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Abstract

A common statistical problem is that of �nding the median element in a set of data. This paper
presents a fast and portable parallel algorithm for �nding the median given a set of elements distributed
across a parallel machine. In fact, our algorithm solves the general selection problem that requires the
determination of the element of rank i, for an arbitrarily given integer i. Practical algorithms needed
by our selection algorithm for the dynamic redistribution of data are also discussed. Our general
framework is a single-address space, distributed memory programming model that is enhanced by a
set of communication primitives. We use e�cient techniques for distributing, coalescing, and load
balancing data as well as e�cient combinations of task and data parallelism. The algorithms have
been coded in Split-C and run on a variety of platforms, including the Thinking Machines CM-
5, IBM SP-1 and SP-2, Cray Research T3D, Meiko Scienti�c CS-2, Intel Paragon, and workstation
clusters. Our experimental results illustrate the scalability and e�ciency of our algorithms across
di�erent platforms and improve upon all the related experimental results known to the authors. More
e�cient implementations of the communication primitives will likely result in even faster execution
times.

Keywords: Parallel Algorithms, Communication Primitives, Median Finding, Selection, Load
Balancing, Data Redistribution, Parallel Performance.

1 Problem Overview

Consider the problem of �nding the median of a set of n elements that are spread across a p-processor

distributed memory machine, where n � p2. The median is typically de�ned as the element that is the
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50th quantile of a set, or the element of rank dn2 e after the data has been sorted in ascending order. A

more general problem is that of selection; namely, we have to �nd the element of rank i, for a given

parameter i, 1 � i � n. Parallel sorting trivially solves the selection problem, but sorting is known to

be computationally harder than selection.

Previous parallel algorithms for selection ([9], [23], [31], [25]) and data redistribution ([28], [34])

tend to be network dependent or assume the PRAM model, and thus, are not e�cient or portable

to current parallel machines. In this paper, we present algorithms that are shown to be scalable and

e�cient across a number of di�erent platforms.

The organization of this paper is as follows. Section 2 addresses the Block Distributed Memory

model for analyzing shared memory style parallel algorithms. The Communication Library Primitive

operations which are fundamental to the design of high-level algorithms are introduced in Section 3.

A practical algorithm for the dynamic redistribution of data derived from these primitives is given

in Section 4. A parallel selection algorithm is described and analyzed in Section 5, together with

experimental results on a number of platforms.

2 The Block Distributed Memory Model

We use the Block Distributed Memory (BDM)Model ([26], [27]) as a computation model for developing

and analyzing our parallel algorithms on distributed memory machines. This model allows the design

of algorithms using a single address space and does not assume any particular interconnection topology.

The model captures performance by incorporating a cost measure for interprocessor communication

induced by remote memory accesses. The cost measure includes parameters re
ecting memory latency,

communication bandwidth, and spatial locality. This model allows the initial placement of data and

prefetching.

The complexity of parallel algorithms will be evaluated in terms of two measures: the computa-

tion time Tcomp(n; p), and the communication time Tcomm(n; p). The measure Tcomp(n; p) refers to the

maximum of the local computations performed on any processor as measured on the standard sequen-

tial model. The communication time Tcomm(n; p) refers to the total amount of communications time

spent by the overall algorithm in accessing remote data. Using the BDM model, an access operation

to a remote location takes � + 1 time, and l prefetch read operations can be executed in � + l time,

where � is the normalized maximum latency of any message sent in the communications network. No

processor can send or receive more than one word at a time.

We present several useful communication primitives in [3] and [4] for the transpose (also known as

\index" or \all-to-all personalized" communication) and the broadcast data movements. Since these

will be important primitives for analyzing our parallel algorithms, a summary of these communication

primitives follows.
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3 Communication Library Primitives

The following are our communication library primitives which are useful for routing most data move-

ments. Our algorithms will be described as shared-memory programs that make use of these primitives

and do not make any assumptions of how these primitives are actually implemented. In our analysis,

we use the BDM model and the results of [26] and [27].

The basic data transport is a read or write operation. The remote read and write typically have

both blocking and non-blocking versions. Also, when reading or writing more than one element, bulk

data transports are provided with corresponding bulk read and bulk write primitives. The �rst

hierarchy of collective communication primitives are similar to those for the IBM POWERparallel

machines [8], the Cray MPP systems [15], standard message passing [29], and communication libraries

for shared memory languages on distributed memory machines, such as Split-C [16], and include the

following: bcast, reduce, combine, scatter, gather, concat, transpose, and pre�x. A higher

level primitive redist is described later for dynamic data redistribution.

Note that shared arrays are held in distributed memory across a set of processors. A typical

array, A[r : s] contains s�r+1 elements, each assigned to a location in a unique processor. Collective

communications are de�ned on process groups, namely, the subset of processors which hold elements

from array A. For example, the process group is de�ned to have p = s�r+1 processors, logically and

consecutively ranked from 0 to p � 1. In general, nothing is known about the physical layout of A,

which is assumed to be arbitrary, i.e. A[r] and A[r+1] might reside on Pa and Pb, for any a 6= b. For

ease of describing the primitives below, we normalize A[r : s] by relabeling it as A0[0 : p� 1], where p

is de�ned as s � r + 1. Note that this is just a change of variable to simplify the discussion, and not

a physical remapping of the data.

3.1 Communication Primitive: READ(A[r][x : x+ q � 1])

Given a shared k�pmatrix on a p processor partition, theREAD primitive is an operation that allows

an arbitrary processor to request and receive q elements (1 � q � k) from a remote location on Pr.

Note that many parallel platforms contain both blocking (one-phase) and non-blocking (two-phase)

read function calls. In the BDM model, its complexity is de�ned to be(
Tcomm(n; p) � � + q;
Tcomp(n; p) = O(1):

(1)

3.2 Communication Primitive: WRITE(A[r][x : x + q � 1])

The complementary data movement, the WRITE primitive, is called when an arbitrary processor

writes q elements (1 � q � k) from a local array to a remote location. Again, many parallel platforms
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contain both blocking and non-blocking write function calls. The BDM complexity is again given in

Eq. (1).

3.3 Communication Primitive: CONCAT(A[0 : p � 1])

Given a shared input array A[0 : p � 1] on a p processor partition, distributed with one element per

processor, the CONCAT Communication Library Primitive returns a p � p array consisting of the

rearrangement of data such that each processor holds a local copy of the 1� p array A. In the BDM

model, this CONCAT communication algorithm has the following complexity:(
Tcomm(n; p) � � + p� 1;
Tcomp(n; p) = O(1):

(2)

3.4 Communication Primitive: TRANSPOSE(A[0 : p� 1][0 : q � 1])

Given a q�pmatrix on a p processor partition, where p divides q, the TRANSPOSE Communication

Library Primitive consists of rearranging the data in the q�p array such that the �rst q
p
rows of elements

are moved to the �rst processor, the second q
p
rows to the second processor, and so on, with the last q

p

rows of the matrix moved to the last processor. This primitive is also known as the index operation

([8], [11]). The BDM algorithm and analysis for the TRANSPOSE data movement is given in [3]

and is similar to that of the LogP model [17]. This TRANSPOSE communication algorithm has

the following complexity: (
Tcomm(n; p) � � +

�
q � q

p

�
;

Tcomp(n; p) = O(q):
(3)

3.5 Communication Primitive: BCAST(A[r][x : x + q � 1])

Another useful data movement primitive is BCAST broadcasting primitive. An e�cient BDM algo-

rithm is given ([3], [26]) which takes q elements (q � p) on a single processor and broadcasts them to

the other p� 1 processors using just two TRANSPOSE Communication Primitives.

An e�cient algorithm for broadcasting no greater than p elements from one processor (Pr) to the

remaining p�1 processors is to perform theCONCAT communication primitive, such that processors

only prefetch data when it is from processor r. This algorithm is identical in complexity to Eq. (2).

On the other hand, this problem can be solved using k-ary balanced tree algorithm [26], in which case

the communication would be Tcomm(n; p) � 2 (2� logk p+ p).

For larger q, a more e�cient algorithm to broadcast the q elements from a single processor to

p processors is based on the TRANSPOSE primitive. Processor r holds the q elements to be

broadcast in the �rst column of matrix A. We perform the TRANSPOSE(A) primitive, thus, giving

every processor q
p
elements. Each processor then locally rearranges the data so that an additional
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TRANSPOSE data movement will result in each processor holding a copy of all the q elements in

its column of A [26].

The analysis of thisBCAST algorithm is simple. Since this algorithm just performs twoTRANS-

POSE Communication Primitives, the complexities of the BCAST Primitive are

(
Tcomm(n; p) � 2

�
� +

�
q � q

p

��
;

Tcomp(n; p) = O(q):
(4)

See [3] and [4] for algorithmic details, performance analysis, and empirical results for these com-

munication primitives.

3.6 Communication Primitive: PREFIX(A[0 : p � 1];�)

Given an associative operator � (e.g. +, �, min, max, etc.) and a shared input array A[0 : p � 1]

on a p processor partition, distributed with one element per processor, the PREFIX Communication

Library Primitive coalesces the data such that each processor k contains a single element PS[k] =

A[0] � A[1] � : : : � A[k]. Parallel computers can handle this e�ciently when the element PS[k] is

assumed to reside on processor k [10], and Split-C implements this as a primitive library function.

An analysis for this operation on the BDM model is given in [4]. Since these rounds can be realized

with an CONCAT primitive operation followed by O(p) local computation of the pre�x-sums, the

resulting complexity is (
Tcomm(n; p) � � + p� 1;
Tcomp(n; p) = O(p):

(5)

Note that our algorithm can perform a stronger operation for the same complexity; namely, all p

pre�x-sums values can be made available as local elements on all processors. Thus, each processor

k contains PS[i] = A[0] � A[1] � : : : � A[i], for all 0 � i � p � 1. This is equivalent to calling

CONCAT(PREFIX(A[0 : p� 1])).

3.7 Communication Primitive: REDUCE(A[0 : p� 1];�)

The REDUCE Communication Primitive takes a shared input array A[0 : p� 1] and an associative

operator �, and on a single processor, returns the value of
Pp�1

i=0 A[i], where
P

uses the associative

operation �. We implement this primitive by calling PREFIX with the array A and the operation �.

Instead of using all p pre�x-sums, only the value of PS[p�1] is returned. The BDM model complexity

analysis is identical to Eq. (5).

3.8 Communication Primitive: COMBINE(A[0 : p� 1];�)

As with REDUCE, the COMBINE Communication Primitive again takes a shared input array

A[0 : p � 1] and an associative operator �, and returns another 1 � p shared array, consisting of p
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copies of the value of
Pp�1

i=0 A[i], where
P

uses the associative operation �. A simple implementation of

this primitive calls BCAST(p�1, REDUCE(A[0 : p�1];�)). Another implementation follows from

the stronger PREFIX primitive. Instead of returning all p pre�x-sums, only the value of PS[p� 1]

is returned on each processor. Thus, the BDM model complexity analysis is identical to Eq. (5).

3.9 Communication Primitive: GATHER(A[0 : p � 1][0 : s � 1])
(SCATTER(A[r][0 : n� 1]))

Given an s � p matrix distributed across a p processor partition, where q = sp, the GATHER

Primitive converts the data layout such that the entire sp elements are held in a q � 1 array local to

a single processor. A simple algorithm consists of logically replicating the input data such that there

are p copies in contiguous memory, and then calling the TRANSPOSE Communication Primitive.

Note that the inverse operation to this primitive is that of SCATTER, where a single column of q

elements of data on one processor is divided into p equal-sized chunks and transposed to �ll a q
p
� p

distributed layout. The analysis for these two primitives is given in Eq. (3).

3.10 Implementation Issues

The implementation of the communication primitives presented in this section can be achieved by

library code which need use only the basicREAD andWRITE primitives. However, parallel machine

vendors, realizing the importance of fast primitives ([8], [11], [29], and [15]), provide their own library

calls which bene�t from knowledge of and access to lower level machine speci�cs and optimizations.

Communication primitives are considered to be a black box, where the implementation is unim-

portant from the user's perspective, as long as the primitives produce the correct results. Figure 1

provides an example using the TRANSPOSE and BROADCAST primitives on the IBM SP-2.

Note that the \Vendor" primitive library corresponds to a primitive function implemented directly

on top of the respective collective communication library function provided by IBM. The \Generic"

primitive library uses our generic (and portable) implementation which call only the READ and

WRITE primitives. Note that for both implementation methods, and for both primitives, execution

time is similar, and making use of a vendor's library can improve performance.

4 Dynamic Redistribution of Data

The technique of dynamically redistributing data such that all processors have a uniform workload is an

essential primitive to many irregular problems, such as computational adaptive graph (grid) problems

([30], [19], [13]) including �nite element calculations, molecular dynamics [24], particle dynamics [18],

plasma particle-in-cell [20], raytraced volume rendering [22], region growing and computer vision

[33], and statistical physics [7], and, as we will show, the selection problem. The running time of
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TRANSPOSE BROADCAST

Figure 1: Performance of Communication Primitives

these parallel algorithms is categorized by the maximum running time of any of the p processors'

subproblems. Equalizing the amount of work assigned to each processor is an attempt at minimizing

the maximum single processor running time, and thus, reducing the overall execution time. Here, the

input is distributed across p processors with a distribution that is irregular and not known a priori.

We present two methods for the dynamic redistribution of data which remap the data such that no

processor contains more than the average number of data elements. The �rst method is similar to a

method presented in ([26], [27]), and only a brief sketch will be given. The second method, which is

shown to be superior, will be presented in greater detail.

4.1 Dynamic Data Redistribution: Method A

A simple method for dynamic data redistribution ranks each element in order across the p processors,

and assigns each set of q consecutively labeled elements to a processor, where q =
l
n
p

m
. Note that

when p does not divide n evenly, the last processor will receive less than q elements. We refer to this

as Method A.

Figure 2 shows a dynamic data redistribution example for Method A. This is a simple example

for 8 processors and 63 elements, with an arbitrary initial distribution of N = [10; 3; 2; 20; 0; 14; 6; 8].

Here, qj =
l
63
8

m
= 8, for 0 � j � 6, while q7 = 7, since P7 receives the remainder of elements when p

does not divide the total number of elements evenly.

An algorithm forMethod A �rst calls the CONCAT(N [0 : p�1]) communication primitive and
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Figure 2: Example of Dynamic Data Redistribution (Method A) with p = 8 and n = 63

assigns it to array N 0, a p� p shared array. Another p � p shared array of pre�x-sums of the values

from N , say PS, is derived from N 0 by simple local running sum calculations. Thus, every processor

contains local copies of all pre�x-sums. Suppose elements are logically ranked in consecutive order

from 1 to n. In the �nal layout, processor i will hold elements ranked from qi+1 to q(i+1), inclusively.

Using the pre�x-sum information, each processor easily determines where these elements are located

and issues READ primitives for the respective remote locations to �ll the
l
n
p

m
� p distributed output

array.

The analysis for the dynamic data redistribution algorithm using the BDM model is as follows.

The CONCAT primitive requires communication Tcomm(n; p) � � + p � 1 and Tcomp(n; p) = O(1)

(Eq. (2)). The local pre�x-sum calculation requires O(p). Determining the location of elements to

be read using the pre�x-sums has computational complexity of Tcomp(n; p) = log p. Assume that

the maximum number of elements initially on a processor is m, i.e., m = maxifN [i]g. The READ

primitive for actually issuing the remote read requests uses Tcomm(n; p) � � + max
n
n
p
+ 1; m

o
and

Tcomp(n; p) = O
�
n
p
+m

�
since each processor fetches at most

l
n
p

m
elements, but in the worst case, a

processor is the source of m fetched elements. Since these requests are pipelined, only a single latency
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� is incurred. Since m � n
p
, the dynamic data redistribution algorithm has the following complexity:

(
Tcomm(n; p) � 2� + maxifN [i]g+ p;
Tcomp(n; p) = O(maxifN [i]g):

(6)

Note that the input distribution N for dynamic data redistribution can range from already balanced

data (N [i] = m; 8i) to the case where all data is located on a single processor (N [i] = N; i = i0;N [i] =

0; 8i 6= i0). For a large class of irregular problems such that data are distributed with a certain

class of distributions, it has been shown that the distribution is typically closer to the �rst scenario,

(N [i] � m; 8i) [28].

4.2 Dynamic Data Redistribution: Method B

D: +1-2+6-8+12-6-5+2

Sinks:     P1, P2, P4, P6

Sources: P0, P3, P5, P7

P4

P4

P6

P6
P2

P1

10

3
2

20

0

14

6

8

P0 P1 P2 P3 P4 P5 P6 P7

P7

P1

P0
P6

P5P3

P2
P1

Figure 3: Example of Dynamic Data Redistribution (Method B) with p = 8 and n = 63

A more e�cient dynamic data redistribution algorithm, here referred to as Method B, makes use of

the fact that a processor initially �lled with at least q elements should not need to receive any more

elements, but instead, should send its excess to other processors with less than q elements. There

are pathological cases for which Method A essentially moves all the data, whereas Method B only

moves a small fraction. For example, if P0 contains no elements, and P1 through Pp�2 each have q

elements, with the remaining 2q elements held by the last processor, Method A will left shift all

9



the data by one processor. However, Method B substantially reduces the communication tra�c by

taking only the q extra elements from Pp�1 and sending them to P0.

Dynamic data redistribution Method B calculates the di�erential Dj of the number of elements

on processor Pj to the balanced level of q. If Dj is positive, Pj becomes a source; and conversely, if

Dj is negative, Pj becomes a sink. The group of processors labeled as sources will have their excess

elements ranked consecutively, while the processors labeled as sinks similarly will have their holes

ranked. Since the number of elements above the threshold of q equals the number of holes below

the threshold, there is a one-to-one mapping of data which is used to send data from a source to the

respective holes held by sinks.

In addition to reduced communication, Method B performs data remapping in-place, without

the need for a secondary array of elements used to receive data, as in Method A. Thus, Method B

also has reduced memory requirements.

Figure 3 shows the same data redistribution example for Method B. The heavy line drawn

horizontally across the elements represents the threshold q below which sinks have holes and sources

contain excess elements. Note that Pp�1 again holds the remainder of elements when p does not divide

the total number of elements evenly.

The SPMD algorithm for Method B is described below. The following is run on processor j:

Algorithm 1 Parallel Dynamic Data Redistribution Algorithm - Method B

Shared Memory Model Algorithm.

Input:

f j g is my processor number;

f p g is the total number of processors, labeled from 0 to p� 1;

f A g is the M � p input array of elements;

f N g is the 1� p input array of nj 's;

begin

1. N 0 = CONCAT(N);

2. Locally calculate the sum n =
Pp�1

i=0 N
0[j][i];

3. Set qk, the equalized number of elements on Pk, equal to
l
n
p

m
, for 0 � k � p� 2;

Set qp�1 = n� (q0 � (p� 1)); Pp�1 receives the remainder of elements when p does not evenly

divide n;

4. Set D[k] = N 0[j][k]� qk , for 0 � k � p� 1; This is the di�erential of elements on Pk ;

5. If D[k] > 0 then SRC[k] = 1 else SRC[k] = 0, for 0 � k � p� 1;

6. If D[k] < 0 then SNK[k] = 1 else SNK[k] = 0, for 0 � k � p� 1;

7. For all fkjSRC[k]g,

Set SRC RANK[k] equal to the pre�x sum of the corresponding D[k] values;

This ranks the excess elements;

8. For all fkjSNK[k]g,

Set SNK RANK[k] equal to the pre�x sum of the corresponding �D[k] values;

This ranks the holes for elements;
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9. If SRC[j] then

9.1 Set lj = SRC RANK[j] - D[j] + 1; the rank of my �rst element;

9.2 Set rj = SRC RANK[j]; the rank of my last element;

9.3 Set sj = min f�jSNK[�]^ (lj � SNK RANK[�])g;

the label of the processor holding the hole with rank lj ;

9.4 WRITE min(SNK RANK[sj ]; rj) excess elements from Pj to Psj ,

o�set in A[sj ][?] by N 0[j][sj] + (lj � (SNK RANK[sj ] +D[sj ] + 1));

9.5 If Pj still contains excess elements then

9.5.1 Set tj = min f�jSNK[�]^ (rj � SNK RANK[�])g;

the label of the processor holding element with rank rj;

9.5.2 If tj > sj + 1, then WRITE excess elements to all holes in A in

processors sj + 1; : : : ; tj � 1;

9.5.3WRITE the remaining excess elements to Ptj , o�set in A[tj ][?] by N 0[j][tj].

10. Update N [j].

end

The analysis for Method B of the parallel dynamic data redistribution algorithm is identical

to that of Method A, and is given in Eq. (6). Note that both methods have theoretically similar

complexity results, but Method B is superior for the reasons stated earlier.

Figure 4 shows the running time ofMethod B for dynamic data redistribution. The top left-hand

plate contains results from the CM-5, the top right-hand from the SP-2. The bottom plate contains

results from the Cray T3D. In the �ve experiments, on the 32 processors CM-5, the total number

of elements n is is 32K. On the SP-2, the 8 node partition has n = 32K elements, while the 16

node partition has results using both n = 32K and 64K elements. The T3D experiment also uses

16 nodes and a total number of elements n = 32K and 64K. Let j represent the processor label, for

0 � j � p� 1. Then the �ve input distributions are de�ned as

� Balanced: Each processor initially holds n
p
elements and hence m = n

p
;

� Linear: Each processor initially holds j 2n
p(p�1) elements and hence m = 2n

p
;

� Normal: Elements are distributed in a Gaussian curve 1 and hence m � 2:4n
p
for p � 8;

� Exponential: Pj contains n
2j+1 elements, for j 6= p � 1, and Pp�1 contains n

2p�1 elements and

hence m = n
2 ;

� All-on-one: An arbitrary processor contains all n elements and hence m = n.

The complexity stated in Eq. (6) indicates that the amount of local computation depends only

on m (linearly) while the amount of communication increases with both parameters m and p. In

particular, for �xed p and a speci�c machine, we expect the total execution time to increase linearly

with m. The results shown in Figure 4 con�rm this latter observation.

1We sample a mean zero, s.d. one, Gaussian curve at the center of p intervals equally spaced along [�3; 3]. The sample
values are normalized to sum to n by multiplying each by n

sum of the p samples
. The value of m can be veri�ed empirically.
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TMC CM-5 IBM SP-2

Cray T3D

Figure 4: Dynamic Data Redistribution Algorithms - Method B. The complexity of our algorithm is
essentially linear in m = maxifN [i]g
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Note that for the All-on-one input distribution, the dynamic data redistribution results in the

same loading as would calling a scatter primitive. In Figure 5 we compare the dynamic data redistri-

bution algorithm performance with that of directly calling a scatter IBM communication primitive

on the IBM SP-2, and calling SHMEM primitives on the Cray T3D. In this example, we have used

from 2 to 64 wide nodes of the SP-2 and 4 to 128 nodes of the T3D. Note that the performance of

our portable redistribution code is close to the low-level vendor supplied communication primitive

for the scatter operation. As anticipated by the complexity of our algorithm stated in Eq. (6), the

communication overhead increases with p.

Using this dynamic data redistribution algorithm, which we call REDIST, we can now describe

the parallel selection algorithm.

IBM SP-2 Cray T3D

Figure 5: Comparison of REDIST vs. Scatter Primitives

5 Parallel Selection - Overview

The selection algorithm makes no initial assumptions about the number of elements held by each

processor, nor the distribution of values on a single processor or across the p processors. We de�ne nj

to be the number of elements initially on processor j, for 0 � j � p� 1, and hence the total number

n of elements is n =
Pp�1

j=0 nj .

The input is a shared memory array of elements A[0 : p � 1][0 : M � 1], and N [0 : p � 1], where

N [j] represents nj , the number of elements stored in A[j][?], and the selection index i. Note that

the median �nding algorithm is a special case of the selection problem where i is equal to dn2e. The
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output is the element from A with rank i.

The parallel selection algorithm is motivated by similar sequential ([14], [32]) and parallel ([1], [25])

algorithms. We use recursion, where at each stage, a \good" element from the collection is chosen to

split the input into two partitions, one consisting of all elements less than or equal to the splitter and

the second consisting of the remaining elements. Suppose there are t elements in the lower partition.

If the value of the selection index i is less than or equal to t, we recurse on that lower partition with

the same index. Otherwise, we recurse on the higher partition looking for index i0 = i� t.

The choice of a good splitter is as follows. Each processor �nds the median of its local elements,

and the median of these p medians is chosen.

Since no assumptions are made about the initial distribution of counts or values of elements before

calling the parallel selection algorithm, the input data can be heavily skewed among the processors.

We use a dynamic redistribution technique which tries to equalize the amount of work assigned to

each processor.

5.1 Parallel Selection - Implementation and Analysis

The parallel algorithm for selection can now be presented, and makes use of the Dynamic Data

Redistribution algorithm given in Section 4. The following is run on processor j:

Algorithm 2 Parallel Selection Algorithm

Shared Memory Model Algorithm.

Input:

f j g is my processor number;

f p g is the total number of processors, labeled from 0 to p� 1;

f A g is the M � p input array of elements;

f N g is the 1� p input array of nj 's;

begin

1. If n < p2 then

f

1.1 A0 = GATHER(A);

1.2 Processor 0 calls a sequential selection algorithm to �nd x, the ith value of A0.

1.3 Result = BCAST(x).

g

2. REDIST (A, N, p);

3. Radixsort local elements A[j][0 : N [j]� 1], and �nd the local median;

4. B = GATHER of the p median elements, distributed one per processor;

5. Processor 0 calculates the median of the medians m, and

5.1 x = BCAST(m);

6. Each processor j �nds the position k, where k = maxfljA[l; j]� xg,

using the binary search technique, and sets T [j] = k;

7. t = COMBINE(T;+);
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This returns the sum t =
Pp�1

j=0 T [j], i.e. the number of elements on the low side of the

partition;

8. If i � t, then N [j] = k and the selection algorithm is called recursively

on the �rst k elements held in A on each processor.

Otherwise, i > t, and selection is called recursively on the last N [j]� k elements held in A

on each processor with the selection index i� k.

end

The analysis of the parallel selection algorithm is as follows. For n < p2, in step 1, we solve the

problem sequentially in linear time. For larger n, dynamic data redistribution algorithm is called in

step 2 to ensure that there are dn
p
e elements on processors 0 through p� 2, and processor p� 1 holds

the remaining n � (p� 1)dn
p
e elements. At least half of the medians found in step 3 are less than or

equal to the splitter. Thus, at least half of the p groups contribute at least d n
2pe elements that are less

than the splitter, except for the last group and the group containing the splitter element. Therefore,

the total number of elements less than or equal to the splitter is at least�
n

2p

���
1

2
p

�
� 2

�
�
n

4
�
n

p

Similarly, the number of elements that are greater than the splitter is at least n
4 �

n
p
. Thus, in the

worst case, the selection algorithm is called recursively on at most

n�

�
n

4
�
n

p

�
=

3

4
n+

n

p

elements.

Using the complexity of the communication primitives as stated in Section 3, it is easy to to derive

the recurrence equations for the parallel complexity of our algorithm. Solving these recurrences yields

the following complexity:8<
:

Tcomm(n; p) � O
�
(� + p) log n

p2
+m

�
; n � p2;

Tcomp(n; p) = O
�
n
p
+m

�
;

(7)

where m is de�ned in Eq. (6) to be maxjfN [j]g, the maximum number of elements initially on any

of the processors. For �xed p, the communication time increases linearly with m and logarithmically

with n, while the computation time grows linearly with both m and n.

The running time of the median algorithm on the TMC CM-5 using both methods of dynamic

data redistribution is given in Figure 6. Similar results are given in Figure 7 for the IBM SP-2. In all

data sets, initial data is balanced.

5.2 Data Sets

The input sets are de�ned as follows. If the set's tag ends with 8, 16, 32, 64, or 128, there are initially

8192, 16384, 32768, 65536, or 131072 elements per processor, respectively. The values of these elements
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Figure 6: Performance of Median Algorithm

are chosen by the method represented by the �rst letter. If the total number of elements per processor

is q, and the processor is labeled j, for 0 � j � p� 1, then

� D: Duplicate. Each processor holds values [0; q� 1];

� U: Unique. Each processor holds values [jq; (j+ 1)q � 1];

� R: Random. Each processor holds uniformly random values in the range [0; 231� 1].

The last two input sets correspond to an intermediate problem set from a computer vision algorithm

for segmenting images [4]. Set L512 (derived from band 5 of a 512� 512 Landsat TM image) contains

a total of 218 elements, which is the same size as the input sets ending with tag 8 on a 32 processor

machine. Set L1024, with a total of 220 elements, is derived from a similar 1024� 1024 image, and

has the same number of elements as an input set ending with tag 32 on a 32 processor machine.

On the SP-2, results given in Figure 7 are only for Method B, with each timing bar broken into

two partitions showing the portion of the total running time spent performing data redistribution

versus the remaining selection time. As these empirical data show, dynamic data redistribution is

only a small fraction of the total running time, which implies that the data is fairly balanced after

each iteration. Also, in every case, Method B outperforms Method A.

We benchmark our selection algorithm in Table I. The input for this problem, taken from the

NAS Parallel Benchmark for Integer Sorting [5], is 223 integers in the range [0; 219), spread out evenly

across the processors. Each key is the average of four consecutive uniformly distributed pseudo-random

numbers generated by the following recurrence:

xk+1 = axk(mod246)
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Figure 7: Performance of Median Algorithm on the SP-2

where a = 513 and the seed x0 = 314159265. Thus, the distribution of the key values is Gaussian. On

a p-processor machine, the �rst n
p
generated keys are assigned to P0, the next

n
p
to P1, and so forth,

until each processor has n
p
keys.

The empirical results presented in Table I clearly show that the selection algorithm is scalable

with respect to machine size, since doubling the number of processors solves the problem in about

half the time. This is consistent with the BDM analysis given in Eq. (7). For n = 223 and machine

sizes typically in the order of tens or hundreds of processors, computation dominates the selection

algorithm, and execution time scales as 1
p
. (For veri�cation, the median of the NAS input set is

262198.) Our code for selection, written in the high-level parallel language of Split-C, is ported to

the parallel machines with absolutely no modi�cations to the source code. Even without machine-

speci�c (low-level) code optimizations that are typically needed for superior parallel performance, we

have an algorithm which performs extremely well across a variety of current parallel machines such as

the Cray T3D, IBM SP-2, TMC CM-5, and Meiko CS-2.

Next we compare our selection algorithm to that of the trivial method of selection by parallel

integer sorting on the TMC CM-5. As shown in Table II, our high-level selection algorithm beats the
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linear scale log scale

Figure 8: Number of candidates per iteration

fastest sorting results for the NAS input that are known to the authors. Note that the algorithm in

[6] is machine-speci�c and does not actually result in a sorted list.

Figure 8 shows that the parallel selection algorithm for R8, R16, and R32, reduces the candidate

elements by approximately one-half during each successive iteration. In this plot, p = 32; thus, when

the data sets shrinks to a size less than p2, i.e. smaller than 1024, a sequential algorithm is employed

to solve the corresponding selection problem.
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Machine PE's BDM Selection Algorithm
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8 2.40
16 1.17
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16 1.01
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8 3.55
16 1.81
32 0.929
64 0.483
128 0.275

Meiko CS-2 16 3.03
32 1.55

TMC CM-5 16 5.57
32 2.77
64 1.68

Table I: Execution Times for the High-Level BDM Selection (in seconds) on the NAS IS input set
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