictions.
Theoretical arguments reconciling random matrix and semiclassical predictions.

Much of the material is covered in Parametric Random Matrices: Static and Dynamic Applica-
tions , M. Wilkinson, in ‘Supersymmetry and Trace Formulae, eds. I. V. Lerner, J. P. Keating
and D. E. Khmelnitskii, New York: Plenum, p.369-399, (1999). Several new results will be
discussed.
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