
This book is the first of its kind to describe the challenges that arise in studying and conserving 
biodiversity across different scales. Taking a scale-conscious view of the drivers of change, 
biodiversity patterns and processes themselves, and policy actions aimed at management 
and protection, it describes a wide range of practical methods and recommendations to 
improve conservation at continental and global scales.

Drivers of change are considered at different spatial scales, including the likely effects on 
biodiversity under land use and climate change. Ecological patterns and processes are examined 
and modelled at different levels of biological organization, from genetics, through individual 
dispersal and population viability, to community structure and selected ecosystem services. 
Trade-offs and tensions between different conservation goals are explored, and promising new 
methods for the study of scaling effects are digested from the scientific literature. Different 
governance and policy tools are evaluated and recommendations given. Finally, case studies 
from both Europe and Taiwan illustrate many of the scaling issues with a focus on networks of 
protected areas and their connectivity.

The book is addressed to a wide range of readers. Scientists will find readable summaries 
of analyses, methods and case studies. Conservationists and policy makers will find 
recommendations and ideas for management, biodiversity governance, and decision-
making. Lecturers will find good examples to illustrate the challenges that arise from 
considering multiple scales in ecology and biodiversity conservation. Moreover, everyone 
concerned with conservation will find ideas in this book to help in the urgent task of protecting 
biological diversity through study, insight and action at all kinds of scales: spatial, temporal, 
administrative and ecological.
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Preface
Human actions, motivated by social and economic driving 
forces, generate various pressures on biodiversity, such 
as habitat loss and fragmentation, climate change, land 
use related disturbance patterns, or species invasions that 
have an impact on biodiversity from the genetic to the 
ecosystem level. Each of  these factors acts at characteristic 
scales, and the scales of  social and economic demands, 
of  environmental pressures, of  biodiversity impacts, of  
scientific analysis, and of  governmental responses do not 
necessarily match. However, management of  the living 
world will be effective only if  we understand how problems 
and solutions change with scale.

SCALES (http://www.scales-project.net), a research 
project lasting for five years from May 2009 to July 2014, 
was seeking for ways to build the issue of  scale into policy 
and decision-making and biodiversity management. It has 
greatly advanced our knowledge of  how anthropogenic 
and natural processes interact across scales and affect 
biodiversity and it has evaluated in a very practical way how 
this knowledge can be used to improve the scale-sensitivity 
and effectiveness of  policy instruments for conservation 
and sustainable use of  biodiversity.

During the project we have especially emphasized 
approaches that utilize existing biodiversity databases as 
they are the most widely available information in applied 
biodiversity conservation. We also tried to integrate the 
most appropriate assessment tools and policy instruments 
into a coherent framework to support biodiversity 
conservation across spatial and temporal scales. While 
the guidelines, practical solutions and special tools are 
presented as a special web based portal at a central place, 
the SCALETOOL (http://scales.ckff.si/scaletool/), the 
scientific outcome is widely spread over the scientific 
literature in regional and international journals.

With the SCALES book we want to bundle the main 
results of  SCALES in a comprehensive manner and 
present it in a way that is usable not only for pure scientists 
but also for people making decisions in administration, 
management, policy or even business and NGOs; to people 
who are more interested in the “practical” side of  this issue.

Yrjö Haila, Tampere
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Species living in a 
changing world

Most species do not live in a 
constant environment over space 
or time. Their environment is often 
heterogeneous with a huge variability 
in resource availability and exposure 
to pathogens or predators, which 
may affect the local densities of the 
species. Moreover, the habitat might 
be fragmented, preventing free and 
isotropic migrations between local 
sub-populations (demes) of a species, 
making some demes more isolated 
than others. For example, during the 
last ice age populations of many spe-
cies migrated towards refuge areas 
from which re-colonization origi-
nated when conditions improved. 
However, populations that could not 
move fast enough or could not adapt 
to the new environmental condi-
tions faced extinctions. Populations 
living in these types of dynamic en-
vironments are often referred to as 
metapopulations and modeled as an 
array of subdivisions (or demes) that 
exchange migrants with their neigh-
bors. Several studies have focused on 
the description of their demography, 
probability of extinction and expect-
ed patterns of diversity at different 
scales. Importantly, all these evolu-
tionary processes may affect genetic 
diversity, which can affect the chance 
of populations to persist. In this 
chapter we provide an overview on 
the consequences of fragmentation, 
long-distance dispersal, range con-
tractions and range shifts on genetic 
diversity. In addition, we describe 
new methods to detect and quantify 
underlying evolutionary processes 
from sampled genetic data.

The scaling of genetic 
diversity in a changing and 
fragmented world
miGuel arenas, stefano mona, audreY trocHet, anna sramKoVa HanuloVa, matHias currat, nicolas raY, 
lounes cHiKHi, rita rasteiro, dirK s. scHmeller, laurent excoffier

Spatial and temporal 
genetic simulation 
using SPLATCHE2 

Computer simulations mimic the 
processes that occur in the real world 
and allow us to study which patterns 
may affect systems. We have developed 
the program SPLATCHE2 (http://
www.splatche.com) (Ray et al. 2010), 
which performs spatially explicit simula-
tions of genetic data under different en-
vironmental scenarios and accounting 
for recombination, complex migration 
and long-distance dispersal. As input, 
the program requires a map (specified 
by a grid of demes) where the carry-
ing capacity (K) and the migration rate 
must be user-specified for each deme. 
Optionally, both K and migration rate 
can change with time (moreover, a 
model allowing for different migra-
tions rates in different directions is also 
implemented). Other important inputs 
are related with demography (e.g., initial 
population size and geographic origin, 
growth rate, total number of genera-
tions and a number of demographic 
models). Then, SPLATCHE2 performs 
a demographic simulation over the map 
followed by a coalescent simulation 
based on user-defined samples (Figure 
1). The coalescent simulation just traces 
the evolutionary history of the sampled 
genes going backwards in time until 
their most recent common ancestor. It 
is followed by a simulation of genetic 
data (DNA, STRs and SNPs) along the 
coalescent (gene) genealogy. Although 
the model makes several assumptions 
(such as a molecular clock or non-over-
lapping generations) it is probably one 
of the most realistic software packages 
available and has been used in a variety 
of important publications. 

Genetic diversity can be scale-de-
pendent as a consequence of environ-
mental or evolutionary heterogene-
ities, the former ones being potentially 
driven by climatic changes, whereas 
the latter can be driven by natural 
selection. Thus, geographic barriers, 
geographic provenance, or migration 
abilities of the species may increase 
genetic heterogeneity at various scales. 
Below, we study a variety of complex 
evolutionary scenarios with scaling 
genetic diversity by using our simula-
tion evolutionary framework.

Influence of  habitat 
fragmentation on 
genetic diversity

Previous studies have suggested that 
environmental heterogeneity can affect 
genetic diversity, but these effects were 
not evaluated at different spatial scales. 
For instance it is unknown if a given cli-
matic change will equally affect (e.g. de-
crease) genetic diversity within and be-
tween populations, which is fundamen-
tal information for nature conservation 
and management studies, such as to 
predict the influence of climate change 
on global and local biodiversity. By 
using the results from extensive simula-
tions, we address here the influence of 
fragmented habitats at different scales 
on the species genetic diversity. Using 
SPLATCHE2, we simulated range ex-
pansions where demes were partitioned 
into groups (patches) by adding barriers 
to dispersal. We also included scenarios 
with long-distance dispersal events, 
where individuals can migrate to non-
neighboring demes. Then, samples were 
collected within demes, patches, regions 
and at the global landscape level. 
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As expected, we found that strong 
levels of fragmentation result in a 
severe loss of genetic diversity in the 
population at a global scale, but we 
also found that the detection of this 
decreased diversity requires sampling 
at different scales (Mona et al. 2014). 
Moreover, we varied fragmentation 
intensity at specific time points and we 
found that local genetic diversity and 
population differentiation were mark-
edly affected by ancient fragmentation, 
and much less by recent events (Mona 
et al. 2014). Our results explain why 
recent habitat fragmentation does not 
always lead to detectable signatures in 
the genetic structure of populations. 
Conversely, if habitat fragmentation is 
removed, it also takes a long time to 
recover lost diversity by natural pro-
cesses, suggesting that long-term con-
servation measures (e.g., by restoring 
gene flow) should be implemented to 
locally restore previously lost genetic 
diversity (Mona et al. 2014). We also 
found that species with long-distance 
dispersal abilities can, however, mi-

grate across the barriers. As a con-
sequence, their diversity is less influ-
enced by the fragmented landscape.

Influence of  range 
contractions and 
range shifts on genetic 
diversity

Range contractions and range 
shifts may occur as a consequence 
of temporal climatic fluctuations, de-
pending on the geographical structure 
of the landscape, the duration of the 
climatic changes, or the species’ dis-
persal abilities. Under such environ-
mental changes, a common response 
of species is migration towards more 
suitable regions. Many studies have 
analyzed the migration behaviour and 
spatial distribution of range-contrac-
tion and -shifting species; neverthe-
less, less attention has been paid to 
the influence of such processes on 
genetic diversity. We simulated DNA 

sequence data in populations suffer-
ing diverse range shifts and contrac-
tions over a landscape constituted by 
a grid of demes (Arenas et al. 2012). 
Simulated scenarios of range shifts 
and range contractions varied accord-
ing to dispersal abilities and migra-
tion patterns. For example fast range 
contractions (e.g., as a consequence of 
rapid climate change) may lead to the 
extinction of populations that do not 
move. We analyzed genetic diversity 
of the simulated data. Contrary to 
our expectations, we found that fast 
contractions preserve higher levels 
of diversity and induced lower lev-
els of genetic differentiation among 
refuge areas than slow contractions 
towards refuge areas. Thus slow con-
tractions have the highest negative 
impact on final levels of diversity. We 
obtain rather different results when 
the range of species is shifting rather 
than expanding: fast range shifts lead 
to lower levels of diversity than slow 
range shifts. Interestingly, we found 
that species actively migrating to-

Figure 1. Timeline simulation of complex scenarios of range expansion, range contraction and posterior re-expansion. Each plot 
corresponds to a snapshot of the program SPLATCHE2. White areas indicate unoccupied demes while green areas represent occupied 
demes. Snapshots presented at each line differ in 50 generations, see detailed settings in Arenas et al. (2013). At the top, we describe a 
range expansion over Europe from the Near East. Then, we show a range contraction from the north to the south, which mimic the Last 
Glacial Maximum period and leads to two situations (as shown on the left of the second row: A: refuge areas cover all southern Europe, and 
B: there is a single refugium in the Iberian Peninsula. The third and fourth rows show a re-expansion from these two types of refuge areas.

Range expansion

Range contraction
A

B

Re-expansion from all Southern Europe

Re-expansion from Iberian Peninsula
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diversity and higher levels of popula-
tion differentiation than populations 
of similar size living in a constant and 
uniform environment. This is because 
genetic diversity is more rapidly lost 
in small demes than it is gained in 
large demes, leading to higher rates of 
local genetic drift.

Patterns of genetic diversity have 
been used to assess many properties 
of a population, but no attempt has 
been made to estimate the degree of 
environmental heterogeneity directly 
from patterns of diversity at different 
scales. It would therefore be useful 
to be able to infer the degree of envi-
ronmental heterogeneity directly from 
genetic data, especially for sparse 
and cryptic species, or for species 
for which the exact definition of the 
population is difficult to assess.

We have simulated environmental 
heterogeneity using SPLATCHE2 
where local deme carrying capacities 
(K) can vary in space according to 
a Gamma distribution with mean K̄ 
and shape parameter α. The Gamma 
distribution is often used to describe 
various levels of heterogeneity of a 
given biological parameter (e.g. mu-

wards refuge areas can actually bring 
additional diversity to these areas, 
but only if the range contraction is 
rapid. When contractions or shifts are 
slow, we found that active migrations 
towards refuge areas could lead to a 
more pronounced loss of diversity 
than if migration was similar in all 
spatial directions (Arenas et al. 2012). 
These results suggest that species 
with different generation times and 
different migration abilities should be 
differently affected by environment 
change. 

Inference of  
fragmentation levels 
from genetic data 
gathered at different 
scales over the species 
range

Populations living in a hetero-
geneous environment usually show 
a large variance in local population 
densities and migration rates, and 
generally present less local genetic 

tation rate, migration rate, popula-
tion size, etc). The important thing 
to note here is that small values of 
α (typically α < 1) are indicative of 
strong environmental heterogene-
ity, where a few demes have very 
high population densities and most 
others have very low densities (even 
being zero, which correspond to 
uninhabitable regions). Therefore, 
because habitat fragmentation usu-
ally creates uninhabitable regions, it 
is also associated to high levels of 
environmental heterogeneity. On the 
other hand, large values of α (typi-
cally α >5) imply little environmental 
heterogeneity, such that most demes 
have a very similar carrying capacity. 
Previous studies have shown that 
both local genetic diversity and levels 
of population differentiation would 
strongly depend on α, suggesting that 
patterns of genetic diversity at differ-
ent scales could be used to infer α, 
and therefore, indirectly, the level of 
environmental heterogeneity.

We used an analytical method 
based on the Approximate Bayesian 
Computation approach (a statisti-
cal inference method allowing one 

Box 1. Effect of range contractions on current European molecular 
diversity

The genetic signal of range contractions can be also observed in genetic gradients estimated by principal compo-
nent analysis (PCA), a method for analyzing patterns of similarity between multiple samples. Initial studies that rep-
resented genetic relationships among human populations with PCA revealed the presence of a southeast–northwest 
(SE-NW) gradient of genetic variation in current European populations, which was interpreted as being the result of a 
diffusion process of early Neolithic farmers during their expansion from the Middle East. However, this interpretation 
has been widely questioned, as PCA gradients may occur even when there is no expansion, and because the first PC 
axis is often orthogonal to the expansion axis (i.e. the main axis of change in levels of genetic diversity is perpendicu-
lar to the expansion direction). However, the effect of more complex evolutionary scenarios on PCA, such as those 
including both range expansions and contractions, had not been investigated.

In a recent study, we (Arenas et al. 2013) performed simulations of range contractions that might have occurred 
during the last glacial maximum period to better understand the formation of genetic gradients across Europe. In 
particular, we have simulated range contractions of human Paleolithic populations and admixture between Paleolithic 
and Neolithic populations over Europe (see Figure 1). The simulations were performed for diverse levels of admixture 
and under two range contraction scenarios where the refuge areas were either over all southern Europe or only in the 
Iberian Peninsula (see Figure 1). We observed that the first PC (PC1) gradients were orthogonal to the expansion, but 
only when the expansion was recent (Neolithic). More ancient (Paleolithic) expansions altered the orientation of the 
PC1 gradient due to 1) a spatial homogenization of genetic diversity over time, and 2) the exact location of the Last 
Glacial Maximum (LGM) refugia. Overall we found that PC1 gradients consistently follow a SE-NW orientation if 
there is a large Paleolithic contribution to the current European gene pool, and if the main refuge area during the last 
ice age was in the Iberian Peninsula. Our study suggests that the observation of a SE-NW PC1 gradient is compatible 
with the view that range contractions have affected observed patterns of genetic diversity, and suggest that the genetic 
contribution of Neolithic populations to the current European gene pool may have been limited (Figure 2). Although 
this study was focused on humans, this framework could be applied to other species that might have experimented 
with range contractions as a consequence of environmental changes.
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to estimate parameters in complex 
models by computer simulation) to 
infer the shape parameter of a Gamma 
distribution directly from patterns of 
genetic diversity of several samples 
taken from a population having gone 
through a recent range expansion. Our 
results show that the degree of envi-
ronmental heterogeneity (α) can be 
very well estimated if all other param-
eters of the model are known (Figure 
3). When all other parameters need to 
be co-estimated, the estimation of α 
becomes difficult, and we can mainly 
distinguish small from large α values 
(Figure 4). In other words, we only 
have power to distinguish very het-
erogeneous environments from more 
homogeneous ones, but little prospect 
to get accurate estimations of α.

Concluding remarks

In this chapter we described the 
strong influences that habitat fragmen-
tation and dispersal heterogeneity can 
have on genetic diversity, at different 
geographical and temporal scales. 
To this purpose, we mainly used the 
SPLATCHE framework to perform 
spatially explicit simulations of genetic 
diversity under complex demographic 
models, also allowing for temporal 
heterogeneity. We found that frag-
mented habitats often have a signifi-
cant loss of genetic diversity relative to 
homogeneous habitats. This effect was 
reduced in species with long distance 
dispersal abilities. Similarly, range 
contractions led to a loss of genetic 
diversity, in particular when the con-
traction was slow. Note that the rate 
of environmental change needs to be 
considered relative to the generation 
time of the species involved, and the 
generation time of species needs to be 
taken into account when considering 
genetic diversity after climatic changes. 
Species with shorter generation times 
should suffer from more diversity 
loss after a range contraction than 
long-lived species (Arenas et al. 2012). 
We note however, that such species 
may also adapt more quickly to new 
environments. Fast range shifts, on 
the contrary, reduced genetic diversity 
more than slow range shifts where 
more individuals can track favorable 

environments. Indeed species with 
low migration rates and going through 
fast range shifts can easily become 
extinct (Arenas et al. 2012). In addi-
tion, we found signatures of range 
contractions on diversity by using 
PCA. In this case, a re-expansion after 

a range contraction introduces spatial 
genetic diversity gradients that depend 
on the location of refuge areas (Are-
nas et al. 2013). We also described a 
procedure to detect the level of habitat 
fragmentation from observed pat-
terns of genetic diversity. Finally, we 

Figure 2. Influence of range contraction on Principal Component (PC) maps. We show the 
results of Principal Component Analysis (PCA) on Single Nucleotide Polymorphism (SNP) 
data in the case of a Neolithic range expansions from Middle East resulting in a final population 
that shows 80% with the pre-existing Paleolithic population: (A) Illustrative example of PCA 
derived from a range expansion. The PC1 gradient has a SW-NE orientation. (B) Illustrative 
example of PCA derived from range expansion followed by a range contraction towards all of 
southern Europe, and subsequent re-expansion. The PC1 gradient has an E-W orientation. 
(C) Illustrative example of PCA derived from range expansion followed by a range contraction 
towards the Iberian Peninsula only, and subsequent re-expansion from this refugium. The 
PC1 gradient has an NW-SE orientation. (D) Original PC1 map inferred from Piazza et al. 
(1995) [© 1995 National Academy of Sciences, USA] with a superimposed line connecting 
positive and negative PC1 centroids. The PC1 gradient shown in (C), which is the most 
similar to real data (D), was also found in scenarios with a larger Paleolithic contribution and 
either pure range expansions or range expansions with range contraction towards the Iberian 
Peninsula (see Arenas et al. 2013 for further details).
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Figure 3. ABC estimation of our index of environmental heterogeneity (α) from genetic 
diversity simulated in species with small and large carrying capacity (K) when all other 
parameters of the model are known. The true value of α is shown on the x-axis and its 
estimation (as the mode of its posterior distribution resulting from an ABC analysis) is 
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Box 2. Sex-biased dispersal
Population genetic structure is influenced by migration patterns. This includes sex-biased dispersal, likely im-

pacting life-history evolution, population genetic structure and metapopulation functioning. In population genetics, 
sex-biased dispersal may not only reflect a difference in the number of  dispersing individuals of  one sex in rela-
tion to the opposite sex, but also the unequal reproductive success of  dispersers. Fine-scale genetic structure and 
adaptation to local environments might therefore be promoted by sex-biased dispersal. Sex-biased dispersal can 
be identified and quantified by e.g. comparing the genetic differentiation of  females to that of  males. The sex with 
the highest dispersal frequency would have a lower genetic differentiation among different subpopulations (i.e. as 
measured by the genetic parameter FST). Similarly, sex-biased dispersal could be measured by comparing the level 
of  genetic structure inferred from nuclear markers (inherited by both parents) to that indicated by mitochondrial 
DNA (as children inherit their mitochondria from their mothers) or Y chromosome (which male children inherit 
from their fathers). If  the level of  genetic differentiation inferred from mtDNA is higher than that inferred from 
nuclear markers, male-biased dispersal may be assumed. Simulations, undertaken with a different program inspired 
by SPLATCHE2 (Rasteiro et al. 2012), clearly show that different patterns of  genetic differentiation can be detected 
under three scenarios, 1) bilocality (no sex-biased dispersal), 2) matrilocality (male-biased dispersal), and 3) patrilo-
cality (female-biased dispersal, Figure 5). Y-chromosome genetic diversity is very low, especially in the patrilocality 
scenario for which only one Y-haplotype often remains after 1000 simulated generations. Note that the same effect 
was not seen in simulated mtDNA, probably due to differences in mutation rates and types of  markers (Rasteiro 
et al. 2012). Indeed, the authors showed that the simple difference in mutation rates between the two types of  sex-
related genetic systems is sufficient to create an asymmetry that could be mistaken for differences in migration rates, 
even under bilocality scenarios.

Accounting for sex-biased migration in population and conservation genetics studies is of  great importance as 
significant differences in sex-biased dispersal have been demonstrated among different taxonomic groups. Dispersal 
of  mammals, reptiles and fishes were more frequently male-biased whereas dispersal in birds was more frequently 
female-biased (Figure 6). Therefore, knowledge on sex-biased dispersal may prove essential to develop and assess 
habitat management and landscape planning strategies for different species.

In many species, population decline has been linked directly to loss and fragmentation of  habitats and indirectly to 
reduced inter-patch dispersal. Concerns about habitat fragmentation and landscape structure are usually based on the 
ability of  wildlife to disperse between the blocks of  habitat types that they require. Our simulations showed that pat-
terns of  sex-biased dispersal can have important consequences on some genetic markers and conversely they should 
inform us on the importance of  sex-biased dispersal in natural systems that are difficult to study. Some studies have 
suggested that the different sexes may have a differing impact on demographic connectivity at different scales, the less 
dispersing sex more on local scales, while the more and farther dispersing sex on larger scales. Another consequence 
of  sex-biased dispersal is that the rate of  natural recolonization of  locally extinct populations may be slower as it 
requires that both sexes disperse. Sex-biased dispersal may also act as a buffer against reduction of  genetic variability 
due to high genetic drift in populations with small effective size (Schmeller and Merila 2007). Ultimately, explorations 
of  the implication of  unequal effective population size, migration rate and non-random individual dispersal will be 
necessary for synthesizing ecological and genetic theory on dispersal and population structure.

Figure 4. Optimal distinction between small 
and large α values when all parameters 
of the range expansion model need to 
be co-estimated with the environmental 
heterogeneity. The plot shows the 
estimated proportion of times where α was 
incorrectly estimated as below or above a 
threshold (a given true value). This incorrect 
assignment is minimized for α=0.63 
(blue line), showing a maximal power to 
distinguish between values of α above and 
below this value. Here, the misclassification 
rate is inferred from an analysis of the 
plot of true (x-axis) vs. estimated (y-axis) 
α values shown in the central insert. 
Misclassification rate is obtained as the 
sum of the proportion of points in the blue 
regions relative to those in the orange 
regions on the left and right hand side of 
the blue line.
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Figure 6. Phylogenetic tree of the ancestral character states reconstruction of sex-biased 
dispersal based on a parsimonious method on the 216 species (275 populations from 
publications) used. Branches and tips are coloured in blue for a male biased dispersal state 
and in red for a female biased dispersal state. In grey, branches for which the reconstruction 
method did not allow one to choose between a male or a female bias. Numbers on nodes 
correspond to: 1. Bilateria, 2. Arthropoda, 3. Osteichthyes, 4. Fishes, 5. Tetrapoda, 6. 
Mammals, 7. Amniota, 8. Sauria, 9. Neognathae, 10. Neonaves, 11. Birds, 12. Batrachia.

performed simulations incorporating 
sex-biased migration and found that 
such a bias could highly impact genetic 
data, which can therefore be used to 
infer sex-biased dispersal in species 
that are difficult to study in the field. 

The fact that habitat fragmentation, 
dispersal patterns, and range move-
ments strongly alter genetic diversity 
of species implies that they need to be 
considered for biodiversity conserva-
tion strategies.
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