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A study of Lagrangian chaos, Eulerian chaos, and mixing enhancement in converging—diverging
channel flows, using spectral element direct numerical simulations, is presented. The
time-dependent, incompressible Navier—Stokes and continuity equations are solved for laminar,
transitional, and chaotic flow regimes for 0Be<850. Classical fluid dynamics representations

and dynamical system techniques characterize Eulerian flows, whereas Lagrangian trajectories and
finite-time Lagrangian Lyapunov exponents identify Lagrangian chaotic flow regimes and quantify
mixing enhancement. Classical representations demonstrate that the flow evolution to an aperiodic
chaotic regime occurs through a sequence of instabilities, leading to three successive supercritical
Hopf bifurcations. Poincarsections and Eulerian Lyapunov exponent evaluations verify the first
Hopf bifurcation at 125<Re<150 and the onset of Eulerian chaos at5R@. Lagrangian
trajectories and finite-time Lagrangian Lyapunov exponents reveal the onset of Lagrangian chaos,
its relation with the appearance of the first Hopf bifurcation, the interplay between Lagrangian and
Eulerian chaos, and the coexistence of Lagrangian chaotic flows with Eulerian nonchaotic velocity
fields. Last, Lagrangian and Eulerian Lyapunov exponents are used to demonstrate that the onset of
Eulerian chaos coincides with the spreading of a strong Lagrangian chaotic regime from the vortex
region to the whole fluid domain. €996 American Institute of Physics.

[S1070-6631(96)01205-6]

I. INTRODUCTION sure fields are solved in the spatial domain at any time. From
a dissipative system theory viewpoint, trajectories in the
Chaos is a phenomenon that has been found in manghase space move around an attractor, which can be periodic,
physical systems and has been confirmed both theoreticallyuasiperiodic, or strange, depending on the control parameter
and experimentally. Manifestations of chaos involve a wideof the flow. Thus,Eulerian chaos, also named turbulence,
range of mechanical, electrical, and optical systems, hydroean be interpreted as the state of a system in a strange attrac-
dynamic processes of various length scales, transport praer with at least one positive Lyapunov expon&htin the
cesses and chemical reactions, neurophysiological processésgrangian approach, we deal with the trajectory of each
ecological and urban systems, and celestial mechanics.  fluid particle. Ifu(x,t) denotes the Eulerian velocity field, the
One important application where chaos theory has beemotion of a fluid particle initially located at,=x(t;) is then
shown to be beneficial is in the understanding and exploitadetermined by the differential equatiaix/dt=u(x,t). Thus,
tion of fluid mixing! Regular convective mixing due to vor- a state olLagrangian chaos, sometimes referred to as chaos,
tices, recirculation regions, or cellular convection enhancesan be recognized when the solution of the trajectory equa-
heat transfer by increasing the fluid advection. One charadions has a sensitive dependence on initial conditions, and
teristic of this kind of mixing is that particle paths are non- initially nearby trajectories diverge exponentially fatin
chaotic, that is, trajectories of neighboring particles remairLagrangian chaos, the phase space is conservative, thereby
relatively close to each other. When conditions are such thadttractors are nonexistent. The possibility of having Lagrang-
particle paths are chaotic, there occurs an additional increasen chaos without Eulerian chaos indicates that mixing en-
in heat transfer derived from the random motion of the fluidhancement does not require Eulerian chaos. In this paper,
particles. A similar increase is observed for turbulent flowsEulerian may be referring to weak turbulence and Lagrang-
in which turbulent mixing is responsible for high rates of ian chaos refers to chaos.
heat transport. However, any kind of mixing is also accom-  Even though various researchers have investigated the
panied by transverse momentum transfer, leading to highaelation between Lagrangian and Eulerian chaos, a general
wall shear stresses and requiring more mechanical power t@and unique relationship has not yet been fotirfd.agrang-
maintain a given flow rate. ian and Eulerian chaotic states can be identified by calculat-
ing the Lagrangian and Eulerian Lyapunov exponents,
and\g, respectively, which do not seem to be simply related.
The hydrodynamic equations of motion can be studiecResults obtained in truncated models of the Navier—Stokes
following two different approaches known as Eulerian andequation$ show that\, is not affected by sharp increases of
Lagrangian. In the Eulerian approach, the velocity and presx. at the critical Reynolds number. These results provide
numerical evidence that the onset of Eulerian chaos cannot
@\echanical Engineering, APS members. be predicted from Lagrangian flow characteristics. In addi-
PPhysics and Engineering & Public Policy, APS member. tion, a chaotic velocity field generally implies a chaotic mo-

A. Eulerian and Lagrangian chaos
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tion of particles, with the exception of the Lorenz mddsid 1. ANALYTICAL STUDIES ON LAGRANGIAN AND
the chaotic motion in the point vortex modalvhich exhibit ~EULERIAN CHAOS

Eulerian chaos without Lagrangian chaos. One question that
arises here is whether Lagrangian chaos implies an enhancgﬁd
ment of mixing. Next, we review previous research on cha
otic advection and mixing.

In this section we discuss recent studies on Lagrangian
Eulerian chads*®and describe the actual knowledge on
the relationship between Lagrangian and Eulerian chaos.
These previous studies, limited to simple geometries where
the use of analytical tools is appropriate, show that even
though advances have been made, we are far from having a
thorough understanding of the relationship between Lagrang-
ian and Eulerian chaos. This is more so when realistic engi-
Mixing is directly related to the motion of fluid particles neering devices are considered, since traditional analytical
and is a central issue in heat and mass transfer processes. Tthels, based mostly on evolution equations, are neither appli-
enhancement of mixing due to Lagrangian chaos is referredable nor available.
to as chaotic advection. Most of the work on chaotic advec- There are two different approaches to producing and de-
tion has focused on simple geometry flow regimes. Rescribing stochastic particle motions in a fluid, as pointed out
searchers have found that two-dimensional time-periodiby Aref!® In the first approach, individual particles in a
flows generate complex trajectories of test particles in a Lagiven system move according to stochastic equations of mo-
grangian frameworR-* The chaotic advection phenomenon tion (e.g., advection in a turbulent flowin the second ap-
of a stirred tank flow was studied by modeling the agitator agproach, the stochastic particle motion arises from a flow field
a point vortex and assuming incompressible, inviscid two-described by deterministic equations of motieng., chaotic
dimensional flow$. The motion of a particle shows that an advection). The connection between chaotic advection due to
unsteady blinking vortex causes more rapid mixing and fluidLagrangian chaos and turbulence related to Eulerian chaos is
stretching than a single fixed vortex. Sobeymulated nu-  still unclear. Most studies on chaotic advection have been
merically the motion of fluid tracer particles in an external performed using analytical tools derivated from dynamical
pulsating furrowed channel flow to study dispersion phenomsystem theory. The velocity field is either obtained from a
enon and mixing processes. Increases in mixing for eccentristreamfunction or expressed as a honautonomous system of
journal bearing flows and for driven cavity flows have beenordinary differential equation€ODESs)that satisfies govern-
observed by Chaikeet al° and Chieret al.! respectively. ing equations and boundary conditions, or based on systems
Howeset al*? studied flow mixing enhancement in a baffled with singularities such as point vortices. In analytical studies
channel by the superposition of a time-periodic flow on aof chaotic advection, the Eulerian velocity field is either
steady flow. By using numerically generated flow visualiza-steady or time periodic. In the former, a time-periodic infini-
tions, they observed a regime of chaotic advection for untesimal perturbation is added to the steady flow. Thus, the
steady flows. They also found that the combination of peri-new ODE governing the fluid motion can exhibit Lagrangian
odic baffles and unsteady flow regimes resulted in gooathaos but the Eulerian perturbed velocity field is itself time
radial mixing. Perkingset al!® investigated mixing enhance- periodic.
ment and heat transfer augmentation through a channel con- Rom-Kedaret al® studied fluid particle motions in a ve-
taining periodic square obstructions. Tangbetral® stud- locity field induced by two oscillating counter-rotating point
ied the chaotic advection in a two-dimensional mixed-vortices of equal strength, subject to a sinusoidal time-
convection flow and determined that Lagrangian motion ofperiodic strain field. They used the explicit connection be-
fluid particles becomes chaotic right after reaching the crititween particle motions in a two-dimensional incompressible
cal Reynolds number for periodic flow, that is, at the onset oflow and a two-dimensional Hamiltonian dynamical system.
unsteadiness of the Eulerian velocity field. However, calcuSince it involves only kinematic considerations, the results
lations of the effect of Lagrangian chaotic motion on theare independent of the Reynolds number. The analysis of the
mixing efficiency were not reported. Solomon and Golfub flow topology is based on two concepts introduced by the
studied the chaotic particle transport in time-periodicauthors:(a) the tangle dynamics, i.e., the behavior of stable
Rayleigh—B@ard convection and found that the basic trans-and unstable manifolds as a partial barrier of transport and
port mechanism is chaotic advection in the vicinity of oscil-the intersection between the manifolds that influences the
latory roll boundaries. Sharift al'® studied numerically the stretching and deformation of fluid elements; afij the
kinematics of fluid elements for a flow past a circular cylin- finite time stretchi.e., the temporary exponential stretching
der in the regime of time-periodic vortex shedding. Based orof particle trajectories undergoing chaotic motion and finite
stable and unstable manifolds, they found that the stretch dfme interval over which most of this stretching takes place.
fluid elements tends to be larger close to the unstable maniFhe latter concept is important in open flows, where fluid
folds. The efficiency of mixing is, to a large extent, deter-particles spend only a finite time on a chaotic zone. The
mined by thestretching rate'” which is directly related to stable and unstable manifolds coincide with each other for
the Lagrangian Lyapunov exponerk,. The Lagrangian unperturbed flows. However, the stable and unstable mani-
Lyapunov exponent is by definition the time average of thefolds intersect transversally in the perturbed flow forming a
stretching rates. Consequently, we can interpret the stretchiangle, and nearby fluid particles may separate at an expo-
ing distributions as finite-time Lagrangian Lyapunov expo-nential rate yielding chaotic fluid particle motion. The exist-
nent distributions. ence of transverse heteroclinic orbits, determined by using

B. Chaotic advection and mixing
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the Melnikov function method, gives rise to Smale horse-
shoes as a result of stretching and folding—the mechanism
for chaotic particle motion.
Danielson and Ottinbinvestigated a two-dimensional
wall flow based on a separation bubble near the wall that
reveals a topological similarity to a heteroclinic orbit. They
use a method for constructing flows that involves asymptotic
expansions from a point located at the wall. They obtain an
ODE system by considering a fifth-order expansion and en- *
forcing the series to satisfy the governing equations and non-
slip boundary conditions at the wall. Specific topological
characteristics of a separation bubble, such as separation and
attachment points, are considered to close the system of
ODEs. Their results demonstrate that the flow undergoes a
bifurcation to a time-periodic solution and that this bifurca-
tion provides an adequate periodic perturbation to the heter@sc. 1. converging—diverging channel: nondimensionalized periodicity
clinic orbit represented by the separation bubble, inducindengthL/h=9.33, spanwise lengtt/h=53.33, and maximum heigli/h
chaotic advection. The existence of Lagrangian chaos i 8:66- P1: &/h.y/h.z/h)=(4.67,3.33,26.67).
demonstrated by representing the intersection of stable and
unstable manifolds. The broadband nature of the Fouriestochastic. Then a mathematical description of fluid mixing
power spectra for a fixed spatial location and the evolution tanust address the production and characterization of stochas-
a strange attractor via a period-doubling route indicates dc motions of fluid particles. In the analytical study of an
regime of Eulerian chaos. oscillating pair of vortices, Rom-Kedat al® identify three
Babianoet al® studied the motion of passively advected zones: the free flow region, the core, and the mixing region.
particles in a velocity field generated by three- and four-poinfThe mechanism of fluid transfer between the vicinity of the
vortices in an infinite domain described by a time-periodiccore and the free flow region is based on the splitting of both
streamfunction. To investigate regular and chaotic behaviorghe stable and unstable manifolds, so the region bounded by
they obtain Lagrangian trajectories of fluid particles in dif- the envelope of the manifolds is called the mixing region and
ferent regions of the vortices and Eulerian motion of thethe resulting structure is known as the stochastic layer. Het-
vortices. They found that particle trajectories may be chaoticgroclinic trajectories, unstable manifolds, edge of vortices,
even for a regular velocity field with a vanishing Eulerian and stochastic layers are concepts borrowed from Hamil-
Lyapunov exponent. A point vortex that presents a chaoti¢onian dynamical system and used for describing and quan-
motion is surrounded by an island where advected particletifying chaotic motions of fluid particles and mixing. One of
perform a regular orbit with a zero Lagrangian Lyapunovthe long-term goals of this study is to investigate the possi-
exponent. However, passive particles far from the vorticesbility to achieve high heat transfer rates in transitional flows
but between them, present a chaotic motion with a positivén converging—diverging channels without the penalty asso-
Lagrangian Laypunov exponent. They obtain a similar resulgiated with the significant increase of pumping power in tur-
for passive particles located in a complex two-dimensionapulent flows. Thus, we investigate whether mixing enhance-
turbulent Eulerian flow formed by four-point vortices of con- ment by chaotic flow advection would lead to significant heat
stant and similar size. transfer enhancement on nonchaotic Eulerian flows. To ad-
Based on these previous studies, a generalization of chlress this, we evaluate the mixing enhancement by calculat-
otic advection and of the relationship between Lagrangiaring first the distribution of finite-time Lagrangian Lyapunov
and Eulerian chaos is not possible. In realistic engineeringXxponents of fluid elements in the vortical regions. Future
devices of finite length and variable geometry, the vortexvork will relate heat transfer enhancement to the evolution
dynamics is more Comp|ex_ The Converging_diverging operpf the tail of the distribution of finite-time Lagrangian
flow systens® with more complicated vortical structures can Lyapunov exponents.
be seen as a generalization of the system analyzed by Rom-
Kedaret al® The flow is symmetric until the first Hopf bi- lil. PHYSICAL PROBLEM
furcation appears, and further increases in the Reynolds The converging—diverging channel shown in Fig. 1 is a
number leads to an asymmetric flow. Since analytical expressymmetric wavy-walled channel employed for enhancing
sions of the velocity field based on streamfunctions are nobheat and mass transfer efficiency of industrial transport pro-
known, we perform direct numerical simulatio@®NS) of  cesses. It is also used in biomedical applications such as a
the time-dependent Navier—Stokes equations to obtain theembrane oxygenator and kidney dialyzer for the purpose of
Eulerian velocity field. Therefore, no explicit evolution equa- enhancing mass transfer rates. Numerical calculations and
tions are available for the Lagrangian flow, and we obtain theexperimental studies have been performed in converging—
Lagrangian trajectories by numerical integration of the Eulediverging channels, and global flow patterns have been
rian velocity field. reported:®~2*For low Reynolds numbers there is a stagnant
According to Aref*® a sufficient condition for mixing is  flow region in the upstream part of each furrow. As the Rey-
to involve as many particles as possible in motions that ar@olds number increases, recirculation zones appear on the
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upper and lower furrows, with a flow symmetric with respectlV. PROBLEM FORMULATION AND ALGORITHMS

to the central line of the channel. As the Reynolds number _ _ o o
increases further, the vortex center in each furrow of the Numerical investigations —on the periodically
channel moves downstream and the flow remains symmetri€Onverging—diverging channel flows are performed by Di-
Last, the flow becomes unsteady for larger Reynolds numf€ct Numerical Simulations of the time-dependent, two-
bers and a mixing region with the mainstream is identifieq dimensional, incompressible Navier—Stokes and continuity

These previous studies have only considered fully develope§dtations, given by

steady flows and pulsating external flows. Gummand oV 1

Amor?® investigated the onset and transition process to 5y ~VX@— V7t R—eVsz (1)
chaos by direct numerical simulatiofBNS) of the Navier—

Stokes equations in the converging—diverging channel flow. V-v=0, 2)

Their numerica! results were b_ased on classicgl fluid dynamiz o .o\ is the Eulerian velocity fieldzr=p+ v-v is the

cal representations, such as time series, Fourier power spegc, - ic pressurew=VxvV is the vorticity; and Re is the
tra, and phase space portraits. These results reveal that tag, ,o|4s number. The flow is fully developed in the stream-
f!ow follows a sequence of thre_e supercritical Hopf plfurca-wisex direction and homogeneous in the spanwisgirec-
tions as the Reynolds number increases from a laminar to fon (Fig. 1). The boundary conditions are nonslip at the

transitional regime, and that the transition to an Eulerian ap&salls and periodicity of the fully developed flow in the
riodic chaotic flow occurs through the Ruelle—Takens—g; qtion.

Newhouse scenario. The Reynolds number is defined as Re
A ) S .
2-Uh/v, whereU is the average velocityy is the half-height  .,hgitions are solved numerically using a spectral element

of the channel, and is the kinematic viscosity. ~ method?®?" A three-step, time splitting scheme for the semi-
In this paper we report the dynamical characterization Ofjiscrete formulation of the time-dependent term in the
laminar, transitional, and chaotic flow regimes using La-ngayier—Stokes equations is employed. This splitting scheme
grangian and Eulerian descriptions, and is a continuation ofgnsists of first, a nonlinear step for the convective term
our previous - paper on converging—diverging channelsing an explicit third-order forward-in-time Adams—
flows™ In this paper, we characterize the strength and dygaghforth scheme; second, a pressure step using an implicit
namical properties of chaotic flow regimes by DNS of thegjer_Backward scheme for the pressure term and enforcing
governing equations. We determine the predictability of tranyhe jncompressibility constraint; and finally, a viscous step
sitional and weak turbulent flows. We confirm the evolutive gmploying an implicit Crank—Nicolson scheme, which in-
flow pattern and the sequence of bifurcations in the transitioR|yges the viscous correction and imposes the boundary con-
to Eulerian chaos found in converging—diverging channeljitions. For the spatial discretization in this spectral element
flows by means of classical fluid dynamic representatfdns. method, the domain is first divided into quadrilateral macro-
Through the Lagrangian characterization of these flow regjements, which are isoparametrically mapped from the
gimes, we investigate the onset of Lagrangian chaos and ifghysical space into the local coordinate system. Then the
relation to the first flow instability of the Eulerian velocity geometry, velocity, and pressure in each macroelement is
field. We quantify the strength of Lagrangian chaotic re-represented as a tensor product of high-order Lagrangian in-
gimes, its relation to the onset of Eulerian chaos and theerpolants through Gauss—Lobatto—Chebyshev collocation
mixing improvement due to chaotic advection. Last, we in-points. The nonlinear convective term is evaluated pseu-
vestigate the relationship between Lagrangian and Euleriagospectrally, whereas the pressure and viscous terms, which
chaos in converging—diverging channel flows. We use theorrespond to modified Helmholtz equations, are solved by a
spectral element meth&ti>’to solve the governing Navier— variational approac® The numerical results are obtained by
Stokes and continuity equations and to obtain the Euleriagirect simulation of the governing equations integrating in
velocity and pressure fields. Because the velocity field isime, starting with a predicted steady flow and gradually in-
obtained by DNS, no analytical, time-continuous evolutioncreasing the Reynolds number until a steady, time periodic,
equations are available to relate the Eulerian velocity at fixe@r transitional flow is obtained. The temporal accuracy, the
points with Lagrangian positions of fluid particles. The La- adequacy of the mesh, and the spatial discretization were
grangian trajectories of fluid particles are obtained thereforeinalyzed and discussed in our previous paper on this
by numerical integration of the Eulerian velocity field in the converging—diverging channél.
whole computational domain. Details of the mathematical . .
formulation, the numerical approach, and the algorithms ar@' Dynamical system algorithms
given in Sec. IV. To characterize laminar, transitional, and chaotic flow
The remainder of this paper is organized as follows: Inregimes from the Eulerian viewpoint, we use modern dy-
Sec. IV, we outline the mathematical formulation and dis-namical system techniques such as Poincaretion repre-
cuss the numerical algorithms to perform the computationasentations and Eulerian Lyapunov exponents. The Paincare
simulations. In Sec. V, we present the results of the directection method allows a systematic reduction in problem
numerical flow simulations for the Eulerian and Lagrangiancomplexity by means of reducing the number of dimensions
characterizations. Then, in Sec. VI, we discuss the Euleriaand converting a continuous-time evolution into a discrete-
and Lagrangian representation results, and last, in Sec. VItime mapping. For example, a seemingly complicated trajec-
we summarize this investigation. tory in a three-dimensional phase space can be depicted as a

The governing equationd)—(2) subject to the boundary
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Poincaresection representation, which exhibits a trajectory |
inscribed on a? torus!’?® Poincaresections have the same  « , ,

kind of topological properties as the flow from which they / oy ! "

arise. Starting from observations of a signé), we recon- Dy ,”df;.)' | L i/".
struct the topology of the attractor by taking the phase space d[__dj_‘{[i s A A
x(t), x(t+7), x(t+27), and considering(t) independent L A "md"” Ll 1

of x(t+7) and x(t+27), where 7 is the time delay. This L - . ;' —L - .
does not mean that the attractor obtained in the new space is " "2 % /% 0 Ga ot e
identical to the original phase space; however, the new rep- '

res_entatlon OT the attraqtor' reta'ns the same topological PrORG. 2. schematic representation of the algorithm to calculate the average
erties. To build the Poincargections, we construct a state finite-time Lagrangian Lyapunov exponent based on the convergency of
vector F(tg) ={u(ts),u(t;+ 7)} based on the time delay re- initially nearby fluid particle trajectories.

construction, wher¢, and r are the sampling time and the
time delay, respectivel§? Then, we obtain a trajectory of the
continuous-time evolution, defined by the state vector and
the sampling time, such that each point of that trajectory i

given by {u(ty),u(ts+ 7).t} Last, the Poincarsection is above, has a sensitive dependence on initial conditions.

deFermlned by successive mte_rsectlon pom;s betvx_/een t.h'fherefore, trajectories initially nearby diverge exponentially
trajectory and a plane perpendicular to the time axis, at in;

. . ; . ) fast. The Lagrangian Lyapunov exponext,, estimates the
tgrvals of timeT, whereT Is the period associated with the rate at which the distance between two fluid test particles,
first fundamental frequency of the flow.

. initially close, increases or decreases with time. Lagrangian
The Eulerian Lyapunov exponents spectryins}, pro- y grang

chaotic regimes could occur in laminar and transitional flow

vides a good characterization of the attractor geometric propr—egimes in the presence of well-organized Eulerian velocity

erties and of the dynamical flow propertles. The LyapunoyﬁFldS_ It induces mixing enhancement by chaotic advection
exponent measures the long-time average exponenti

growth or decay of infinitesimal perturbations to a phas and produces, in some devi<_:es, significant increas_es in the
space trajectory, i.e\g measures the sensitivity of the Sys_%eat tran_sfer performance wnh_less cost in power |_nput. _In
tem to changes,in. iniliial conditions on the phase space Ano_nchaotlc_ Lagranglqn flow regimes, Lagranglqn trajectories

. . ) - Moincide with streamlines, whereas in Lagrangian and Eule-
attractor in anN-dimensional phase space Hds yapunov

L rian chaotic flow regimes test particles follow complex La-
exponents. If an attractor has one or more positive Lyapuno}jrangian trajectories
exponentsig, perturbations on the attractor can grow expo- The finite-time Légrangian Lyapunov exponent,, is
nentially fast in the directions of the positive exponents. Indefined as "
such a case, the attractor is chaotic and is calletrange
attractor?® A negative\ implies an exponential decay to- 1
ward the attractor. )\Lzﬁ

Lagrangian chaos is a property of the dynamical system
de/dt=u(x,t), whose solutionx(t), calculated as described

2”: N )/
=N NTH 0% )
) o _ wheredi;=|x,(ti;) —x4(ti;)| is the initial distance between

B. Lagrangian description algorithms two fluid particlesp andq at the initial timeti;, anddf; is

The Lagrangian characterization of laminar and transi{he distance between the same fluid particles at timeThe
tional flow regimes is based on Lagrangian trajectories oftumbem indicates the number of times that this operation is
test particlesx(t) that are obtained by direct numerical inte- répeated for a continuous time evolution of the Eulerian ve-
gration of the Eulerian velocity fieldj(x,t), in the computa- locity field. The sum of all; gives the average finite-time
tional domain for any spatial location. The integration algo-Lagrangian Lyapunov exponerk, , which represents the
rithm is as follows:(i) define the position of a fluid particle divergenceor convergencedf two initially nearby fluid par-
at a given timet, asxy,=x(tg) and get the velocity of this ticle trajectories. Figure 2 shows a schematic representation
particle from DNS asi(xo,to); (ii) calculate the position of of the algorithm described above on a continuous finite-time
this fluid particle at timet,=to+dt asx;, = xy(t;) = x,  evolution ¢f,—tiy)=(tf;—tiz)=---=(tf,=ti,). This rep-
- fi;u(xo,to) - dt, wheredt is a sufficiently small incremen- '€sentation indicates thatdi,=di,=---=di;j=di;;,

! . . . .. =--=di, and, at timestf;=ti;,, j=1,...,n—1, the fluid
tal time. The vglocny of the ﬂu'd. particle at the position particlesp andq are positioned again at the initial positions
X1(ty), u(x4,ty), is calculated by high-order Lagrangian in-

X,(ti;) andx,(ti;), respectively. Therefore, these two fluid
terpolation asu(x;,t;) ==NSNuj;[xi;(t),ty]-hih;, where plth) qltl;), resp Y

. . particles,p andq, remain most of the time confined to the
ujj [x;;(t1), ;] are the Eulerian velocities calculated by DNS |40 region or the region in which we are interested on
at the nodal pointsx;; that are surrounding the position

. o evaluating Lagrangian chaos. For nonchaotic flow regimes
¥,(t1), andhih; are high-order Lagrangian interpolant) " is nonpositive, whereas for chaotic flow regimegs is
calculate the new positions at successive tiyest,—, +dt  greater than zero. A more detailed description of the compu-
asXy = Xn-1 + J7 U(Xn-1,tn-1) - dtuntilthefinaltimeis  tational algorithms to calculate the Lagrangian trajectories
reached. The Lagrangian trajectory of the fluid particles idrom Eulerian velocity fields and the finite-time Lagrangian
the set composed by the poidtg),X;,Xs,...,%,}- Lyapunov exponents can be found in Guzma
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FIG. 3. Periodic flow regime for Re150: (a) Phase-space trajectory Wfvs U; (b) StreamwiseJ (solid line) and crosswis& (dotted line)velocities as a
function of time;(c) Fourier power spectrum of the velocity; and(d) instantaneous stream tracers.

V. RESULTS components are impelled at the same frequesngyexcept
for points located at the central line of the channel, for which
. . . ) he ratio of the fundamental frequencies associated tx-the
of laminar, transitional, and chaotic flow regimes, structure - .

Iand y-flow directions,w,/w,, is 2 due to the symmetry of

as follows: In Sec. V A, we discuss the Eulerian classical 5 . . . )
L . . . ~the channef® The semilogarithmic Fourier power spectrum
characterization of transitional and chaotic flow regimes in

terms of phase portraits, velocity time series, Fourier poweShown in Fig. &) exhibits several peaks corresponding to

spectra, and instantaneous stream tracers; In Sec. V B, Qe fund_la_121 e;tal f requen<t:§o1:0.f3ti.1 651 and.t'ltsl ?Iubhar-
present the Eulerian dynamical characterization of transit 'ONCS- The Fourier spectrum ot this supercritical low con-
tional and chaotic flow regimes in terms of Poiricaeetions firms that the flow has experienced a bifurcation from a time-
and Eulerian Lyapunov exponents. Last, in Sec. V C wdndependent steady state to a time-dependent periodic flow.

describe the Lagrangian characterization for these flow re!N® smoothness of the traveling wave structure and the

gimes based on Lagrangian trajectories and finite-time | glarge-scale asymmetric vortices are shown in the instanta-
grangian Lyapunov exponents. neous stream tracers of Fig. 3(d). A stream trace is the path
traced out by a hypothetical massless particle placed in the

A. Eulerian classical characterization instantaneousvelocity field and it is calculated using a

In this section we summarize the supercritical flow pat-predictor—corrector integration algorithm.
terns predicted numerically as the Reynolds number is in- As the Reynolds number is further incread@@0<Re
creased from 150 to 750. A self-sustained periodic oscilla=<500), another flow instability occurs leading to a second
tory flow is obtained for Re 150, as shown in Fig. 3. This supercritical Hopf bifurcation. An additional fundamental
flow has evolved from a steady state to a limit cycle or pefrequencyw, appears, which represents a quasiperiodic flow
riodic attractor by a first Hopf bifurcation. Figurée3 shows regime with two fundamental frequencies; and w, and
phase-space portraits of crosswise velocity versud) their linear combinations. A plot of the,/w, ratio and the
streamwise velocity depicting the limit cycles at characterisfundamental frequencies, and w, versus the Reynolds
tic points located symmetrically in the chanriElg. 1). Fig- number is shown in Fig. 4. The,/w, ratio is, in general, an
ure 3(b)shows the time evolution of the andV velocities irrational number, indicating that both frequencies are in-
at a characteristic point of the flow domain. Both velocity commensurate. In addition, this frequency ratio decreases as

In this section we present the computational simulation
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rameters lead to chaotic flow regimes, whereas in the

0.85 T T T
o,/o, converging—diverging channel flow, a third supercritical
2 orsh . ] Hopf bifurcation occurs for a higher Reynolds numifRe
S * . ~500), leading to a quasiperiodic attractor with three funda-
% 065} . . mental frequencies and their linear combinatiéhs.
S Figure 5 presents the asymptotically converged, time-
< 0% 1 dependent flow regime corresponding to the frequency-
g ° locking phenomenon at Ret00. This flow regime is ob-
g 0451 L Ze o o o e . ] tained by increasing the flow rate from a previous
2 ° quasiperiodic flow with two incommensurate fundamental
R S 1 frequencies. The periodic flow behavior is clearly depicted
e . . . by the closed curve in the phase-space portrait representing a
028 ——200" 200 500 800 limit cycle [Fig. 5(a)], and by the periodic velocity signals

composed by ten complete periods of oscillations (7
=43.04) [Fig. 5(b)]. The Fourier power spectrum displays
FIG. 4. Fundamental frequencies as a function of the Reynolds number.th€ locked fundamental frequencieg and ,, and a se-
quence of successive peaks corresponding to their harmon-
ics. Finally, the instantaneous stream tra¢€ig. 5(d)]show
the Reynolds number is increased until reaching asymptotithe traveling wave structure and the complexity of motion
cally a plateau that coincides with the appearance of avith the coexistence of different scale vortices occupying
frequency-locking phenomenon at R4&00. Similar both furrows of the channel.
frequency-locking phenomena have also been reported by In Fig. 6 the global flow structure is shown for Ré50
Gollub and Bensott in Rayleigh—Baard convective flows through a sequence of six time frames of instantaneous
and, recently, by Vittori and Blondeaifx for a two-  stream tracers for a period of time corresponding to the first
dimensional oscillatory flow around a circular cylinder. fundamental frequencyw, of this self-sustained oscillatory
However, in those cases, further increases in the control pdlow. We notice the evolving complex topology of the vortex

Reynolds number

0.04} o1r
0.02} 2 00
v 3
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>
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-0.02f
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FIG. 5. Frequency-locking flow regime for R&00: (a) Phase-space trajectory df vs U; (b) streamwiseU (solid line) and crosswise/ (dotted line)
velocities as a function of timer) Fourier power spectrum of theg velocity; and,(d) instantaneous stream tracers.
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dynamics in the furrows with vortices bulging alternatively
to the main flow stream.

An aperiodic flow behavior is obtained for R&50 and
shown in Fig. 7. The phase-space portrait and the time evo-
lution of the velocity components indicate a seemingly ran-
dom, but deterministic, chaotic motion. The large-scale
variations of velocity in the chaotic time series are essen-
tially similar to those in the quasiperiodic flow regime, ex-
cept for a greatly increased number of small-scale fluctua-
tions in the aperiodic regime. The Fourier power spectrum
indicates that the peaks previously observed for-B@0 de-
crease in amplitude and tend to disappear into the back-
ground of a broadband continuous spectrum. However, there
are still prevailing frequency peaks on the continuous spec-
trum. The instantaneous stream tracer plots for this Reynolds
number depict large-scale vortices, also present in the previ-
ous flow regimes, coexisting with small-scale vortices, origi-
nated in this chaotic motion.

B. Eulerian dynamical characterization

The results from the Eulerian dynamical flow character-
ization are presented in terms of Poincaeetions and Eule-

FIG. 6. Instantaneous stream tracers during one period of self-sustaindd@n Lyapunov exponents. Additional dynamlcal system pa-

5t/6 T

oscillatory flow for Re=450 in a sequence of six time frames. rameters such as autocorrelation functions, pseudo-phase
0.15 : . ;
0.0}
v 0.05 §
e .
>
0.00
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FIG. 7. Aperiodic flow regime for Re750: (a) Phase-space trajectory ¥fvs U; (b) StreamwiseJ (solid line) and crosswis& (dotted line)velocities as
a function of time;(c) Fourier power spectrum of thg velocity; and(d) instantaneous stream tracers.
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FIG. 8. Poincaresections for Reynolds number range of 150—850.

space representations and fractal dimensions that verify thend the complicated shape of the limit cycle on the phase
unpredictable nature of deterministic chaotic flow regimesspace. Moreover, the Poincasection shows the frequency-

are reported in Guznmaand Amort® locking phenomenon, already indicated in Sec. V A, occur-
ring at this Reynolds number, and indicates how a quasiperi-
1. Poincaré sections odic flow evolves to a periodic flow with many harmonics at

Poincafesections corresponding to continuous-time evo-& SPecific value of the ratiey/w,. Last, for the Reynolds
lutions, for the Reynolds number range of 150 and 850, ar@umber of 850, the Poincasection depicts a diffuse con-
shown in Fig. 8. Thel-streamwise velocity component of figuration of interception points. We have demonstrated

the point indicated as 1 in Fig. 1 is used to construct the statB'€viously” the existence of a quasiperiodic flow with three
vector. The time delay, for all the reconstructions, is 16 fundamental frequencies at Re=500 and an aperiodic flow

times the sampling nondimensional time=0.375 12, and '€9ime at Re-850 represented by a broadband Fourier

the nondimensional period is 19.53. Very long computa- POWer spectrum. Consequently, the Poincseetion for Re
tional simulations are performed to obtain accurate Poincarg 820 corresponds to a two-dimensional representation of a
section representations. We observe that well-organizegt’ange attractof:

structures exist for Reynolds number of 150, 250, and 400.

For Re=150, points of the Poincasection are located along 2- Eulerian Lyapunov exponents

a closed orbit, indicating the periodic nature of this flow Several techniques have been proposed to calculate
regime. For the Reynolds number of 250, the Poinsa®  Lyapunov exponent¥>° We use the algorithm described
tion shows that the orbits lie on a quasiperiodit torus. by Wolf et al3* to calculate the largest Eulerian Lyapunov
Because thew,/w, ratio between fundamental frequencies isexponent)g, for a Reynolds number range between 150 and
an irrational number, the trajectories in the phase space nev8b0. This algorithm is appropriate for temporal evolutions of
close on themselves. The Poincaeetion in this case is not a signal and assumes no previous knowledge of the physics
a simple curve, but is rather distributed on a surface due tand of the attractor beyond the time series measuretfient.
the presence of many harmonic combinationswgfand of  Time series of 10 001 data points are used for all Reynolds
w,. For the Reynolds numbers of 400, the Poincsgetion numbers, except for Re850 where 35 001 data points are
shows that the attractor is composed of several points in ased, and the embedding dimension for all the Reynolds
closed curve, which indicates the periodic nature of this flownumbers reported is=4 23 Figure 9 shows the temporal

1200 Phys. Fluids, Vol. 8, No. 5, May 1996 Amon, Guzman, and Morel



Re=750. Other flow systems such as open unforced com-
pressible flows past airfoils depict an increase in the Eulerian
Lyapunov exponent as the Reynolds number is increased af-
Re=850 ] ter the onset of chad$.

- N
4] o
———

1

-t
(=)

C. Lagrangian characterization of laminar and
transitional flo regimes

The results presented in previous sections demonstrate
that the flow evolves from a well-organized velocity field to
a regime of Eulerian chaos as the Reynolds number is in-
creased. The positive Eulerian Lyapunov exponexys,for
Reynolds number higher than 550 indicate chaotic flow re-
gimes that are visualized by the Poincaggtion representa-
tions. In this section, we present results for the Lagrangian
descriptions of converging—diverging channel flows, in
terms of test particle trajectories and spatial distribution of
FIG. 9. Temporal convergence of the largest Eulerian Lyapunov exponenthe finite-time Lagrangian Lyapunov exponents, We de-

Ae- scribe Lagrangian trajectories for single test particles located
throughout the flow and for pairs of test particles located in

convergence ofg, which is the long-time average exponen- the vortex region. Then, we present the spatial distribution of

tial growth or decay rate, for different Reynolds numbers. Ath€ finite-time Lagrangian Lyapunov exponent, which en-

zero value of the Eulerian Lyapunov exponekg, within ables us to measure the extension of chaotic regions, the

acceptable numerical accuracy, is obtained for self-sustainegireéndth of Lagrangian chaotic regimes, and the mixing en-

periodic and quasiperiodic oscillatory flows up to Reynoldshancement due to chaotic advection.

numbers of 500. These zero Eulerian Lyapunov exponents, | agrangian trajectories of test particles

indicate that small perturbations in the initial conditions of Figure 11 shows Ladrangian traiectories of three sinale

the phase space decay exponentially toward the attractor. qu - grangian raj : 9

Positive Eulerian Lvapunov exponents. obtained for Re test particles, initially located in different regions of the com-
yap b ' yputational domain, for Reynolds numbers 125, 150, and 400,

Egﬁzrgumbers greater than 500, verify the chaotic flow bef:)assing through many furrows of the channel. For=R25

The asvmptotic values of the Eulerian Lvapunov ex 0_each test particle follows the same path in each furrow of the
ymp yap b fully developed channdlFig. 11(a)]. This behavior is origi-

nents as a function of the Reynolds number are shown in Fiq_.I . :
10. Periodic, quasiperiodic, and frequency-locking flow re- ated by the steady laminar flow regime and, consequently,
] ' ' test particle trajectories coincide with the streamlines of the

imes have zero Eulerian Lyapunov exponents, whereas apg-, . e .
g yap P ' PEulerian velocity field. As the Reynolds number increases to

riodic - chaotic flow regimes e.Xh'b't positive EU|e”an.150, the test particle trajectories do not follow the same path
Lyapunov exponents. The Eulerian Lyapunov exponent is

e " : in each furrow, as shown in Fig. (d). The test particle
definitely positive and remains almost constant around the . . . .
i i . initially located in the middle of the channel follows a tra-
value 1.1 for converging—diverging channel flows at. L .
jectory that remains in the central region of the channel. A
close-up of this region indicates that this particle trajectory is
sinusoidal, and it is synchronized with the periodic nature of
15 — — : the Eulerian velocity field shown in Sec. V A. The trajectory
of a test particle, initially located in the vortex region, is
trapped by the vortex dynamics for a finite amount of time
1.0k 4 before being ejected into the main flow. When the Reynolds
1 number increases to 400, the particle trajectories become
more complex, as shown in Fig. (£). A typical test particle
that starts its motion in the middle of the channel continues
to the vortex region and, finally, returns to the bulk flow.
. ] Similar complex trajectories are observed in test particles
starting their motion in other regions. The complexity of the
test particle trajectories increases when the flow evolves
from a laminar to a transitional regime. As we will see later,
. . the motion of test particles following complex trajectories
200 400 600 800 1000 and the divergence of initially close trajectories contribute to
Re mixing enhancement.
Lagrangian trajectories of five pairs of test particles ini-
FIG. 10. Largest Eulerian Lyapunov exponagtas a function of the Rey-  tially located in the vortex region for various Reynolds num-
nolds number. bers are shown in Fig. 12. The initial and final positions are
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FIG. 11. Lagrangian trajectories of three single test parti¢esRe=125;(b) Re=150; andc) Re=400.

indicated byi andf, respectively. Each curve, composed of jectories that coincide with the flow streamlin@3vioreover,

a sequence of points, represents the trajectories of one pair téfst particles that begin their motion in the vortex region
test particles. The initial position of the test particles for allremain within it forever. A different pattern is observed
the Reynolds numbers is the same. The time for each trajeavhen the Reynolds number increases to 150, where the tra-
tory to reach the final position depends on the initial positionjectory of a pair of test particles remains in the vortex region
of the test particle in the velocity field. In addition, a pair of but without repeating the same p4ffig. 12(b)]. This trajec-
test particles at an initial position in a high-Reynolds numbettory is synchronized with the oscillating motion of the vor-
velocity field reaches its final position in less time than thattices due to the periodic self-sustained flow regime described
required in a lower Reynolds number flow, because the vein Sec. V A. Figure 1&) shows a more complex pattern of

locity magnitude increases with the Reynolds number.
Figure 12(ashows Lagrangian trajectories of five differ-
ent test particles for Re125, where the particles follow tra-

FIG. 12. Lagrangian trajectories of five pairs of test particla3Re=125;

(a)

(¢}

(b) Re=150;(c) Re=250; andd) Re=600.
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Lagrangian trajectories for R&250. Some test patrticles re-
main in the vortex region, following complex trajectories
before exiting the vortex region and, finally, the furrow. The
complexity in trajectories increases even more at=BRe0

for which some test particles exit the vortex region and the
furrow immediately[Fig. 12(d)]. This pattern, originated by
the complex dynamic of the different scale vortices interact-
ing in the furrows of the channel, corresponds to the aperi-
odic Eulerian chaotic regime described in Secs. V A and
V B.

With the purpose of determining whether Lagrangian
chaos spreads to other flow regions as the Reynolds number
increases, we consider Lagrangian trajectories of 13 pairs of
test particles located initially in different regions of the chan-
nel. The initial positions of these test particles and small
portions of their trajectories are depicted in Fig.(d)3for
Re=257. Four pairs of test particles are in the central region
and nine pairs are in the lower furrow of the channel. Figure
13(b) shows that test particles initially located in the vortex
region follow a pattern of Lagrangian trajectories similar to
that of Re=250, whereas test particles initially located in the
channel central region convect downstream with the quasi-
periodic Eulerian velocity field.

The chaotic nature of particle trajectories, and the
spreading of chaotic flow regimes to other regions, cannot be
determined by simply looking at the particle paths, even

Amon, Guzman, and Morel
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FIG. 13. Lagrangian trajectories of 13 pairs of test particles for B&7: (a) &-local coordinate
Initial and final positions| andf, respectively, of pairs of test patrticles after
At=t;—tq; and(b) initial and final positions of fluid particle trajectories for (b)

long-time evolutions.
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though complex paths could provide qualitative indications A1 local coord. ]

of chaos. Thus, we evaluate the divergence of trajectories of

0.20 el

particles initially close by calculating the finite-time La- 0-15¢
grangian Lyapunov exponerx;, . o.10f

0.05} . T
2. Finite-time Lagrangian Lyapunov exponents 000k < » 6

Lagrangian Lyapunov exponents,A,

Figure 14 shows the spatial distribution of finite-time ) ) ) X )
Lagrangian Lyapunov exponents, , of pairs of test par- 00 01 02 03 04 05
ticles for Reynolds numbers equal to 150, 257, and 600. Local coordinates
Three local coordinate systems are defined in Figa)ltb
represent the relative position of each pair of test particles.
The A, —§ coordinate system is defined for test particles ini-gig. 14. Spatial distribution of finite-time Lagrangian Lyapunov exponents
tially located in the vortex region of the upper furrow; the A ; (a) local coordinate systemgp) Re=150 and 600; an(t) Re=257.

A\ —¢ coordinate system is defined for test particles with ini-

tial positions in the channel central region; and the-»

coordinate system is defined for test particles initially located_agrangian chaos regime becomes stronger as the flow re-
in the lower furrow vortex region. gime approaches the onset of Eulerian chaos at Re~550.

The spatial distribution ok, for Reynolds numbers of Figure 14(c)shows the spatial distribution of the finite-
150 and 600 is shown in Fig. 14(b). The positive valuaof time Lagrangian Lyapunov exponents of test particles ini-
for the ten pairs of test particles, at both Reynolds numberdjally located in the central region and lower furrow vortex
indicates that there is a zone in the vortex region where traregion for Re=257. The positive\, value for test particles
jectories of initially close particles diverge exponentially located initially in the central region indicates that this flow
fast. This time-average divergence is uniformly distributedregion develops a strong regime of Lagrangian chaos. The
for Re=150, with a value of\, in the range 0.01-0.06, spatial distribution of, for test particles initially located in
whereas for Re600 is consistently higher as well as the the vortex region, is not uniform and positive valuesaof
spatial distribution of the finite-time Lagrangian Lyapunov can come from test particles located close to test particles
exponent\, presents the highest values near the channelith small negative values of . A negative\, value means
wall. The higher value ol for Re=600 indicates that the that, on average, the initial distance between two initially

(c)
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close fluid particles decreases with time. The varying spatiahave shown that the trajectories followed by test particles
distribution of A, with negative and positive values shows increase in complexity when the flow evolves from a laminar
that Lagrangian chaos has a complicated distribution and cde a transitional regime. Calculations of the finite-time La-
exists with other zones where the flow is nonchaotic. It alsgrangian Lyapunov exponent have indicated that a weak La-
demonstrates that Lagrangian chaos has partially spread gpangian chaotic regime starts as a local phenomenon in the

the whole domain. vortical regions of the fluid domain. The Lagrangian chaotic
regime becomes stronger and spreads to other regions as the
VI. DISCUSSION Reynolds number is further increased. For example, a pair of

test particles located at the channel entrance atR& pre-

_ . _ . sents a vanishing, value that becomes positive at R250.

~ Based on classical fluid dynamics representations, thiResults also show that certain flow regions of the channel
Investigation has revealed the pOSSIbIlIty of triggering Self-have negati\/e or zero finite-time Lagrangian Lyapunov ex-
sustained OSCi”atory flows, has identified the Reyn0|dS nUmponentqe.g', Re:257and coexist with regions of Lagrang-
ber range for periodic, quasiperiodic and aperiodic chaotigan chaos with strong positive values. Last, our results of
flow regimes, and has demonstrated that the route of transj, for Re=600 demonstrate the existence of a strong La-
tion to a chaotic flow regime occurs by successive supercritigrangian chaotic regime in the vortex region, which extends
cal Hopf bifurcations. o over larger areas as the Reynolds number increases.

The transitional flow behavior is analyzed by the geo-  The laminar and chaotic mixing phenomena have been
metric visualization of the evolution of the attractors until thequ‘—ﬂ”tativay visualized and quantitatively measured. By us-
appearance of a strange attractor. The Poinsao#ion rep-  ing |agrangian trajectory representations, we have shown
ence of a periodic flow attractor that evolves to a well-3ssociated with a better mixing and that chaotic mixing, due
defined, T° torus, quasiperiodic attractor, and, then, {0 atg | agrangian chaos, produces mixing enhancement. The ef-
periodic attractor corresponding to a frequency-locking flowficiency of mixing is determined by the stretching rate which
regime as the Reynolds number is increased frqm 150 to 40Qorresponds to the finite-time Lagrangian Lyapunov expo-
In this Reynolds number range, the well-organized structurgent According to Ottind® the stretching distribution can be
of the fl_ow trajectories c_onﬂrms the predictability of theseinterpreted as the finite-time Lagrangian Lyapunov exponent
flow regimes. The evolution to a strange attractor for highelyistribution. Based on calculations bf , we can assert that

Reynolds numberte.g., Re=850from previous quasiperi- he mixing effectiveness improves as the Reynolds number
odic attractors establishes the unpredictable nature of thg . eases and the stretching rate increases as well.

aperiodic orbits, as well as the emergence of a chaotic flow calculations of Lagrangian and Eulerian Lyapunov

behavior via a sequence of successive suspercritical bifurcasynonents indicate that Lagrangian chaos exists in noncha-
tions, as described in GuZzmeand Amorf® The gradual e Eylerian velocity fields in the converging—diverging
transition to chaos through a sequence of bifurcations is alsg,annel for the Reynolds number range between 150 and
confirmed by the evolution of the values of the largest Eule45q \ve have found that the onset of Lagrangian chaos, at
ran Lyapunoy e_xponent\_E, as the Reynolds number is in- o proximately Re=125, coincides with the appearance of the
creasgd. yanlshlng E.uler!an.Lyapunov_exponents corresporﬁr;t Hopf bifurcation, as shown in Secs. V A and V C. This
t9 periodic and quasiperiodic flow regimes, whereas, EUIe[—|opf bifurcation represents the evolution from an initially
rian Lyapunov exponents greater than zero represent Chao%(feady flow to a stable limit cycle of periodic orbits. Our

flow regimes. 'I_'he positive value of the Igrg(_est, Iong't'menumerical results show no evidence of Lagrangian chaos for
average, Eulengn Lyapunov exponeny;, indicates that steady-state flow regimes, which is in agreement with the
chaotic flow regimes exist for Re=550. theoretical argument that time-independent two-dimensional
flows do not present chaotic behavidiThey also indicate a
Lagrangian chaotic behavior for the periodic, time-
The Lagrangian characterization enables the determinaiependent, flow regime resulting from the first Hopf bifurca-
tion of flow regions and flow regimes where Lagrangiantion. Therefore, we can assert that the onset of Lagrangian
chaos is present and can be exploited with the objective ofhaotic coincides with the appearance of the first Hopf bifur-
improving mixing by chaotic advection. Lagrangian trajecto-cation in the Eulerian flow representation.
ries provide qualitative indications of the paths followed by  In summary, we have found thé} both Lagrangian and
fluid particles, whereas finite-time Lagrangian Lyapunov ex-Eulerian Lyapunov exponents are positive for>Rb0; (ii)
ponents provide quantitative evidence of the onset of Laregions of strong Lagrangian chaos exist for>R&0; and
grangian chaos, the spreading of Lagrangian chaos to othéiii) the onset of Eulerian chaos coincides with the spreading
flow regions, and the persistence and strength of Lagrangiaof Lagrangian chaos to the whole domain without producing
chaotic regimes. an inverse effect on the positivg . When Eulerian chaos
Lagrangian trajectories and finite-time Lagrangiansets in, regions of Lagrangian chaos remain chaotic, and re-
Lyapunov exponents indicate that a weak Lagrangian chaotigions with previously weak positive and vanishingvalues
regime is attained for low Reynolds numbéesg., Re=125 become chaotic. Therefore, the onset of Eulerian chaos does
and 150), whereas stronger chaotic regimes are obtained faot have a reversing effect on the Lagrangian chaotic flow
higher Reynolds numbelg.g., Re=250, 257, and 600Ne  behavior. Moreover, a chaotic velocity field implies chaotic

A. Eulerian flo characterization

B. Lagrangian flo characterization
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motions of fluid particles in converging—diverging channelotic trajectories of all fluid particles for Re>550 in
flows. This finding also agrees with most cases studied t@onverging—diverging channel flows.

date, with the exception of the point vortex matahd the

Lorenz model, where Eulerian chaos does not imply La-

grangian chaos and, in which, two nearby particles remaii\ CKNOWLEDGMENTS
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