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Abstract

UML class-based models and OWL ontologies constitute modeling approaches
with different strength and weaknesses that make them appropriate for specify-
ing different aspects of software systems. We propose an integrated use of both
modeling approaches in a coherent framework – TwoUse. We present a frame-
work involving different concrete syntaxes for developing integrated models and
use an OCL-like approach for writing query operations. We illustrate TwoUse’s
applicability with a case study and conclude that TwoUse achieves enhance-
ments of nonfunctional software requirements like maintainability, reusability
and extensibility.
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1. Introduction

The Unified Modeling Language (UML)[1] is a visual design notation for de-
signing software systems. UML is a general-purpose modeling language, capable
of capturing information about different views of systems like static structure
and dynamic behavior.

On the other side, ontologies provide shared domain conceptualizations rep-
resenting knowledge by a vocabulary and, typically, logical definitions [2, 3] to
model the problem domain as well as the solution domain. The Web Ontol-
ogy Language (OWL) [4] provides a class definition language for ontologies,
i.e., OWL allows for the definition of classes by required and implied logical
constraints on properties of their members.

UML class-based modeling and OWL comprise some constituents that are
similar in many respects like classes, associations, properties, packages, types,
generalization and instances [5]. Despite of the similarities, both approaches
present restrictions that may be overcome by an integration.

On the one hand, a key limitation of UML class-based modeling is that it
allows only static specification of specialization and generalization of classes and
relationships, whereas OWL provides mechanisms to define these as dynamic.
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In other words, OWL allows for recognition of generalization and specialization
between classes as well as class membership of objects based on conditions
imposed on properties of class definitions.

On the other hand, UML provides means to specify dynamic behavior
whereas OWL does not. The Object Constraint Language (OCL) [6] comple-
ments UML by allowing the specification of query operations, derived values,
constraints, pre and post conditions.

Since both approaches provide complementary benefits, contemporary soft-
ware development should make use of both. The benefits of an integration are
twofold. Firstly, it provides software developers with more modeling power.
Secondly, it enables semantic software developers to use object-oriented con-
cepts like inheritance, operation and polymorphism together with ontologies in
a platform independent way. These considerations lead us to the following chal-
lenge: How can we develop and denote models that benefit from advantages of
the two modeling paradigms?

While mappings from one modeling paradigm to the other one have been
established a while ago (e.g., [5]), the task of an integrated language for UML
and OWL models has not been dealt with before. The challenge of this task
arises from the large number of differing properties germane to each of the two
modeling paradigms (see [7] for an analysis), making the integration of UML
models and OWL models difficult.

Such an integration is not only intriguing because of the heterogeneity of
the two modeling approaches, but it is now a strict requirement to allow for the
development of software with many thousands of ontology classes and multiple
dozens of complex software modules in the realms of medical informatics [8],
multimedia [9] or engineering applications [10].

TwoUse (Transforming and Weaving Ontologies and UML in Software En-
gineering) addresses these types of systems. It is an approach combining UML
class-based models with OWL ontologies to leverage the unique and potentially
complementary strengths of the two. TwoUse’s building blocks are: (i) an inte-
gration of the MOF-based metamodels for UML and OWL, (ii) the specification
of dynamic behavior referring to OWL reasoning (using OCL-like expressions),
(iii) the definition of a joint profile for denoting hybrid models as well as other
concrete syntaxes.

We preset TwoUse in this paper as follows: firstly, we describe the motivation
illustrated by a case study (Section 2) we have conducted. Section 3 presents
and explains the building blocks of TwoUse. In Section 5, we analyze TwoUse
by evaluating it according to ISO 9126 non-functional software requirements
(Section 5.1) and by describing its limitations. Section 6 presents the related
work. We point to further applications of TwoUse in Section 7.

2. Case Study

We use our case study in the context of semantic multimedia tool as practical
running example in this paper. This is just one of the multiple uses of integrat-
ing ontologies and software modeling techniques (see Sect. 5 for further ones).
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The K-Space Annotation Tool (KAT)1 is a framework for semi-automatic and
efficient annotation of multimedia content that provides (i) a plug-in Infrastruc-
ture (analysis plug-ins and visual plug-ins) and a formal model based on the
Core Ontology for Multimedia (COMM) [11].

Analysis plug-ins provide functionalities to analyze content, e.g., to semi-
automatically annotate multimedia data like images or videos, or to detect
structure within multimedia data. However, as the number of available plug-ins
increases, it becomes difficult for KAT end-users to choose appropriate plug-ins.

For example, K-Space project partners2 provide machine learning based clas-
sifies, e.g. Support Vector Machines (SVM), for pattern recognition. There are
different recognizers (object recognizers, face detectors and speaker identifiers)
for different themes (sport, politics and art) for different types of multime-
dia data (image, audio and video) and for different formats (JPEG, GIF and
MPEG). Moreover, the list of recognizers is continuously extended and, like the
list of multimedia formats, it is not closed but, by sheer principle, it needs to
be open.

Therefore, the objective of this use case is to provide KAT end-users with
the functionality of automatically selecting and running the most appropriate
plug-in(s). Such improvement enhances user satisfaction, since it prevents KAT
end-users from employing unsuitable recognizers over multimedia data.

In the following, we consider three recognizers: highlight recognizer, ju-
bilation recognizer and goal shots detector. A highlight recognizer works on
detecting sets of frames in videos with high changing rates, e.g., intervals where
the camera view changes frequently in a soccer game. A jubilation recognizer
analyzes the video and audio, searching for shouts of jubilation. Finally, a goal
shots detector works on matching shouts of jubilation with changes in camera
view to characterize goal shots.

2.1. UML-based software development

An extensible approach to model recognizer variation may be applied,
namely an adaptation of the Strategy Pattern [12]. The Strategy Pattern allows
for encapsulating different recognizers uniformly, as depicted in Fig. 1.

Figure 1 depicts the KAT domain in the UML class diagram. It is a complex
domain since KAT uses the COMM ontology that comprises many occurrences of
ontology design patterns, e.g., semantic annotation used in the running example.

Users select KAT algorithms for SVM recognition and consequently the class
controller invokes the method run() in the class kat algorithm (Fig. 1). The
method run() invokes the method getRecognizers(), which uses reflection to get
a collection (rNames()) of the recognizers ( r) applicable to a given multimedia
content (multimedia data). Then, the method recognize() of each recognizer
is invoked, which adds further annotations to multimedia data to refine the
description (not shown in this paper for the sake of simplification).

1http://isweb.uni-koblenz.de/Research/kat
2http://www.k-space.eu/
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jubilation_recognizer

highlight_recognizer

controller

multimedia_data

recognizer

recognize()

kat_algorithm

_recognizers : ArrayList

run( )

getRecognizers() : Set(r )ecognizer

goal_shots_detector

: controller : algorithm

: recognizer

1: run( )
2: getRecognizers( )

4: recognize( )

3: createInstance( )rNames(i)

loop (0, rNames->size())

loop (0, _recognizers->size())

Figure 1: UML class diagram and Sequence Diagram of KAT Algorithms.

Nevertheless, applying the strategy design pattern opens the problem of
strategy selection. To solve it, one needs to model how to select the most
appropriate recognizer(s) to a given item of multimedia content. Listing 1 il-
lustrates a solution using OCL. It shows the description of the query operation
rNames() in OCL. This operation is used in the guard expression of the loop
combined fragment in the sequence diagram (Fig. 1).

The operation rNames() collects the classes of recognizers to be created. The
OCL expression Set(OclType) (Line 4) is used here as a reflection mechanism
to get a list of the classes to be created. It is required to iterate through the
instances of kat algorithm (Line 4) and test if it satisfies some requirements
of a given recognizer. If it does, the recognizer is added into a collection of
recognizers to be created (Line 17).

Listing 1: OCL Expressions for the UML Sequence Diagram of Fig. 1

1 context kat a l gor i thm
def rNames ( ) : Set (OclType)
= kat a l gor i thm . allInstances ( )

−>i terate ( i : kat a l gor i thm ;
5 r : Set (OclType ) = Set{} |

i f

i . annotated data ro l e−>exists ( adr |
adr . v ideo data−>exists ( v |

v . oclIsTypeOf ( s o c c e r v i d eo ) and

10 v . semantic annotat ion −>exists ( sa |
sa . kat th ing−>exists ( g |

g . oclIsTypeOf ( h i g h l i g h t ) ) ) and

v . semantic annotat ion −>exists ( sa |
sa . kat th ing−>exists ( j |

15 j . oclIsTypeOf ( j u b i l a t i o n ) ) )
) )

then

r−>including ( g o a l s h o t s d e t e c t o r )
else i f

20 i . annotated data ro l e−>exists ( adr |
adr . v ideo data−>exists ( v |
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v . oclIsTypeOf ( v ideo data ) ) )
then

r−>including ( h i g h l i g h t r e c o g n i z e r )−>union (
25 r−>including ( j u b i l a t i o n r e c o g n i z e r ) )

else

r
endif

endif)−>asSet ( )

In fact, the OCL expressions in Listing 1 contain class descriptions in some
sense. For example, the classes highlight recognizer and jubilation recognizer need
a kat algorithm with some annotated data role with some video data (Lines 19-
24). The description of a goal shots detector is much more complicated (Lines
7-15), since it needs a soccer video, that is a subclass of video data, with some
semantic annotation with some highlight, and with some semantic annotation with
some jubilation.

Indeed, the UML/OCL approach has some limitations:

• It restricts the information that can be known about objects to object
types, i.e., known information about objects is limited by information in
object types (or in object states when using OCL).

• Class descriptions, e.g. goal shots detector (Lines 7-16), are embedded
within conditional statements that are hard to maintain and reuse. In
scenarios with thousands of classes, it becomes more difficult to find those
descriptions, achievable only by text search.

• OCL lacks of support to transitive closure of relations [13, 14]. It makes
expressions including properties like part-of more complex.

2.2. OWL-based software development

2.2.1. OWL Modeling.

Instead of hard-coding class descriptions using OCL expressions, a more ex-
pressive and extensible manner of modeling data would provide flexible ways to
describe classes and, based on such descriptions, it would enable type inference.

Therefore, one requires a logical class definition language that is more ex-
pressive than UML class-based modeling. Among ontology languages, the Web
Ontology Language (OWL) [4]3 is the most prominent for Semantic Web appli-
cations. Indeed, OWL provides various means for describing classes, which may
also be nested into each other such that explicit typing is not compulsory. One
may denote a class by a class identifier, an exhaustive enumeration of individ-
uals, property restrictions, an intersection of class descriptions, a union of class
descriptions, or the complement of a class description.

Notations for modeling OWL ontologies have been developed, resulting in
textual notations [15, 22] as well as in using UML as visual notation [16, 17, 5].

3In this paper, we refer to the family of decidable OWL Profiles as simply OWL.
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jubilation, highlightv kat thing (1)

soccer video v video data (2)

highlight annotation ≡ semantic annotation
u∃setting for.highlight (3)

highlight video ≡ video data u ∃setting.highlight annotation (4)

jubilation video ≡ video data u ∃setting.jubilation annotation (5)

soccer jub hl video ≡ soccer video u highlight video u jubilation video (6)

highlight recognizer v kat algorithm (7)

highlight recognizer ≡ kat algorithm
u∃defines(annotated data role u ∃played by.video data) (8)

goal shots detector v kat algorithm (9)

goal shots detector ≡ kat algorithm
u∃defines(annotated data role u ∃played by.soccer jub hl video) (10)

Table 1: KAT domain specified with Description Logics syntax.

For the sake of illustration, we use Description Logics syntax to specify the KAT
domain as follows. KAT uses the COMM ontology [11] as conceptually sound
model of MPEG-7 and as common but extensible denominator for different
plug-ins exchanging data.

For example, the classes jubilation and highlight are subclasses of kat thing(1).
A soccer video is a subclass of video data(2). A highlight annotation is a seman-
tic annotation that setting for some highlight (3). A highlight video is equivalent
to a video data that setting some highlight annotation(4). A jubilation video is
similarly described (5). A highlight recognizer is subclass of a kat algorithm and
is equivalent to a kat algorithm that defines some annotated data role that is
played by some video data(7-8).

OWL is compositional, i.e., OWL allows for easily reusing class descriptions
to create new ones. Let us consider the class soccer jub hl video(6). It is equiv-
alent to an intersection of soccer video, highlight video and jubilation video, i.e.,
a soccer video with highlight and jubilation. Thus, it becomes much easier to
describe the class goal shots detector(9-10), which is subclass of a kat algorithm
and is equivalent to a kat algorithm that defines some annotated data role that is
played by some soccer jub hl video. Moreover, OWL allows us to define proper-
ties as transitive, simplifying query expressions. The reader may compare these
reusable class definitions (even if the new language may need a bit of training)
against the involved and useable implicit definition of distinctions provided in
Listing 1 (Lines 6-25).

2.2.2. OWL Reasoning.

OWL ontologies can be operated on by reasoners providing services like
consistency checking, concept satisfiability, instance classification and concept
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classification. The reasoner performs model checking such that entailments of
the Tarski-style model theory of OWL are fulfilled. For instance, we may verify
whether it is possible to apply goal shots detector to images (consistency check-
ing)(the answer is ‘no’ if goal shots detector is disjoint from image recogniz-
ers), or whether a given instance is a soccer jub hl video(instance classification).
We may ask a reasoner to classify the concepts of the ontology and find that
highlight video and jubilation video are both superclasses of soccer jub hl video
(concept classification).

More specifically, given that we know an object to be an instance of high-
light video, we can infer that this object has the property setting and the value of
setting is an individual of highlight annotation. Conversely, if we have an object
of video data, which has the property setting and the value of setting associated
with such individual is a highlight annotation, we can infer that the prior indi-
vidual is an instance of highlight video. This example illustrates how one may
define OWL classes like highlight video by conditions that may be necessary as
well as sufficient.

Open vs. Closed World Assumption. While the underlying semantics of UML-
based class modeling adopts the closed world assumption, OWL adopts open
world assumption by default. However, research in the field of combining de-
scription logics and logic programming [18] provides solutions to support OWL
reasoning with closed world assumption. Different strategies have been explored
like adopting an epistemic operator [19], already supported by the tableau-based
OWL reasoner Pellet [20, 21]. Thus, it allows us to avoid the semantic clash in
merging the two languages that might increase complexity.

To sum up, OWL provides important features complementary to UML and
OCL that would improve software modeling: it allows different ways of describ-
ing classes; it handles these descriptions as first-class entities; it provides addi-
tional constructs like transitive closure for properties; and it enables dynamic
classification of objects based upon class descriptions.

The need for an integration emerges since OWL is a purely declarative and
logical language and not suitable to describe, e.g., dynamic aspects of software
systems such as states or message passing. Thus, to benefit from inference, one
must decide at which state or given which trigger one should call the reasoner.
In the next section, we address this issue among others, proposing ways of
integrating both paradigms using our original TwoUse approach.

3. The TwoUse Approach

We build the TwoUse approach based on four core ideas:

1. As abstract syntax, it provides an integrated MOF based metamodel as a
common backbone for UML (including OCL) and OWL modeling.

2. As concrete syntaxes, it uses pure UML, an UML profile supporting stan-
dard UML2 extension mechanisms, a weaving metamodel for integrating
existing UML and OWL models, and a textual concrete syntax to write
UML-based class and OWL descriptions.
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3. It provides a canonical set of transformation rules in order to deal with
integration at the semantic level.

4. It provides a novel OCL-like language to write queries and constraints
over OWL ontologies, OCL-DL.

To give an idea of the integration, let us consider our case study. Instead of
defining the query operation rNames using UML/OCL expressions, we use the
expressiveness of the OWL language together with OCL-DL. Querying an OWL
reasoning service, an OCL-DL expression may just ask which OWL subclasses
of kat algorithm describe a given instance, enabling dynamic classification. Such
expression will then be specified by:

1 context kat a lgor i thm
def rNames ( ) : Set (OwlType)

s e l f . owlSubClassesOf ( kat a lgor i thm)−>asSet ( )

As specified above, to identify which subclasses are applicable, we use an
OCL-DL operation called owlSubClassesOf, which queries a reasoner to return
a set of consistent named subclasses of kat algorithm according to the OWL
ontology. We explain this and other core operations in Sect. 3.4.

The advantage of this integrated formulation of rNames lies in separating two
sources of specification complexity. First, the classification of complex classes
remains in an OWL model. The classification reuses the COMM model and
it is easily re-useable for specifying other operations; it may be maintained
using graphical notations; and it is decidable, yet rigorous reasoning model (See
Fig. 3). Second, the specification of the execution logic remains in the UML
specification (Sequence Diagram in Fig. 1).

3.1. TwoUse Conceptual Architecture

Figure 2 presents a model-driven view of the TwoUse approach. TwoUse uses
UML profiled class diagrams as concrete syntax for designing combined models.
The UML class diagrams profiled for TwoUse are input for model transfor-
mations that generate TwoUse models conforming to the TwoUse metamodel.
The TwoUse metamodel provides the abstract syntax for the TwoUse approach,
since we have explored different concrete syntaxes (see Sect. 4). Further model
transformations take TwoUse models and generate the OWL ontology and Java
code.

3.2. Concrete Syntax

The TwoUse approach provides developers with an UML profile as concrete
syntax for simultaneous design of UML models and OWL ontologies (UML pro-
file for TwoUse), exploring then the full expressiveness of OWL (SROIQ(D))
and allowing usage of existing UML2 tools. We reuse the UML profile for OWL
proposed by OMG[5] and introduce stereotypes to label integrated classes.

We call hybrid diagram a UML class diagram with elements stereotyped
by both UML profiles. The hybrid diagram enables different modeling views:
(1) the UML view, (2) the OWL view with logical class definitions and (3)
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Figure 2: TwoUse Conceptual Architecture.

the TwoUse view, which integrates UML classes and OWL classes and defines
OCL-DL expressions that use reasoning services.

Figure 3 shows a snippet of the UML class diagram profiled for TwoUse of
our running example. In this snippet, the OWL view consists of five classes.
The UML View comprises the seven classes depicted in Fig. 1 and the TwoUse
view contains six classes and an OCL-DL query expression.

The TwoUse classes bridge OWL elements with OCL-DL expressions. The
OCL-DL expressions are specified with the stereotype <<ocldlExpression>>.
This stereotype has the property referredOwlClass [*] and the values are the
classes referred by the OCL-DL expressions. Model transformations use such
references to transform profiled classes into TwoUse classes.

3.3. Metamodel

The TwoUse metamodel (Fig. 4) provides the abstract syntax for describing
classes with OWL and to specify OCL-like expressions that use predefined op-
erations for reasoning over OWL models in a platform independent way. The
abstract syntax provides abstraction over different concrete syntaxes used in
TwoUse.

TwoUse uses the OWL2 metamodel [22] and uses package Classes::Kernel of
the UML2 [1] metamodel and package BasicOCL of the OCL [6] metamodel.
The OWL metamodel allows for describing classes with OWL expressiveness
whereas the UML2 package Classes::Kernel allows for specifying behavioral and
structural features of classes. The OCL package BasicOCL is adapted to specify
OCL-DL expressions.

We integrate the OWL metamodel and the UML/OCL metamodels by
composition. We apply the Object Adapter Pattern [12] to adapt the OWL
metaclasses listed in Table 2 (Annex) to the corresponding UML Metaclasses
(see [5, 7] for common features between UML and OWL). The Object Adapter
Pattern allows us to compose OWL metaclass objects within Adapters, called
TwoUse metaclasses.
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« »ocldlExpression
context algorithm
def rNames(): Set(OwlType) = self.owlSubClassesOf(kat_algorithm)->asSet()

TwoUse

OWL

controller

jubilation_recognizer

highlight_recognizer

multimedia_data

recognizer

recognize()

kat_algorithm

_recognizers : ArrayList

run( )

getRecognizers() : Set(r )ecognizer

goal_shots_detector

«owlClass»

«owlClass»

«owlClass»

«owlClass»«owlClass»

«rdfsSubClassOf»

UML

Figure 3: UML class diagram profiled with UML Profile for OWL and TwoUse Profile.

Figure 4: Excerpt of the TwoUse Metamodel (M2).

In Fig. 4, we highlight two M2 metaclasses4 from the TwoUse metamodel:
The metaclass TUClass and the metaclass TUProperty. The metaclass TUClass
adapts OWL2::Class to an UML2::Class. The metaclass TUProperty is also an
Adapter composing both UML2::Property and OWL2::Property, which is special-
ized by ObjectProperty and DataProperty. The complete metamodel is available
on the TwoUse website 5.

4We use the terms M3, M2, M1 and M0 to refer to the corresponding layers of the OMG
four-layered architecture.

5http://isweb.uni-koblenz.de/Projects/twouse
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3.4. OCL-DL

OCL-DL allows for specifying expressions that rely on inferences over OWL
class descriptions. It is a seamless extension of OCL towards OWL. OCL-DL
uses the OCL metamodel and extends it by adding new types to the OCL types,
e.g., TUClass; and a M1 model library with predefined classes and operations
that enables usage of reasoning services.

OCL-DL expressions operate on snapshots of the system (M0 instances).
A snapshot is the static configuration of a system at a given point in time [1],
consisting of objects, values and links. In Annex A, we present an object diagram
representing a possible snapshot for the running example (Fig. 6) and examples
of evaluations of OCL-DL expressions (Table 3).

3.4.1. Model Library

TwoUse includes a M1 model library of predefined operations to be used
in OCL-DL expressions. For example, one may replace Lines 9-15 of Listing 1
with the OCL-DL expression video.owlIsInstanceOf(soccer jub hl video), which
uses a reasoner to evaluate to true if the context object satisfies the sufficient
conditions to be a member of class soccer jub hl video. The following are the
core operations of OCL-DL:

• owlIsInstanceOf(typespec: OwlType): Boolean. Evaluates to true if the con-
text object satisfies all logical requirements of the OWL class description
typespec, i.e., if object ∈ typespec.

• owlAllClasses(): Set(OwlType). It returns a set of named classes
that consistently classify the context object, i.e., {C1, ..., Cn} where
foreach C, object ∈ C.

• owlSubClassesOf(typespec: OwlType): Set(OwlType). It is a syntax sugar
to return all named subclasses of typespec that consistently classify
the context object, i.e., {C1, ..., Cn} where foreach C, object ∈ C, C v
typespec and C 6= typespec.

• owlAllInstances(): Set(T). This is an introspective operation which returns
all M0 instances that satisfy the logical requirements of the OWL class
descriptions of the context object, where T is the type of the object, i.e.,
{a1, ..., an} where object ∈ T, a ∈ T, and C 6= Thing.

• owlMostSpecNamedClass(): OwlType. Returns the most specific named
class that describes the context object, i.e., the intersection of owlSub-
ClassesOf(typespec: OwlType). If the intersection corresponds to Nothing
or to more than one most specific named class, it returns OwlInvalid.

The operations above are defined on the M1 class OwlAny of the OCL-DL
library. Analogously to the OCL class OclAny, the OCL-DL class OwlAny is an
instance of the OCL metaclass AnyType acting as a supertype for all TwoUse
classes. Thus, every M1 TUClass inherits these operations, i.e., the operations
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M2

M1

InstanceOf

ClassDataType AnyType

OwlAny

owlIsInstanceOf()

OclAny

oclIsKindOf()
oclIsTypeOf()

kat_algorithm

controler

TUClass

OWL2::Class

Classifier

owlAllInstances()
...

video_data

...

Figure 5: OCL-DL Library Extension and sample model classes.

are available on each TwoUse object in all OCL-DL expressions. Similar to
OclType, OwlType is an enumeration of all basic types and OWL Classes.

Figure 5 describes OCL-DL in the context of four metamodels: OCL, UML2,
OWL2 and TwoUse. At level M2, white boxes represent metaclasses used from
UML2 metamodel and light grey boxes represent metaclasses from OCL meta-
model. The back box represents the TwoUse metaclass TUClass from TwoUse
metamodel. At level M1, we show the class kat algorithm which is a M1 instance
of the metaclass TUClass and, because of that, is a subtype of the OCL-DL class
OwlAny. kat algorithm is indirectly a M1 instance of the UML metaclass Class
too and so is indirectly a subtype of the OCL Class OclAny.

Since OWL classes do not support operations, we use the TwoUse Class to
build the bridge. A M1 instance of the metaclass TUClass links to a M1 instance
of the metaclass OWLClass. Thus, we are able to specify OCL-DL expressions
with reasoning features.

3.5. Code Generation

Generation of Java code from UML/OCL models have been explored for
many years and is a straightforward task. Approaches like [23, 24] or Dres-
den OCL Toolkit present solutions for generation of java code from UML/OCL
models.

What may seem intriguing is the mapping between Java objects and OWL.
Nevertheless, these mappings have been covered many times in the literature [25,
32, 33] and the most prominent solution is Som(m)er6, a library for mapping
Java Objects to RDF graphs.

6https://sommer.dev.java.net/sommer/
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In the next, we highlight how these mappings take place and how to imple-
ment OCL-DL expressions. Listing 2 depicts a simplified version of generated
Java code for the class kat algorithm. For mapping Java objects to OWL classes,
Som(m)mer uses Java annotations (Lines 1,5). The Java class Ka algorithm
(Line 2) is annotated with the URI of the corresponding OWL class (Line 1).
Java instances of the class Kat algorithm at runtime correspond to individuals
in the ontology. The annotation rdf.sameAs on property id (Lines 5-6) allows
for identifying these individuals.

The method owlSubClassesOf implements the OCL-DL expression owlSub-
ClassesOf up Line 17. A SPARQL query is formulated and evaluated based on
the id of the current object and the name of class given as parameter to the
method owlSubClassesOf (Line 18-20). URIs are then mapped into Java classes
(Line 21). The remaining methods realize the operations declared in the UML
class diagram profiled for TwoUse (Fig. 3).

Listing 2: Snippet of Java Code implementing TwoUse

1 @rdf ("<http :// kat -comm.owl #ka_algorithm >" )
public class Kat algor i thm {

SesameMemorySai l Init i n i t = new SesameMemorySai l Init ( "rdf/" ) ;
SesameMapper mppr =

( SesameMapper)MapperManager . getMapperForGraph( i n i t ,
"http :// www.test.de/graph1 " ) ;

5 @rdf ( r d f . sameAs)
private URI id ;
private ArrayList<Recognizer > r e c o gn i z e r s ;
public ArrayList<Class> rNames ( ) {

return this . owlSubClassesOf ( "kat_algorithm" ) ;}
10 public void run ( ) {

for ( Recognizer r : getRecogn i zer s ( ) ) {
r . r e cogn i z e ( ) ;}}

public ArrayList<Recognizer > getRecogn i zer s ( ) {
for ( Class c : rNames ( ) ) {

15 r e c o gn i z e r s . add ( ( Recognizer ) c . newInstance ( ) ) ; }
return r e c o gn i z e r s ;}

public ArrayList<Class> owlSubClassesOf ( Str ing typespec ) {
Str ing query = "SELECT DISTINCT ?c WHERE{ "+ id +" rdf:type

?c . ?c rdfs: subClassOf :" + typespec + " FILTER (?c !=

:"+ typespec +")}" ;
// . . query execut ion here

20 for (URI u : u l ) {
List <Class> a = mppr . getC las s esOf (u . t oS t r i ng ( ) ) ;
c l s . add ( a . get (0) ) ; }

return c l s ;}}

3.6. Implementation

We have been implemented the TwoUse approach in the Eclipse Platform
using the Eclipse Modeling Framework [26] and is available for download on the
project website.

To realize the concrete syntaxes, we have adopted implementations of UML2
and OCL from the Model Development Tools (MDT) project [24]. As UML
editor, we use the open source Papyrus UML. To handle model transformations
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and serializations, we use tools from the Eclipse/GMT project (AMW, TCS,
KM3 and ATL) [27].

In Java code, we use the free open-source reasoner Pellet [20] for reasoning
with OWL. Som(m)er is responsible for realizing the integration between OWL
and Java, as shown above.

4. Alternative Concrete Syntaxes

Based on feedback from potential TwoUse users, we have explored additional
concrete syntaxes with increasing expressiveness, presented next. Additionally
to the UML Profile for TwoUse presented in Sect 3.2, one may use the pure UML
class diagram notation to model OWL ontologies with OCL-DL expressions at
class operations; or use a weaving metamodel to weave existing UML models
and OWL ontologies and add OCL-DL expressions; or, finally, use a textual
syntax to design class-based models with OWL descriptions. We provide model
transformations from the different concrete syntaxes into TwoUse models.

4.1. Pure UML Class Diagrams

To quickly start UML2 users developing semantic web applications, pure
UML class diagrams may be used. Developers who do not need the full ex-
pressiveness of OWL can use this approach without having to handle the OWL
syntax.

Model transformations transform the UML class diagram into a TwoUse
model to support OCL-DL expressions over the OWL translation of the UML
class diagram. In this case, developers attach OCL-DL expressions to BODY
constraints (Opaque Expressions) on class operations. Each UML class will be
a TUClass, i.e., it is an UML class with link to an OWL class. For transforming
UML class diagrams into ontologies, we follow the rules defined in [5] (Chapter
16) 7.

4.2. Weaving Model

When existing UML models and OWL ontologies are available, we provide
developers with a more productive approach than modeling UML class diagrams.
In this case, they can use a Model Weaver [27] to create mappings between
existing UML classes and OWL classes.

Developers annotate the UML classes to be woven with OWL classes. The
weaving model capture such annotations and allows for writing OCL-DL expres-
sions. The weaving model together with both UML and OWL models serves as
input to transformation into TwoUse Models. The weaving metamodel is also
available on the TwoUse website.

7In this case, the expressiveness of the generated OWL ontology is limited to the description
logics ALCOIQ(D), since DLRifd is not supported by current state-of-the-art DL-based
reasoning systems [28].
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4.3. Textual Notation

As alternative to graphical languages, we defined a textual notation for spec-
ifying UML class-based models together with OWL. This approach is useful for
experienced developers who work more productively with textual languages than
visual languages.

In the following, we illustrate the textual notation with our running example.
A query operation rNames() is defined for the class kat algorithm. Again, each
class is a TUClass. In this case, the textual notation allows for exploring the
full expressiveness of OWL.

1 class kat a l gor i thm extends cor e : a lgor i thm {
query rNames ( ) : Set (OwlType)

= s e l f . owlSubClasses ( kat a l gor i thm )−>asSet ( ) ;
}

5 . . .
class h i gh l i gh t anno ta t i on equivalentTo ( cor e : s emant i c annotat i on

r e s t r i c t i onOn dsn : s e t t i n g f o r some h i g h l i g h t ) {}
class h i gh l i g h t v i d e o equivalentTo ( cor e : v ideo data r e s t r i c t i onOn

dsn : s e t t i n g some h i gh l i gh t anno ta t i on ) {}
class j u b i l a t i o n v i d e o equivalentTo ( cor e : v ideo data

r e s t r i c t i onOn dsn : s e t t i n g some j ub i l a t i o n anno t a t i o n ) {}
class s o c c e r j u b h l v i d e o equivalentTo ( Ob j e c t In t e r s e c t i onO f

( s o c c e r v i d eo h i g h l i g h t v i d e o j ub i l a t i o n v i d e o ) ) {}
10 class h i gh l i g h t r e c o gn i z e r extends kat algor i thm , r e s t r i c t i onOn

dns : d e f i n e s some ( cor e : anno ta t ed da ta r o l e r e s t r i c t i onOn
played by some cor e : v ideo data ) {}

class j u b i l a t i o n r e c o g n i z e r extends kat algor i thm , r e s t r i c t i onOn
dns : d e f i n e s some ( cor e : anno ta t ed da ta r o l e r e s t r i c t i onOn
dns : played by some cor e : v ideo data ) {}

class g o a l s h o t s d e t e c t o r extends kat algor i thm , r e s t r i c t i onOn
dns : d e f i n e s some ( cor e : anno ta t ed da ta r o l e r e s t r i c t i onOn
dns : played by some s o c c e r j u b h l v i d e o ) {}

The textual notation uses constructs familiar to programmers and enables
developers to write class descriptions in a human readable way instead of XMI.
We have been used the textual notation for writing integrated models for a
telecommunication company, where the usage of OWL for variability manage-
ment plays an important role. 8.

5. Discussion

5.1. TwoUse Analysis

Based on the case study, we analyze how TwoUse features reflect
development-oriented non-functional requirements according to a quality model
covering the following quality factors: maintainability, efficiency (ISO 9126 [29]),
reusability and extensibility [30]. The decision of using UML with OWL does
not affect other ISO 9126 quality factors.

8For more information, visit http://isweb.uni-koblenz.de/Research/OBDF
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Maintainability. We analyze Maintainability with regard to analyzability,
changeability and testability as follows.

Analyzability. In case of failure in the software, the developers might firstly
check the consistency of the domain and then use axiom explanation
to track down failure, which helps to improve failure analysis efficiency.
These services are already available in ontology tools.

Changeability. The knowledge encoded in OWL evolves independently of the
execution logic, i.e., developers maintain class descriptions in the ontology
and not in the software. Since the software does not need recompilation
and redistribution, the work time spent to change decreases.

Testability. An OWL reasoner verifies queries an class definitions declared
in unit tests9 to test ontology axioms, enabling test suites to be more
declarative.

Reusability. Extending the COMM core ontology allows developers to reuse
available knowledge about multimedia content, semantic annotation and algo-
rithm. Furthermore, developers can reuse the knowledge represented in OWL
independently of platform or programming language.

Moreover, developers may use class descriptions to semantically query the
domain. Semantic query plays an important role in large domains like KAT
(approx. 750 classes). For example, developers may want to reuse algorithm
descriptions applicable to videos. By executing the query

u∃defines(annotated data role u ∃played by.video)? (11)

developers would see that the classes highlight recognizer, jubilation recognizer
and goal shots detector are candidate to reuse. Such a semantic query is not
possible with UML/OCL.

Extensibility. When the application requires it, developers can be more specific
by extending existing concepts and adding statements. For example, once de-
velopers identify that an algorithm works better with certain types of videos,
they can easily extend the algorithm description.

5.2. Application Scenarios

We have applied TwoUse not only in ontology-based systems but also to
development of non-logical systems as follows:

Improving General Purpose Software Design Patterns. We have explored how
to improve the Strategy Pattern and Abstract Factory with ontologies
in [31] and we are able to provide improvements to the Visitor Pattern
and to the Bridge Pattern as well.

9http://www.co-ode.org/downloads/owlunittest/
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Metamodeling. We have analyzed the OCL constraints specified in the UML2
Specification [1] and identified 6 out of 90 complex constraints that could
benefit from TwoUse. Moreover, where property transitivity is required,
e.g., in specifying constructs like Activity, State, StateMachine and Tran-
sition, TwoUse allows for defining additional operations that are not ex-
pressible in OCL.

Automatically generation of ontology APIs. The task of programming ontology
APIs is not trivial, since ontologies usually rely on ontology design patterns
(e.g. semantic annotation in the running example) that are difficult to map
onto Java objects. TwoUse allows for specifying these mappings as well
as queries using OCL-DL10.

Ontology based domain specific languages. Domain specific languages (DSL)
may apply dynamic classification to recommend domain concepts to novice
DSL users (who may not be aware of suitable domain classes). TwoUse
enables DSL users to execute OCL-DL queries that, based on OWL classes,
dynamically classify content11.

Using ontologies with variability management at runtime. In software product
line engineering, ontologies can describe variants and variant constraints
and OCL-DL expressions specify the decision of which variant to employ
at runtime. We currently investigate this and other application scenarios
under the EU project MOST12.

5.3. Limitations

Calls from OCL to the OWL reasoner (OCL-DL) may return OWL classes
that are not part of the TwoUse model. This implies a dynamic diffusion of OWL
classes into the UML model, which must either be accommodated dynamically
or which may need to raise an exception (in our use case, we pursue the latter).

By weaving UML and OWL ontologies, TwoUse requires sufficient under-
standing of developers about topics like property restriction and satisfiability.
There is a trade-off between a concise and clear definition of syntax that is
unknown to many people as in Table 1 vs. an involved syntax that people
know. From past experiences, we conclude that, in the long run, the higher
level expressivity will win and developers are willing to learn a more expressive
approach.

Indeed, we have provided various syntaxes that might better or less well fit
the needs of different software developers but in some cases, it does not prevent
them from understanding the semantics of OWL constructs. This shortcoming
is minimized in case of ontology-based applications like KAT, since software
developers are already familiar with OWL.

10http://isweb.uni-koblenz.de/Research/agogo
11http://isweb.uni-koblenz.de/Research/OBDF
12http://www.most-project.eu
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6. Related Work

Several MOF based metamodels for OWL, UML profiles for OWL and trans-
formations from UML into OWL are available in literature [16, 17, 5], some of
them with new adornments. These profiles and transformations are designed ex-
clusively to model OWL ontologies with UML and they do not provide support
for integrating OWL in UML modeling.

Several strategies to integrate programming code and ontologies are available
as well [25, 32, 33, 34]. None of them, however, operates on the platform inde-
pendent level. We propose an integration between UML and OWL regardless
of programming language.

Development of Semantic Web Services uses ontologies for domain modeling
and specification of behavioral properties to analyze contracts [35, 36]. However,
we use OCL-like expressions to specify reasoning calls. Our approach proposes
modeling constructors used at design time to specify the usage of OWL ontolo-
gies at runtime.

One might think of using reflection to dynamically classify instances based on
simple class descriptions. However, with reflection it is not possible to achieve
the expressiveness of OWL DL. Furthermore, the usage of reflection embeds
knowledge about class descriptions into Java class definitions among non-trivial
constructs. TwoUse employs the expressiveness of OWL ontologies to realize
such decisions in a transparent way for software developers.

7. Conclusion

This paper proposes TwoUse as an approach enabling UML modeling with
semantic expressiveness of OWL DL. We propose bridges based on a metamodel,
library extensions and model transformations. TwoUse achieves improvements
on the maintainability, reusability and extensibility for ontology based system
development, which corroborates Description Logic literature [37]. TwoUse al-
lows developers to raise the level of abstraction of business rules until now em-
bedded in OCL expressions. Additionally, TwoUse allows for formalizing these
rules with OWL.

Future Work.. Since OCL-DL is an extension of OCL, we are investigating how
to apply Twouse into other class-based modeling approaches that use OCL.
Furthermore, we are working on defining a formal semantics for TwoUse, based
on existing model theoretic semantics for UML/OCL [38] and OWL [4].
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Figure 6: Snapshot of the running example (M0).

Annex A

This annex presents material supporting the running example. It comprises
additional diagrams, examples of evaluating OCL-DL expressions and the list
of axioms of the OWL ontology.

7.1. Snapshot

A snapshot is the static configuration of a system at a given point in time [1].
It consists of objects, values and links. To illustrate how OCL-DL expressions
work, we consider the snapshot presented in Fig. 6.

7.2. TwoUse Model (Abstract Syntax)

The TwoUse abstract model is generated as output of model transformations
that take models in any of the concrete syntaxes supported by TwoUse as input.
Figure 8 depicts an excerpt of the abstract model for the running example.
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Figure 7: Excerpt of a TwoUse model (M1).

22



7.3. TwoUse Metamodel

The TwoUse metamodel composes the UML2 metamodel and the OWL2
metamodel by applying the strategy design pattern in classes representing com-
mon features. Table 2 lists these classes. The UML2 classes are then specialized
by TwoUse classes as depicted in Fig. 8.

UML2 OWL2
Package Ontology
Class Class
Enumeration ObjectOneOf, DataOneOf
Property, ObjectProperty, DataProperty
MultiplicityElement ObjectMinCardinality, ObjectMaxCardinality,

DataMinCardinality, DataMaxCardinality
InstanceSpecification Individual
LiteralSpecification Literal

Table 2: Common features between UML and OWL.

7.4. Evaluation of OCL-DL expressions

Table 3 lists results of evaluating OCL-DL expressions considering the snap-
shot depicted in Fig. 6. We take two objects of the snapshot (alg1, alg2) and
bind them to the predefined variable self. For example, for the expression
self.owlIsInstanceOf(highlight recognizer) where self is bound to alg1, the result
is true.

Context object alg1 alg2
OCL-DL Expression
owlIsInstanceOf(highlight recognizer) true true
owlIsInstanceOf(goal shots detector) false true
owlAllClasses() algorithm, de-

scription, high-
light recognizer, ju-
bilation recognizer,
method

algorithm, de-
scription, high-
light recognizer, ju-
bilation recognizer,
goal shots detector,
method

owlSubClassesOf(algorithm) highlight recognizer,
jubila-
tion recognizer

highlight recognizer,
jubila-
tion recognizer,
goal shots detector

owlAllInstances() alg1, alg2 alg1, alg2
owlMostSpecNamedClass() owlInvalid goal shots detector

Table 3: Evaluation of OCL-DL expressions according to the running example snapshot.
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Figure 8: TwoUse Metamodel (M2).
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7.5. OWL Ontology

Listing 3 presents the axioms of the KAT ontology described in the OWL2
functional syntax. The KAT ontology is available for download on TwoUse
website.

Listing 3: KAT Ontology for the running example

1

Namespace(=<http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#>)
Namespace ( r d f s=<http : //www.w3 . org /2000/01/ rdf−schema#>)
Namespace ( extended−dns−very− l i t e=<http : //comm. semanticweb . org /extended−dns−very− l i t e . owl#>)

5 Namespace ( v i s u a l=<http : //comm. semanticweb . org / v i s u a l . owl#>)
Namespace ( owl2xml=<http : //www.w3 . org /2006/12/ owl2−xml#>)
Namespace ( l o c a l i z a t i o n=<http : //comm. semanticweb . org / l o c a l i z a t i o n . owl#>)
Namespace ( owl=<http : //www.w3 . org /2002/07/ owl#>)
Namespace ( xsd=<http : //www.w3 . org /2001/XMLSchema#>)

10 Namespace (comm−kat=<http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#>)
Namespace ( r d f=<http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>)
Namespace ( cor e=<http : //comm. semanticweb . org / cor e . owl#>)
Namespace ( media=<http : //comm. semanticweb . org /media . owl#>)

15 Ontology (<http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl>

Import (<http : //comm. semanticweb . org /multimedia−ontology . owl>)

// Class :
http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#j u b i l a t i o n

20

SubClassOf ( j u b i l a t i o n kat−domain ) D i s j o i n tC l a s s e s ( acc ident
goa l
g r a s s
h i g h l i g h t

25 j u b i l a t i o n )
// Class :

http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#grass−video−data

Equiva l entClas s es ( grass−video−data
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i n g

30 grass−semantic−annotat ion ) cor e : video−data ) )
SubClassOf ( grass−video−data

cor e : video−data )
// Class : http : //comm. semanticweb . org / cor e . owl#algor i thm

// Class :
http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#goal−shots−de t e c to r

35

Equiva l entClas s es ( goal−shots−de t e c to r
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : d e f i n e s
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : played−by
soccer−jub−hl−video ) cor e : annotated−data−r o l e ) ) cor e : a lgor i thm ) )

40 SubClassOf ( goal−shots−de t e c to r cor e : a lgor i thm )
// Class : http : //comm. semanticweb . org / cor e . owl#annotated−data−r o l e

// Class :
http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#h i gh l i gh t s −video−data

45 Equiva l entClas s es ( h i gh l i gh t s −video−data
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Obj e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i n g
h i gh l i gh t−semantic−annotat ion ) cor e : video−data ) )
SubClassOf ( h i gh l i gh t s −video−data cor e : video−data )
// Class : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#aspha l t

50

SubClassOf ( aspha l t kat−domain )
// Class :

http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#soccer−jub−hl−video

Equiva l entClas s es ( soccer−jub−hl−video
55 Obj e c t In t e r s e c t i onO f ( h i gh l i gh t s −video−data

j ub i l a t i o n−video−data
soccer−video−data ) )

SubClassOf ( soccer−jub−hl−video cor e : video−data )
// Class : http : //comm. semanticweb . org / cor e . owl#semantic−annotat ion

60

// Class : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#gr a s s

SubClassOf ( g r a s s kat−domain ) D i s j o i n tC l a s s e s ( acc ident
goa l

65 g r a s s
h i g h l i g h t
j u b i l a t i o n )

// Class : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#acc ident

70 SubClassOf ( acc ident kat−domain ) D i s j o i n tC l a s s e s ( acc ident
goa l
g r a s s
h i g h l i g h t
j u b i l a t i o n )

75 // Class :
http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#j ub i l a t i o n−r e cogn i t i on−algor i thm

Equiva l entClas s es ( j u b i l a t i o n−r e cogn i t i on−algor i thm
Obj e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : d e f i n e s
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : played−by

80 cor e : video−data ) cor e : annotated−data−r o l e ) ) cor e : a lgor i thm ) )
SubClassOf ( j u b i l a t i o n−r e cogn i t i on−algor i thm core : a lgor i thm )
// Class :

http : //comm. semanticweb . org /extended−dns−very− l i t e . owl#goa l

// Class :
http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#grass−image−data

85

Equiva l entClas s es ( grass−image−data
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i n g
grass−semantic−annotat ion ) cor e : image−data ) )

SubClassOf ( grass−image−data
cor e : image−data )

90 // Class : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#goa l

SubClassOf ( goa l kat−domain ) D i s j o i n tC l a s s e s ( acc ident
goa l
g r a s s

95 h i gh l i g h t
j u b i l a t i o n )

// Class :
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http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#motorsport−video−data

Equiva l entClas s es ( motorsport−video−data
100 Obj e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i n g

asphal t−semantic−annotat ion ) cor e : video−data ) )
SubClassOf ( motorsport−video−data

cor e : video−data )
// Class :

http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#kat−domain

105 SubClassOf ( kat−domain owl : Thing )
// Class :

http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#grass−semantic−annotat ion

Equiva l entClas s es ( grass−semantic−annotat ion
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i ng−f o r

110 g r a s s ) cor e : semantic−annotat ion ) )
// Class : http : //comm. semanticweb . org / cor e . owl#semantic−l ab e l−r o l e

// Class : http : //comm. semanticweb . org / cor e . owl#image−data

115 // Class :
http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#j ub i l a t i o n−video−data

Equiva l entClas s es ( j u b i l a t i o n−video−data
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i n g
j ub i l a t i o n−semantic−annotat ion ) cor e : video−data ) )

120 SubClassOf ( j u b i l a t i o n−video−data cor e : video−data )
// Class : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#h i gh l i g h t

SubClassOf ( h i g h l i g h t kat−domain ) D i s j o i n tC l a s s e s ( acc ident
goa l

125 g r a s s
h i g h l i g h t
j u b i l a t i o n )

// Class :
http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#asphal t−semantic−annotat ion

130 Equiva l entClas s es ( asphal t−semantic−annotat ion
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i ng−f o r
aspha l t ) cor e : semantic−annotat ion ) )

SubClassOf ( asphal t−semantic−annotat ion
cor e : semantic−annotat ion )
// Class : http : //www.w3 . org /2002/07/ owl#Thing

135

// Class :
http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#h i gh l i gh t−semantic−annotat ion

Equiva l entClas s es ( h i gh l i gh t−semantic−annotat ion
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i ng−f o r

140 h i gh l i g h t ) cor e : semantic−annotat ion ) )
SubClassOf ( h i gh l i gh t−semantic−annotat ion

cor e : semantic−annotat ion )
// Class :

http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#goal−semantic−annotat ion

Equiva l entClas s es ( goal−semantic−annotat ion
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145 Obj e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i ng−f o r
extended−dns−very− l i t e : goa l ) cor e : semantic−annotat ion ) )
SubClassOf ( goal−semantic−annotat ion cor e : semantic−annotat ion )
// Class : http : //comm. semanticweb . org / cor e . owl#video−data

150 // Class :
http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#soccer−video−data

SubClassOf ( soccer−video−data cor e : video−data )
// Class :

http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#j ub i l a t i o n−semantic−annotat ion

155 Equiva l entClas s es ( j u b i l a t i o n−semantic−annotat ion
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : s e t t i ng−f o r
j u b i l a t i o n ) cor e : semantic−annotat ion ) )
SubClassOf ( j u b i l a t i o n−semantic−annotat ion cor e : semantic−annotat ion )
// Class :

http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#h i gh l i gh t s −r e cogn i t i on−algor i thm
160

Equiva l entClas s es ( h i gh l i gh t s −r e cogn i t i on−algor i thm
Obj e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : d e f i n e s
Ob j e c t In t e r s e c t i onO f ( ObjectSomeValuesFrom ( extended−dns−very− l i t e : played−by
cor e : video−data ) cor e : annotated−data−r o l e ) ) cor e : a lgor i thm ) )

165 SubClassOf ( h i gh l i gh t s −r e cogn i t i on−algor i thm core : a lgor i thm )
// Object property :

http : //comm. semanticweb . org /extended−dns−very− l i t e . owl#s a t i s f i e s

// Object property :
http : //comm. semanticweb . org /extended−dns−very− l i t e . owl#plays

170 // Object property :
http : //comm. semanticweb . org /extended−dns−very− l i t e . owl#de f i n e s

// Object property :
http : //comm. semanticweb . org /extended−dns−very− l i t e . owl#played−by

// Object property :
http : //comm. semanticweb . org /extended−dns−very− l i t e . owl#s e t t i n g

175

// Object property :
http : //comm. semanticweb . org /extended−dns−very− l i t e . owl#s e t t i ng−f o r

// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#s l r 1

180 Clas sAsser t i on ( s l r 1 cor e : semantic−l ab e l−r o l e )
// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#s l r 2

Clas sAsser t i on ( s l r 2 cor e : semantic−l ab e l−r o l e )
// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#h1

185

Clas sAsser t i on ( h1 h i g h l i g h t )
// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#j1

Clas sAsser t i on ( j 1 j u b i l a t i o n )
190 ObjectProper tyAssert ion ( extended−dns−very− l i t e : p l ays j 1 s l r 1 )

// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#alg2
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Clas sAsser t i on ( a l g2 cor e : a lgor i thm )
ObjectProper tyAssert ion ( extended−dns−very− l i t e : d e f i n e s a l g2 adr2 )

195 ObjectProper tyAssert ion ( extended−dns−very− l i t e : d e f i n e s a l g2 s l r 2 )
// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#sv1

Clas sAsser t i on ( sv1 soccer−video−data )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : p l ays sv1 adr2 )

200 // Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#sa2

Clas sAsser t i on ( sa2 cor e : semantic−annotat ion )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : s e t t i ng−f o r sa2 vd1 )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : s a t i s f i e s sa2 a l g1 )

205 ObjectProper tyAssert ion ( extended−dns−very− l i t e : s e t t i ng−f o r sa2 h1 )
// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#vd1

Clas sAsser t i on ( vd1 cor e : video−data )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : p l ays vd1 adr1 )

210 // Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#sa4

Clas sAsser t i on ( sa4 cor e : semantic−annotat ion )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : s e t t i ng−f o r sa4 h1 )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : s e t t i ng−f o r sa4 sv1 )

215 ObjectProper tyAssert ion ( extended−dns−very− l i t e : s a t i s f i e s sa4 a l g2 )
// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#sa1

Clas sAsser t i on ( sa1 cor e : semantic−annotat ion )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : s e t t i ng−f o r sa1 vd1 )

220 ObjectProper tyAssert ion ( extended−dns−very− l i t e : s a t i s f i e s sa1 a l g1 )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : s e t t i ng−f o r sa1 j 1 )
// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#adr1

Clas sAsser t i on ( adr1 cor e : annotated−data−r o l e )
225 // Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#alg1

Clas sAsser t i on ( a l g1 cor e : a lgor i thm )
ObjectProper tyAssert ion ( extended−dns−very− l i t e : d e f i n e s a l g1 s l r 1 )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : d e f i n e s a l g1 adr1 )

230 // Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#sa3

Clas sAsser t i on ( sa3 cor e : semantic−annotat ion )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : s a t i s f i e s sa3 a l g2 )
Obj ectProper tyAssert ion ( extended−dns−very− l i t e : s e t t i ng−f o r sa3 j 1 )

235 ObjectProper tyAssert ion ( extended−dns−very− l i t e : s e t t i ng−f o r sa3 sv1 )
// Ind i v i dua l : http : // isweb . uni−koblenz . de /2008/4/comm−kat . owl#adr2

Clas sAsser t i on ( adr2 cor e : annotated−data−r o l e ) )
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