
Towards hierarchical management of autonomic components: a case study

Marco Aldinucci, Marco Danelutto
Computer Science Department

University of Pisa
Pisa, Italy

Email: {aldinuc, marcod}@di.unipi.it

Peter Kilpatrick
Computer Science Department

Queen’s University Belfast
Belfast, UK

Email: p.kilpatrick@qub.ac.uk

Abstract

We address the issue of autonomic management in hi-
erarchical component-based distributed systems. The long
term aim is to provide a modelling framework for autonomic
management in which QoS goals can be defined, plans for
system adaptation described and proofs of achievement of
goals by (sequences of) adaptations furnished. Here we
present an early step on this path. We restrict our focus to
skeleton-based systems in order to exploit their well-defined
structure. The autonomic cycle is described using the Orc
system orchestration language while the plans are presented
as structural modifications together with associated costs
and benefits. A case study is presented to illustrate the in-
teraction of managers to maintain QoS goals for throughput
under varying conditions of resource availability.

1. Introduction

Increasingly it is becoming clear that the handling of non-
functional concerns, such as fault-tolerance, performance,
security, etc., in parallel and distributed systems presents
some of the most challenging issues in their development.
The fact that such systems are often long-lived and require
on-going management of such concerns exacerbates the
problem. Recognition that the scale of many such systems
precludes user interaction as a basis for this management
has turned the focus to autonomic systems [1].

The idea of autonomic management of distributed appli-
cations is present in several programming frameworks in
various flavours. ASSIST [2], AutoMate [3], SAFRAN [4],
and GCM [5] all include autonomic management features.
All the named frameworks, except SAFRAN, are targeted to
distributed applications on grids. While these systems con-
siderably ease the production of autonomic applications, the
task of developing the management code remains onerous
in the general case, and the inclusion of management code
tends to act as a hindrance to component re-use.

To address the difficulty of developing such autonomic
managers for distributed systems while retaining a degree of
re-use capability, we previously introduced the behavioural
skeleton concept, a composite skeleton-based component

that exposes a description of its functional behaviour and
establishes a parametric orchestration schema of its inner
components as well [6]. The idea was to marry the algorithm
skeleton idea with that of autonomic management in such
a way that the structure derived from the use of skeletons
would ease the burden of management and, to a degree,
facilitate re-use. (To a certain extent the ASSIST framework
– the forerunner of the behavioural skeleton – was premised
on the same combination, but there the separation of man-
agement code was not so pronounced.) In that earlier work
our aim was to establish the feasibility of the approach and
the focus of [6] was on implementation issues.

In this work we aim to address that complexity of au-
tonomic management by building an abstract framework
which can provide a vehicle for investigating the nature
of interactions among managers and the establishment of
manager goals. In particular we will look at hierarchical
autonomic management. In [7] the authors argue that, while
a hierarchy is not the only possible arrangement of managers
in large systems, in many ways it is the most natural,
following as it does the often chosen top-down approach
to system development and also the organization of the
personnel in many IT departments.

Here we define in a formal way the goals of hierarchical
autonomic management and the policies used to implement
it. The former are the contracts, either provided by the end
user or automatically derived by the autonomic manager(s)
within the application; the latter comprise the general algo-
rithm used to combine the activities of several managers,
each belonging to a separate component (behavioural skele-
ton) of the application, in such a way that a global target
can be effectively pursued.

We first present a general overview of hierarchical auto-
nomic management (Sec. 2); then we introduce the farm-
and pipe-based skeleton system that we use as a basis for
our hierarchical framework (Sec. 3); in section 4 we provide
an Orc model of the autonomic managers involved, which
can form the basis for reasoning about the overall system
behavior; and finally we discuss some examples to illustrate
the use of adaptation plans for modifying skeleton systems
where service time of the overall application is the measure
to be autonomically controlled (Sec. 5).

E1

Manager

E2 AE1

E3
Managed
Elements AE2

AEa AEb AEc

AEdAE2

Analyse
Is the contract
broken? Why?

Autonomic Element

QoS
contract

Plan
Which plan can

solve the problem?

Monitor
How AE is
behaving?

Adapt
Execute the reconf.

protocol
Sensors Effectors

Figure 1. An autonomic system at several levels of details. Clouds represents managers; boxes with double border
are Autonomic Elements (AEx); boxes with single border are non-autonomic Elements (Ex); solid arrows represent
data exchanges; dashed arrows represent management overlay.

2. Autonomic management and contracts

Following the introduction of its original Autonomic
Computing manifesto [8], IBM in 2003 refined the Auto-
nomic Computing term to be representative of “a hierar-
chy of self-governing systems, which may consist of many
interacting, self-governing elements that in turn comprise
a number of interacting, self-governing elements at the
next level down” [1]. The term derives from the body’s
autonomic nervous system which controls key functions
without conscious awareness.

In general, autonomic management aims to attack the
complexity which entangles the management of complex
systems (as distributed and Grid applications are) by equip-
ping their parts with self-management facilities. Autonomic
computing tries to tackle the problem with the often-
quoted four “selves”: self-configuration, self-healing, self-
optimisation, self-protection (and, as a combination of all,
self-management). Truly autonomic systems are years away,
although autonomic functionality is appearing more and
more frequently in the design of complex systems such
as grid applications and cloud frameworks. These systems
currently treat the four “selves” as distinct aspects, with
different solutions addressing each one separately, with their
integration to achieve multi-purpose autonomic management
still an open problem [9].

As sketched in Fig. 1, an autonomic element typically
consists of one or more managed elements controlled by a
single autonomic manager. Those managed elements might
be either standard elements (i.e. hardware or software com-
ponents) or other autonomic elements. To pursue its local
goal, the manager may trigger an adaptation of the managed
components to react to a run-time change of application QoS
requirements or to the platform status. Also, the manager
may interact with other similar managers to pursue a global
goal.

An autonomic manager contains a control loop that im-

plements four functions: monitor, analyse, plan, and adapt1.
The monitor function collects details about the resources
being managed. The analyse function takes the collected
information and determines where changes are required.
The plan function is responsible for generating any required
plans, and the adapt function takes necessary actions to
implement planned changes [1]. Each manager pursues a
goal specified in a QoS contract [2]. In the context of auto-
nomic component models, such as GCM [5], it is convenient
to regard each component as having its own manager. We
consider three kinds of manager, with increasing degree of
autonomic capability:

1) The empty manager, which exhibits no ports and thus
cannot even be monitored.

2) The passive manager, which may provide ports to
outer components and may use ports of the inner
components: these ports implement monitoring func-
tionality.

3) The active manager, which may provide to and use
ports of both outer and inner components; these ports
may implement either monitoring activity or the in-
stallation of a new QoS contract, which may induce
the execution of a reconfiguration operation.

We categorize components in the same way; we also
assume that component nesting may be in a non-increasing
order of management capability (outer smarter than inner).
As a result, autonomic managers can be arranged in a
hierarchy where the management policies can be unfolded,
by way of QoS contracts, along component nesting. The
topmost contract reflects the user intention; a contract within
the hierarchy can be derived from its parent. This covers
the cases in which each component controls either directly
or indirectly its inner components. In the former case, as
sketched in Fig. 2, the management is strictly hierarchic
and contracts can be unfolded along a tree, whereas in the

1. we use “adapt” rather than the standard “execute” to avoid confusion
with execution of core functionality.

latter case the contracts can be unfolded along a hierarchical
graph. In this work, we assume the first case since it is
simpler and it still may provide a level of efficiency in
distributed systems since the levels of the tree can be easily
associated with different levels of component coupling and
geographic location.

2.1. Manager blueprint

We consider the active manager since the passive man-
ager can be obtained by reduction of its functionality. The
manager (component) collects monitor data from managed
elements (inner components); collection may happen as a
polling process (via manager use ports) or event-based no-
tification (via manager provide ports). The manager MC of
the component C collects from its n controlled components
a set of monitor values mi(�t) that are assigned to variables
mi at autonomic cycle t, each of them being a list of
variables, i.e. i = 0 · · ·n,∃ji ∈ N : mi = [m1

i , . . . ,m
ji

i],
where m0 represents the state of C itself. These values
can be either received by way of events or polled from
controlled components. Also, C receives a QoS contract
from its parent.

The contract carries a contract predicate
CP(m0, . . . ,mn) expressed within a suitable logic,
which is decidable and efficient for the evaluation of
predicates representing typical QoS requirements. In
general, the identification of such a logic may present a
significant challenge; for simplicity, we assume here mi

are lists of variables ranging over R ∪ ⊥2, and CP is a
ground formula whose terms express inequalities between
variables mi and constants. CP may be evaluated to true
(valid) or false (broken). In the former case no actions
are required. In the latter case, the manager considers its
reconfiguration plans. Each plan consists in a sequence of
adaptation actions, whose execution leads to an expected
change of one or more mi. The manager in turn simulates
the execution of these plans in order to determine if some
of them may produce a set of values mi(�t+1) of the
variables mi that satisfy CP . This task can be heuristically
performed according to a goal function G(m0, . . . ,mn)
that quantifies the quality of the solution. Once a plan is
chosen, it is executed. If no plan is suitable, the manager
assumes it cannot autonomously solve the problem and
triggers an event toward the manager at the next level up.
The event may carry the value of some of monitor variables
m0, . . . ,mn (or some elaboration of them) to the next
level up. A plan is a sequence of actions with one of the
following goals:

1) push a new contract into controlled components;
2) reconfigure the assembly of managed components;

2. where ⊥ represents undefined variables (e.g. due to a timeout in their
gathering).

C1

M(C1)

C3

C4C2

M(C3)

C5'

M(C5')

C5''

M(C5'')

Cx = Component x

M(Cx) = Manager of Cx
Cx', Cx'' = Instances of Cx

QoS contract
(from the user)

C5'

C6' C7' C8'

C6' C7' C8'

C6'' C7'' C8''

C1

C2 C4C3

C5''

C6'' C7'' C8''

Management
network

Structural
relationships

Functional
network

Figure 2. An autonomic component application and its
structure. Three relationships between components are
highlighted.

3) raise an event toward companion managers (reachable
non-lower level managers).

A plan comprises three parts:
• Actions. These actions realise non-trivial protocols

such as remapping a component into a new platform,
creating and deploying a new component instance,
sending a message in the proper format (examples can
be found in [6]).

• Expected benefit. The benefit that each plan is sup-
posed to deliver is described by a set of equations
describing the variation of mi at some future iteration
of the autonomic cycle, as an example m0(�t+3) =
g(m1(�t),m2(�t)),m1(�t+3) = f(m2(�t)). These
equations should be easily calculable in the logic cho-
sen for the autonomic management.

• Expected overhead. Enacting a plan may have an
immediate overhead in terms of some mi (e.g. recon-
figuration time and number of resources) that should be
forecast in the same way as the expected benefit (but
paid just once).

Observe that the list of available operations used in
actions, expected benefit and overhead for a given com-
ponent are in general very dependent upon the features
and implementation of the component. Thus the design of
general plans is likely to be a complex activity. Behavioural
skeletons cope with this complexity by narrowing this gener-
ality and offering standard plans for families of components
that exhibit similar behaviour.

3. Skeleton framework

In the remainder of this paper we discuss the concepts
introduced in Sec. 2 in the framework of hierarchical au-
tonomic management of structured parallel programs. The
programs considered are developed using a simple but sig-
nificant skeleton system including pipelines and farms. We
consider a framework such that the “structure” of the parallel
program considered is a term of the grammar sketched in
Fig. 3 left (we assume here that “Seq” will be a generic

Pipe

Seq

Farm

Seq

Seq Pipe

Seq

Farm

Seq

Pipe

Seq

Seq

Seq

1

2

3

4

5

6

7

8

1

2

3

4

5

(a) (b)

Sk ::= Seq | Pipe(Sklist) | Farm(Sk)
SkList ::= Sk | Sk,Sklist
Seq ::= <any seq function>

Figure 3. Skeleton grammar (upper part) and sample
skeleton programs (lower part; shaded identifiers are
included to allow reference to program parts from within
the text).

function (procedure or method without side effects) written
in some sequential language).

Several considerations contributed to the decision to con-
sider autonomic management of structured programs:

i) A large proportion of distributed/Grid applications can
be modelled using this skeleton set.

ii) Several skeleton programming environments support
this kind of structured programs (including Muesli [10]
and eSkel [11]).

iii) By limiting the kind (structure) of the parallel programs
considered we succeeded in designing effective hier-
archical autonomic management strategies that exploit
program structure. This is fully compliant with the
algorithmic skeleton vision: restrict the parallel forms
considered to a few that have been demonstrated useful
and reusable and capitalise on the narrower solution
space deriving from this restriction. Although we con-
sider only two kinds of parallel patterns, we are able
to investigate different autonomic management policies
(with the associated hierarchical composition problems)
due to the fact that pipelines and farms behave differ-
ently when propagating performance contracts to their
parameter (inner) skeletons.

iv) By considering autonomic management of skeleton-
based parallel programs we proceed further in the
refinement of the behavioural skeleton concept as in-
troduced in [6]. However, the results discussed in that
paper could have been derived also for more generic
parallel programs, whose interaction graph is not a plain
tree, as in the skeleton case, although the derivation
would have been a little bit more difficult.

Typical programs of the skeleton framework considered
here are those represented in Fig. 3. Program (a) corresponds
to the classical schema of a three stage computation where
the first stage is sequential and produces a stream of tasks
processed by the second, parallel stage, possibly reading
some input task file from disk. The third stage sequentially
post-processes the computed tasks, possibly storing them to
the disk. Program (b) represents a further parallelisation of

program (a) if the programmer recognises that the second
stage can be further split into three separate stages, thus aug-
menting the amount of parallelism that the implementation
of the skeleton environment can use. It is worth pointing out
that program (b) perfectly models the structure of most of
the use-case applications that are currently being considered
in the framework of the GridCOMP EU STREP project
to validate the design and implementation of the GCM
component model [12].

4. Autonomic cycle

We present an Orc [13] model of the autonomic man-
agement activities as outlined in Sec. 2. In particular we
present a high-level view of a behavioural skeleton manager
implementing the autonomic cycle. In [6] we argued that
Orc is suitable for describing behaviour, as it is a language
for orchestrating distributed services. The purpose of the
Orc model is twofold [14]: first to describe precisely the
activity of the managers, while maintaining readability so
the description can act as a design artifact; and second to
exploit the precision to allow (semi-)formal reasoning about
properties of the model.

Briefly, the Orc constructs used below are these: �
denotes sequential composition; > v > denotes sequential
composition with passing of a value; | denotes parallel
execution, with obvious extension to N workers indexed by
i; and let(x) where x :∈ (P | Q) denotes the publication
(let) of x where x is the first value to be returned by P | Q,
and the termination of further execution of P | Q.

4.1. Behavioural Skeleton Manager

A behavioural skeleton comprises a skeleton together
with a concurrently executing manager that acts to ensure
a contract is maintained.

BSkel(skeleton, manager, contract) ,
skeleton | manager(skeleton, contract)

The skeleton provides the functionality and the manager
enacts the autonomic cycle – monitor, analyse, plan and
adapt.

manager(sk, c) ,
distribute(sk, c) >sk1> monitor(sk1) >m>
analyse(sk1,m) >(b, p)>
(if(b) � adapt(sk1, p) >sk2> manager(sk2, c)
| if(¬b) � let(contV iol) � passiveMode > c1>

manager(sk1, c1))

The manager distributes the contract, c, appropriately over
the skeleton, sk, producing a new skeleton, sk1, identical

in structure to sk but with each sub-component having a
suitable contract. During a given cycle, t, the monitor gathers
the monitor values, m, from the components of the skeleton
and passes these to analyse. The result of this analysis is
a pair (b, p). b is a boolean indicating if an appropriate
plan has been identified. If so, the adapt stage modifies
the skeleton accordingly, producing sk2 and management
continues with this new skeletal structure; if not, then we
have a situation where the contract is being violated but no
suitable adaptation plan can be identified. In this latter case,
the manager can only pass a “contract violation” message
up the hierarchy and enter a passive mode in which it no
longer enacts the autonomic cycle (it simply acts as a passive
manager, responsive to the monitoring of its parent) but
awaits a new contract at which point it can return to active
management.
(Note: in the case that the contract is not broken then the
plan will simply be “carry on as before” and the adapt stage
will have no effect, so sk2 = sk1.)

The challenge lies in defining the actions of a manager
(distribute, monitor, etc.) in a notation suitable for the sort
of semi-formal reasoning we espoused in [14]. This may, for
example, involve enhancing Orc’s simple data types to allow
for the description of plans. This is ongoing work. Here,
to give a flavour, we consider a farm behavioural skeleton,
and in particular the adaptation action required following a
breach of contract.

BSkel(farm(N), contract) ,
farm(N) | manager(farm(N), contract)

A farm consists of a set of workers, Wi, executing in parallel.

farm(N) , (| 1 ≤ i ≤ N : Wi)

A worker receives a task on an in channel, processes it using
Wi execute(x) and sends the result on an out channel; it
then recurs. Receipt of an input task may be interrupted
(by the manager), in which case the worker terminates
(described by 0).

Wi ,
(if(b) � (Wi execute(x) >y> out.put(y) � Wi)
| if(¬b) � 0)

where (x, b) :∈
(in.get >y> let(y, true)
| Interrupti.get >y> let(y, false))

Adaptation is achieved by terminating each of the workers
with an interrupt and instantiating a new farm with an
additional worker.

adapt(farm(N), plan) ,
(if(plan = addworker) � let(y) � farm(N + 1)

where (∀i :: yi :∈ Interrupti.set)

 50.0

100.0

150.0

200.0

250.0

20:00 24:00 28:00 32:00 36:00 40:00 44:00 48:00 52:00

Ite
m

s
pe

r w
or

ke
r Contract

Partition size

 4.0

 5.0

 6.0

 7.0

 8.0

20:00 24:00 28:00 32:00 36:00 40:00 44:00 48:00 52:00
N.

 o
f w

or
ke

rs

Parallelism degree

400.0
500.0
600.0
700.0
800.0
900.0

1000.0

20:00 24:00 28:00 32:00 36:00 40:00 44:00 48:00 52:00

N.
 o

f i
te

m
s

Dataset Size

 0.0

 20.0

 40.0

 60.0

 80.0

20:00 24:00 28:00 32:00 36:00 40:00 44:00 48:00 52:00

Se
co

nd
s

Wall Clock Time

Service Time

Figure 4. Data parallel behavioural skeleton at work

The synchronization following the publication of all
Interrupti.set signals is achieved using the barrier syn-
chronization idea of [13].

5. Use cases

We consider a typical use case and discuss how hierar-
chical autonomic management proceeds for some typical
situations. We assume service time (throughput) is the
measure to optimise, i.e. we will try to shorten as much as
possible the average time spent by the application to deliver
two consecutive items on its output. We denote service time
for component Ci as TCi . We also assume that parallelism
exploitation in our application is performed using skeletons
modelled by appropriate behavioural skeleton components
[6].

The results discussed here have been achieved by sim-
ulating the manager hierarchy as described in Sec. 2 and
modelled through the Orc code of Sec. 4. To simulate more
accurately the behaviour of single autonomic managers we
actually used data from experiments made using the auto-
nomic managers of a task farm and data parallel behavioural

skeletons developed within the GridCOMP project. Those
managers are implemented according to the guidelines given
in Section 2. The kind of management implemented is
demonstrated in Fig. 4. Here a sequence of variable sized
input data sets is presented to an application exploiting
parallelism by using a data parallel behavioural skeleton. The
application is a biometric identification application matching
scanned fingerprints against a (large) fingerprint database in
real time [15]. The size of input data, in terms of number
of data items, is presented on the first plot of the Figure.
The manager is given a contract asking to keep a data
set dimension per worker constant (the bar in the second
graph, plotting the dimension of the single worker data set).
The manager reacts to changes in the input data size by
adding and removing workers from the executor worker
strings (third plot) and as a result, the service time of the
behavioural skeleton varies as expected (fourth plot). This
kind of experiment allowed us to validate the policies and
mechanisms implemented and used within a single manager
and to evaluate the reaction times as well.

We consider program (b) of Fig. 3 as the use case.
This program uses pipeline and farm behavioural skeletons:
therefore we define both the theoretical service time and
the measures mi of interest, according to what is stated in
Sec. 2.

The service time of a pipeline with stages C1, . . . , Ck is

Tpipeline(C1,...,Ck) = max{TC1 , . . . , TCk
} (1)

as the slowest stage obviously represents the bottleneck
for the whole computation. In this case, the different TCi

represent instances of the measures mi monitored on the
inner components (they are obtained by querying inner
pipeline components’ passive managers). The service time
of a farm with nw workers instantiated from Cw, is given
in turn by

Tfarm(Cw,nw) =
∑

j=1..n

TCi/n2
w (2)

as the average service time of the single worker is∑
j=1..n

TCi/nw

and we have nw workers in the farm.
Also, we define how contracts are used in pipelines and

farms. If a pipeline is given a contract CP (usually of the
form CP = Klow ≤ Tpipeline ≤ Khigh) the pipeline manager
propagates the contract to all the inner components, i.e. asks
the managers of the pipeline stages to ensure the very same
contract. If a farm is given a contract concerning the service
time (usually CP = Tfarm ' ITfarm, where ITfarm is the
inter-arrival time for the farm), the contract propagated to
the inner components (the worker component instances) is
instead an optimize(TC). This is due to the fact the service
time is modelled as shown in (1) and (2), respectively.

Let us consider what is happening in the sample use case
we consider here. First we define the kind (and number) of
managers in the program, as well as the contracts and the
mi of interest. Table 1 describes the structure of the program
in terms of managers, contracts and monitor values received
from inner (nested) skeletons or computed by the manager
themselves. Contracts as described in Table 1 derive from
a single contract established by the end user: this contract
states that the service time of the overall program has to be
in the interval [Klow,Khigh].

Pipeline skeleton managers pass their contract to inner
nodes. Farm skeleton managers, instead, forward to the
worker managers the contract simply stating that service
time is to be optimised. A farm contract is ensured by the
farm manager, possibly by adding (removing) workers once
the workers do their best to optimise service time (e.g. pipe
managers keep the pipe stage balanced in terms of TS).

Then, we considered some feasible plans for the man-
agers. We present distinct plans for pipelines and farms, as
sketched in Table 2.

Under these hypotheses, we assumed an initial configura-
tion of the parallel program that satisfies all the contracts
and we simulated hierarchical autonomic management in
the case that a violation of the contract is detected by the
manager in C5 due to a violation of contract by node C7 (e.g.
due to some additional load started on the C7 resources). We
considered two situations: in the former (C.1), computing
resources not yet allocated to the program computation are
available and some of these new resources are faster than
those used to allocate program computations. In the latter
case (C.2), further resources are available but not faster than
the current ones. The sequence of events in the simulation
of the two cases goes as follows.
C.1 The C5 manager monitors a contract violation on

node C7. This happens in a single instance among
the C5 ones instantiated as workers of the C3 farm.
Considering the Orc manager model presented in Sec.
4, this means in the sequence . . . > monitor(sk1) >
m > analyse(sk1,m) > (b, p) > . . . the monitor
collects a new, sub-contractual, service time from C7

and analyse(sk1,m) detects that the current contract
of the pipeline is broken, as stages are no longer
balanced. The C5 manager therefore looks for plans
(. . . > (b, p) > adapt(sk1, p) > (sk2, c) > . . .) and
identifies a new configuration (sk2). In particular, PLP1

is considered first. As we assume to have new, faster
resources available, the plan can be applied and its
application via adapt results in a modified structure,
sk2. The adaptation plan is therefore implemented
and the manager begins a new iteration of the auto-
nomic management cycle with the new configuration
(manager(sk2, c)).

C.2 The initial steps are similar to those performed in the
previous case. However, due to the unavailability of

Component Type Manager Contract mi

C1 active pipe Klow ≤ Tself ≤ Khigh (user defined) Klow, Khigh constants;
TC2

, TC3
, TC4

monitored

Tself = max{TC2
, TC3

, TC4
} [↑]

CPC2
= CP; CPC3

= CP; CPC4
= CP [↓]

C3 active farm (CPsuper) ∧ (ITself ≤ Tself) (derived) ITself = request inter-arrival time; nself = #workers

let Cj children of C3, 1 ≤ j ≤ nself : TCj
monitored

Tself =
P

j=1..nself
TCj

/n2
self ; [↑]

CPCj
= optimise(TCj

); [↓]

C5 active pipe CPsuper (derived) TC6
, TC7

, TC8
monitored

Tself = max{TC6
, TC7

, TC8
}; [↑]

CP6 = null; CP7 = null; CP8 = null; [↓]

C2,4,6,7,8 passive seq none provide TC2,4,6,7,8
via NF port (respectively)

Table 1. Managers and contracts for program (b) of Fig. 3. self denotes the component itself; super denotes the
father component; [↑] denotes local monitor values synthesised from the monitoring of inner components; [↓]

denotes contract predicates that the current level of the hierarchy enforces at the lower levels (inner components).

Plan Expected Cost Expected Benefit

PLF1 move the slower worker Cw to
a faster platform, if any

cost(stop(Cw); deploy(Cw); start(Cw)) decrease service time. Tfarm(�t+h) = δTCw
(�t),

0 ≤ δ ≤ 1 speed difference between the platforms

PLF2 increase parallelism degree
(allocate k new workers)

cost(deploy(Cwj); start(Cwj)) for j =

1..k instances
decrease service time. Tfarm(�t+h) = δTfarm(�t)

δ = n/(n + k)

PLF3 decrease parallelism degree
(de-allocate k workers)

cost(stop(Cwj)) for j = 1..k instances increase service time. Tfarm(�t+h) = δTfarm(�t)

δ = (n + k)/n

PLF4 raise violation 0 (negligible) none

PLP1 move stage (Cs) with maxi-
mum T to a faster resource, if
any

cost(stop(Cs); deploy(Cs); start(Cs)) decrease service time. Tpipe(�t+h) = δTpipe(�t),
0 ≤ δ ≤ 1 speed difference between the platforms if
max{TCS

, Tpipe(C1, . . . , Cs−1, Cs+1, . . . , Ck)} =

TCS
, otherwise δ = 1

PLP2 collapse adjacent stages Cs,
Cs+1

cost(stop(Cs); deploy(Cs); start(Cs)) for
Cs and Cs+1

decrease resource usage n = n − 1. increase
service time. Tpipe(�t+h) = δ + Tpipe(�t), δ = 0

iff TCs + TCs+1 ≤ Tpipe(�t), δ = TCs + TCs+1 −
Tpipe(�t) otherwise

PLP3 raise violation 0 (negligible) none

Table 2. Initial set of feasible plans considered for pipeline and farm managers.

new faster resources PLP1 cannot be applied. PLP2 can-
not be applied either as it cannot optimise service time.
At this point the C5 manager reports a failure to the C3

manager. The C3 manager becomes aware of the failure
while executing . . . > sk1 > monitor(sk1) > m >
analyse(sk1,m) > While in the analyse step,
a violation of the global C3 contract can be detected
consequent to the violation reported by C5. Therefore
the C3 manager will consider plan PLF2 , which is even-

tually implemented (> (b, p)> adapt(sk1, p) >sk2>),
the number of workers in the farm is increased and
a new autonomic cycle is started (plan PLF1 is not
applicable for the same reason we did not succeeded
applying PLP1).

Different behaviour is achieved in the two cases, with the
same management schema. In case C.1 contract violation is
dealt with locally. In case C.2 the contract violation cannot
be dealt with locally so the parent manager is informed and

it will eventually perform appropriate corrective actions to
solve the problem. After adaptation no direct verification
of the effect of the actions performed is made before the
beginning of the next autonomic cycle. It may be the case
that the action taken does not solve the problem, due to small
(but unavoidable) inaccuracy of the cost/benefit models in
the plans or to rapid variations in the target architecture
load. Actions have to be considered to avoid thrashing
(continuing “oscillating” adaptations). However, in the case
of relatively small inaccuracy of the cost/benefit models,
adaptation will simply require some additional cycles to be
achieved, provided the inaccuracy in the models does not
affect the goal of the adaptation process.

6. Conclusions

In this paper, we have outlined a framework suitable for
modelling hierarchical autonomic management in the gen-
eral case of applications build out of interacting autonomic
components. We have further specialized the framework
to the domain of behavioural skeletons where the inherent
skeleton structure eases the burden of propagating contracts
within the structure and devising adaptation plans. Orc
modelling is used to describe management activity, thus
permitting precise formulation and opening the possibility
of reasoning about the models to predict behaviour prior to
implementation.

We discussed simulation results showing that effective
hierarchical management can be implemented when (as an
example) service time is to be autonomically optimized.
These simulation results have been obtained using single
(non-hierarchical) managers controlling GCM behavioural
skeletons developed within the CoreGRID and GridCOMP
EU FP6 projects. They demonstrate that management deci-
sions can be used to make effective structural modifications
in response to contract breaches. The extension of these
experiments to hierarchical management as described here
is underway and preliminary results are consistent with
the theoretical framework presented. This extension will be
reported on in a forthcoming paper.

References

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] M. Aldinucci and M. Danelutto, “Algorithmic skeletons meet-
ing grids,” Parallel Computing, vol. 32, no. 7, pp. 449–462,
2006.

[3] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt,
G. Zhang, and S. Hariri, “AutoMate: Enabling autonomic
applications on the Grid,” Cluster Computing, vol. 9, no. 2,
pp. 161–174, 2006.

[4] P.-C. David and T. Ledoux, “An aspect-oriented approach for
developing self-adaptive fractal components,” in Proc. of the
5th Intl Symposium Software on Composition (SC 2006), ser.
LNCS, W. Löwe and M. Südholt, Eds., vol. 4089. Vienna,
Austria: Springer, Mar. 2006, pp. 82–97.

[5] Deliverable D.PM.04 – Basic Features of the Grid
Component Model (assessed), CoreGRID NoE deliverable
series, Institute on Programming Model, Feb. 2007. [Online].
Available: http://www.coregrid.net

[6] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi,
P. Dazzi, D. Laforenza, N. Tonellotto, and P. Kilpatrick,
“Behavioural skeletons in GCM: autonomic management of
grid components,” in Proc. of Intl. Euromicro PDP 2008:
Parallel Distributed and network-based Processing, D. E.
Baz, J. Bourgeois, and F. Spies, Eds. Toulouse, France:
IEEE, Feb. 2008, pp. 54–63.

[7] P. Brittenham, R. R. Cutlip, C. Draper, B. A. Miller, S. Choud-
hary, and M. Perazolo, “IT service management architecture
and autonomic computing,” IBM Systems Journal, vol. 46,
no. 3, pp. 565–681, 2007.

[8] Autonomic Computing: IBM’s Perspective on the State of
Information Technology, IBM, 2001. [Online]. Available:
http://www.research.ibm.com/autonomic/manifesto/

[9] A. Andrzejak, A. Reinefeld, F. Schintke, and T. Schütt, “On
adaptability in grid systems,” in Future Generation Grids, ser.
CoreGRID series. Springer, Nov. 2005.

[10] H. Kuchen, “A skeleton library,” in Proc. of 8th Euro-
Par 2002 Parallel Processing, ser. LNCS, B. Monien and
R. Feldman, Eds., vol. 2400. Paderborn, Germany: Springer,
Aug. 2002, pp. 620–629.

[11] A. Benoit, M. Cole, S. Gilmore, and J. Hillston, “Flexible
skeletal programming with eSkel,” in Proc. of 11th Euro-Par
2005 Parallel Processing, ser. LNCS, J. C. Cunha and P. D.
Medeiros, Eds., vol. 3648. Lisboa, Portugal: Springer, Aug.
2005, pp. 761–770.

[12] GridCOMP Project, “Grid Programming with Components,
An Advanced Component Platform for an Effective Invisible
Grid,” 2008. [Online]. Available: http://gridcomp.ercim.org

[13] J. Misra and W. R. Cook, “Computation orchestration: A basis
for wide-area computing,” Software and Systems Modeling,
vol. 6, no. 1, pp. 82–110, Mar. 2006.

[14] M. Aldinucci, M. Danelutto, and P. Kilpatrick, “Management
in distributed systems: a semi-formal approach,” in Proc. of
13th Intl. Euro-Par 2007 Parallel Processing, ser. LNCS,
A.-M. Kermarrec, L. Bougé, and T. Priol, Eds., vol. 4641.
Rennes, France: Springer, Aug. 2007, pp. 651–661.

[15] T. Weigold, P. Buhler, J. Thiyagalingam, A. Basukoski, and
V. Getov, “Advanced grid programming with components: A
biometric identification case study,” in Proc. of the 32nd Intl.
Computer Software and Applications Conference (COMP-
SAC). Turku, Finland: IEEE, Jul. 2008, pp. 401–408.

