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A Self-consistent Kinetic Plasma 
Model With Rapid Convergence 

W. Nicholas G. Hitchon, Timothy J. Sommerer, and J.E. Lawler 

Abstract- Algorithms for very efficient solution of kinetic equations 
have previously been developed and used to obtain a self-consistent 
kinetic description of electrons and ions in various plasmas, including 
RF glow discharges [1]-[4]. Since RF discharge calculations may take 
many thousands of cycles to converge, a solution which follows the time 
evolution throughout this process is inevitably computationally costly. 
We have implemented a “scaleup” procedure which obviates the need 
to follow the entire time evolution in this or other plasma models. By 
running the full calculation for a short time, we extract information which 
permits an extrapolation of the time evolution over a very long time, or 
a “scaleup.” A detailed description of the basis for the scaleup is given, 
as well as an example of the use of a scaleup procedure, as applied to a 
moderately high-pressure RF discharge in helium. 

I .  INTRODUCTION 
ISCHARGE plasmas are extremely complex and subtle. D Almost any ad hoc assumption made to simplify a discharge 

model tends to omit vital physical effects. A modest error in one 
aspect of a model leads to a chain of others, and the nonlinearity 
of the system allows the inaccuracies to build to an unpredictable 
extent. On the other hand, a kinetic description of the plasma, 
with a “self-consistent” electric field, can be constructed which 
provides a very accurate and complete discharge model with a 
minimum of ad hoc assumptions. 

A numerical calculation has been developed [1]-[4], which is 
much faster than finite differences and exhibits less numerical 
diffusion when applied to solve a kinetic equation (or other 
transport problems having significant convection; we refer to the 
method as a “convective scheme,” or CS). This permitted calcu- 
lation of electron and ion distribution functions, fe(z, v,, vL, t )  
and f,(z, w,, t ) ,  respectively, and the self-consistent electric field 
E,(z, t)  in a parallel-plate RF discharge [4]. The independent 
variables are x, the perpendicular distance from one plate, v, 
2, and w1 is the velocity perpendicular to the x direction. E, is 
found from fe and fi by solving Poisson’s equation and is used to 
determine their time evolution. The first calculations have been 
done for He, using detailed cross-section data given by Alkhazov 
[5], LaBahn and Callaway [6], and Helm [7]. 

A calculation of this scope (with this set of independent 
variables) is made feasible by the CS. It is possible but still not 
convenient to run for thousands of cycles, however. The present 
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paper shows how an extrapolation or “scaleup” procedure may 
be used to track the time evolution in dc discharges and in RF 
discharges where the applied RF frequency 27rfo lies between 
w p e r  the electron plasma frequency, and wpl the ion plasma 
frequency: wpn < 27rf0 < wpe.  The procedure would apply 
equally well to plasma models other than that used here. Scaleup 
involves running the full simulation for about 3-5 RF cycles 
and then using information from those few cycles in a simplified 
description of the plasma to step forward by many hundreds 
of cycles. This latter step is the scaleup. This is followed by 
another 3 cycle “full” run and another scaleup, and so on. This 
procedure is valid, provided that the electron distribution reaches 
oscillatory steady state (the electrons relaxing in the quasi-static 
environment provided by the ions) within the full runs, which it 
does in the cases considered here. The scaleup is an extrapolation, 
based on this oscillatory steady state for electrons, which is not 
a fully self-consistent calculation. It does, however, allow us to 
bridge the gap between the electron relaxation time and the ion 
confinement time. Scaleup is here applied to a discharge in He; 
the technique is even more important for CS calculations on 
discharges in heavier gases. The ion confinement time, and hence 
the time for a buildup of plasma density, scales almost linearly 
with the ion mass. 

We have discussed the state of the art of discharge modeling 
in some detail elsewhere [8]. We shall only comment briefly 
here on the wide variety of models of discharges that have 
been employed. The most popular recently have been fluid 
models (see, for example, [9], [lo]). While fluid models bear 
some qualitative resemblance to reality, they make questionable 
assumptions which at the least make the results from such a 
model difficult to interpret. Monte Carlo models which track 
particles in a measured electric field profile have provided 
considerable insight and are probably the most plausible solution 
method short of a self-consistent kinetic calculation-provided 
that the field is known [ll]. Since the field is actually not known 
well in the bulk plasma region, the use of particle simulation 
with a self-consistent electric field might appear to be the next 
logical step [ 121 - [ 141. Problems with statistics in high-density 
quasi-neutral regions make a correct bulk field hard to find using 
particle simulation; consequently, we turned to the approach 
presented here. 

The convective scheme and scaleup procedure is described 
in Section 11. Section 111 demonstrates its performance, for one 
example of an RF discharge in He. This case is chosen to explain 
the method and it includes, for simplicity, only collisions between 
charged particles and ground-state atoms. The effects due to 
Coulomb collisions between pairs of electrons and due to mul- 
tistep ionization involving metastable atoms will be explored in 
a future paper [8]. The ionization due to metastable-metastable 
collisions, which is neglected here, causes a higher bulk electron 
density [8]. Section 111 also contains a step-by-step illustration 
of how the scaleup is done. 
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11. CONVECTIVE SCHEME AND SCALEUP 

A. Overview of Scaleup 

The procedure necessary to accurately track the time evolution 
of the discharge is somewhat more subtle than might first appear, 
as we shall now describe. One difficulty is in choosing the most 
effective procedure for extrapolating the discharge behavior in 
time, from a large number of apparently reasonable candidates. 
We describe here those we found to be most suitable. Details are 
given in subsection C, and an explicit example in Section 111; 
here we introduce the main ideas. 

The approach we have taken is to extract information we need 
to predict the ion motion from a full run of ions and electrons. A 
full run is a self-consistent kinetic calculation of the electron and 
ion distributions advanced with a time step A t  < 21r/w,,. We 
then use it in a simplified run where only the ions are followed 
explicitly, kinetically, and where in general A t  >> 27r/wpe. This 
is appropriate, since the long characteristic times of ion motion 
are responsible for the great length of the run. 

Three of the most applicable levels of the ion model are 
considered. We outline them here; type I1 is the one we have 
found most useful. All use the time-average ionization rate per 
unit volume. (“Time-averaged’’ in this paper means averaged over 
an integral number of RF cycles of the full run. This averaging is 
represented by a bar over the quantity.) The most complete (type 
I) level we have considered uses a Boltzmann-type expression for 
- the electron density, based on a fitted electron-temperature profile 
T,,  which is constant during a given scaleup. The time average 
ion density itz is found from the distribution function, which is 
calculated explicitly during scaleup. The time-average electron 
density E, is found in terms of the time-aversed potential @ 
using the BoltzFann expression for it,, given T,. Together, it, 
and E ,  permit @-to be updated during scaleup using Eisson’s 
equation. Thus T,provides 5, and a self-consistent @ which 
is used to evolve f, during scaleup. This approach has several 
advantages, but to date hasJeen rendered unwieldy b_y difficulties 
in finding an appropriate T,. (Without the proper T ,  to a very 
good accuracy, scaleup will not converge to the same answer as 
the full calculation.) 

An intermediate level of description (type 11) runs the ions 
for a finite period of time in a quasi-static electric field, found 
from the full run, which is independent of the phase of the 
RF cycle and varies only slowly with the density (as described 
below). The ion distribution can thus be allowed to evolve for 
a “long” time, without following electrons explicitly. This has 
proved quite successful, provided that the right choice of field is 
made. We shall return to this presently. 

The simplest approach (type 111) is to extract time-average ion 
flow velocities from the full run. Combined with the time-average 
ionization rate per unit volume, these allow an intermediate 
or final density to be found from an analytic expression. The 
full run can then be restarted, as described below for a type I1 
scaleup. A kinetic description of the ions is not needed during this 
procedure. The problem here is that relatively little information 
is provided by the calculation, and there is the possibility that 
the convergence will be poor. 

The time E a g e  of the average ion velocity from the 
full run is (wz),, where (w,), is J w z f t ( x , v z , t ) d w z / J f ,  . 
- (2, v,, t )  dw,. Its spatial dependence is exhibited by writing 
(U=), (x). The appropriate initial value of the quasi-static electric 
field Er(,) to use i n e  type I1 scaleup is that which yields the 
same ion velocity (w,)*(x) when the ion distribution function is 

found in that field, since the extrapolation relies on obtaining the 
- correct velocity ( and source rate). We therefore find Ef from 
(w,)~(z) and the ion mobility p. p(E) is found by generating a 
distribution function in a static field E g ,  where E g  is a best guess 
at Ef. By usingthe code to find p(E), we can find an Ef which 
reproduces (v=),(x) very accurately. 

The electrostatic potential is allowed to vary during the type 
I1 scaleup, because the central density varies. The variation is 
based on the central density E ( d / 2 ,  t) ,  where d is the electrode 
separation, the density at plasma edge E(xedge,tS) which is held 
fixed during scaleup, and an assumption of a Boltmann-like 
scaling of electron density, so that: 

L J 

where all the densities are time averages found from the last full 
run before scaleup (t  = t S ) ,  except E ( d / 2 ,  t ) ,  which is an average 
generated by the scaleup. The entire electric field is scaled in 
proportion to achieve this change in This preserves the spatial 
dependence of the electric field and a. This has a modest effect 
in improving the accuracy of the scaleup. The flexibility to vary 
the field is one advantage of this form of scaleup over the type 
111 scaleup. 

One major benefit of the type I1 scaleup comes in a dc 
discharge simulation, since the ion distribution produced by 
scaleup is the “true” ion distribution for use in restarting the 
full run. The distribution produced by the scaleup is still of 
theoretical interest, however, even in the RF case, for comparison 
with simplified models using analytic assumptions [8], and is 
discussed in Section 111. In RF simulations, the instantaneous 
distribution from the previous full run turns out to be a better 
estimate of the velocity distribution on restart than is the dc 
distribution from the scaleup. This might not be true for all 
parameters, and so the type I1 scaleup retains the flexibility to 
use either distribution. 

As mentioned in the introduction, this procedure assumes that 
the electrons reach the oscillatory steady state (on the short time 
scale on which ions are quasi-static) during the full runs. The 
electron distribution is monitored during the full runs and does 
indeed settle down rapidly. One concern might be, however, that 
some process (such as the elastic cooling of electrons) might 
cool or heat the electrons, but only during a larger number of 
cycles than are tracked by the full simulation. By studying the 
electron dynamics, in particular RF discharges [4], [8], we have 
found that the entire electron distribution is repeatedly heated to 
high enough energies to undergo inelastic collisions with a rather 
short period. This means that a very slow process such as that 
envisaged is not relevant in the RF discharges considered; should 
such a process exist (as in a dc discharge, where elastic cooling 
is very significant), appropriate allowances could be made. 

The (type 11) scaleup procedure will be illustrated in detail in 
Section 111. 

B. Convective Scheme for Kinetic Equations 

Before describing scaleup in detail, it is appropriate to point out 
some features of the numerical method used to solve the kinetic 
equation. The CS has been outlined elsewhere [l]-[4], [8], so 
we make some general remarks and discuss aspects which have 
not previously been stressed, including an example to illustrate 
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how a particular CS works and to show the correspondence of 
the CS procedure to an analytic solution, in a simple case. 

The CS resembles particle simulation in the way in which 
ballistic motion is handled. The key difference is that the CS 
works with a phase-space density, whereas particle simulation 

from this: 

by the propagator p(g, 2, g“, E”, At) through the relation: 

f(c, I!, t + At)  

= 1 d3g” 1 d3g”p(z ,  g, g”, g”, At)f (g” ,  v”, t) .  

Finding an appropriate propagator p(g,g,g”,g”, At)  is the CTU- 

uses “particles.” There are several advantages to the CS resulting (5) 

1) The CS densities are smooth; the statistical noise present 
in particle simulation does not occur with the CS. 

2) Processes such as collisions can be handled satisfactorily, 
since the density can always be divided, corresponding to 
the different possible outcomes which can occur when a 
collision is tested for, whereas a “particle” can only go 
into one final state. (No random numbers are needed in the 

3) The divisibility of the density means that larger density 
gradients can be treated. In a particle simulation with lo5 
“particles,” a change in density by six orders of magnitude 
is difficult to describe. The CS grid size, of course, still 
limits the resolution of abrupt changes in density. 

CS.) 

In comparison with a finite-difference solution, the CS has 
the advantage that the Courant-Friedrichs-Levy criterion is not 
applicable. It is interesting to note that in the RF discharge, the 
criterion is most stringent when applied to the velocity variations; 
i.e., the limit would be AtcFL < min (AvlU), where AV is the 
spacing of the velocity mesh. Exact energy conservation (as well 
as other conservation properties) is easy to build into the CS 
[8], but may cause problems in a finite-difference solution, even 
when the differences have been done in a “conservation form” 
to ensure particle conservation. 

In what follows, we illustrate how a simple CS works, and as 
part of the illustration we compare the time evolution obtained 
from the numerical scheme to an analytic solution in a particular 
case. We begin with the analytic solution of the Boltzmann 
equation. 

The analytic solution is for a simple case where collisions 
“dominate.” The Boltzmann equation may be written with a BGK 
collision operator C ( j )  G u[F, - f ] ,  where v is the constant 
collision frequency, f is the distribution function, and F, is a 
Maxwellian normalized to the same density as f. This operator is 
useful in representing charge-exchange collisions, in which case 
F, is at the neutral temperature. We expand f = Fm + f, where 
f << F,, and ignore the spatial derivatives of f to obtain (in 
one spatial dimension): 

- df dF,  dFm 
dX av, 

at + 21,- + U,--- N -uf 

with solution: 

f = (f(o) - A)e-Y t  + A (3) 

where 

(4) 

In general, the CS is an “integral” method which uses 
“propagators” to evaluate the time evolution of the distribution 
function. The new distribution after a time step At ,  denoted 
f(g,g, t + At) ,  is given in terms of the old distribution f(g,v, t )  

cia1 stage of setting up the CS. 
In one implementation the propagator was evaluated in a 

Lagrangian fashion-see [l] .  A second form of CS considered 
here made use of two steps: The first was a Lagrangian step 
in which the particles were moved purely ballistically; i.e., 
without collisions. Collisions were allowed for in a second 
(Eulerian) procedure, the scattering being evaluated in each 
cell of the mesh [2]. In effect, two propagators were used in 
combination-one for ballistic motion, followed by one for 
scattering. The justification for this was outlined in [2]. We 
consider the solution obtained from this two-step CS in what 
follows. 

As stated above, this implementation of the numerical proce- 
dure consists of two parts, which we illustrate here. The first is 
a “ballistic” step, where the particles flow along the trajectory 
defined by (x(t), vx(t)) in phase space at constant phase-space 
density. This is followed by a step which allows for collisions. 
We should emphasize that the CS is only approximated by the 
analysis given here, and in particular that the ballistic step is 
not implemented by interpolating values of the old distribution. 
Rather, the contents of each cell are redistributed on the mesh in 
a fashion somewhat resembling particle simulation [2]. 

In the ballistic step, the distribution f at the initial location 
( x ” , ~ : )  is carried to the final location (z’,~:). Since x” N 

x’ - v, At ,  and v: N v: - U, At ,  we may approximate the effect 
of the propagator (if not its mathematical expression) using a 
Taylor expansion, which implies a change in f during the ballistic 
motion given by: 

Afbaii N B(f) (6) 

B ( f )  E -At  21,- +U,- . ( aaf ::) (7) 

This represents the effect of the ballistic propagator, although this 
is not the way the actual propagator is found. For a description 
of the numerical form of the propagator, see [2]. 

The change in f due to collisions, corresponding to the effect 
of the “collision” propagator (which in general is extremely 
complex in the CS [2], but is greatly simplified in this analysis), 
is: 

Afcull vAt(Fm - f). (8) 

CombiniFg-these, we-obtain a recursion relation between the 
values of f,f(”), and f n + l )  at successive steps denoted n and 
n + 1: 

f (n+ l )  = (1 - uAt)  [f(n) + BF, + Bf(”)]. (9) 

This is the value of f after the collision. It demonstrates a 
convergence which, starting with f ( O )  = F, and neglecting terms 
in B2 (as in (3)), yields: 

f(l) = (1 - vAt )BFm (10) 
f(*) = (1 - uAt) [BFm + (1 - uAt)BFm] (11) 
f(-) = ( - )BFm. 1 - UAt 

uAt  
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The substquent ballistic step adds BF, to this, so that if we 
evaluate f after the ballistic step, we find: 

which is equal to the analytic result. The time evolution repre- 
sented by the sequence of f ( ” 1  is at all times close to the result 
in (3). 

This example, then, is intended to show how the CS represents 
the time evolution to the expected accuracy for a numerical 
scheme with time step At. Other schemes which are slightly 
more accurate are also suggested by it. 

An analysis similar to this has been done by Lawson [18], 
which shows that the numerical diffusion is less than in finite 
differences by a factor of the ratio of the time steps. 

C. Implementation of Scaleup 

A step-by-step account is now given of scaleup. Many of the 
procedures used are necessary in order to make switching from 
the scaleup mode back to the full simulation as “soft” as possible. 
A soft start is one which excites few (or no) transients. A related 
point is that our choice of scaleup is intended to allow us to 
follow the true time evolution as closely as possible; this helps 
give soft starts, and in combination with them it gives the best 
convergence. 

A run is started by specifying a set of parameters such as 
voltage, neutral density, etc., and guessing an initial density and 
distribution function. The full simulation is used initially. Once 
the simulation has settled to some extent, we can begin scaleup. 
(The preliminary stage is considerably speeded if a solution to 
an even vaguely similar problem is available for use as an initial 
guess.) 

The information extracted from the full run for use in the 
scaleup is: 

The time-average ionization rate per unit volume s(z) 
The time average of the average ion velocity (21I),(z) 
The time average ion density E?(.). 

From (vz),(z) and the mobility, a static electric field Eg is 
constructed, such that (vz),(z) = p(Eg)Eg. We find Eg by using 
the experimental mobility for He+ in He from Helm [7] and 
inverting to find E g .  The ion distribution is allowed to evolve 
with the given s(z) and this E g ( z )  for 10-100 cycles (several 
ion collision times for even the slowest ions), and a new estimate 
for p(E)  is found from the results of this short run. The short run 
proceeds with the same A t  to be used during the scaleup. A 
e r  estimate of the static field Ef is then constructed using 
(w=)~(x) and this p(E).  (Since Eg 21 Ef,  this procedure goes 
s o m z a y  towards allowing for the nonhydrodynamic effects 
on (V*)~(X) of the spatial profile of E.) The velocities found 
from the distribution run in the field Ef agree very closely with 
(V=)~(Z). (The fields must only have a single reversal-at the 
maximum density. Occasionally, this condition is not satisfied 
and Ef must be modified slightly. A type I scaleup would be able 
to “self-heal” in this regard, however.) 

The ion distribution obtained at the end of the previous full run 
(which employs RF voltages) is used as an input to the scaleup. It 
is advanced in time using Ef and the ionization rate per unit vol- 
ume for a large number of cycles NSu. The resulting distribution 
represents an expected time-average after N,, cycles, 7,. 

- 

The time-average distribution 7, which is found in this way 
is suitable for finding the ion density n, after the scaleup; we 
have observed that n, oscillates only very slightly during an 
RF cycle, since 27r fo > wp,. The ion velocity does fluctuate 
significantly during an RF cycle, however. Correspondingly, the 
velocity dependence of 7, differs from that of the instantaneous 
f,. If 7, is used to restart the full run, the transition will be less 
soft than desirable due to the inappropriate velocity dependence. 

In order to restart the full run we need additional information 
from the end of the previous full run, beyond that needed for the 
scaleup, including the electron distribution function fe (5 ,  ZJ, t. ) 
and the electric field E(z, t , ) .  t, is the time at which the full 
run is stopped to begin a scaleup, and t, is the time at which the 
restart is done. Let the RF period be T. If the calculation starts 
at t = 0, the first scaleup starts at t ,  = 3T. t ,  = 1003T is the 
end of the first scaleup. Some quantities are assumed to be the 
same at t ,  as at t ,  = 3T. 

To smooth the transition, two additional quantities are stored 
from the last cycle of the previous full run. The instantaneous 
distribution fL(z, v,, t s )  is also stored. (The ionization rate per 
unit volume S(x,t) throughout the cycle is retained as well; we 
return to this momentarily.) We use f *(z, v,, t r )  to find n,(z,  t,.). 
We then scale fi(z, v,, t s )  (multiplicatively at each x )  so that it 
gives the same n,(z ,  t,.) but retains its own velocity dependence, 
and use it to restart the full run. 

During the scaleup we used a time-averaged electric field. We 
now wish to restart in the most appropriate instantaneous electric 
field, so we must ensure that Poisson’s equation will generate a 
field as close as possible to E(x, tS). (We could scale this field with 
density as we indicated above that we scale the potential during 
the scaleup, but this is typically not done.) Given the n,(z,t,) 
found after the scaleup, we choose n,(z, t 7 )  to satisfy 5 = $ 
(using old values of E and p )  as far as possible with the old 
field. We then scale fe(z, v, , vl, t s )  (multiplicatively at each x )  
to provide the same n,(z,  t r )  in the same way we described for 
fz (2, v,, t s )  and use it to restart the full run. 

This procedure occasionally calls for ne < 0 in the sheaths. 
We then set ne = 0 whenever the scaling asks for ne < 0. 
The true electron densities in these regions are low, and the 
distribution recovers rapidly as the run proceeds. The ionization 
rate is, however, rendered anomalously high in the instants after 
restart by this and other inconsistencies. For this reason, for 
the first cycle after restart we use the stored S ( z , t )  from the 
corresponding phase of the last cycle of the previous full run, 
instead of the rate which the code generates at the time. After 
a fraction of a cycle the transient settles out and a soft restart 
is obtained. 

The full code is then run for several cycles, after which any 
rapid transients are completely damped out and the real, very 
slow time evolution of the discharge is all that remains. It is then 
possible to go to another scaleup, and so on. Three cycles are 
typically all that are necessary between scaleups, and the scaleup 
extrapolates the time evolution accurately over at least a hundred 
times as many cycles in the cases we have examined. A scaleup 
takes less time than a single cycle of the full run, and fairly rapid 
convergence is achieved, usually requiqing 5 5 scaleup iterations, 
so the procedure is very effective in reducing run-time. 

In the next section we illustrate the technique, with results 
from various stages in a particular run. 

111. RESULTS OF SCALEUP 
In this section we present results from the calculation of the 
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Bulk ionization rate per unit - 1.3 1014 cm-3 s-l S(d /2 )  volume 
Bulk mean electron energy 0.49 eV I I I I 

time evolution of a particular discharge making use of scaleup. 
This is an ambitious example, because of a rather large neutral 
density N and electrode spacing d.  It would take a very long 
time to run on a workstation using the CS by itself. With 
scaleup, we only need tens of cycles in the full mode, which 
is well within the practical range. The parameters studied here 
are given in Table I. On the one hand, the ion confinement 
time T~ is tens of microseconds and the discharge evolves for 
a time (proportional to 7,) which in this case is in the tens of 
thousands of cycles; i.e., milliseconds. On the other hand, the 
electron time step is primarily limited to be At, - 0.1: (where 
wpe is the electron plasma frequency) to maintain numerical 
stability and accuracy. (We reiterate that this At, >> A~cFL.)  
The three-dimensional mesh used to describe the electrons has 
30000 cells; the two-dimensional ion mesh has 10000 cells; 
and the spatial mesh used to compute the electric field has 60 
cells; the extreme computational cost of such a calculation is 
evident. 

Fig. 1 shows the evolution of the total number of ions in 
the discharge (per cm2 of electrode area) over five scaleups 
(- 5 x loJ RF cycles). 

The other figures show the various quantities which are used 
during the scaleup. Fig. 2(a) is the time-average ionization rate 
per unit volume 3 found from the full calculation at the start of 
each of five scaleups; Fig. 2(b) is the corresponding time average 
of the average ion velocity Fig. 2(c) shows the five fixed 
fields Ef (explained below); Fig. 2(d) shows the five time-average 
electron temperatures, defined as m/3(wF), , with g, the random 
velocity; and Fig. 2(e) shows the five ion density profiles. 

The time-average electric field E from the third full run is in 
Fig. 3(a). The “experimental” mobility was used to construct a 
“guess” at an appropriate average electric field Eg (also shown 
in Fig. 3(a)) from (U=)*. In Fig. 3(b) are the velocities &!?)E 
and ,u(E)E, both using the experimental mobility p. A more 
exact mobility is found from Eg and the velocity of the ions 
in Eg. This allows a better estimate of the electric field Ef to 
be constructed, which is given alongside Eg in Fig. 3(a).The 
discrepancy between Eg and Ef is greatest within a few ion mean- 
free paths of the sheath-bulk boundary, where nonhydrodynamic 
effects are most a p p a r e n e e  velocity obtained using the field Ef 
is very close indeed to ( w ~ ) ~ ,  which is also plotted in Fig. 3(b); 
they could not be distinguished in this scale. Uskg  this Ef and 
the time-average ionization rate per unit volume S ,  a scaleup is 

done, running the ion distribution for a large number of cycles 

The settling down of various quantities during this full run is 
depicted in Fig. 5. Fig. 6 shows the instantaneous ion distribution 
fi at the instant when the electrostatic field is symmetric. It is 
clearly asymmetric, with potentially significant consequences for 
regional analytic models which assume a time-independent ion 
distribution. 

After this full run, a new scaleup is done, and so on. The 
sequence of density profiles after each scaleup are given in Fig. 3. 

The instantaneous electric field at the phase of the cycle when 
the restart occurs was recorded at the end of the previous full 
run (see Fig. 4(a)). In combination with the new ion density, 
this implies a new electron density (Fig. 4(b)) through Poisson’s 
equation. 

Fig. 4(c) shows the instantaneous average ion velocity used to 
restart the full run. The instantaneous velocity distributions were 
stored at the same phase of the full run as the electric field. These 
are now scaled to yield the new ion and electron densities and 
the full run is started. 

N s u .  

IV. CONCLUSION 
A scaleup procedure has been described which greatly en- 

hances the convergence to steady state of any RF plasma simu- 
lation when wpz < 27rf0 < wpe and any dc plasma simulation. 
The scaleup technique was applied to an already very efficient 
numerical solution of kinetic equations, the “convective scheme” 
(CS). Scaleup was used to speed the calculation of an RF 
discharge in He at the “high” pressure of p = 0.4 torr; high 
pressures are the most computationally costly, because of long 
ion confinement times in the weak field bulk. The evolution of 
the discharge in time was presented in detail. 

The basic method of the CS is also very widely applica- 
ble, although its initial implementation has been in calculating 
charged-particle distribution functions in discharges. (Calculation 
of plasma densities from a fluid description have also been 
performed using the CS [16]. Applications to neutral chemistry 
are being developed.) 

Future work will address the “reference reactor” [17] and 
will apply these techniques to gases having negative ions and 
interesting chemistry. 
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Fig. 4. The instantaneous (a) electric field E, (b) electron density ne, and (c) ion velocity ( u = ) ~  at the phase of the cycle when 
restart is done, after each of the five scaleups. E and ( v = ) ~  are identical at the last instant of the full run prior to a scaleup, and at 
the fist instant of the full run after a scaleup. The scaleup number is denoted as in Fig. 2. 
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is zero; i.e., the potential is symmetric. Note the asymmetries, especially in 
the dotted contour. fz(z,v,,t) = w, where ,V(z, U,) is the number 
of ions in a cell centered at (z, vz),  A is the discharge area, and Ax and AV, 
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fi are cmC4 s, and the contour spacing A log,, f L  = 1. Solid, dotted, and 
dashed contours correspond to f t  > 1. .fz = 1, and fz < 1, respectively. 
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