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Abstract The aim of this paper is to survey a class of logical formal-
izations of similarity-based reasoning models where similarity is un-
derstood as a graded notion of truthlikeness. We basically identify
two different kinds of logical approaches that have been used to for-
malize fuzzy similarity reasoning: syntactically-oriented approaches
based on a notion of approximate proof, and semantically-oriented
approaches based on several notions of approximate entailments.
In particular, for these approximate entailments we provide four
different formalisations in terms of suitable systems of modal and
conditional logics, including for each class a system of graded opera-
tors with classical semantics, as well as a system with many-valued
operators. Finally, we also explore some nonmonotonic issues of
similarity-based reasoning.

1 Introduction: vagueness, uncertainty and
truthlikeness

For many years, classical logic has given a formal basis to the study of human
reasoning. However, during the last decades, it has become apparent that
human practical reasoning demands more than what traditional deductive
logic can offer. For instance, classically, the truth of a statement ¢ with
respect to a state of knowledge K is determined whenever every model of
K is also model of g. But nothing can be said about its truth value if only
most of the models of K are also models of ¢ or when models of ¢ are very



“close” to models of our state of knowledge. Moreover, a statement can
only be either true or false, but some human expressions, such as “John is
bald”, often fail to be semantically determined with bivalued precision since
they express gradual properties.

Minsky (Min85) and McDermott (McD87) suggested that classical logic
is inappropriate for modeling human reasoning because of the modeling
“perfect” nature of the former. They remarked that while classical logi-
cal reasoning is both sound (all conclusions reached are valid or true) and
complete (all true facts can be deduced), human reasoning does not possess
either one of these qualities. On the contrary, the modeling of human rea-
soning usually requires “imperfect” knowledge to be taken into account in
the form of uncertainty, vagueness, truthlikeness, incompleteness and partial
contradictions. These limitations of classical logic in accounting for human
reasoning motivated the study of alternative (or perhaps better, comple-
mentary) formalisations which already became one of the major research
areas in the field of Artificial Intelligence in the recent past.

A variety of approzimate reasoning models have appeared as possible al-
ternatives and have generated an extensive literature in both Philosophy and
Artificial Intelligence. Models of approximate reasoning aim at being more
flexible than classical logic and basically work on three “imperfections” in-
formation can be pervaded with: vagueness, uncertainty and truthlikeness.
Informally, and roughly speaking, we can say that approximate reasoning
deals with propositions and “labels” associated to them, which are usually
interpreted as degrees of truth, belief or proximity to the truth. Each one
of these units of measurement is respectively associated with the notions
of vagueness, uncertainty and truthlikeness. Unfortunately, this simplified
view does not make clear that each one of these “imperfections” responds to
a different semantics. In what follows, we shall try to give an “orthogonal”
description of these three “imperfections” which we hope will make clear
the distinction among them and then we shall indicate how they may be
combined.

The three axes correspond to: crisp vs. many-valued interpretations,
complete vs. incomplete information, and error-free vs. mistaken informa-
tion.

Interpretation Problem

Whenever we have (or fix) a representation language to describe our in-
formation about the world, we should provide a form of interpreting the
sentences in such a language, i.e. to establish a correspondence between
meaning and truth (or as Carnap says (Car37), between theoretical con-
cepts and observations). There is no consensus about what is the best (or



most appropriate) theory to define the truth: there are e.g. pragmatic,
coherence, correspondence, redundancy or semantic theories. In our opin-
ion, Tarski’s correspondence theory is the most adequate form to establish
this relationship. He considers that the truth of sentences, statements,
judgments, propositions, beliefs or ideas, consists of their “correspondence”
with reality, world, or facts. The fundamental difficulty for this theory is
to specify what it means to say that a statement “corresponds” to reality.
In Tarski’s view (Tar56), the truth value of a sentence is determined by an
interpretation function e from language L to models €2. One familiar objec-
tion to Tarski’s correspondence theory is that his definition applies only (or
at best) to formal languages, but not to natural languages. It is well-known
that most of the statements in natural language do not have a precise char-
acterisation of their meanings, i.e. they are not semantically determined
(in last sense) because they contain (among other things) different kinds of
vague expressions, including predicates as ’big’, ’short’; 'large’; etc., modi-
fiers as 'very’, 'more or less’, ‘rather’, etc., and quantifiers as 'most’, ’some’,
‘many’, few’, etc.

In brief, some expressions which refer to gradual properties are inherently
or semantically vague. In such cases, there are no suitable characterizations
of their meaning in terms of true-false interpretations. Hence, if we want
to represent knowledge of the type “the mountain is high” we need to in-
crease the interpretation power and hence we have to give up classical logic
principles such as the excluded middle principle (p V —p is always true) or
the non-contradiction principle (p A —p is always false). In response to this
necessity Lotfi Zadeh introduced in 1965 (Zad65) fuzzy set theory. His fun-
damental idea consists in understanding lattice-valued maps as generalised
characteristic functions of some new kind of objects, the so-called fuzzy sets,
of a given universe.

In the context of fuzzy set theory, fuzzy logic (F'L) was born as a logical
system that aims at the formalisation of the reasoning with vague proposi-
tions. The term fuzzy logic has been used through the literature with two
different meanings (Zad94):

- In the narrow sense fuzzy logic, F'L,, is an extension of many-valued
logic, where the notion of “degree of membership” of an element x
in an universe X with respect to a fuzzy set A over X is regarded
as the degree of truth of the statement “A(z)” (usually read as “x is
A). However, as it is pointed out by Zadeh in (Zad94), the agenda
of F L, is quite different from that of traditional many-valued logical
systems, e.g. Lukasiewicz’s logic. He states that concepts such as
linguistic variables, canonical forms, fuzzy if-then rules, fuzzy quanti-
fiers and such modes of reasoning as interpolative reasoning, syllogis-



tic reasoning, and dispositional reasoning, are not part of traditional
many-valued logical systems.

- In the broad sense fuzzy logic, F'Ly, is almost synonymous with fuzzy
set theory which is a general theory to represent and to reason over
“classes” with unsharp boundaries. Fuzzy set theory includes: fuzzy
arithmetic, fuzzy mathematical programming, fuzzy topology, fuzzy
graph theory, and fuzzy data analysis.

In the last years, many works have been devoted to the development of
the formal background of fuzzy logic in narrow sense (as witnessed by a
number of important monographs that have appeared in the literature, e. g.
(Hajo8; NPM99; Got01; Ger01), that is, to formal systems of many-valued
logics having the real unit interval as set of truth values, and truth functions
defined by fuzzy connectives that behave classically on extremal truth values
(0 and 1) and satisfy some natural monotonicity conditions. Actually, these
connectives originate from the definition and algebraic study of fuzzy set
theoretical operations over the real unit interval.

In this paper we consider vagueness as an interpretation problem and
it will be formally addressed by means of the use of some kind of many-
valued logic. As in classical logic, in many-valued logics sentences of the
representation language get a truth-value, possibly an intermediate value
between 0 and 1, in every complete description of the world. But, as we
discuss next, it may be not always possible to determinate this value because
in general we may not have (or/and it is impossible to have) a complete
knowledge about the real world.

Incomplete Information Problem

In a classical logic, there is a clear distinction between a definition of truth
(such as it was mentioned above) and a criteria for recognizing the truth.
In the latter sense, the truth or validity of a conclusion C' is often given in
terms of a list of arguments I', called premises, knowledge base or theory.
Thus, if every interpretation that satisfies I' (i.e. which is a model of ') it
satisfies C' as well, then we can say that in the context of I', C' is true or
is valid conclusion. On the other hand, the falsehood of C' is established
when no model of I" satisfies C'. Any other situation (when only some (but
not all) models of T' are also models of C') leaves uncertainty about the
truth-value of the conclusion C. Moreover, except for the case in which the
theory that describes our knowledge about the state of the world is complete
it will not be possible in general to determine the truth or falsehood of every
possible conclusion. Therefore, even in classical logic, there are three (not
two) different epistemic attitudes on propositions with respect to a given
theory modelling the world (Gar88; DP01). This indetermination caused



by the third state (ignorance or indetermination) will be referred to as the
incomplete information problem.

In practice, it is usual that those dealing with the task of decision or pre-
diction making do not have complete information about the current state
of affairs. This prevents from unequivocal assessments of future states and
limits the ability to precisely predict the consequence of the possible choices.
In such a situation, a classical logical approach as basic formalization of this
kind of reasoning would condemn us to “inaction”. Fortunately, it is often
the case that the available information, even if incomplete, is useful and
sufficient for many purposes. For example, knowledge about the laws of
evolution of a physical system may be useful to derive that, given an ideal
gas, if its pressure P and temperature Temp are known then its volume Vol
is determined by the expression Vol = k%. Of course, if the gas is not
ideal the result provided by this equation will not be accurate. Hence, in a
strict sense, it will not be possible to know the exact volume of the gas, at
least from that equation. So, this kind of precise laws have limited appli-
cability in real domains, where e.g. statistical mechanics gives an answer
to these questions by using probability theory, that aims at capturing the
underlying uncertainty. In such a case, a probability distribution over the
possible values of the volume would be obtained, which provides a measure
(objective or subjective) of confidence on the accuracy in predicting a value
of a physical property, in our example the volume. Other popular theories
used to formalize and quantify that uncertainty are possibility theory and
Dempster-Shafer theory of evidence.

In general, an uncertainty model attaches numbers to logical propositions
which do not indicate a degree of truth (as some authors usually point out)
but a degree of confidence or belief in the truth-value of these propositions.
In this sense, the measure of uncertainty compensates the lack of knowledge
at the propositional level with information at a higher level of abstraction.
At this point, it is important to differentiate vagueness or imprecision at
propositional level (as it was discussed above) from vagueness at the model
or interpretation level, as it is the case in possibilistic logic. In the latter
case, each (crisp) interpretation is attached a degree that estimates the
extent to which it may represent the real state of the world. Such an
attachment defines a fuzzy set of interpretations which is in fact a fuzzy
set based modeling of our vague knowledge about what the real world is. In
this sense, the degrees of possibility and necessity in possibilistic logic may
be understood as uncertainty degrees induced by some kind of vague (and
hence incomplete) information.

However, although notions of vagueness (at propositional level) and un-
certainty are not the same, there are close links between them and in many



occasions they need to live together. For example, as mentioned in (DP88),
if all we know is that “John is tall” (i.e. a vague knowledge about John’s
height) then, about the truth of the sentence “John’s height is 1.80 m”, one
can only say that it is more or less possible. More formally, Dubois and
Prade in (DP91a) propose to understand each fuzzy assertion of the sort of
“X is Tall” (where Tall is a fuzzy set of an universe of discourse U and X is
a variable taking values in U) as a constraint on the unknown possibility of
the crisp assertions X = z, with « € U, of the form II(X = z) < ppu(z).
This example makes it clear that vague, incomplete information also pro-
duces uncertainty on conclusions.

As it is argued by Resconi, Klir and St. Clair (RKC92), uncertainty
is an intensional or metatheoretical notion. For this reason, modal log-
ics provide a unified framework for representing those uncertain theo-
ries (RKCH93; Hal03) and are naturally related to various generalisa-
tions of the modal system S4.3. The well-known cases are probabilistic
(Car50; Hal03), possibilistic (FH91; HK94; LL96) and Dempster-Shafer
logics (Rus87; Hal03).

Summarizing, we will associate the term uncertainty to a degree of belief
regarding the truth of a proposition, usually crisp but not necessarily so.
Formally, the uncertainty should correspond to intensional logics which are
non-truth functional (DP01).

Mistaken Information Problem

In classical logic, falsity entails any statement. But, in many occasions,
we may want to use “false” theories, for instance, Newton’s Gravitational
Theory. Although this theory is not true we may accept it is a good ap-
proximation to truth. Note that we are not referring to self-contradictory
theories, but empirically or factually false ones, i.e. theories that correctly
explain most of the observations but have counter-examples. As a first ap-
proach, we could measure how close is a theory to the truth according to
its amount of counter-examples. According to this measure, it is possible
to affirm that there are good reasons to conjecture that Einstein’s Gravita-
tional Theory, which is also not true, is a better approximation to the truth
than Newton’s Theory. In a more general sense, we refer to the notion of
“proximity to the truth” of a statement (even though it may not be true or
provable) as truthlikeness (0dd07).

Popper makes an observation which throws light over the distinction
between uncertainty and truthlikeness. He points out that by using the
Bayesian inference to establish the strength of belief in a hypothesis A from
both a previous knowledge K and an observed evidence e, “ if the evidence e
contradicts the hypothesis h then the probability P(h | e, K) of h given e (in



the context of K) is zero; yet, h may be highly truthlike, since false theories
(even theories known to be false) may be ‘close’ to the truth”. This point
stresses the difference between incompleteness and “falsity” of a theory. The
first case indicates its failure to express the whole truth and the second one
represents the acceptance of an untrue proposition. For instance, a witness
in court who does not lie but conceals some “relevant”! of facts, tells an
incomplete information. On the contrary, a testimony which is partially
true, refers to false information.

In a more pragmatic sense, the concept of truthlikeness appears, for
example, when we want to give an answer to a query over a database: if we
must match exactly the query against the database, we will possibly need
too much time or even we can fail. But, if we allow to match the consult
“approximately” enough then a lot of time may be saved. In this case, we
also may say that the answer to a query is close to the truth or truthlike.
Note that the notion of “approximation” to the truth is in correspondence
to the one of error in numerical methods.

If we accept this notion, we will be able to say that a statement is
almost true, nearly true or approrimately true, indicating thereby that it
is false or unprovable but close to being true. For instance, in this sense,
the sentence “the height of Mount Everest is 8.800 m” is close to the
truth?. This concept of “close” to the truth presupposes some metric which
allows us to express the degree of approximate truth. Notice that this last
concept is different from the two previous: vagueness and uncertainty. The
truth-value of our example “the height of Mount Everest is 8.800 m” is
certainly false and precisely formulated, therefore it is neither uncertain
nor vague.

Summarising, we may say that vagueness, uncertainty and truthlikeness,
until few years ago, were not clearly differentiated from each other, possibly
because they are usually coded by real numbers from the unit interval [0, 1].
In the last years, much effort has been devoted to clarify the conceptual dif-
ferences between vagueness and uncertainty as it is witnessed in (BDG199).
However, the distinction between these two notions and truthlikeness is not
so clear in the literature. For instance, in (DPB99), similarity logic is clas-
sified as a non truth-functional logic dealing with vagueness. We consider
that it is useful to clarify the distinctive features of each notion, since they
are specially important when we aim to represent knowledge and reason
with it.

'Relevance is an important notion which we do not consider here, but that it should be
taking account in a thinner analysis of truthlikeness
2The height of Mount Everest that appears in dictionaries is 8,835m.



We think that these three notions, vagueness, uncertainty and truthlike-
ness, constitute the basic axes of approximate reasoning models. Also, we
believe that they may be formalized and combined under a homogeneous
framework which should be, we understand, an appropriate extension of
fuzzy logic in the narrow sense. Several attempts have been made in this
direction. For instance,

e Zadeh in (Zad86) combines fuzziness and probability by suggesting a
definition of the probability of a fuzzy proposition.

e In (DP93), the authors extensively survey the literature concerning
the relationship between fuzzy sets and probability theories; again,
besides pointing out the gaps between them, the authors build bridges
between both theories, stressing in this sense the importance of pos-
sibility theory.

e In Héjek et al’s paper (HGE95), and in some later elaborations
(Hajo8; GHEO03), there is a further contribution to this bridge build-
ing. They propose three different theories in Lukasiewicz-Pavelka’s
logic to cope with probability, necessity and belief functions respec-
tively. The main idea behind this approach is that uncertainty mea-
sures of crisp propositions can be understood as truth-values of some
suitable fuzzy propositions associated to crisp propositions (it is worth
mentioning that although in this work the propositional variables only
take Boolean values it is easy to extend it to the many-valued case).

Truthlikeness is probably the least known of the above three notions.
The aim of this paper is to survey some logical formalisations of similarity-
based reasoning models, where similarity is understood as truthlikeness. To
this end, the paper is structured is as follows. In the next section we provide
all necessary background about fuzzy similarity relations. In Section 3, we
introduce two different logical approaches, one syntactically and another
semantically oriented, in order to formalize fuzzy similarity reasoning. In
Section 4 we describe the main ideas behind the syntactic model based on
the notion of approximate proof, while Section 5 is devoted to the semantical
model based on several notions of approximate entailments. In Section 6,
we give four different formalisations of these similarity entailments in terms
of suitable systems modal and conditional logics, including for each class a
system of graded operators with classical semantics and a system with many-
valued operators. Finally, Section 7 explores some nonmonotonic issues of
similarity-based reasoning, by considering similarity, instead of distance, as
a central notion with which to define epistemic orderings and operators of
theory revision.



2 Truthlikeness and graded similarity

As it was mentioned above, the dichotomy of the class of propositions into
truths and falsehoods should thus be supplemented with a more fine-grained
criterion according to their closeness to the truth. The problem of truth-
likeness is to give an adequate account of such a concept and to explore its
logical properties and its applications to knowledge representation. While
a multitude of apparently different solutions to this problem has been pro-
posed, it is now standard to classify them into two main approaches: the
content approach and the likeness approach. The first approach is based on
Popper’s idea that any theory (or knowledge base) K may be divided in
two parts: its truth content Kr, and its falsity content K. This partition
into true and false propositions is induced by the real world (obviously the
epistemological problem is to know which is this world). Following this idea,
a knowledge base is closer to the truth than another if it has more truth
content (without engendering more falsity content) and less falsity content
(without sacrificing truth content). Unfortunately, this account suffers from
a fatal flaw, it entails that no false theory is closer to the truth than any
other. This was shown independently by Tichy and Miller (Tic74; Mil74).
After the failure of Popper’s idea, the modern definition of truthlikeness
follows the likeness approach, and has emerged based on similarity and was
proposed independently by Risto Hilpinen within possible worlds semantics
(Hil76) and by Pavel Tichy within propositional logic (Tic74). The ba-
sic idea of this similarity approach is that the degree of truthlikeness of a
sentence ¢ depends on the similarity between the states of affairs that are
compatible with ¢ and the true state of the world, see e.g. (Nii87, pag.
198). According to Niiniluoto (Nii87), we will consider the truthlike value
of a sentence as its degree of “proximity to the truth”, even though it may
not be true or provable. This degree should be given by the “distance” that
separates (or dually, by the similarity between) the models of this sentence
and the models of the “reality”.

Thus, this notion of truthlikeness can be regarded as a special case of
the more general concept of similarity and its logical counterparts to some
form of similarity-based reasoning, this last concept being often associated
with reasoning by analogy which is an important form of non-demonstrative
inference. Similarity-based reasoning aims at studying which kinds of log-
ical consequence relations make sense when taking into account that some
propositions may be closer to be true than others. A typical kind of in-
ference which is in the scope of similarity-based reasoning responds to the
form “if ¢ is true then v is close to be true”, in the sense that, although
1 may be false (or not provable), knowing that ¢ is true leads to infer that



1 is semantically close (or similar) to some other proposition which is in-
deed true. Notice again that the fact of 1) being close to (or approximately)
true has nothing to do with a problem of uncertainty, i.e. with a problem
of missing information not allowing us to know whether ¢ is true or false
(DP95). Essentially, similarity-based reasoning has been investigated from
two different perspectives:

e Qualitative or comparative approaches, where the aim is formalizing e. g.
expressions like p is closer to g than r. The works independently developed
by Nicod (Nic70), Williamson (Wil88), and Konikowska (Kon97), belong to
the first tradition. At the semantical level, Lewis in (Lew73) uses sphere
systems in order to formalize the counterfactual reasoning. Given a possible
world w, a sphere system is a set of sets of worlds centered on w, nested,
and closed under union and intersection. It is meant to carry information
about the comparative overall similarity of worlds. Any particular sphere
around world w is to contain just those worlds that resemble w to at least a
certain degree. If one world lies within some sphere around w and another
world lies outside that sphere, then the first world is more closely similar to
w than the second.

e Quantitative approaches, that are based somehow on a numerical defini-
tion of degree of truthlikeness or similarity, following the last tradition of
truthlikeness as it is pointed out by Niiniluoto in (Nii87, pag. 203), and
by Weston (Wes87). This kind of approach, although not always within a
formal logical framework, has blossomed after the introduction by Zadeh
(Zad71) of fuzzy similarity relations as graded modelings of similarity rela-
tions, originally to be used in techniques of categorization and clustering.
From then, similarity-based reasoning has taken an important place in the
context of fuzzy reasoning. In this second group, we may mention works
such as (Rus91; DP94; Yin94; EGG94; DEG195; Kla95; BJ96; DEGT97).

In this paper we will be mainly concerned with reviewing the logical for-
malizations of similarity-based approaches based in one way or another on
the notion of fuzzy similarity relations.
A (binary) fuzzy similarity relation S on a given domain D is a mapping

S : D x D — [0,1] fulfilling some basic properties trying to capture the
notion of similarity.

Reflexivity: S(u,u) =1 for all w € D

Separability: S(u,v) =1iffu=wv

Symmetry: S(u,v) = S(v,u), for all u,v € D

®-Transivity: S(u,v) ® S(v,w) < S(u,w), for all u,v,w € D
where ® is a t-norm. The reflexivity property establishes that the simi-
larity degree of any world with itself has the highest value. Separability is
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a bit stronger since it forbids to have S(u,v) = 1 for u # v. Symmetry
has a clear meaning, and ®-Transitivity is a relaxed form of transitivity
since it establishes S(u,v) ® S(v,w) as a lower bound for R(u,w). Note
that S(u,v) = S(v,w) = 1 implies S(u,w) = 1. Reflexive and symmetric
fuzzy relations are often called closeness relations, while those further sat-
isfying ®-transitivity are usually called ®-similarity relations. Sometimes,
the name similarity relation is also used to denote in fact min-similarity re-
lations. These relations have the remarkable property that their level cuts
Se = {(u,v) € D | S(u,v) > a}, for any a € [0,1], are indeed equivalence
relations.

The question which set of the above properties better models the in-
tuitive notion of similarity has led to some interesting discussions in the
literature (see e.g. the series of papers (DeCKO03a; Bod03; Boi03; Jan03,;
Kla03; DeCKO03b)) related to the Poincaré paradox and the ®-transitivity
property, but such a matter is not in the scope of this paper.

Even though Zadeh introduced both the notions of fuzzy sets and fuzzy
similarity relations, only recently it has been remarked the duality between
these two notions, which in turn generates another duality between fuzzy
reasoning and similarity-based reasoning. Moreover, as it is pointed out by
Klawonn and Castro (KC95), even if similarity is not the intended inter-
pretation of fuzzy sets, one can not avoid the effects of similarity which are
inherent in fuzzy sets and in fuzzy reasoning.

Indeed, a fuzzy similarity relation S : D x D — [0,1] defines, for each
crisp subset E C D, a corresponding fuzzy set approz_E of those elements
which are close to E (in the sense of being close to some element of E),
just by defining its membership function peppros_ g : D — [0,1] as

/Japproac,E(u) = sup{S(u, U) ‘ v E E}

Note that the membership degree poppros_g(w) is taken as the (highest)
similarity degree of u to some element of E, in particular poppros_g(u) =1
if w € F (and conversely in the case S is separating). Therefore, F C
approz_E, and hence approx_E can be properly considered an upper (fuzzy)
approximation of . Moreover, if F a set of typical elements satisfying some
given property P, approz_g(u) can also be viewed as a typicality degree of
u with respect to the property P (in accordance with Niiniluoto’s proposal
(Nii87)).

Conversely, a fuzzy subset A on a domain D, with membership function
pa: D —[0,1], can be thought of as being defined by

(i) a set of prototypes E4 = {u € D | pa(u) = 1}, i.e. those elements
that fully belong to A, and
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(ii) a fuzzy similarity S such that the membership degree pa(u) for any
u € A is interpreted as the (highest) similarity degree of u to some
prototype of A, that is, pua(u) = sup{Sa(u,v) | v € Ex}. Indeed, it
suffices to define

Sa(u,v) =min(pa(uw) = pa(v), pa(v) = pa(u))
for = being the residuum of some (left-continuous) t-norm.

Note, however, that the induced similarity S is not unique, it depends on
the fuzzy set A.

3 Logical approaches to formalize fuzzy
similarity-based reasoning

From a logical point of view, two different paths of research are upheld
according to take as primitive notion either a similarity relation between
worlds (models), which is then used to define approximate semantical en-
tailments, or a similarity relation between formulas, which is then used to
define a notion of approximate (syntactical) proof, by allowing a partial
matching mechanism in the inference steps. We mention next main works
related to each approach:

e Ruspini presents in (Rus91) “a semantic characterisation of the major con-
cepts and constructs of fuzzy logic in terms of notions of similarity, closeness,
and proximity between possible states (worlds) of a system that is being
reasoned about”. Following Ruspini’s conception, a family of entailments
has been proposed and applied to Case-Based and Interpolative Reason-
ing (DEG'95; DEGT97; DEG*'98). In those works, the characterisation
of entailments are strictly semantic. Ruspini’s perspective is intrinsically
modal, although he never produced a full-fledged modal logical framework.
However, this gap may be easily overcome by considering a definition of
truthlikeness based on similarity measures between worlds and used as ac-
cessibility relations in a Kripke’s semantics.

e Ming-Sheng Ying presents in (Yin94) “...a propositional calculus in which
the truth values of sentences are true or false exactly, but the reasoning may
be approximate by allowing the antecedent of a rule to match its premise
only approximately”. Thus, he wants to give a notion of an approximate
proof like one of approximate calculus in, for example, resolution of systems
of equations. In (BG98) the authors generalise Ying’s proposal and reduce
it to a fuzzy logic in the Hilbert style as defined by Pavelka in (Pav79).
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Besides these logical-oriented developments, other more fuzzy set based ap-
proaches to model patterns of similarity-based reasoning have been devel-
oped. For instance, Klawonn et al. have developed interpolation methods
to obtain fuzzy control functions which are modelled by similarity relations
between terms (KK93; Kla94; Kla95; KC95; KGK95; KN96). The notion
of extensionality appears as fundamental in their investigations. Indepen-
dently, Boixader and Jacas (BJ98) have proposed models of approximate
reasoning through the same concept of extensionality with respect to a
natural ®-indistinguishability operator. They consider the degree of in-
distinguishability between fuzzy sets as a formal measure of its degree of
similarity. Although of different nature, it is also worth mentioning Hiiller-
meier’s probabilistic framework for similarity-based inference (Hiil01) where
he provides a formal model (called similarity profile) of the principle that
“similar causes bring about similar effects” which underlies most approaches
to similarity-based reasoning and based on a probabilistic characterization
of the similarity between observed causes.

In the rest of the paper we overview the above two kinds of logical
approaches and related issues.

4 Fuzzy similarity and approximate proofs

Following (Yin94), (BGY00) and (Ses02), the idea is to consider inferences
that may be approximated by allowing the antecedent clauses of a rule to
match its premises only approximately. In particular, the classical SLD
Resolution is modified in order to overcome failure situations in the uni-
fication process if the entities involved in the matching have a non-zero
similarity degree. Such a procedure allows us to compute numeric values
belonging to the interval [0,1], named approzimation degrees, which pro-
vide an approximation measure of the obtained solutions. This framework,
which we shall call Similarity Propositional Logic Programming (SPLP), is
the propositional version of that one proposed by Sessa in (Ses02) which is
based upon a first order language. In (GS99b) we find the first proposal
to introduce similarity in the frame of the declarative paradigm of Logic
Programming. Logic programs on function-free languages are considered
and approximate and imprecise information are represented by introducing
a similarity relation between constant and predicate symbols. Two trans-
formation techniques of logic programs are defined. In the underlying logic,
the inference rule (Resolution rule) as well as the usual crisp representation
of the considered universe are not modified. It allows to avoid both the in-
troduction of weights on the clauses, and the use of fuzzy sets as elements of
the language. The semantic equivalence between the two inference processes
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associated to the two kinds of transformed programs has been proved by
using an abstract interpretation technique. Moreover, the notion of fuzzy
least Herbrand model has been introduced. In (Ses0l) the generalization
of this approach to the case of programs with function symbols is provided
by introducing the general notion of structural translation of languages. In
(Ses02) the operational counterpart of this extension is faced by introduc-
ing a modified SLD Resolution procedure which allows us to perform these
kinds of extended computations exploiting the original logic program, with-
out any preprocessing steps in order to transform the given program. Some
relations, which allow to state the computational equivalence between these
different approaches, has been proved. Finally, for completeness sake, we
also cite (FGS00) where a first and different (it takes into account substi-
tutions of variable with sets of symbols) generalized unification algorithm
based on similarity has been proposed.

Suppose, as it is the case in (Yin94; BG98; BGY00), that the starting
point is a similarity relation S (reflexive, symmetric and min-transitive re-
lation) defined on the set Var of propositional variables. A first problem is
how to extend the similarity S over Var to a similarity over a propositional
language L built from Var. In Ying and Gerla’s papers the extension is
done in two steps:

(1) First S is extended to S on L by the following recursive definition,

_ S(p,q), if p,q € Var
Sp.q) =1 S(s,8)AS(t,t'), ifp=s—tandqg=s —1
0, otherwise

Notice that S is not compatible with the logical equivalence. Take, for
example, F' — p = p — p for every p € Var and a simple computation
shows that S(F — p,p — p) = 0.

(2) Second they define what is proved to be the minimal similarity relation
S. over £ compatible with logical equivalence and containing S, as:

Se(p,q) =

sup{S(p1,p2) A ... AS(p2n—1,p2n) | P1 = P, P2n = q and pay = Pogi1
for k=1,n—1}.

The main problem arising from this definition is that it is not evident how
to practically compute the relation S.. Moreover the following results can
be proved:

(i) There does not exist a functional extension of S compatible with log-
ical equivalence.
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(ii) Any similarity relation preserving logical equivalence defines a simi-
larity relation between classes of logical equivalent formulas and thus
a similarity relation between subsets of interpretations, i.e. subsets of
Q). Take into account that, in the finite case, there exists an isomor-
phism between propositions and subsets of interpretations. Moreover
any similarity relation over the set of subsets of €2 defines a similarity
relation over L compatible with logical equivalence.

(iii) Relations S, obtained from a similarity relation S over the set Var by
Ying-Gerla’s method do not cover all similarity relations compatible
with logical equivalence. For example, if S.(p,q) = a # 0, then

Se(p, pAq) > min(S(p,p), S(pAp,pAq)) = a and this is not necessarily
true in a similarity relation compatible with logical equivalence.

Based on S, in (BG98) the authors define a consequence operator, Con, :
F(L) x L — [0,1], F(L) being the set of fuzzy subsets of L, by

Con.(T,q) = \/{ge(Taut UT,B)| Bt q}

where Taut denotes the set of classical tautologies and S, is defined as,

S.(r,B)= N\ \/ T(p) A S.(p,q)

qgeBpeLl

for all T € F(L), B C L and p,q € L. The relation S, is not symmetrical,
it may be interpreted as the degree in which B can be considered included
in T. In fact, if T' is a crisp set of formulas, then S.(I', B) = 1 whenever
B C I'. An easy computation shows that a form of generalized Modus
ponens is preserved by this consequence operator, since the inequality

Conc({p — ¢.7'}.q) = Sc(p.p')

holds for any propositions p, g and p'.

In the rest of this section we briefly describe an application of these
ideas in the framework of logic programming developed in (GS99b; Ses02;
FGS00). For simplicity we only consider below the propositional version.
We start by recalling that a logic program P on L is a conjunction of defi-
nite clauses of L, denoted as ¢ « p1,...,pn, n > 0, and a goal is a negative
clause, denoted with < ¢1,...,q,, n > 1, where the symbol “” that sepa-
rates the propositional variables has to be interpreted as conjunction, where
Diy-e sPny G5 q1y---,qn € Var. A SPLP-program is a pair (P, §), where P
is a logic program defined on L and § is a similarity on Var. Given P, the
least Herbrand model of P is given by Mp = {p € Var | P E p}, where F
denotes classical logical entailment. Mp is equivalent to the corresponding
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procedural semantics of P, defined by considering the SLD Resolution. In
the classical case, a mismatch between two propositional constant names
causes a failure of the unification process. Then, it is rather natural to
admit a more flexible unification in which the syntactical identity is substi-
tuted by a Similarity S defined on Var. The modified version of the SLD
Resolution, which we shall call Similarity-based SLD Resolution, exploits
this simple variation in the unification process. The basic idea of this pro-
cedure for first order languages has been outlined in (GS99a). The following
definitions formalize these ideas in the case of propositional languages.

Definition 4.1. Let S : Var x Var — [0,1] be a similarity and p,q € Var
be two propositional constants in a propositional language £. We define
the wunification-degree of p and q with respect to S the value S(p,q). p and
q are A-unifiable if S(p,q) = XA with A > 0, otherwise we say that they are
not unifiable.

Definition 4.2. Given a similarity S : Var x Var — [0,1], a program P
and a goal Gy, a similarity-based SLD derivation of P U {Gg}, denoted by
Go =ci,00 G1 = - =¢y,01, Gk, consists of a sequence Gy, Gh,...,G} of
negative clauses, together with a sequence C4,Cs, ..., Cy of clauses from
P and a sequence aq,qa,...,qp of values in [0,1], such that for all i €
{1,...,k}, G; is aresolvent of G;_; and C; with unification degree ;. The
approximation degree of the derivation is « = inf{ay,...,ai}. If Gy is the
empty clause L, for some finite k, the derivation is called a Similarity-based
SLD refutation, otherwise it is called failed.

It is easy to see that when the similarity S is the identity, the previous
definition provides the classical notion of SLD refutation. The values «a;
can be considered as constraints that allow the success of the unification
processes. Then, it is natural to consider the best unification degree that
allows us to satisfy all these constraints. In general, an answer can be ob-
tained with different SLD refutations and different approximation degrees,
then the maximum « of these values characterizes the best refutations of
the goal. In particular, a refutation with approximation-degree 1 provides
an exact solution. Let us stress that a belongs to the set Aj, Ag, ... of the
possible similarity values in S.

In the sequel, we assume the leftmost selection rule whenever Similarity-
based SLD Resolution is considered. However, all the presented results can
be analogously stated for any selection rule that does not depend on the
propositional constant names and on the history of the derivation (Apt90).
Similarity-based SLD Resolution provides a characterization of the fuzzy
least Herbrand model Mp s for (P, §) defined in (GS99b), as stated by the
following result.
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Proposition 4.3. Let a similarity S and a logic program P (on a propo-
sitional language L) be given. For any q € Var, Mps(q) = o > 0 iff a is
the mazimum value in (0,1] for which there exists a Similarity-based SLD
refutation for P U {— q} with approzimation degree c.

Intuitively, the degree of membership Mp s(gq) of an atom ¢ is given by
the best “tolerance” level o € (0,1] which allows us to prove ¢ exploiting
the Similarity-based SLD Resolution on P U {«— ¢}. Moreover, if S is strict
and Mp denotes the classical least Herbrand Model of the program P, then
q € Mp iff Mpyg(q) =1.

5 Fuzzy similarity and approximate entailments

The starting point in the semantical approaches is to assume that a possible
world or state of a system may resemble more to some worlds than to another
ones, and this basic fact may help us to evaluate to what extent a partial
description (a proposition) may be close or similar to some other.

Under this perspective, an epistemic (in the sense of similarity) state may
be modelled by a set of propositions K, modelling the factual information
about the world, together with a similarity relation S : W x W — [0, 1]
on the set of possible worlds W for some classical propositional language,
modelling how similar or close are worlds among them. Dually, one can
think of § =1 — S as a kind of metric on worlds.

Then, using classical reasoning we may know what are the consequences
we can infer from K, i. e. those propositions p which logically follow from K,
but we can also be interested in those propositions which are approximate
consequences of K, in the sense that they are close to some other proposition
which is indeed a classical consequence of K.

Since in classical logic we can identify propositions with sets of worlds
(in a finitary setting), the above problem reduces to how do we extend
the similarity S between worlds to a measure of similarity between sets of
worlds. And as well-known, a metric between points does not univocally
extend to a meaningful metric between sets of points.

A first consideration is that such a metric has not to be necessarily sym-
metric, in fact, the logical consequence relation is related to the subsethood
relation on sets of worlds (K = p iff [K] C [p]), not on the equality relation.
So, when trying to evaluate to what extent a proposition p is an approx-
imate consequence of K, one is led to measure to what extent the set of
K-worlds are close to be included into the set of p-worlds, and not the other
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way round. In this direction, Ruspini defined the two measures

Is(p| q) = inf sup S(w,w’) and Cs(p | q) = sup sup S(w,w’)
wEd W ep wkqw'l=p

which are the lower and upper bounds respectively of the resemblance
or proximity degree between p and ¢q. Indeed, Ig is an implication (i.e.
inclusion-like) measure, while Cg is a consistency (i.e. intersection-like)
measure.

With these measures, he wants to capture inference patterns like so-
called generalised modus ponens. The value of Ig(p | ¢) provides the mea-
sure of what extent p is close to be true given ¢ for granted and the similarity
between worlds represented by S. In particular, when S is separating and
the set of worlds is finite then, Is(p | ¢) = 1 iff ¢ = p. Moreover, if S is
®-transitive, for a t-norm ®, then Ig is ®-transitive as well (Rus91), i.e.
the inequality

Is(r|p)®Is(p|q) < Is(r | q)

holds for any propositions p, ¢ and r. This property can be seen as a kind
of generalized resolution rule

from: Ig(r|p)>aand Is(p|q) >
infer: Is(r|q) > a®p.

if one interprets Ig(¢ | ®) as the truthlike degree of a (non-material)
conditional “if ¥ then ¢”. On the other hand, if we keep the conditioning
part fixed, Ig fails to cast a generalized pattern of modus ponens of the
following kind, given some proposition K:

from: Is(p—q|K)>a>0and Is(p| K)>5>0
infer: Is(q| K)>a®>0.

Indeed, one can easily produce a counter-example in which we may
have Is(p — ¢ | K) = Is(p | K) > a, with 0 < o < 1 and « arbitrarily
close to 1, but Is(¢ | K) = 0. For instance consider £ generated by only
two propositional variables p and ¢, hence with only four interpretations
Q =A{wr (= pAgw (= pA-g)hws (= —pAghws (= —pA g}
and let S be such that S(w;,w;) = 1, S(wa,wy) = S(wy,ws) = «, and
S(w;,w;) = 0 otherwise. If we take K = {p A ¢}, then it is easy to check
that Is(p — ¢ | K) =a and Is(p | K) =1, but Is(q | K) = 0.

On the other hand, the value of Cg(p | ¢) provides the measure of
what extent p can be considered compatible with the available knowledge .
In particular, in the finite case and with S satisfying separation property,
Cs(p | q) = 1iff ¢ = —p. Observe that, when the propositional language is

18



finitely generated and ¢ is equivalent to a maximal consistent set of propo-
sitions, both measures coincide because there is a unique world w such that
w = ¢. In addition, it is easy to show that, given a fixed r, the measure
Cs(- | r) is a possibility measure (DLP94) since the following identities hold
true:

1. Cs(T|r)=1

2. Cs(J_ | 7“) =0

3. Cs(pVq|r)=max(Cs(p|r),Cslq|r)).

Therefore, we also have Cg(p | r) = max{Cs(pAq | 1), Cs(pA—q|r)}.
In particular, when Cs(p A q | 1) > Cs(p A —q | ), it results that Cs(p | r)
= Cs(p A g | r). This can be interpreted as: the p A g-worlds are closer
(consistent) to the known r-worlds than the p A —g-worlds are. In this
context, the term “closer” is used in the sense of “more similar”. We return
to this consideration in Subsection 7.1.

Based on the Is and C's measures, a first logical system was introduced
in (EGGY94) where Is and Cg were used as lower and upper bounds for
the truthlikeness degree with which a proposition can be entailed in a given
similarity-based epistemic state (K, .S). Namely, formulas in this framework
are pairs of the form (p, [a, f]), with a < /3 are from the unit interval [0, 1].
Then we define

(K, S) = (p, [, 8)) iff Is(p | K) = a and Cs(p | K) < 5.

Here we shall go a bit further in this framework along this notion of
logical entailment. If we fix the similarity S, the above satisfaction relation
can be extended to a consequence relation in the usual way. Let I' =
{(qi, [, Bi]) }icr be a set of graded formulas, and say that (K,S) satisfies
T, written (K, S) =T, when (K, S) & (¢, [o, 3:]) for each ¢ € I. Then we
define

T Es (p, [, B]) iff for each K, (K, S) = (p, [o, 3]) whenever (K,S) =T .

Analogously to classical logic, this notion of logical consequence can be
reduced to involving only worlds. Indeed, if for each proposition p and each
world w we define I(p | w) = sup{S(w’,w) | w' £ p}, then it can be shown
that

r }:S (p, [aaﬁ]) iff for each w, w ):S (pv [aaﬂ]) whenever w ':S r,

where w Eg (p,[a,0]) ff & < Is(p | w) < 6, and w g T iff w =g
(¢, [a, Bi]) for each (g, [, Bi]) € T

3By an abuse of notation, in this case we will also write Is(p | w) or Cg(p | w).
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Of particular interest are formulas of the kind (p, [«, 1]) referring only
to lower bounds for Ig, which seem to be more relevant for our purposes.
In such a case we can just write (p,a). For this subset of formulas one
can define a consequence operator similar to the one defined by Biacino
and Gerla for fuzzy sets of formulas. Indeed, a set of graded formulas I' =
{(gi, ;) }ier can be seen as a fuzzy set of classical formulas with membership

function
_ Q, if q=4q
T(q) = { 0, otherwise
Then one can define a consequence operator Cg based on S such that, for
every fuzzy set of formulas I', Cg(T") is the fuzzy set of approximate conse-
quences of I" with the following membership function:

CS(F)(p) = Sup{a ‘ r ':S (p7 Ck)},

for any proposition p.
Lemma 5.1. Cs(I')(p) = min{Is(p | w) | w =g T'}.

In fact, one can show that, for any S, Cg is a fuzzy consequence operator
since it verifies:
(i) ' <Cs(I)
(ii) if T' < T then Cg(T) < Cs(I)
(iii) Cs(Cs(I")) = Cs(T')
The closure property (iii) is a direct consequence from the above lemma
and of the fact that, for any world w, w g ' iff w g C(T'). When T is
not a fuzzy but a crisp set of formulas, then it is easy to check that one has

Cs(T)(p) =Is(p| MqlqgeT}).

Another way of looking at the above similarity-based consequence oper-
ator is by means of a notion of approximate entailment. Given a *-similarity
relation S on the set W of classical interpretations of a propositional lan-
guage, one starts by defining a (graded) approximate satisfaction relation

¢, for each o € [0,1] by

wESp iff there exists a model w’ of p
which is a-similar to w, i.e. S(w,w’) >«

If w =S p we say that w is an approzimate model (at level a) of p. The
approximate satisfaction relation can be extended over to an approximate
entailment relation in the following way: a proposition p entails a proposi-
tion ¢ at degree «, written p =% g, if each model of p is an approximate
model of ¢ at level «, that is,
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p =3 ¢ holds iff w =% ¢ for all model w of p, i.e. iff I(g|p) >«

p E$ ¢ means “p entails ¢, approximately” and « is a level of strength.
The properties of this graded entailment relation are:

(1) Nestedness: if p =~ ¢ and 8 < a then p =P ¢;
(2) ®@-Transitivity: if p =7 and r =% ¢ then p =*®8 ¢;
(3)  Reflexivity: p EL p;

(4) Right weakening: if p =*q and g = r then p =% r;

(5) Left strengthening: if p =7 and r =% ¢ then p = g;

(6) Left OR: pVrE*qiff p =* ¢ and r =° g;

(7)  Right OR: if r has a single model,

rE*pVvqiffr E*porrE“q.

The fourth and fifth properties are consequences of the transitivity prop-
erty (since ¢ |= r entails ¢ = r) and express a form of monotonicity. The
transitivity property is weaker than usual and the graceful degradation of
the strength of entailment it expresses, when ® # min, is rather natural.
It must be noticed that = does not satisfy the Right And property, i.e.
from p E* g and p = r it does not follow in general that p =* ¢ A r.
Hence the set of approximate consequences of p in the sense of =% will not
be deductively closed. The left OR shows how disjunctive information is
handled, while the right OR reflects the decomposability of the approximate
satisfaction relation with respect to the V connective.

In the case where some (imprecise) knowledge about the world is known
and described under the form of some proposition K (i.e. the actual world is
in the set of worlds satisfying K), then an approximate entailment relative
to K can be straightforwardly defined as

PESk eI pANK ESqiff Is(g|pNK) >«

See (DEGT97) for more details and properties of this derived notion of
relative entailment.

The above approximate satisfaction relation w =% p can be also ex-
tended over another entailment relation [ ¢ among propositions as follows:
p E5q holds whenever each approximate model of p at a given level § is also
an approximate model of ¢ but at a possibly lower level o ® 5. Formally:

p E5q holds iff for each w, w hg p implies w |:g®ﬁ q
Now, p 'qu means “approximately-p entails approximately-¢” and « is a
level of strength, or in other words, when worlds in the vicinity of p-worlds
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are also in the vicinity (but possibly a bit farther) of g-worlds. This no-
tion of entailment, called prozimity entailment in (DEGT97), also admits a
characterization in terms of another similarity-based measure

Js(q|q) =infIs(p | w) = Is(q | w)

where = is the residuum of the (left-continuous) t-norm ® and Is(p | w) =
Sup,,/—p, S(w,w'). Indeed, one can easily check that p E§q holds iff Js(q |
p) > a. This notion of approximate entailment relation can be easily made
relative to a context, described by a set of propositions K we know for sure
to hold, sometimes called background knowledge, by defining

P |E§7Kq holds iff for each w model of K, w )zg p implies w |=g®5 q
One can analogously characterize this entailment by a generalized measure
Js i, namely it holds that p IE?(Sq iff Jx s(q|p)> o, where Ji s(q | q) =
infw:w\:K IS(p | UJ) = IS(q ‘ w)

The entailment [E9; satisfies similar properties to those satisfied by =*.
Characterizations of both similarity-based graded entailments in terms of
these properties are given in (DEG197). It is also shown there that E®
and =% actually coincide, i.e. when there is no background knowledge K,
or equivalently when K is a tautology. However, when K is not a tautology,
= is generally stronger than Ej.

6 Modal and conditional logic accounts of the
similarity-based entailments

In the notions of approximate entailments described in the previous section,
the key presence of a similarity relation on the set of interpretations strongly
suggests a modal logic setting for similarity-based reasoning. Indeed, modal
logic has always received a lot of attention from logicians and after the
publication of Kripke’s semantics (Kri59a; Kri59b), the notion of possible
worlds and of accessibility relation has been inseparably associated with
modal logic. For instance, taking classical propositional logic interpretations
as possible worlds, each level cut S, of the (fuzzy) similarity relation S
defines an accessibility relation: (w,w’) € S, if S(w,w’) > «. Therefore
it makes sense to consider a modal approach to similarity-based reasoning
based on Kripke structures of the form

M:(W/’S’e)’

where W is a set of possible worlds, S : W x W — [0,1] a similarity
relation between worlds, and e a classical two-valued truth assignment of
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propositional variables in each world e : W x Var — {0,1}. Then, for each
a € [0,1] one can consider the accessibility relation S, on W, which gives
meaning to a pair of dual possibility and necessity modal operators ¢, and
Lo

(M, w) = Qap if there is w’ € W such that (w,w’) € S, and (M, w') E ¢.

This defines in fact, a multi-modal logical framework (with as many modali-
ties as level cuts in the similarity relations). Such a multimodal logic setting
is systematically developed by Esteva et al. (EGGR97) and will be reviewed
in Section 6.1.

Note that, if W is the set of classical interpretations of a propositional
language £, then the above notion of modal satisfiability for the possibil-
ity operators {, captures precisely the notion of approximate satisfiability
considered in Section 5, in the sense that, for any p € £, (M,w) | Quap
holds iff w =g p holds. Moreover, the approzimate entailments p =% g can
also be captured by the formula

P — Qag,

in the sense that p = ¢ holds iff M = p — Oag, ie. iff p — OQnq is valid
in M = (W, S,e). As for the prozimity entailments E®, recall that p E%¢
holds iff for all w model of K and for all 3, w =° p implies w %4 ¢.
Therefore, it cannot be represented in the multi-modal framework unless
the similarity relations are forced to have a fixed, predefined set of finitely-
many different levels, say G C [0, 1]. In that case, the validity of the formula

BeG

in the model (W, S, e) is equivalent to the entailment p E(g 4. Obviously,
when C' is not finite, this representation is not suitable any longer.

Partly due to these difficulties, an alternative approach developed in
(Rod02) is to consider a graded conditional logic, where each (approximate
and proximity) entailment is directly represented in the object language
by a family of binary operators indexed by degrees. Indeed, the idea is
to introduce in the language graded binary modalities >, and >, for
each a € G, with the following semantics: given a similarity Kripke model
M = (W, S, e), the following satisfiability conditions are defined:
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(M,w) = >a¢ iff forallw e W, (W, w') | ¢ implies (W,w"”) = ¢
for some w” s.t. S(w',w") > «

(M,w) Eo>,1¢ iff foreach g, (W,w') E ¢ and S(w,w’) > § implies
(Ww”)):wforsomew”st S(w,w") > a®p

Note that the first condition is actually independent from the world
w, it is thus a global condition which is indeed equivalent to the validity
in M of p — Oyt in the previous multi-modal framework, and hence
to the validity of the approximate entailment ¢ =% v (when ¢ and o
are non modal). The second condition is indeed local, and it is easy to
check that the condition of ¢ >, ¥ being valid in M is indeed captures
the proximity entailment ¢ E%i. The technical details of this graded
conditional approach will be described in Section 6.2.

In both the graded modal and conditional logical frameworks, the
following classes of models will be considered:

Y9 ={M=(W,S,e)|S is a fuzzy relation},

¥ ={M=(W,S,e)| S is a serial fuzzy relation},

Yo ={M=(W,S,e)| S is a reflexive fuzzy relation},

Y3 ={M=(W,S,e)| S is a reflexive and symmetric fuzzy relation},
Yy ={M=(W,S,e)| S is a reflexive and ®-transitivity fuzzy relation},
Yo ={M=(W,S,e)| S is a ®@-similarity relation}.

where we assume the fuzzy relations to take values on some given
countable C' C [0,1],i.e. S: W x W — C, and in the class ¥g we are also
assuming that the t-norm ® is closed on C. Furthermore, the notations >}
and X;  will be used to denote the subclasses of ¥; (i € {1,2,3,4,®}) where
the fuzzy relation is separating as well, and where the set of worlds is finite,
respectively. As it is obvious, we have that ¥y 2 31 D 39 D ¥3,3 D g
and therefore, their corresponding sets of valid formulas satisfy the inverse
inclusion.

Yet another line of modeling, alternative to the two above multi-modal
frameworks, has been proposed in the literature. It consists in understand-
ing the grades of the modal and conditional operators as truth-values of
some related syntactic many-valued objects. For instance, if p is a propo-
sition, one can consider another (fuzzy) proposition Qp, read as “approxi-
mately p” and, given a similarity Kripke frame (W, S), define the truth-value
of Op in a world w as the value e(w, Op) = Is(p | w) € [0,1], i.e. the great-
est a for which (M, w) = Qnp. Then one can use a suitable t-norm based
fuzzy logic (Haj98; GHO5), like Godel or Lukasiewicz logics, expanded with
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truth-constants (EGGNO7) as base logic to reason about the modalities. In
such a framework, the evaluation e(w,a — Op) of a formula of the form
a — Op, where @ is a truth-constant representing the value o and — is
interpreted as the residuum of a t-norm, takes value 1 iff e(w,Op) > «a.
Hence, the 1-validity of @ — Op in (W, S) is again equivalent to the validity
of Qap.

Analogously, one may introduce (fuzzy) modalities > and > in such
a way that the truth values of p > ¢ and p > ¢ in a world w € W be
e(w,p > q) = Is(q | p) and e(w,p > q) = Jsw(q | ¢). These approaches,
fully developed in (Rod02), are recalled in Sections 6.3 and 6.4 respectively.

In what follows we will use the special symbol Mg to denote the similar-
ity Kripke model (2, S, e) where Q is the set of all boolean interpretations
of L, S: QxQ — C C[0,1] is a similarity relation (of some of the above
types), and e : Q x Var — {0,1} is the truth-evaluations of variables natu-
rally induced by the elements of €, i.e. e(w,p) = w(p) for any w € Q and
any propositional variable p.

6.1 Multi-modal logic approach

The use of graded modalities is a very well known tool in Philosophy
and Computer Science. Several authors, for instance Goble (Glo70), Fine
(Fin72), Fattorosi-Barnaba and De Caro (FD85), provide graded modal op-
erators [0, (with n € N) interpreted as “there are more than (or at least)
n accessible worlds such that...”. Graded languages with this interpreta-
tion were applied to the areas of epistemic logic (HM92) and of generalised
quantifiers (HR91). Here, the conceptual framework and technical features
are very different.

A general formalization of the similarity-based graded modal logic, as
proposed in (EGGR97), can be summarized as follows:

e Modal Language: The new language L is built over L by adding modal
operators ¢¢ and Q¢ for every rational « € C, where {0,1} C C C [0, 1].

e Formulae: They are built from a set V' (not necessarily finite) of proposi-
tional variables using the classical binary connectives A, V and —, and the
unary operators —, ¢ and (¢ for every rational a € C, in the usual way.

e Satisfiability: Let M = (W, S,e), w € W and ¢ be a formula of £. Then,

we define:
(M,w) = 0% i Is(p|w) > a,
(M,w) EOop if Is(p|w)>a.

The rest of the conditions are the usual ones. Note that this no-
tion of satisfiability needs a definition of implication measure for modal
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formulas since the definition given above is only valid for non modal
formulas. Nevertheless, the implication measure for modal formulas ¢ is
defined as a natural extension in the following way,

Is(p | w) = sup{S(w, &) | (M, ') = ¢}

we shall also introduce the corresponding family of dual modal opera-
tors LIS, and 02 as —O¢%— and —Q9— respectively, and whose satisfiability

conditions are:
(M,w) ECSp if Is(—e|w) <a,
Myw)ED2p if Is(—p|w)<a.

It is easy to see that whenever W is finite, (¢ and [¢ have the
usual Kripke semantics with respect to the accessibility relation S¢ defined
as

wSsw' iff S(w,w') > a.
In contrast, the strict cuts S° of S, ie. wSewW' iff S(w,w’) > «, always
provide the modal operators ¢9 and (12 with the usual Kripke semantics,
even when W is not finite.

e Axioms: For the axiomatic characterization of the different multi-modal
systems, let us consider the following schemes, where, as usual, C' denotes
the range of the fuzzy relations and it is assumed to be of the form
{0,1} € C C[0,1] and closed with respect to the operation ®:

Ko D4 — ) — (Ohp — O49), Va € C
K O%(p— ) — (D% — O%9), Va € C
D: Dfe — 0%

Te: Oép — o, VaeC

T°: 0o — ¢, fora <1

ce: v — O

Be: w — 0505, for a >0

Be: o — 0205, Va e C

4¢: Ueese — Uglaw, Vo, B € C

4°: Uasse — Uglaw, Vo, B € C

Ne€: Uae — UG, for 8 > a,

Ne°: Uae — Ugp, for 8 >

EX  Ofe,

EXe =0%e,

CO: Otp—D%, YVael

ocC: O — O, for a < B,

and the following inference rules
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MP: From ¢ and ¢ — 9 infer 4.
RN¢:  From ¢ infer O¢,p, for a > 0.
RN°:  From ¢ infer 0%, Va € C.

e Completeness: The following completeness results, where PL stands for

prop

ositional tautologies, have been proved in (EGGRI7):

The axiom system MS5(C, ®)** = PL + K + K° + CO + OC
+ EX¢ + EX°+ T¢ 4+ B° 4+ B¢ + 4° + 4¢ + C¢ is complete with
respect to the subclass of finite models of X% when C' is a dense and
denumerable and ® = min.

If C is finite, then the axiom system MS5(C, ®)* consisting of
PL, K¢, B¢, 4¢, C¢, N¢, EX¢, plus MP and RN¢ is complete with
respect to the class of models ¥7,, for any t-norm ®. In this case we
shall see that the open and closed modalities are interdefinable, and
the resulting modal system can be simplified.

If we remove axiom C¢ from the system MS5(C, ®)™" we get a
complete system with respect to the subclass of models Xg f when C'
is dense and denumerable and ® = min.

If C is finite and we remove axiom C° from the system MS5(C, ®)T
we get a complete system with respect to ¥g.

If C is finite and we remove axiom 4¢ (4+ C° resp.) from the system
MS5(C, ®)T we get a complete system with respect to X5 (with
respect to Y resp.).

Once the presentation of the logics is done, we are able to formally claim

that

the basic similarity-based graded consequence relation proposed in

(DEG™95) is fully captured inside these multi-modal systems. Namely,
given a similarity relation S on the set of interpretations 2 of a proposi-
tional language L, if p and ¢ are non-modal formulas, then we have that the
approximate entailment corresponds to

ItC

PFEsq it Ms|=p— 044

is finite, then proximity entailments can be captured as well:

pES ke EMsEK — (050 = 05ga)-
BeC

Finally, we briefly describe three modal systems that can be found in
the literature and which are close to the above mentioned ones:

(i) In (LL92; LL95) Liau and Lin define a multi-modal system like the

one

presented here. One goal of that paper is the relationship of their
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modal system with possibilistic logic and therefore they consider models
such that the relation R only satisfies the so-called serial property, i.e. for
all w € W, sup,,cy R(w,w’) = 1. Obviously this property is weaker than
reflexivity, but to model truthlikeness does not seem meaningful to consider
serial relations which are not reflexive, since in that case the corresponding
mapping might be such that the approximation p* of a proposition p would
not contain the set [p] of interpretations of p. In their works, Liau and Lin
propose a Quantitative modal logic (QML) with C' = [0,1] and prove the
following completeness results:

- The axiom system SK consisting of PL, K¢, K°, CO, OC, EX¢,
EX°, together with the M P and RN? inference rules is complete

with respect to the class of models ¥g.

- The axiom system SKD = SK + D is complete with respect to the
class of models ;.

- The axiom system SKT = SK + T is complete with respect to the
class of models ¥5.

(ii) In a very interesting work, Suzuki (Suz97) proposes a more general
semantics by considering a partial fuzzy accessibility function instead of a
total fuzzy function, as it is the case with our fuzzy similarity relations.
He also describes almost all families of modal systems that we considered
above. But, he only gives a logic of similarity relations when they are min-
transitive. Besides, he only establishes completeness results for the cases
that the range of the partial fuzzy function is an arbitrary finite subset of
[0,1]. Moreover, strong completeness is not available in the general case.
However, we think this work is important because some other general results
which are natural extensions of well-known ones in classical modal logic, are
presented in his work, as for instance, the definition of F-filtration, Craig’s
interpolation theorem, etc.

(iii) Finally, another similar logic is proposed in (CF92). The logic is
called lattice-based graded logic and contains modal operators [J, which
are formed for all a from a finite lattice structure instead of the countable
set C' considered above where {0,1} C C' C [0, 1]. They adopt a semantics
which involves a family of accessibility relations R, for each « in the lattice
(also called multi-relational model in (FH91)). In the finite case, when R, ’s
are nested equivalence relations, their semantics is equivalent to the one
with min-transitive similarity relations.

6.2 Multi-conditional logic approach

The idea of the graded conditional logic approach is to encode in the
language syntactical objects representing both approximate and proximity
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entailments p =* ¢ and p E“¢. To do so, binary (graded) modal operators
are introduced (under some restrictions, e.g. nested modal formulas are
not allowed, and the language is finitely generated) and given appropriate
semantics in terms of similarity Kripke structures. Following (Rod02), the
main notions involved in the graded conditional logical framework to model
similarity-based reasoning can be summarized as follows:

e Conditional Language: The propositional language L generated from a
finite set Var of propositional variables is extended by two families {>4 }occ
and {>>4}aecc of binary operators, where {0,1} C C C [0, 1].

e Conditional Formulae:

- If p is a propositional formula then it is also a conditional formula.
- If p and ¢ are propositional formulas in Ly then for every oo € C :
p >4 q and p >, q are conditional formulas.
- If ¢ and ¢ are conditional formulas then o ¢ is a conditional formula,
where o € {A,V,—}.
- If ¢ is a conditional formula then —y is a conditional formula.
Note that in this language, nested modal formulas are not allowed.

e Satisfiability: Given a model M = (W, S,|), a world w € W and
formulas p and ¢ of Ly, we define:

M,w)Ep>aq if Is(g|p)=a,

Muw)Ep>aq if Iselq]p) =o,
where @ is the maximal elementary conjunction® corresponding to
w®. The rest of the conditions are the usual ones. Note that the notion
of satisfiability for >, is independent of any particular world, i.e. it is a
global notion. The last conditions of satisfiability make clear that in the
object language p >, ¢ and p >, ¢ represent lower bounds of Is(q | p) and

Isz(q | p) respectively.

e Axioms: The following schemes will be used to characterise the different
classes of models (X;) above mentioned, where p and ¢ are propositional
formulas in Ly, and o and [ represent any element in the range C of
fuzzy relations.

4A maximal elementary conjunction, m.e.c. for short, is a conjunction where each
propositional variable in Var appears either in positive or negative form (remember
that we are assuming Var be finite).

5 . . L
That is, the conjunction @ = /\piGVa’r:w(pi)ZI pi A /\pievm:w(m):0 -p; .
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N: P>aq—p>pqif <.
P>aq—p>pqiff<a

CS: p>1q9g—(p—q).
p>1q—(p—q)

EX: p>pq.

pP>04q
B: r>,1 — 71 >,r,if r and v’ are m.e.c.’s
4 P> ) N(@>p7) = p>acs T

P>aN@>pT) =D >agpT
LO: (pVag>ar) < (p>ar)AN(g>aT)

(pVg>ar) & >ar)AN(g>ar)

(r>apVq) < (r>ap)V(r>qq),if risam.e.c.
(s>apVaq) < (8>ap)V(s>aq)

RO:

and the following inference rules:

MP: From ¢ and ¢ — ¢ infer ¢
RK: Frompi A---Ap, — qinfer py A+ App >a q
From py A--- Ap, — g infer py A+ App >a q

e Completeness: The following completeness results have been proved
(Rod02) for different classes of models ¥ in which the set W is fixed to
the set of all boolean interpretations of Ly, for any t-norm ® and range C.
From now on, PL will stand for propositional tautologies. Here, we consider
two kinds of logical systems: CSI and CSJ. In the first, the operators >,
do not appear and in the second, the operators >, are not used. Next we
list the available completeness results for the CSI logics and for the CSJ
logics.

- The approximate conditional system CSI(C,®) = PL+ N + EX +
LO + RO and closed under M P and RK is complete with respect to
Y2s. Furthermore, it is possible to prove completeness with respect
to the subclasses of models X3, ¥4y and Xg ; if we add to CSI(C, ®)
the axioms B, 4 and both B and 4, respectively.

- The system CSI(C,®)™", the extension of CSI(C, ®) with axiom CS,
is complete with respect to the subclass of models ng. Again, it is
possible to extend this result of completeness for the subclasses of
models ¥3,, ¥} ; and X%, by adding to CSI(C,®)" the axioms B, 4
and both B and 4, respectively.

- The proximity conditional system CSJ(C,®) = PL+ N+EX+LO+
RO + 4 and closed under M P and RK is complete with respect to
24'](‘ .
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- The system CSJ(C, ®)™, the extension of CSJ(C, ®) with axiom C'S,
is complete with respect to the subclass of models 3} Iz

Graded approximate and proximity entailments are captured in CSI(C, ®)
and CSJ(C,®) as follows:

approximate entailment: p |:§K g ff MsgEK-—p>,q
proximity entailment: pEske iff MsEK—p>.q

where Mg is the similarity Kripke model over the set of all Boolean
interpretations of the finitely generated language L.
Regarding related work, let us mention that Liau (Lia98) defines what

he calls residuated implication operators = and a:+> corresponding to
>, and its strict counterpart, respectively. He shows how to capture the
approximate and proximity entailments proposed in (DEGT95) with these
implication operators. However, his considerations are purely semantical.
Besides, his motivation is very different because he aims at defining a logical
system where quantitative and qualitative uncertainty may be combined.
According to this author, probabilistic, Dempster-Shafer and possibilistic
theories are included in the first kind of uncertainty, and rough sets and
nonmonotonic theories belong to the second class. In fact, his residuated
implication operators may be seen as graded generalisations of qualitative
possibility relations (Dub86). We also mention that Liau and Lin (LL96)
define a logic for conditional possibility (LCP) based on Dempster’s condi-
tional rule, but LCP is able to model similarity-based entailment only when
the similarity relation is min-transitive. Besides, although an axiomatic
system for LCP is exhibited in its appendix, completeness results are not
established. They mention that their main difficulty in order to obtain a
completeness result lies in the infiniteness of the language. This problem is
however different from the above conditional logics: the need of considering
a finite language was due to properly cope with the Symmetry and Right-Or
properties.

6.3 Many-valued modal logic approach

As already mentioned in the introduction of this section, a possibly more
elegant way of formalising similarity-based reasoning in a modal framework
is to shift from a family of graded classical modalities ¢, (one for each
a € @) to a single many-valued modality ¢. The idea is that, even if p is
a two-valued formula, Op, to be read as approzimately p, is a many-valued
formula which takes Is(p | w) = sup{S(w,w’) | (M,w’) = p} as truth-
value in a world w from a model M = (W, S,e), i.e. such that e(w, Op) =
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Is(p | w). Therefore one needs to choose a suitable (t-norm based) fuzzy
logic as base logic to reason about the modal formulas. If one also wants to
reason explicitly with truthlikeness degrees, then the base fuzzy logic has to
be expanded with truth constants, for instance by adding a constant @ for
each « € C. These expansions have been studied for instance in (EGGNOT)
for the case of logics of continuous t-norms (thus including Lukasiewicz,
Godel and Product fuzzy logics).

However, with the above semantics, one would be led to define a language
without nested modal operators. If one wants to be as general as possible,
one has to generalize the above semantics and allow to deal with modal
formulas of the form ¢, where ¢ may be in turn a many-valued formula.
Indeed, there have been many attempts in the literature to mix many-valued
(or fuzzy) and modal logic semantics, obeying to very different motivations.
These logics consider the fuzzification of either the valuation function or the
accessibility relation in the Kripke model (or both). A complete analysis of
all alternative semantics is provided by Thiele in (Thi93). As it is reported
there, there are different ways to face with the problem of how the truth
values of a formula p in two worlds w and w’ can be combined with the
“degree of accessibility” of w’ from w, expressed as the value of a fuzzy
relation R(w,w’).

Most of the alternatives have appeared as a direct generalisation of the
classical definitions of possibility and necessity. It is easy to see that the
classical definitions are equivalent to the following ones:

e(w,0p) = supyew R(w,w') Ae(w',p)
e(w,0p) = infyew Rlw,w’) = e(Ww,p)

where the existential and universal quantifiers are interpreted by
supremum and infimum operators, respectively. When we shift from
{0,1}-valued to [0,1]-valued evaluations e and accessibility relations R,
following the tradition of fuzzy logics the and connective A is usually
associated to a (left-continuous) t-norm (e.g. Godel, Lukasiewicz or
Product), and the implication connective = has is associated to its
residuum (although other interpretations exist, see e. g. (Yin88)).

This is the alternative taken by Fitting (see (Fit91; Fit92; Fit95)) in his
many-valued modal logic. His many-valued modal logic includes truth con-
stants that are the syntactical counterpart of truth values, but it is confined
to the case where the set of truth values is finite and the t-norm is min. As
another example of this alternative, although somehow particular, we men-
tion Héjek and Harmancova’s work (HH96) (see also (Haj98) for a further
elaboration) where they study a modal logic over a Pavelka-like extension
of the infinitely valued Lukasiewicz’s logic. Their logic is a many-valued
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counterpart of the well-known classical system S5 and proved to complete
with respect to Kripke models with the universal accessibility relation (i.e.
Vw,w' : R(w,w’) =1).

But probably the most interesting work for the purposes of modelling
similarity-based reasoning is (CR07) where Caicedo and Rodriguez define a
very general many-valued modal logic over Godel fuzzy logic by introducing
independently a possibility modal operator ¢ (with the intended meaning
of Op as approzimately-p) and a necessity modal operator OJ (since they are
are not dual). Moreover, to explicitly deal with similarity degrees in the
language they take as base logic the expansion of Godel logic with rational
truth-constants, called RG in (EGNO06), but with only a finite set of truth-
constants. In the following we summarize the most interesting features of
the O-fragment of that related modal systems

e Language: propositional variables, truths constant & for each rational
a € C (where {0,1} C C' C [0, 1] is finite) logical connectives of Godel fuzzy
logic A, — (other connectives are definable, e.g. —p is ¢ — 0) and one
modality ¢.

e Formulae: they are built in the usual way from a set Var of propositional
variables using the binary connectives A, —, truth-constants and the unary
operator ¢

e Satisfiability: models are Godel similarity Kripke models M = (W, S, eq),
in which W # ) is a set of possible worlds, S is a similarity relation on
W x W and e represents an evaluation assigning to each atomic formula p;
and each interpretation w € W a truth value e(p;,w) € [0,1] of p; in w. e
is extended to formulas by means of Gédel logic truth functions by defining

6((,0 A, w) = min(e((p, ’LU), 8(’(/), ’LU)),
e(p = Y,w) = e(p,w) =¢ e(¥,w),

where =¢ is the well-known Gédel implication function®, and
e(TF,w)=r, for allr e C,
e(Qp, w) = sup,, ey min{S(w, w’), e(p, w’)}.

e Axioms: we include here below the axioms of Rational Gdédel logic and a
list of modal axioms

Azioms of Rational Gédel logic (RG):

Gﬁg is defined as ¢t =gy =1if x <y and x =g y = y, otherwise
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(=)= (¥ —=x) = (¢—x))
o= (v — o)

(pAY) = (b Ayp)

(AW AX)) = (L AP)AX)

(=W —=x)=UpAY)—X)
((p—=9¥)—=x) = (¥ —=9)—=x)—x)
0— ¢

= (pAyp)

7A'S = min{r, s}, for r,s € C
T—>5=7=g3,forr,secC
Modal Azioms:

Do: Oe V) — (e V OY)
Zg': O — 0

To: =09

Bo: = =00

4o <><>g0 — <><p

Rl: Or —T

R2: O(F — ¢) = (F— Op)
R3: Ol —=7)—=T) = ((0p—=T)—T)

and the following inference rules:

RNS': From ¢ — 1 infer ¢ — O
MP: From ¢ and ¢ — 1, infer 1

e Completeness: According to (CR07), the system FMTg o(C,min) =
RG + D¢ + Z<J>r + Ty + R1 + R2 + R3 is complete with respect to the
class of Godel similarity Kripke models with reflexive similarity rela-
tions; the system FMTBg o(C,min) = FMTg o (C, min) + By, is complete
with respect to the class of Godel similarity Kripke models with reflexive
and symmetric similarity relations, and the system F'MS5¢ o(C, min) =
FMTBg,o(C,min) 44 is complete with respect to the class of Gédel sim-
ilarity Kripke models with min-transitive similarity relations. It is worth
mentioning that if one adds the axiom

Bool: ¢V =, if ¢ is not modal.

to the above systems, one gets completeness with respect to the correspond-
ing class of models restricted to those where all the propositional (non-
modal) formulas are classical (e.g. two-valued), and hence, only the modal
formulas can get intermediate truth-values.

As for the question of capturing the approximate and proximity entailments
in this many-valued modal framework, it is easy to check that the following
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statements hold for any Boolean propositions p and ¢:

approximate entailment: p|=gq iff @ — (p — Og) is valid in Mg

proximity entailment: p Egq iff @— (Op— Oq) is valid in Mg

where Mg = (2, S, e¢) is the Godel similarity Kripke model with  being
the set of Boolean interpretations of the propositional variables Var. In
other words, p % ¢ iff e(w,&@ — (p — 0¢)) = 1 for all w € ©Q, and p Egq
iff e(w,a — (Op — Oq)) =1 for all w € Q.

It turns out that the main difficulty for defining similar many-valued
modal logics over a t-norm-based fuzzy logic different from Goédel logic is
the fact that the resulting logics are generally not normal (they do not
satisfy axiom K). In particular, this is the case with Lukasiewicz logic with
general Kripke semantics (see (GR98) for an attempt), even though in such
a case the modal operators ¢ and O are dual (O can be defined as =0-),
in contrast to Godel-based many-valued modal logics . One possibility to
avoid this difficulty is to introduce graded modalities [J; (where t € C)
corresponding to the cuts of the many-valued accessibility relation, i.e. using
a semantics of the form

e(w,Opp) = inf{e(p,w') : R(w,w") >t}

to extend the valuation. Then, it is easy to see that all modalities [;
are normal. We notice that in some particular cases, axiomatizations for
these graded modalities can be found in the literature (see for instance
(EGGRI7; Suz97; BEGRO07)). The case considered in (BEGRO7) corre-
sponds to considering the n-valued Lukasiewicz logic L,, as base logic and
having constants in the language for every element in the standard n-valued
Lukasiewicz algebra AL, = {0,1/n,...,(n — 1)/n,n}. An interesting fact
about this case is that [J is definable in the new language as

Oy := (1/771 — Oip@) Ao A((n=1)/n = Opo1yme) AD1p

Finally, let us mention a recent paper by Hansoul and Teheux (HT06) where
they axiomatize a modal system over the infinitely-valued Lukasiewicz logic.
The proof is based on the construction of a classical canonical model. Sur-
prisingly this proof does not need the presence in the language of constants
for every truth value. The trick to avoid the introduction of constants is
based on a result of (Ost88) (see (HT06, Definition 5.3)).

6.4 Many-valued conditional logic approach

Combining the approaches of Sections 6.2 and 6.3, the main idea behind
a many-valued conditional logic approach is that the truthlikeness degree
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with which a (classical) proposition ¢ is an approximate or proximity conse-
quence of another (classical) proposition p is understood as the truth-value
of a (many-valued) conditional formula that has p as its antecedent and
q as its consequent. Therefore one needs to make use of a suitable fuzzy
logic to reason about the conditional formulas. The choice of the particular
fuzzy logic is determined by the class of similarity Kripke models defining
the intended semantics. Namely, if the intended semantics is the class of
s-transitive similarity Kripke models, for some (left-continuous) t-norm x,
then the fuzzy logic to be chosen will be the t-norm fuzzy logic L., ex-
tension of MTL or BL, which is complete with respect to the standard
MTL-algebra over [0, 1]. = ([0, 1], *, =, min, max, 0, 1) defined by t-norm x
and its residuum =-. Such logics have been axiomatized for the whole family
of continuous t-norms (EGMO03) as well as for other left-continuous t-norms
(GHO5). Moreover if one needs to explicitly deal with degrees then such
logics have to expanded by a countable set of truth-constants (EGGNO07).
We will denote by L, (C) the logic of the t-norm * with truth-constants from
a suitable countable set C' C [0, 1].

In the following we summarize the main characteristics of the many-
valued conditional logic built over the logic L. (C).

e Language: The language is built from a finite set of propositional variables
Var plus two binary operators >, > and a constant 7 for each element 7 in
the range C'. The set of propositional formulas built from Var is denoted
as usual by Lg

e Conditional Formulas: The set of conditional formulas £ is built as follows:

- Every propositional formula is also a conditional formula.

If p and ¢ are propositional formulas in Ly then p > ¢ and p > ¢ are
(atomic) conditional formulas.

- Truth-constants 7, with » € C, are conditional formulas.

If ¢ and ¢ are conditional formulas then po ¢ is a conditional formula
where o € {A,, &, —} (connectives =, V and < are definable).

e Satisfiability: A L. (C)-similarity Kripke model is just a usual similarity
Kripke model M = (W, S, e), where now e(w, -) is a {0, 1}-valued interpre-
tation of propositional variables for each w € W, and is extended to atomic
conditional formulas as follows:

e(w,p > q) Is(q|p)
e(w,p>q) = Isz(q|p)

and to compound conditional formulas as usual ones in t-norm-based
logics, i.e.
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e(w, o A1) min(e(w, ¢), e(w,v))
e(w7 90&7/}) = e(w, 90) * 6(&), )
ew,p—9) = elwp)=ew)
Again, notice that the notion of satisfiability for a conditional for-
mula of the kind p > ¢ is independent of the particular world, i.e. it is
global notion, but is not the case with the conditional formulas of the form
p > q. In this case it is also clear that a formula p > ¢ directly represents
Is(q | p) whilst p > ¢ represents Isz(q | p).

e Axioms: Besides the axioms of L.(C), the following axioms will be used
to characterise our many-valued conditional logic:
Bool: pV —p, for p propositional (non conditional).

B: p>q—q>p,if pand g are m.e.c.

4: (p>q&(g>s)—p>s.
(p>q)&(qg>s) = p>s.

LO:  (pVvqg) >r < (p>r)N(g>r).
(pVqg)>r < (p>r)N(g>r).

RO:  (r>pVgq) < (r>p)V(r>gq),ifrisame.c.
(

s>pVq) < (s>p)V(s>q)
and the following inference rules:

MP: From ¢ and ¢ — v infer ¢
RK: From p — g infer p > ¢
From p — ¢ infer p > ¢

e Completeness: Again, two kinds of systems are considered: approximate
fuzzy conditional systems FCSI and proximity fuzzy conditional systems
FCSJ. In the first case only the operator > is used and in the second
case, the operator > is the only used. The completeness results may be
summarised as follows:

- The system FCSI(C, ®), which has as axioms: Lg(C)+ Bool + LO +
RO and is closed under M P and RK, is complete with respect to the
class of models ¥ y. Moreover, we obtain completeness with respect to
the subclasses of models X3, ¥4y and Xg , if we add to FCSI(C, ®)
the axioms B, 4 and both B and 4, respectively.

- The system FCSJ(C,®) = Lg(C) + Bool + LO + RO + 4 and closed
under M P and RK is complete with respect to ¥4.

Note that these conditional logics do not have the axiom C'S as in the
multi-conditional framework and hence they cannot be complete for the
classes of models ¥f (with i € {1,2,3,4,®}). To be so, one would need to
introduce in the logics Baaz’s projection connective A.
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If S is ®-transitive similarity relation on the set €2 of all Boolean interpreta-
tions of the propositional language Ly, the corresponding approximate and
proximity entailments are captured by the FCSI(C, ®) and FCSJ(C, ®)
systems in the following sense:

approximate entailment: p % ¢ iff @ — (p > ¢) is valid in Mg

proximity entailment: p Eskq iff @— (K — (p>q)) is valid in Mg

where Mg = (£, 5, ¢) is defined as in the previous section.

7 Other issues in similarity-based reasoning

Traditional entailments are always monotonic: adding new premises never
invalidate old conclusions, i.e. the set of conclusions increases monotoni-
cally with the set of premises. In this sense, the approximate and proximity
entailments are also monotonic, because due to their definitions of satisfia-
bility, for any similarity relation S, the following occurs:

pES ¢ implies pArEZq
D Eg,Kq implies pAr |E§Kq

However, in some kinds of reasoning like approximate, case-based or inter-
polative where the notion of similarity between situations plays a central
role, sometimes it is necessary to have nonmonotonic entailments based on
similarity like Lehmann’s Stereotypical reasoning (Leh98), or a most re-
cent proposal to provide a logical interpretation (in terms of nonmonotonic
inferences) of dilation and erosion operators used in mathematical morphol-
ogy techniques (BL02). Essentially, this kind of reasoning tries to “jump”
to conclusions without having complete information about the state of the
world, i.e. since the descriptions of complex domains are naturally incom-
plete it is necessary to resort to assumptions, “defaults” , etc. in order to
“fill up” holes of ignorance with assumptions which are taken as valid while
there is not any evidence against them. They are nonmonotonic in the sense
that the increase of the amount of available information as premises may
sometimes lead to the loss of some of previously drawn conclusions. This is
in contrast with the situation for purely deductive reasoning.

In this section we describe some forms of nonmonotonic inference based
on similarity measures between situations as discussed in (GR02), in partic-
ular, those that can be interpreted in terms of consistency and implication
measures. Finally, we also consider the relation between similarity reasoning
and a very close topic to nonmonotonic reasoning which is belief revision.
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7.1 Similarity-based nonmonotonic reasoning

In the recent past, a lot of efforts have been devoted for developing
various approaches to combine uncertain and nonmonotonic reasoning. For
instance, probabilistic semantics for defaults have been developed by Geffner
(Gef88) and Pearl (Pea88) on the basis of Adam’s logic of conditionals,
and the relation between possibilistic logic and nonmonotonicity was early
established by Dubois and Prade (DP9lc).

In (GRO02), the authors consider the issue of combining both similarity-
based and nonmonotonic reasonings. Namely, they study which kinds of
nonmonotonic inference relations naturally arise when using implication and
consistency measures to rank propositions a la Gardenfors and Makinson
(GM94). These measures generate two different types of nonmonotonic
inferences, namely pessimistic and optimistic inferences. The approach
based on consistency measures is indeed very close to Possibility theory,
and we refer to it as optimistic because it takes into account the “closest”
or “best” situations. On the contrary, the approach based on implication
measures is based on two new ideas: a new kind of orderings between sen-
tences called inclusion orderings and a new implication-like measure, which
is called counter-implication measure, where Lg(p | K) indicates the degree
to how close is —p to imply =K. This approach may be called pessimistic
because it considers the worst situation in order to make an assumption.
These two notions are combined to obtain a new form to define comparative
entailments.

In both cases, the starting point is to use an ordering between formu-
las to determinate when a proposition p nonmonotonically implies another
proposition ¢ meaning that ¢ follows from p together with all the proposi-
tions that are expected in the light of p. In order to formalise this notion
of expectation, Makinson and Gérdenfors in (GM94) assume that there is
an ordering < of the sentences in a given language £. Thus, given two
sentences p and ¢, p <F ¢ should be interpreted as “q is at least as expected
as p” or “p is at least as surprising as ¢” (we shall write“p <¥ ¢’ as an
abbreviation for “not ¢ <¥ p”). Makinson and Girdenfors propose three
properties which, they argue, must be satisfied by any reasonable ordering.
They are:

transitivity: If p <¥ ¢ and ¢ < r, then p < r.
dominance: If p |= ¢, then p <F q.
conjunctiveness: p <¥ (pAq) or ¢ <F (p A q).

The authors point out that the first postulate on ezpectation ordering
is very natural for an ordering relation, the second postulate says that a
logically stronger sentence is always less expected and the third constraint
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concerns the relation between the degrees of expectation of a conjunction
p A g and the corresponding degrees of p and ¢ respectively. Note that the
three conditions imply reflexivity (p <¥ p) and connectivity (either p < ¢
or ¢ <¥ p). By way of comparison, it may be mentioned that these axioms
are three of the five conditions used in (Géar88) and (GM94) to define the
notion of epistemical entrenchment for the logic of theory change (see next
section).

Now this ordering can be used to determine when p nonmonotonically
implies ¢ in the case ¢ follows from p together with all the propositions that
are expected in the light of p. The natural idea, according to Makinson and
Gaérdenfors, is to require that the added sentences must be those which are
strictly more expected than —p. This motivates the following definition of
comparative entailment |~:

phq iff pl=gq or there exists 7 such that p A7 }=qand —p <Fr, (1)

where <¥ is an ordering satisfying transitivity, dominance and conjunctive-
ness.

It has been proved in (GM94) that comparative entailments satisfy
the desirable properties of Supraclassicality (SC), Left Logical Equiva-
lence (LLE), And, Consistency Preservation (CP), Cut, Or and Rational
Monotony (RM) (see (GM94) for their definitions) and vice-versa. So these
properties characterize comparative entailments.

An alternative form to define an ordering <¥ between sentences is pro-
posed by (FHL94), it is called possibility ordering and it is required to satisfy
the axioms of transitivity, dominance together with:

disjunctiveness pV g <" porpVvg<Fgq

In this case, p <¥ ¢ denotes that ¢ is at least as possible as p.

As pointed out in (FHL94), the dual of a possibility ordering, defined
as p < ¢ iff ~¢ <F —p, is an expectation ordering in the above sense
of Gérdenfors and Makinson. So, if the condition —p < r is changed
by —=r < pin (1), we shall obtain an equivalent comparative entailment.
Furthermore, in (FHL94) it is shown that the following three clauses are
equivalent for a possibility ordering <"

1. there is a proposition r such that p Ar = ¢ and —r < p.
2. pA—g < p.
3. pAg<FpAg.

These conditions allow us to give different (but equivalent) versions of (1) in
terms of possibility orderings, e. g. p v ¢ iff either p = g or pA—q < pAg.
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Now, we are in condition to focus on the orderings on propositions that
a body of evidence K and a similarity measure S on worlds induce when the
corresponding consistency measure Cg(- | K) is used to rank propositions.
As it was mentioned in Section 5, since the consistency measure Cg(- | K)
is also a possibility measure, the ordering induced on formulas defined by:

p<cqiff Cs(p| K) < Cs(q| K), (2)

read as “q is at least as consistent (with K) as p”, is is a qualitative possibility
relation in the sense of Dubois (Dub86), i.e. the qualitative counterpart
of a possibility measure. A qualitative possibility relation is a possibility
ordering (as defined above) together with this further axiom

non-triviality: 1 <¢ T

where <¢ is the strict part of the ordering <c. According to the previous
section, the corresponding comparative entailment |~¢ is then defined as

p e q iff either p = qor pA—g <cpAg.

Although some are stronger than the others, in (FHL94) it is shown that
qualitative possibility relations and possibility orderings generate the same
family of nonmonotonic entailments T Consequently, a consequence re-
lation |~ satisfies SC, LLE, And, CP, Cut, Or and RM iff there exists a
proposition K and a similarity S on possible worlds such that p |~ ¢ iff
pEqgor Cs(pAqg| K) > Cs(pA—q| K). Indeed, although the orderings
of sentences defined by consistency measures <o are qualitative possibility
orderings, they have a different meaning because p <c ¢ means q is at least
as consistent with K as p, where the level of consistency is understood as a
degree of closeness to K. This way of interpreting the ordering is different to
the ones based on preference or possibility. Next, we consider another way
to define nonmonotonic inference relations from a more interesting perspec-
tive because the ordering is induced taking into account the most distant
worlds instead of the closest ones.

As it is pointed out by Makinson in (Mak94, pag. 46), if we want
to abandon monotony then we will also have to abandon contraposition.
However, in many occasions, the information we get is in a different way
from the one we need it. For instance, we know for sure that if the battery
is discharged the car will not start, thus a very common trouble shooting
rule is the following: “if a car engine does not start up then it is possible
that its battery is discharged”. And from this rule of thumb, one can derive,

7However, the non-triviality property will become relevant when we will analyse the
relationship between similarity logic and belief revision

41



by contraposition, another rule, in this case a predictive rule: “If the car
battery is charged up then probably the engine will start up”. Note that this
last rule (like the first one) is nonmonotonic because it is not intended to
assert that the antecedent alone is a sufficient condition of the consequent,
but jointly with a set of assumptions commonly accepted in the context of
this rule. In order to capture this intuition, we now consider a notion of
nonmonotonic consequence p j~ ¢ that it is based in the degree of implication
of =p by —q.

As we have already mentioned, an implication measure Ig(- | K) does
not verify any interesting decomposability property and this makes it quite
difficult to grasp which properties may satisfy an ordering on propositions
defined as

p<rqiff Is(p| K) < Is(q| K)

However, in (GR02) they find a way out by contrapositive reasoning.
Namely, if Is(p | K) measures to what extent p is implied by K, one can
also consider another implication-like index Lg(p | K) measuring to what
extent —p implies =K defined by:

Ls(p| K) = Is(—K | —p).

Lyg is called a counter-implication measure. It is easy to show that, given a
fixed consistent K, the measure Lg(- | K) fulfills the following properties:
1. Lg(T|K) =1
2. Ls(pAg| K)=min(Ls(p | K), Ls(q | K))

but fails to satisfy Lg(L | K) = 0. This means that Lg(- | K) is very close
to a necessity measure®. So close, that the ordering induced by it,

p<rqiff Ls(p| K) < Ls(q | K), (3)

is a genuine expectation ordering, that is, it satisfies transitivity, dominance
and conjunctiveness. Indeed, the ordering <y will be a qualitative necessity
relation (i.e. the dual of a qualitative possibility relation) and the condition
1 <y, T will hold, if S is separating . Therefore we can also prove that an
inference relation |~ satisfies SC, LLE, And, Or, RM, CP, Cut, Or and RM
iff there exists a proposition K and a similarity S on possible worlds such
that p |~ ¢ iff either p =g or Ls(p — q| K) > Ls(p — —q | K).

Finally, it is interesting to also express |~y in terms of the graded
approximate entailment =% introduced in Section 2. Just by applying the

8 A formal study of a weaker notion of necessity which it is not required to satisfy that
the measure of L should be 0 is given in (BG92)
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definitions, it turns out that the following condition holds:

phrq iff either p = ¢ or there exists « € [0,1] such that
pA-qE* K and p A g E* -K.

In other words, ¢ nonmonotonically follows from p, in a context of
K and S, when —K is approximately entailed by —(p — ¢) to a higher
degree than by —(p — —q), or roughly speaking, when falsifying p — ¢
falsifies K more than when falsifying p — —q.

7.2 Belief revision and similarity logic

Theory change formalisms deal with mechanisms for adding (or retract-
ing) a proposition to (from) an existing knowledge base. The natural ques-
tion addressed by these formalisms is what should the resulting theory be.
In particular, one of the basic problems is whether the new information to be
added is inconsistent with the given knowledge base. Concerning this prob-
lem, most relevant works take as a departure point the postulates proposed
by Alchourrén, Gérdenfors and Makinson (AGMS85) for the so-called belief
revision operators. More specifically, in (AGMS85), the authors proposed
eight postulates which, they argued, must be satisfied by any reasonable re-
vision operator . In what follows, given a knowledge base K and a formula
¢, K * ¢ denotes the result of adding ¢ to K. The postulates consist of °:

e six basic postulates

Closure: K xp = Cn(K x @)

Success: ¢ € K x ¢

Inclusion: K x ¢ C Cn(K U{p})

Vacuity: If ~¢ ¢ Cn(K), then Cn(K U {¢}) C K x ¢
Consistency: If —p & Cn(() then L & Cn(K % p)
Extensionality: If ¢ < ¢ € Cn((), then K xp = K * ¢

e and two supplementary postulates
Superexpansion: K x (¢ A1) C Cn((K ) U{¢y})

Subexpansion: If -¢ & Cn(K * ),
then Cn((K x @) U{y}) C K x(p A1)

Gérdenfors (Gar90) has suggested that nonmonotic reasoning and belief
revision are two sides of a same coin. This is specially true for nonmono-
tonic logic based on expectation orderings. In fact, while the above postu-
lates leave the choice of the revision operator quite open, Géardenfors proves

9where Cn is any consequence operator which includes classical propositional logic, is
compact and satisfies the deduction theorem.
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(Gér88) that any a such operator underlines an ordering <gg on the for-
mulas of a knowledge base that guides the revision procedure. He calls this
ordering epistemic entrenchment, and it is an expectation ordering (i.e. it
satisfies the transitivity, dominance and conjunctiveness properties) which
additionally satisfies two further properties:

Minimality: If 1 ¢ Cn(K), then ¢ ¢ Cn(K) iff ¢ <gg ¢ for all ¢
Maximality: If 1) <pp ¢ for all ¢, then ¢ € Cn(0)

The connections between epistemic entrenchment orderings and revision
operators is witnessed by the following relationships (G&r88; LR91; Rot91):

e given an epistemic entrenchment ordering < on a consistent belief set
K the operator x defined by

(EBR) 1 € K xy iff either (¢ — ) < (p — ) or o L.

is a belief revision that satisfies the eight AGM postulates.
e conversely, if x is an operation on a consistent belief set K that satisfies
the eight AGM postulates, then the relation < defined from x by

(C<) o<uiff: If p € K*x—(p A1) then ) € K x—(p A ).
is an epistemic entrechment ordering.

According to these relationships between orderings and belief revision,
and taking account the previous subsection, it is not surprising then that
there is also a connection between similarity-based logical formalism and
belief revision. Indeed, in (DP92), Dubois and Prade have pointed out that
the relation <gpg has exactly the same properties as a qualitative necessity
relation. Hence, the only numerical counterpart of epistemic entrenchment
orderings are exactly those induced by necessity measures. Taking this into
account, the above two relationships also hold when the ordering is an <¢-
(or <r)-ordering, as defined in (2) and in (3) respectively, induced by a
separating similarity relation S. As a final remark, let us notice that, actu-
ally, the symmetry and transitivity properties of the similarity relations are
not needed to generate the orders for defining revision operators. Therefore
it is possible to consider models with a fuzzy binary relation, representing
some more general notion of similarity or “closeness”, for which only the
reflexivity and separating (discriminant) properties would be required.

8 Summary and conclusions

In this paper we have surveyed different approaches to formalize similarity-
based reasoning, in the sense of logical systems that provide a formal account
of the graded notion of truthlikeness. For this, we have first clarified the
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differences between the notion of truthlikeness and the better known no-
tions of uncertainty and vagueness and we have introduced fuzzy similarity
relations as the main tool used to model a graded notion of truthlikeness.
In fact, fuzzy similarity relations can be used, either syntactically or seman-
tically, to define notions of approximate proofs or approximate entailments
respectively. Although both have been addressed in the paper, we have
put more emphasis on the semantical approach where the starting point is
to assume there are possible worlds or situations that resemble more than
others, and this is reflected by a given fuzzy similarity relation between
worlds. Indeed, we have shown how similarity relations on possible worlds
can be used to extend the classical notion of logical consequence leading to
new notions of graded entailments, basically the so-called approximate and
proximity entailments. These ideas go back to Ruspini (Rus91) and are cap-
tured by similarity-based Kripke structures. Based on these semantics, we
have described in detail four formalisations, based on different modal and
conditional logical frameworks, capturing different aspects of these simi-
larity entailments. Finally, we also have addressed the issue of exploring
nonmonotonic aspects in similarity-based reasoning. By following ideas of
Gérdenfors and Makinson (GM94), where they reduce the notion of non-
monotonic reasoning to the notion of ordering between formulas, we have
described some approaches that consider different kinds of similarity-based
orderings to define nonmonotonic consequence relations and operators of
theory revision.

As concluding remarks we may point out that similarity-based reasoning
is a research topic that has many different and interesting facets. In this
paper we have addressed only some issues in the task of logical formalisa-
tion of different notions of approximate consequence that make sense in this
framework. Therefore we have not covered many other reasoning models
where the notion of similarity or truthlikeness plays a key role, like case-
based reasoning or case-based decision. Finally, regarding open problems,
we note a couple of questions. In subsection 6.3, we have described a many-
valued modal system, based on Gédel logic semantics, only for a ¢ operator.
This logic is very important because it allows us to formalize other related
notions, like interpolative reasoning (DEG'97), similarity-based SLD reso-
lution (BGRO5), and fuzzy description logic (Haj05). However, Godel logic
is only one of prominent fuzzy logics. One of the main open problems in this
field is the search for axiomatization for similar many-valued modal systems
based on other fuzzy logics. The difficulty is essentially due to their lack of
normality, i.e. they do not satisfy the K axiom. In Section 7 we have con-
sidered two kinds of nonmonotonic inference based on similarity orderings.
Another approach would be to follow Schlechta’s ideas in (Sch97) where
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he reduces the notion of nonmonotonic reasoning to the notion of distance.
The use of similarity relations instead of distances seems an interesting line
for future research.
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