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A study of Lagrangian chaos, Eulerian chaos, and mixing enhancement in converging–diverging
channel flows, using spectral element direct numerical simulations, is presented. The
time-dependent, incompressible Navier–Stokes and continuity equations are solved for laminar,
transitional, and chaotic flow regimes for 100<Re<850. Classical fluid dynamics representations
and dynamical system techniques characterize Eulerian flows, whereas Lagrangian trajectories and
finite-time Lagrangian Lyapunov exponents identify Lagrangian chaotic flow regimes and quantify
mixing enhancement. Classical representations demonstrate that the flow evolution to an aperiodic
chaotic regime occurs through a sequence of instabilities, leading to three successive supercritical
Hopf bifurcations. Poincare´ sections and Eulerian Lyapunov exponent evaluations verify the first
Hopf bifurcation at 125,Re,150 and the onset of Eulerian chaos at Re'550. Lagrangian
trajectories and finite-time Lagrangian Lyapunov exponents reveal the onset of Lagrangian chaos,
its relation with the appearance of the first Hopf bifurcation, the interplay between Lagrangian and
Eulerian chaos, and the coexistence of Lagrangian chaotic flows with Eulerian nonchaotic velocity
fields. Last, Lagrangian and Eulerian Lyapunov exponents are used to demonstrate that the onset of
Eulerian chaos coincides with the spreading of a strong Lagrangian chaotic regime from the vortex
region to the whole fluid domain. ©1996 American Institute of Physics.
@S1070-6631~96!01205-6#

I. INTRODUCTION

Chaos is a phenomenon that has been found in many
physical systems and has been confirmed both theoretically
and experimentally. Manifestations of chaos involve a wide
range of mechanical, electrical, and optical systems, hydro-
dynamic processes of various length scales, transport pro-
cesses and chemical reactions, neurophysiological processes,
ecological and urban systems, and celestial mechanics.

One important application where chaos theory has been
shown to be beneficial is in the understanding and exploita-
tion of fluid mixing.1 Regular convective mixing due to vor-
tices, recirculation regions, or cellular convection enhances
heat transfer by increasing the fluid advection. One charac-
teristic of this kind of mixing is that particle paths are non-
chaotic, that is, trajectories of neighboring particles remain
relatively close to each other. When conditions are such that
particle paths are chaotic, there occurs an additional increase
in heat transfer derived from the random motion of the fluid
particles. A similar increase is observed for turbulent flows
in which turbulent mixing is responsible for high rates of
heat transport. However, any kind of mixing is also accom-
panied by transverse momentum transfer, leading to higher
wall shear stresses and requiring more mechanical power to
maintain a given flow rate.

A. Eulerian and Lagrangian chaos

The hydrodynamic equations of motion can be studied
following two different approaches known as Eulerian and
Lagrangian. In the Eulerian approach, the velocity and pres-

sure fields are solved in the spatial domain at any time. From
a dissipative system theory viewpoint, trajectories in the
phase space move around an attractor, which can be periodic,
quasiperiodic, or strange, depending on the control parameter
of the flow. Thus,Eulerian chaos, also named turbulence,
can be interpreted as the state of a system in a strange attrac-
tor with at least one positive Lyapunov exponent.2,3 In the
Lagrangian approach, we deal with the trajectory of each
fluid particle. Ifu~x,t! denotes the Eulerian velocity field, the
motion of a fluid particle initially located atx05x(t0) is then
determined by the differential equationdx/dt5u~x,t!. Thus,
a state ofLagrangian chaos, sometimes referred to as chaos,
can be recognized when the solution of the trajectory equa-
tions has a sensitive dependence on initial conditions, and
initially nearby trajectories diverge exponentially fast.3,4 In
Lagrangian chaos, the phase space is conservative, thereby
attractors are nonexistent. The possibility of having Lagrang-
ian chaos without Eulerian chaos indicates that mixing en-
hancement does not require Eulerian chaos. In this paper,
Eulerian may be referring to weak turbulence and Lagrang-
ian chaos refers to chaos.

Even though various researchers have investigated the
relation between Lagrangian and Eulerian chaos, a general
and unique relationship has not yet been found.3–6 Lagrang-
ian and Eulerian chaotic states can be identified by calculat-
ing the Lagrangian and Eulerian Lyapunov exponents,lL
andlE, respectively, which do not seem to be simply related.
Results obtained in truncated models of the Navier–Stokes
equations4 show thatlL is not affected by sharp increases of
lE at the critical Reynolds number. These results provide
numerical evidence that the onset of Eulerian chaos cannot
be predicted from Lagrangian flow characteristics. In addi-
tion, a chaotic velocity field generally implies a chaotic mo-
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tion of particles, with the exception of the Lorenz model7 and
the chaotic motion in the point vortex model,5 which exhibit
Eulerian chaos without Lagrangian chaos. One question that
arises here is whether Lagrangian chaos implies an enhance-
ment of mixing. Next, we review previous research on cha-
otic advection and mixing.

B. Chaotic advection and mixing

Mixing is directly related to the motion of fluid particles
and is a central issue in heat and mass transfer processes. The
enhancement of mixing due to Lagrangian chaos is referred
to as chaotic advection. Most of the work on chaotic advec-
tion has focused on simple geometry flow regimes. Re-
searchers have found that two-dimensional time-periodic
flows generate complex trajectories of test particles in a La-
grangian framework.8–14The chaotic advection phenomenon
of a stirred tank flow was studied by modeling the agitator as
a point vortex and assuming incompressible, inviscid two-
dimensional flows.8 The motion of a particle shows that an
unsteady blinking vortex causes more rapid mixing and fluid
stretching than a single fixed vortex. Sobey9 simulated nu-
merically the motion of fluid tracer particles in an external
pulsating furrowed channel flow to study dispersion phenom-
enon and mixing processes. Increases in mixing for eccentric
journal bearing flows and for driven cavity flows have been
observed by Chaikenet al.10 and Chienet al.,11 respectively.
Howeset al.12 studied flow mixing enhancement in a baffled
channel by the superposition of a time-periodic flow on a
steady flow. By using numerically generated flow visualiza-
tions, they observed a regime of chaotic advection for un-
steady flows. They also found that the combination of peri-
odic baffles and unsteady flow regimes resulted in good
radial mixing. Perkinset al.13 investigated mixing enhance-
ment and heat transfer augmentation through a channel con-
taining periodic square obstructions. Tangbornet al.14 stud-
ied the chaotic advection in a two-dimensional mixed-
convection flow and determined that Lagrangian motion of
fluid particles becomes chaotic right after reaching the criti-
cal Reynolds number for periodic flow, that is, at the onset of
unsteadiness of the Eulerian velocity field. However, calcu-
lations of the effect of Lagrangian chaotic motion on the
mixing efficiency were not reported. Solomon and Gollub15

studied the chaotic particle transport in time-periodic
Rayleigh–Be´nard convection and found that the basic trans-
port mechanism is chaotic advection in the vicinity of oscil-
latory roll boundaries. Shariffet al.16 studied numerically the
kinematics of fluid elements for a flow past a circular cylin-
der in the regime of time-periodic vortex shedding. Based on
stable and unstable manifolds, they found that the stretch of
fluid elements tends to be larger close to the unstable mani-
folds. The efficiency of mixing is, to a large extent, deter-
mined by thestretching rate,17 which is directly related to
the Lagrangian Lyapunov exponent,lL . The Lagrangian
Lyapunov exponent is by definition the time average of the
stretching rates. Consequently, we can interpret the stretch-
ing distributions as finite-time Lagrangian Lyapunov expo-
nent distributions.

II. ANALYTICAL STUDIES ON LAGRANGIAN AND
EULERIAN CHAOS

In this section we discuss recent studies on Lagrangian
and Eulerian chaos3,5,6and describe the actual knowledge on
the relationship between Lagrangian and Eulerian chaos.
These previous studies, limited to simple geometries where
the use of analytical tools is appropriate, show that even
though advances have been made, we are far from having a
thorough understanding of the relationship between Lagrang-
ian and Eulerian chaos. This is more so when realistic engi-
neering devices are considered, since traditional analytical
tools, based mostly on evolution equations, are neither appli-
cable nor available.

There are two different approaches to producing and de-
scribing stochastic particle motions in a fluid, as pointed out
by Aref.18 In the first approach, individual particles in a
given system move according to stochastic equations of mo-
tion ~e.g., advection in a turbulent flow!. In the second ap-
proach, the stochastic particle motion arises from a flow field
described by deterministic equations of motion~e.g., chaotic
advection!. The connection between chaotic advection due to
Lagrangian chaos and turbulence related to Eulerian chaos is
still unclear. Most studies on chaotic advection have been
performed using analytical tools derivated from dynamical
system theory. The velocity field is either obtained from a
streamfunction or expressed as a nonautonomous system of
ordinary differential equations~ODEs! that satisfies govern-
ing equations and boundary conditions, or based on systems
with singularities such as point vortices. In analytical studies
of chaotic advection, the Eulerian velocity field is either
steady or time periodic. In the former, a time-periodic infini-
tesimal perturbation is added to the steady flow. Thus, the
new ODE governing the fluid motion can exhibit Lagrangian
chaos but the Eulerian perturbed velocity field is itself time
periodic.

Rom-Kedaret al.6 studied fluid particle motions in a ve-
locity field induced by two oscillating counter-rotating point
vortices of equal strength, subject to a sinusoidal time-
periodic strain field. They used the explicit connection be-
tween particle motions in a two-dimensional incompressible
flow and a two-dimensional Hamiltonian dynamical system.
Since it involves only kinematic considerations, the results
are independent of the Reynolds number. The analysis of the
flow topology is based on two concepts introduced by the
authors:~a! the tangle dynamics, i.e., the behavior of stable
and unstable manifolds as a partial barrier of transport and
the intersection between the manifolds that influences the
stretching and deformation of fluid elements; and~b! the
finite time stretch, i.e., the temporary exponential stretching
of particle trajectories undergoing chaotic motion and finite
time interval over which most of this stretching takes place.
The latter concept is important in open flows, where fluid
particles spend only a finite time on a chaotic zone. The
stable and unstable manifolds coincide with each other for
unperturbed flows. However, the stable and unstable mani-
folds intersect transversally in the perturbed flow forming a
tangle, and nearby fluid particles may separate at an expo-
nential rate yielding chaotic fluid particle motion. The exist-
ence of transverse heteroclinic orbits, determined by using
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the Melnikov function method, gives rise to Smale horse-
shoes as a result of stretching and folding—the mechanism
for chaotic particle motion.

Danielson and Ottino3 investigated a two-dimensional
wall flow based on a separation bubble near the wall that
reveals a topological similarity to a heteroclinic orbit. They
use a method for constructing flows that involves asymptotic
expansions from a point located at the wall. They obtain an
ODE system by considering a fifth-order expansion and en-
forcing the series to satisfy the governing equations and non-
slip boundary conditions at the wall. Specific topological
characteristics of a separation bubble, such as separation and
attachment points, are considered to close the system of
ODEs. Their results demonstrate that the flow undergoes a
bifurcation to a time-periodic solution and that this bifurca-
tion provides an adequate periodic perturbation to the hetero-
clinic orbit represented by the separation bubble, inducing
chaotic advection. The existence of Lagrangian chaos is
demonstrated by representing the intersection of stable and
unstable manifolds. The broadband nature of the Fourier
power spectra for a fixed spatial location and the evolution to
a strange attractor via a period-doubling route indicates a
regime of Eulerian chaos.

Babianoet al.5 studied the motion of passively advected
particles in a velocity field generated by three- and four-point
vortices in an infinite domain described by a time-periodic
streamfunction. To investigate regular and chaotic behaviors,
they obtain Lagrangian trajectories of fluid particles in dif-
ferent regions of the vortices and Eulerian motion of the
vortices. They found that particle trajectories may be chaotic,
even for a regular velocity field with a vanishing Eulerian
Lyapunov exponent. A point vortex that presents a chaotic
motion is surrounded by an island where advected particles
perform a regular orbit with a zero Lagrangian Lyapunov
exponent. However, passive particles far from the vortices,
but between them, present a chaotic motion with a positive
Lagrangian Laypunov exponent. They obtain a similar result
for passive particles located in a complex two-dimensional
turbulent Eulerian flow formed by four-point vortices of con-
stant and similar size.

Based on these previous studies, a generalization of cha-
otic advection and of the relationship between Lagrangian
and Eulerian chaos is not possible. In realistic engineering
devices of finite length and variable geometry, the vortex
dynamics is more complex. The converging–diverging open
flow system25 with more complicated vortical structures can
be seen as a generalization of the system analyzed by Rom-
Kedaret al.6 The flow is symmetric until the first Hopf bi-
furcation appears, and further increases in the Reynolds
number leads to an asymmetric flow. Since analytical expres-
sions of the velocity field based on streamfunctions are not
known, we perform direct numerical simulations~DNS! of
the time-dependent Navier–Stokes equations to obtain the
Eulerian velocity field. Therefore, no explicit evolution equa-
tions are available for the Lagrangian flow, and we obtain the
Lagrangian trajectories by numerical integration of the Eule-
rian velocity field.

According to Aref,18 a sufficient condition for mixing is
to involve as many particles as possible in motions that are

stochastic. Then a mathematical description of fluid mixing
must address the production and characterization of stochas-
tic motions of fluid particles. In the analytical study of an
oscillating pair of vortices, Rom-Kedaret al.6 identify three
zones: the free flow region, the core, and the mixing region.
The mechanism of fluid transfer between the vicinity of the
core and the free flow region is based on the splitting of both
the stable and unstable manifolds, so the region bounded by
the envelope of the manifolds is called the mixing region and
the resulting structure is known as the stochastic layer. Het-
eroclinic trajectories, unstable manifolds, edge of vortices,
and stochastic layers are concepts borrowed from Hamil-
tonian dynamical system and used for describing and quan-
tifying chaotic motions of fluid particles and mixing. One of
the long-term goals of this study is to investigate the possi-
bility to achieve high heat transfer rates in transitional flows
in converging–diverging channels without the penalty asso-
ciated with the significant increase of pumping power in tur-
bulent flows. Thus, we investigate whether mixing enhance-
ment by chaotic flow advection would lead to significant heat
transfer enhancement on nonchaotic Eulerian flows. To ad-
dress this, we evaluate the mixing enhancement by calculat-
ing first the distribution of finite-time Lagrangian Lyapunov
exponents of fluid elements in the vortical regions. Future
work will relate heat transfer enhancement to the evolution
of the tail of the distribution of finite-time Lagrangian
Lyapunov exponents.

III. PHYSICAL PROBLEM

The converging–diverging channel shown in Fig. 1 is a
symmetric wavy-walled channel employed for enhancing
heat and mass transfer efficiency of industrial transport pro-
cesses. It is also used in biomedical applications such as a
membrane oxygenator and kidney dialyzer for the purpose of
enhancing mass transfer rates. Numerical calculations and
experimental studies have been performed in converging–
diverging channels, and global flow patterns have been
reported.19–24For low Reynolds numbers there is a stagnant
flow region in the upstream part of each furrow. As the Rey-
nolds number increases, recirculation zones appear on the

FIG. 1. Converging–diverging channel: nondimensionalized periodicity
lengthL/h59.33, spanwise lengthW/h553.33, and maximum heightH/h
56.66. P1: (x/h,y/h,z/h)5(4.67,3.33,26.67).
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upper and lower furrows, with a flow symmetric with respect
to the central line of the channel. As the Reynolds number
increases further, the vortex center in each furrow of the
channel moves downstream and the flow remains symmetric.
Last, the flow becomes unsteady for larger Reynolds num-
bers and a mixing region with the mainstream is identified.
These previous studies have only considered fully developed
steady flows and pulsating external flows. Guzma´n and
Amon25 investigated the onset and transition process to
chaos by direct numerical simulations~DNS! of the Navier–
Stokes equations in the converging–diverging channel flow.
Their numerical results were based on classical fluid dynami-
cal representations, such as time series, Fourier power spec-
tra, and phase space portraits. These results reveal that the
flow follows a sequence of three supercritical Hopf bifurca-
tions as the Reynolds number increases from a laminar to a
transitional regime, and that the transition to an Eulerian ape-
riodic chaotic flow occurs through the Ruelle–Takens–
Newhouse scenario. The Reynolds number is defined as Re5
3
2•Uh/n, whereU is the average velocity,h is the half-height
of the channel, andn is the kinematic viscosity.

In this paper we report the dynamical characterization of
laminar, transitional, and chaotic flow regimes using La-
grangian and Eulerian descriptions, and is a continuation of
our previous paper on converging–diverging channel
flows.25 In this paper, we characterize the strength and dy-
namical properties of chaotic flow regimes by DNS of the
governing equations. We determine the predictability of tran-
sitional and weak turbulent flows. We confirm the evolutive
flow pattern and the sequence of bifurcations in the transition
to Eulerian chaos found in converging–diverging channel
flows by means of classical fluid dynamic representations.25

Through the Lagrangian characterization of these flow re-
gimes, we investigate the onset of Lagrangian chaos and its
relation to the first flow instability of the Eulerian velocity
field. We quantify the strength of Lagrangian chaotic re-
gimes, its relation to the onset of Eulerian chaos and the
mixing improvement due to chaotic advection. Last, we in-
vestigate the relationship between Lagrangian and Eulerian
chaos in converging–diverging channel flows. We use the
spectral element method25–27to solve the governing Navier–
Stokes and continuity equations and to obtain the Eulerian
velocity and pressure fields. Because the velocity field is
obtained by DNS, no analytical, time-continuous evolution
equations are available to relate the Eulerian velocity at fixed
points with Lagrangian positions of fluid particles. The La-
grangian trajectories of fluid particles are obtained therefore
by numerical integration of the Eulerian velocity field in the
whole computational domain. Details of the mathematical
formulation, the numerical approach, and the algorithms are
given in Sec. IV.

The remainder of this paper is organized as follows: In
Sec. IV, we outline the mathematical formulation and dis-
cuss the numerical algorithms to perform the computational
simulations. In Sec. V, we present the results of the direct
numerical flow simulations for the Eulerian and Lagrangian
characterizations. Then, in Sec. VI, we discuss the Eulerian
and Lagrangian representation results, and last, in Sec. VII,
we summarize this investigation.

IV. PROBLEM FORMULATION AND ALGORITHMS

Numerical investigations on the periodically
converging–diverging channel flows are performed by Di-
rect Numerical Simulations of the time-dependent, two-
dimensional, incompressible Navier–Stokes and continuity
equations, given by

]v

]t
5v3v2“p1

1

Re
¹2v, ~1!

“–v50, ~2!

where v is the Eulerian velocity field;p5p1 1
2v–v is the

dynamic pressure;v5“3v is the vorticity; and Re is the
Reynolds number. The flow is fully developed in the stream-
wise x direction and homogeneous in the spanwisez direc-
tion ~Fig. 1!. The boundary conditions are nonslip at the
walls and periodicity of the fully developed flow in thex
direction.

The governing equations~1!–~2! subject to the boundary
conditions are solved numerically using a spectral element
method.26,27A three-step, time splitting scheme for the semi-
discrete formulation of the time-dependent term in the
Navier–Stokes equations is employed. This splitting scheme
consists of first, a nonlinear step for the convective term
using an explicit third-order forward-in-time Adams–
Bashforth scheme; second, a pressure step using an implicit
Euler–Backward scheme for the pressure term and enforcing
the incompressibility constraint; and finally, a viscous step
employing an implicit Crank–Nicolson scheme, which in-
cludes the viscous correction and imposes the boundary con-
ditions. For the spatial discretization in this spectral element
method, the domain is first divided into quadrilateral macro-
elements, which are isoparametrically mapped from the
physical space into the local coordinate system. Then the
geometry, velocity, and pressure in each macroelement is
represented as a tensor product of high-order Lagrangian in-
terpolants through Gauss–Lobatto–Chebyshev collocation
points. The nonlinear convective term is evaluated pseu-
dospectrally, whereas the pressure and viscous terms, which
correspond to modified Helmholtz equations, are solved by a
variational approach.26 The numerical results are obtained by
direct simulation of the governing equations integrating in
time, starting with a predicted steady flow and gradually in-
creasing the Reynolds number until a steady, time periodic,
or transitional flow is obtained. The temporal accuracy, the
adequacy of the mesh, and the spatial discretization were
analyzed and discussed in our previous paper on this
converging–diverging channel.25

A. Dynamical system algorithms

To characterize laminar, transitional, and chaotic flow
regimes from the Eulerian viewpoint, we use modern dy-
namical system techniques such as Poincare´ section repre-
sentations and Eulerian Lyapunov exponents. The Poincare´
section method allows a systematic reduction in problem
complexity by means of reducing the number of dimensions
and converting a continuous-time evolution into a discrete-
time mapping. For example, a seemingly complicated trajec-
tory in a three-dimensional phase space can be depicted as a
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Poincare´ section representation, which exhibits a trajectory
inscribed on aT2 torus.17,28Poincare´ sections have the same
kind of topological properties as the flow from which they
arise. Starting from observations of a signalx(t), we recon-
struct the topology of the attractor by taking the phase space
x(t), x(t1t), x(t12t), and consideringx(t) independent
of x(t1t) and x(t12t), where t is the time delay. This
does not mean that the attractor obtained in the new space is
identical to the original phase space; however, the new rep-
resentation of the attractor retains the same topological prop-
erties. To build the Poincare´ sections, we construct a state
vectorF(ts)5$u(ts),u(ts1t)% based on the time delay re-
construction, wherets and t are the sampling time and the
time delay, respectively.29 Then, we obtain a trajectory of the
continuous-time evolution, defined by the state vector and
the sampling time, such that each point of that trajectory is
given by $u(ts),u(ts1t),ts%. Last, the Poincare´ section is
determined by successive intersection points between this
trajectory and a plane perpendicular to the time axis, at in-
tervals of timeT, whereT is the period associated with the
first fundamental frequency of the flow.

The Eulerian Lyapunov exponents spectrum,$lE%, pro-
vides a good characterization of the attractor geometric prop-
erties and of the dynamical flow properties. The Lyapunov
exponent measures the long-time average exponential
growth or decay of infinitesimal perturbations to a phase
space trajectory, i.e.,lE measures the sensitivity of the sys-
tem to changes in initial conditions on the phase space. An
attractor in anN-dimensional phase space hasN Lyapunov
exponents. If an attractor has one or more positive Lyapunov
exponents,lE, perturbations on the attractor can grow expo-
nentially fast in the directions of the positive exponents. In
such a case, the attractor is chaotic and is called astrange
attractor.28 A negativelE implies an exponential decay to-
ward the attractor.

B. Lagrangian description algorithms

The Lagrangian characterization of laminar and transi-
tional flow regimes is based on Lagrangian trajectories of
test particlesx(t) that are obtained by direct numerical inte-
gration of the Eulerian velocity field,u~x,t!, in the computa-
tional domain for any spatial location. The integration algo-
rithm is as follows:~i! define the position of a fluid particle
at a given timet0 as x05x(t0) and get the velocity of this
particle from DNS asu~x0,t0!; ~ii! calculate the position of
this fluid particle at timet15t01dt as x1 5 x1(t1) 5 x0
1 * t0

t1u(x0 ,t0) • dt, wheredt is a sufficiently small incremen-

tal time. The velocity of the fluid particle at the position
x1(t1), u~x1,t1!, is calculated by high-order Lagrangian in-
terpolation asu~x1,t1)5( i

N( j
Nui j [xi j (t1),t1]•hihj , where

ui j [xi j (t1),t1] are the Eulerian velocities calculated by DNS
at the nodal pointsxi j that are surrounding the position
x1(t1), andhihj are high-order Lagrangian interpolants;~iii!
calculate the new positions at successive timestn5tn211dt
asxn 5 xn21 1 * tn21

tn u(xn21 ,tn21) • dt until the final time is

reached. The Lagrangian trajectory of the fluid particles is
the set composed by the points$x0,x1,x2,...,xn%.

Lagrangian chaos is a property of the dynamical system
dx/dt5u~x,t!, whose solutionx(t), calculated as described
above, has a sensitive dependence on initial conditions.
Therefore, trajectories initially nearby diverge exponentially
fast. The Lagrangian Lyapunov exponent,lL , estimates the
rate at which the distance between two fluid test particles,
initially close, increases or decreases with time. Lagrangian
chaotic regimes could occur in laminar and transitional flow
regimes in the presence of well-organized Eulerian velocity
fields. It induces mixing enhancement by chaotic advection
and produces, in some devices, significant increases in the
heat transfer performance with less cost in power input. In
nonchaotic Lagrangian flow regimes, Lagrangian trajectories
coincide with streamlines, whereas in Lagrangian and Eule-
rian chaotic flow regimes test particles follow complex La-
grangian trajectories.

The finite-time Lagrangian Lyapunov exponent,lL , is
defined as

lL5
1

n (
j51

n

l j , l j5
1

t f j2t i j
log2S d f jdi j

D ,
wheredi j5uxp(t i j )2xq(t i j ) u is the initial distance between
two fluid particlesp andq at the initial timet i j , andd f j is
the distance between the same fluid particles at timet f j . The
numbern indicates the number of times that this operation is
repeated for a continuous time evolution of the Eulerian ve-
locity field. The sum of alll j gives the average finite-time
Lagrangian Lyapunov exponent,lL , which represents the
divergence~or convergence!of two initially nearby fluid par-
ticle trajectories. Figure 2 shows a schematic representation
of the algorithm described above on a continuous finite-time
evolution (t f 12t i 1)5(t f 22t i 2)5•••5(t f n5t i n). This rep-
resentation indicates that di15di25•••5di j5di j11
5•••5din and, at times,t f j5t i j11, j51,...,n21, the fluid
particlesp andq are positioned again at the initial positions
xp(t i j ) and xq(t i j ), respectively. Therefore, these two fluid
particles,p andq, remain most of the time confined to the
vortex region or the region in which we are interested on
evaluating Lagrangian chaos. For nonchaotic flow regimes
lL is nonpositive, whereas for chaotic flow regimeslL is
greater than zero. A more detailed description of the compu-
tational algorithms to calculate the Lagrangian trajectories
from Eulerian velocity fields and the finite-time Lagrangian
Lyapunov exponents can be found in Guzma´n.30

FIG. 2. Schematic representation of the algorithm to calculate the average
finite-time Lagrangian Lyapunov exponent based on the convergency of
initially nearby fluid particle trajectories.
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V. RESULTS

In this section we present the computational simulations
of laminar, transitional, and chaotic flow regimes, structured
as follows: In Sec. V A, we discuss the Eulerian classical
characterization of transitional and chaotic flow regimes in
terms of phase portraits, velocity time series, Fourier power
spectra, and instantaneous stream tracers; In Sec. V B, we
present the Eulerian dynamical characterization of transi-
tional and chaotic flow regimes in terms of Poincare´ sections
and Eulerian Lyapunov exponents. Last, in Sec. V C, we
describe the Lagrangian characterization for these flow re-
gimes based on Lagrangian trajectories and finite-time La-
grangian Lyapunov exponents.

A. Eulerian classical characterization

In this section we summarize the supercritical flow pat-
terns predicted numerically as the Reynolds number is in-
creased from 150 to 750. A self-sustained periodic oscilla-
tory flow is obtained for Re5150, as shown in Fig. 3. This
flow has evolved from a steady state to a limit cycle or pe-
riodic attractor by a first Hopf bifurcation. Figure 3~a! shows
phase-space portraits ofV crosswise velocity versusU
streamwise velocity depicting the limit cycles at characteris-
tic points located symmetrically in the channel~Fig. 1!. Fig-
ure 3~b!shows the time evolution of theU andV velocities
at a characteristic point of the flow domain. Both velocity

components are impelled at the same frequencyv1, except
for points located at the central line of the channel, for which
the ratio of the fundamental frequencies associated to thex-
and y-flow directions,vx/vy , is 2 due to the symmetry of
the channel.25 The semilogarithmic Fourier power spectrum
shown in Fig. 3~c! exhibits several peaks corresponding to
the fundamental frequencyv150.321 651 and its subhar-
monics. The Fourier spectrum of this supercritical flow con-
firms that the flow has experienced a bifurcation from a time-
independent steady state to a time-dependent periodic flow.
The smoothness of the traveling wave structure and the
large-scale asymmetric vortices are shown in the instanta-
neous stream tracers of Fig. 3~d!. A stream trace is the path
traced out by a hypothetical massless particle placed in the
instantaneousvelocity field and it is calculated using a
predictor–corrector integration algorithm.

As the Reynolds number is further increased~200,Re
,500!, another flow instability occurs leading to a second
supercritical Hopf bifurcation. An additional fundamental
frequencyv2 appears, which represents a quasiperiodic flow
regime with two fundamental frequenciesv1 and v2 and
their linear combinations. A plot of thev1/v2 ratio and the
fundamental frequenciesv1 and v2 versus the Reynolds
number is shown in Fig. 4. Thev1/v2 ratio is, in general, an
irrational number, indicating that both frequencies are in-
commensurate. In addition, this frequency ratio decreases as

FIG. 3. Periodic flow regime for Re5150: ~a! Phase-space trajectory ofV vsU; ~b! StreamwiseU ~solid line!and crosswiseV ~dotted line!velocities as a
function of time;~c! Fourier power spectrum of theU velocity; and~d! instantaneous stream tracers.
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the Reynolds number is increased until reaching asymptoti-
cally a plateau that coincides with the appearance of a
frequency-locking phenomenon at Re5400. Similar
frequency-locking phenomena have also been reported by
Gollub and Benson31 in Rayleigh–Be´nard convective flows
and, recently, by Vittori and Blondeaux32 for a two-
dimensional oscillatory flow around a circular cylinder.
However, in those cases, further increases in the control pa-

rameters lead to chaotic flow regimes, whereas in the
converging–diverging channel flow, a third supercritical
Hopf bifurcation occurs for a higher Reynolds number~Re
'500!, leading to a quasiperiodic attractor with three funda-
mental frequencies and their linear combinations.25

Figure 5 presents the asymptotically converged, time-
dependent flow regime corresponding to the frequency-
locking phenomenon at Re5400. This flow regime is ob-
tained by increasing the flow rate from a previous
quasiperiodic flow with two incommensurate fundamental
frequencies. The periodic flow behavior is clearly depicted
by the closed curve in the phase-space portrait representing a
limit cycle @Fig. 5~a!#, and by the periodic velocity signals
composed by ten complete periodst of oscillations ~t
543.04! @Fig. 5~b!#. The Fourier power spectrum displays
the locked fundamental frequenciesv1 and v2, and a se-
quence of successive peaks corresponding to their harmon-
ics. Finally, the instantaneous stream tracers@Fig. 5~d!#show
the traveling wave structure and the complexity of motion
with the coexistence of different scale vortices occupying
both furrows of the channel.

In Fig. 6 the global flow structure is shown for Re5450
through a sequence of six time frames of instantaneous
stream tracers for a period of time corresponding to the first
fundamental frequencyv1 of this self-sustained oscillatory
flow. We notice the evolving complex topology of the vortex

FIG. 4. Fundamental frequencies as a function of the Reynolds number.

FIG. 5. Frequency-locking flow regime for Re5400: ~a! Phase-space trajectory ofV vs U; ~b! streamwiseU ~solid line! and crosswiseV ~dotted line!
velocities as a function of time;~c! Fourier power spectrum of theU velocity; and,~d! instantaneous stream tracers.
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dynamics in the furrows with vortices bulging alternatively
to the main flow stream.

An aperiodic flow behavior is obtained for Re5750 and
shown in Fig. 7. The phase-space portrait and the time evo-
lution of the velocity components indicate a seemingly ran-
dom, but deterministic, chaotic motion. The large-scale
variations of velocity in the chaotic time series are essen-
tially similar to those in the quasiperiodic flow regime, ex-
cept for a greatly increased number of small-scale fluctua-
tions in the aperiodic regime. The Fourier power spectrum
indicates that the peaks previously observed for Re5400 de-
crease in amplitude and tend to disappear into the back-
ground of a broadband continuous spectrum. However, there
are still prevailing frequency peaks on the continuous spec-
trum. The instantaneous stream tracer plots for this Reynolds
number depict large-scale vortices, also present in the previ-
ous flow regimes, coexisting with small-scale vortices, origi-
nated in this chaotic motion.

B. Eulerian dynamical characterization

The results from the Eulerian dynamical flow character-
ization are presented in terms of Poincare´ sections and Eule-
rian Lyapunov exponents. Additional dynamical system pa-
rameters such as autocorrelation functions, pseudo-phase

FIG. 6. Instantaneous stream tracers during one period of self-sustained
oscillatory flow for Re5450 in a sequence of six time frames.

FIG. 7. Aperiodic flow regime for Re5750: ~a! Phase-space trajectory ofV vsU; ~b! StreamwiseU ~solid line!and crosswiseV ~dotted line!velocities as
a function of time;~c! Fourier power spectrum of theU velocity; and~d! instantaneous stream tracers.

1199Phys. Fluids, Vol. 8, No. 5, May 1996 Amon, Guzmán, and Morel



space representations and fractal dimensions that verify the
unpredictable nature of deterministic chaotic flow regimes
are reported in Guzma´n and Amon.33

1. Poincaré sections
Poincare´ sections corresponding to continuous-time evo-

lutions, for the Reynolds number range of 150 and 850, are
shown in Fig. 8. TheU-streamwise velocity component of
the point indicated as 1 in Fig. 1 is used to construct the state
vector. The time delayt, for all the reconstructions, is 16
times the sampling nondimensional time,t50.375 12, and
the nondimensional periodT is 19.53. Very long computa-
tional simulations are performed to obtain accurate Poincare´
section representations. We observe that well-organized
structures exist for Reynolds number of 150, 250, and 400.
For Re5150, points of the Poincare´ section are located along
a closed orbit, indicating the periodic nature of this flow
regime. For the Reynolds number of 250, the Poincare´ sec-
tion shows that the orbits lie on a quasiperiodicT2 torus.
Because thev1/v2 ratio between fundamental frequencies is
an irrational number, the trajectories in the phase space never
close on themselves. The Poincare´ section in this case is not
a simple curve, but is rather distributed on a surface due to
the presence of many harmonic combinations ofv1 and of
v2. For the Reynolds numbers of 400, the Poincare´ section
shows that the attractor is composed of several points in a
closed curve, which indicates the periodic nature of this flow

and the complicated shape of the limit cycle on the phase
space. Moreover, the Poincare´ section shows the frequency-
locking phenomenon, already indicated in Sec. V A, occur-
ring at this Reynolds number, and indicates how a quasiperi-
odic flow evolves to a periodic flow with many harmonics at
a specific value of the ratiov1/v2. Last, for the Reynolds
number of 850, the Poincare´ section depicts a diffuse con-
figuration of interception points. We have demonstrated
previously25 the existence of a quasiperiodic flow with three
fundamental frequencies at Re5500 and an aperiodic flow
regime at Re5850 represented by a broadband Fourier
power spectrum. Consequently, the Poincare´ section for Re
5850 corresponds to a two-dimensional representation of a
strange attractor.33

2. Eulerian Lyapunov exponents
Several techniques have been proposed to calculate

Lyapunov exponents.34–39 We use the algorithm described
by Wolf et al.34 to calculate the largest Eulerian Lyapunov
exponent,lE, for a Reynolds number range between 150 and
850. This algorithm is appropriate for temporal evolutions of
a signal and assumes no previous knowledge of the physics
and of the attractor beyond the time series measurement.34

Time series of 10 001 data points are used for all Reynolds
numbers, except for Re5850 where 35 001 data points are
used, and the embedding dimension for all the Reynolds
numbers reported isn54.33 Figure 9 shows the temporal

FIG. 8. Poincare´ sections for Reynolds number range of 150–850.
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convergence oflE, which is the long-time average exponen-
tial growth or decay rate, for different Reynolds numbers. A
zero value of the Eulerian Lyapunov exponent,lE, within
acceptable numerical accuracy, is obtained for self-sustained
periodic and quasiperiodic oscillatory flows up to Reynolds
numbers of 500. These zero Eulerian Lyapunov exponents
indicate that small perturbations in the initial conditions of
the phase space decay exponentially toward the attractor.
Positive Eulerian Lyapunov exponents, obtained for Rey-
nolds numbers greater than 500, verify the chaotic flow be-
haviors.

The asymptotic values of the Eulerian Lyapunov expo-
nents as a function of the Reynolds number are shown in Fig.
10. Periodic, quasiperiodic, and frequency-locking flow re-
gimes have zero Eulerian Lyapunov exponents, whereas ape-
riodic chaotic flow regimes exhibit positive Eulerian
Lyapunov exponents. The Eulerian Lyapunov exponent is
definitely positive and remains almost constant around the
value 1.1 for converging–diverging channel flows at

Re>750. Other flow systems such as open unforced com-
pressible flows past airfoils depict an increase in the Eulerian
Lyapunov exponent as the Reynolds number is increased af-
ter the onset of chaos.40

C. Lagrangian characterization of laminar and
transitional flo regimes

The results presented in previous sections demonstrate
that the flow evolves from a well-organized velocity field to
a regime of Eulerian chaos as the Reynolds number is in-
creased. The positive Eulerian Lyapunov exponents,lE, for
Reynolds number higher than 550 indicate chaotic flow re-
gimes that are visualized by the Poincare´ section representa-
tions. In this section, we present results for the Lagrangian
descriptions of converging–diverging channel flows, in
terms of test particle trajectories and spatial distribution of
the finite-time Lagrangian Lyapunov exponents,lL . We de-
scribe Lagrangian trajectories for single test particles located
throughout the flow and for pairs of test particles located in
the vortex region. Then, we present the spatial distribution of
the finite-time Lagrangian Lyapunov exponent, which en-
ables us to measure the extension of chaotic regions, the
strength of Lagrangian chaotic regimes, and the mixing en-
hancement due to chaotic advection.

1. Lagrangian trajectories of test particles
Figure 11 shows Lagrangian trajectories of three single

test particles, initially located in different regions of the com-
putational domain, for Reynolds numbers 125, 150, and 400,
passing through many furrows of the channel. For Re5125
each test particle follows the same path in each furrow of the
fully developed channel@Fig. 11~a!#. This behavior is origi-
nated by the steady laminar flow regime and, consequently,
test particle trajectories coincide with the streamlines of the
Eulerian velocity field. As the Reynolds number increases to
150, the test particle trajectories do not follow the same path
in each furrow, as shown in Fig. 11~b!. The test particle
initially located in the middle of the channel follows a tra-
jectory that remains in the central region of the channel. A
close-up of this region indicates that this particle trajectory is
sinusoidal, and it is synchronized with the periodic nature of
the Eulerian velocity field shown in Sec. V A. The trajectory
of a test particle, initially located in the vortex region, is
trapped by the vortex dynamics for a finite amount of time
before being ejected into the main flow. When the Reynolds
number increases to 400, the particle trajectories become
more complex, as shown in Fig. 11~c!. A typical test particle
that starts its motion in the middle of the channel continues
to the vortex region and, finally, returns to the bulk flow.
Similar complex trajectories are observed in test particles
starting their motion in other regions. The complexity of the
test particle trajectories increases when the flow evolves
from a laminar to a transitional regime. As we will see later,
the motion of test particles following complex trajectories
and the divergence of initially close trajectories contribute to
mixing enhancement.

Lagrangian trajectories of five pairs of test particles ini-
tially located in the vortex region for various Reynolds num-
bers are shown in Fig. 12. The initial and final positions are

FIG. 9. Temporal convergence of the largest Eulerian Lyapunov exponent
lE .

FIG. 10. Largest Eulerian Lyapunov exponentlE as a function of the Rey-
nolds number.
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indicated byi and f , respectively. Each curve, composed of
a sequence of points, represents the trajectories of one pair of
test particles. The initial position of the test particles for all
the Reynolds numbers is the same. The time for each trajec-
tory to reach the final position depends on the initial position
of the test particle in the velocity field. In addition, a pair of
test particles at an initial position in a high-Reynolds number
velocity field reaches its final position in less time than that
required in a lower Reynolds number flow, because the ve-
locity magnitude increases with the Reynolds number.

Figure 12~a!shows Lagrangian trajectories of five differ-
ent test particles for Re5125, where the particles follow tra-

jectories that coincide with the flow streamlines.30 Moreover,
test particles that begin their motion in the vortex region
remain within it forever. A different pattern is observed
when the Reynolds number increases to 150, where the tra-
jectory of a pair of test particles remains in the vortex region
but without repeating the same path@Fig. 12~b!#. This trajec-
tory is synchronized with the oscillating motion of the vor-
tices due to the periodic self-sustained flow regime described
in Sec. V A. Figure 12~c! shows a more complex pattern of
Lagrangian trajectories for Re5250. Some test particles re-
main in the vortex region, following complex trajectories
before exiting the vortex region and, finally, the furrow. The
complexity in trajectories increases even more at Re5600
for which some test particles exit the vortex region and the
furrow immediately@Fig. 12~d!#. This pattern, originated by
the complex dynamic of the different scale vortices interact-
ing in the furrows of the channel, corresponds to the aperi-
odic Eulerian chaotic regime described in Secs. V A and
V B.

With the purpose of determining whether Lagrangian
chaos spreads to other flow regions as the Reynolds number
increases, we consider Lagrangian trajectories of 13 pairs of
test particles located initially in different regions of the chan-
nel. The initial positions of these test particles and small
portions of their trajectories are depicted in Fig. 13~a! for
Re5257. Four pairs of test particles are in the central region
and nine pairs are in the lower furrow of the channel. Figure
13~b! shows that test particles initially located in the vortex
region follow a pattern of Lagrangian trajectories similar to
that of Re5250, whereas test particles initially located in the
channel central region convect downstream with the quasi-
periodic Eulerian velocity field.

The chaotic nature of particle trajectories, and the
spreading of chaotic flow regimes to other regions, cannot be
determined by simply looking at the particle paths, even

FIG. 11. Lagrangian trajectories of three single test particles:~a! Re5125;~b! Re5150; and~c! Re5400.

FIG. 12. Lagrangian trajectories of five pairs of test particles:~a!Re5125;
~b! Re5150;~c! Re5250; and~d! Re5600.
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though complex paths could provide qualitative indications
of chaos. Thus, we evaluate the divergence of trajectories of
particles initially close by calculating the finite-time La-
grangian Lyapunov exponent,lL .

2. Finite-time Lagrangian Lyapunov exponents

Figure 14 shows the spatial distribution of finite-time
Lagrangian Lyapunov exponents,lL , of pairs of test par-
ticles for Reynolds numbers equal to 150, 257, and 600.
Three local coordinate systems are defined in Fig. 14~a! to
represent the relative position of each pair of test particles.
ThelL2j coordinate system is defined for test particles ini-
tially located in the vortex region of the upper furrow; the
lL2z coordinate system is defined for test particles with ini-
tial positions in the channel central region; and thelL2h
coordinate system is defined for test particles initially located
in the lower furrow vortex region.

The spatial distribution oflL for Reynolds numbers of
150 and 600 is shown in Fig. 14~b!. The positive value oflL
for the ten pairs of test particles, at both Reynolds numbers,
indicates that there is a zone in the vortex region where tra-
jectories of initially close particles diverge exponentially
fast. This time-average divergence is uniformly distributed
for Re5150, with a value oflL in the range 0.01–0.06,
whereas for Re5600 is consistently higher as well as the
spatial distribution of the finite-time Lagrangian Lyapunov
exponentlL presents the highest values near the channel
wall. The higher value oflL for Re5600 indicates that the

Lagrangian chaos regime becomes stronger as the flow re-
gime approaches the onset of Eulerian chaos at Re'550.

Figure 14~c!shows the spatial distribution of the finite-
time Lagrangian Lyapunov exponents of test particles ini-
tially located in the central region and lower furrow vortex
region for Re5257. The positivelL value for test particles
located initially in the central region indicates that this flow
region develops a strong regime of Lagrangian chaos. The
spatial distribution oflL , for test particles initially located in
the vortex region, is not uniform and positive values oflL
can come from test particles located close to test particles
with small negative values oflL . A negativelL value means
that, on average, the initial distance between two initially

FIG. 13. Lagrangian trajectories of 13 pairs of test particles for Re5257:~a!
Initial and final positions,i and f , respectively, of pairs of test particles after
Dt5t i2t0 ; and~b! initial and final positions of fluid particle trajectories for
long-time evolutions.

FIG. 14. Spatial distribution of finite-time Lagrangian Lyapunov exponents
lL ; ~a! local coordinate systems;~b! Re5150 and 600; and~c! Re5257.
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close fluid particles decreases with time. The varying spatial
distribution of lL with negative and positive values shows
that Lagrangian chaos has a complicated distribution and co-
exists with other zones where the flow is nonchaotic. It also
demonstrates that Lagrangian chaos has partially spread to
the whole domain.

VI. DISCUSSION

A. Eulerian flo characterization

Based on classical fluid dynamics representations, this
investigation has revealed the possibility of triggering self-
sustained oscillatory flows, has identified the Reynolds num-
ber range for periodic, quasiperiodic and aperiodic chaotic
flow regimes, and has demonstrated that the route of transi-
tion to a chaotic flow regime occurs by successive supercriti-
cal Hopf bifurcations.

The transitional flow behavior is analyzed by the geo-
metric visualization of the evolution of the attractors until the
appearance of a strange attractor. The Poincare´ section rep-
resentations of the reconstructed attractors reveal the exist-
ence of a periodic flow attractor that evolves to a well-
defined,T2 torus, quasiperiodic attractor, and, then, to a
periodic attractor corresponding to a frequency-locking flow
regime as the Reynolds number is increased from 150 to 400.
In this Reynolds number range, the well-organized structure
of the flow trajectories confirms the predictability of these
flow regimes. The evolution to a strange attractor for higher
Reynolds numbers~e.g., Re5850!from previous quasiperi-
odic attractors establishes the unpredictable nature of the
aperiodic orbits, as well as the emergence of a chaotic flow
behavior via a sequence of successive supercritical bifurca-
tions, as described in Guzma´n and Amon.25 The gradual
transition to chaos through a sequence of bifurcations is also
confirmed by the evolution of the values of the largest Eule-
rian Lyapunov exponent,lE, as the Reynolds number is in-
creased. Vanishing Eulerian Lyapunov exponents correspond
to periodic and quasiperiodic flow regimes, whereas, Eule-
rian Lyapunov exponents greater than zero represent chaotic
flow regimes. The positive value of the largest, long-time
average, Eulerian Lyapunov exponent,lE, indicates that
chaotic flow regimes exist for Re>550.

B. Lagrangian flo characterization

The Lagrangian characterization enables the determina-
tion of flow regions and flow regimes where Lagrangian
chaos is present and can be exploited with the objective of
improving mixing by chaotic advection. Lagrangian trajecto-
ries provide qualitative indications of the paths followed by
fluid particles, whereas finite-time Lagrangian Lyapunov ex-
ponents provide quantitative evidence of the onset of La-
grangian chaos, the spreading of Lagrangian chaos to other
flow regions, and the persistence and strength of Lagrangian
chaotic regimes.

Lagrangian trajectories and finite-time Lagrangian
Lyapunov exponents indicate that a weak Lagrangian chaotic
regime is attained for low Reynolds numbers~e.g., Re5125
and 150!, whereas stronger chaotic regimes are obtained for
higher Reynolds numbers~e.g., Re5250, 257, and 600!. We

have shown that the trajectories followed by test particles
increase in complexity when the flow evolves from a laminar
to a transitional regime. Calculations of the finite-time La-
grangian Lyapunov exponent have indicated that a weak La-
grangian chaotic regime starts as a local phenomenon in the
vortical regions of the fluid domain. The Lagrangian chaotic
regime becomes stronger and spreads to other regions as the
Reynolds number is further increased. For example, a pair of
test particles located at the channel entrance at Re5125 pre-
sents a vanishinglL value that becomes positive at Re5250.
Results also show that certain flow regions of the channel
have negative or zero finite-time Lagrangian Lyapunov ex-
ponents~e.g., Re5257!and coexist with regions of Lagrang-
ian chaos with strong positivelL values. Last, our results of
lL for Re5600 demonstrate the existence of a strong La-
grangian chaotic regime in the vortex region, which extends
over larger areas as the Reynolds number increases.

The laminar and chaotic mixing phenomena have been
qualitatively visualized and quantitatively measured. By us-
ing Lagrangian trajectory representations, we have shown
that a more complex pattern of Lagrangian trajectories is
associated with a better mixing and that chaotic mixing, due
to Lagrangian chaos, produces mixing enhancement. The ef-
ficiency of mixing is determined by the stretching rate which
corresponds to the finite-time Lagrangian Lyapunov expo-
nent. According to Ottino,15 the stretching distribution can be
interpreted as the finite-time Lagrangian Lyapunov exponent
distribution. Based on calculations oflL , we can assert that
the mixing effectiveness improves as the Reynolds number
increases and the stretching rate increases as well.

Our calculations of Lagrangian and Eulerian Lyapunov
exponents indicate that Lagrangian chaos exists in noncha-
otic Eulerian velocity fields in the converging–diverging
channel for the Reynolds number range between 150 and
450. We have found that the onset of Lagrangian chaos, at
approximately Re5125, coincides with the appearance of the
first Hopf bifurcation, as shown in Secs. V A and V C. This
Hopf bifurcation represents the evolution from an initially
steady flow to a stable limit cycle of periodic orbits. Our
numerical results show no evidence of Lagrangian chaos for
steady-state flow regimes, which is in agreement with the
theoretical argument that time-independent two-dimensional
flows do not present chaotic behavior.17 They also indicate a
Lagrangian chaotic behavior for the periodic, time-
dependent, flow regime resulting from the first Hopf bifurca-
tion. Therefore, we can assert that the onset of Lagrangian
chaotic coincides with the appearance of the first Hopf bifur-
cation in the Eulerian flow representation.

In summary, we have found that~i! both Lagrangian and
Eulerian Lyapunov exponents are positive for Re.550; ~ii!
regions of strong Lagrangian chaos exist for Re.250; and
~iii! the onset of Eulerian chaos coincides with the spreading
of Lagrangian chaos to the whole domain without producing
an inverse effect on the positivelL . When Eulerian chaos
sets in, regions of Lagrangian chaos remain chaotic, and re-
gions with previously weak positive and vanishinglL values
become chaotic. Therefore, the onset of Eulerian chaos does
not have a reversing effect on the Lagrangian chaotic flow
behavior. Moreover, a chaotic velocity field implies chaotic
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motions of fluid particles in converging–diverging channel
flows. This finding also agrees with most cases studied to
date, with the exception of the point vortex model5 and the
Lorenz model,7 where Eulerian chaos does not imply La-
grangian chaos and, in which, two nearby particles remain
close during their evolution in a chaotic Eulerian velocity
field.3–5,7

VII. CONCLUSIONS

Direct numerical simulations of the governing flow
equations enable the characterization of converging–
diverging channel flows in terms of classical fluid dynamic
representations, Eulerian dynamical characterizations, and
Lagrangian flow characterizations. The Eulerian dynamical
characterization of the reconstructed attractors confirms that
the periodic flow attractor evolves to a well-defined,T2

torus, quasiperiodic attractor and, then, to a periodic,
frequency-locking flow attractor as the Reynolds number is
increased from 150 to 400. The quasiperiodicT2 torus leads
to aT3 torus, which breaks up into a chaotic strange attractor
at 500,Re,550. The gradual evolution to a strange attractor
from previous quasiperiodic and periodic attractors estab-
lishes the emergence of an Eulerian chaotic flow via succes-
sive bifurcations of transitional flows.

The dynamical flow characterization of the transitional
flow regimes ascertains the Reynolds number range for the
onset of Eulerian chaos. The value of the largest Eulerian
Lyapunov exponent verifies the change of flow behavior
from a quasiperiodic predictable regime to an aperiodic, cha-
otic, unpredictable regime in the Reynolds number range be-
tween 500 and 550. For predictable flows in the periodic,
quasiperiodic and frequency-locking regimes, the Eulerian
Lyapunov exponents are zero, which indicate the insensitiv-
ity to initial conditions and the exponential decay toward the
attractor. For higher Reynolds numbers, 550<Re<850, the
flow remains chaotic, as verified by the largest positive Eu-
lerian Lyapunov exponent.

The onset of Lagrangian chaos at 125,Re,150 coin-
cides with the first Hopf bifurcation to Eulerian time-
dependent flows. Lagrangian trajectories and finite-time La-
grangian Lyapunov exponents identify~i! weak Lagrangian
chaos localized in the vortical regions for low Reynolds
number flows~e.g., Re5125, 150!;~ii! Lagrangian chaotic
regions that spread to other flow regions of the converging–
diverging channel as the Reynolds number is increased;~iii!
the coexistence of nonchaotic and chaotic flow regions at
Re5257; and~iv! the emergence of a strong generalized La-
grangian chaotic regime at Re.550, which coincides with
the onset of Eulerian chaos.

Lagrangian trajectories of test particles increase in com-
plexity as the flow evolves through transitional regimes.
Complex trajectories in Lagrangian chaos induce chaotic ad-
vection, which, in turn, produces mixing enhancement fur-
ther verified by positive finite-time Lagrangian Lyapunov ex-
ponents and stretching rate distributions. Lagrangian and
Eulerian Lyapunov exponents assert that Lagrangian chaos
exists in nonchaotic Eulerian velocity fields for 125,Re
,550, and chaotic velocity fields are accompanied by cha-

otic trajectories of all fluid particles for Re.550 in
converging–diverging channel flows.
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