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Abstract

The objective of this dissertation is to develop an initial approach of a robotic

system to play an assistive role in Deep Brain Stimulation (DBS) stereotactic

neurosurgery. The robot is expected to position and manipulate several surgi-

cal instrumentation in a passive or semi-active role according to pre-operative

directives and to medical team instructions. The current impact of neurological

disorders sensitive to DBS, the underlying knowledge of neurostimulation and neu-

roanatomy, and practical insight about DBS surgery is studied to understand the

ultimate goal of our project. We elaborated a state of the art search on neuro-

surgery robots to get the picture of what was done and what could be improved.

Upon determining the optimal robotic system characteristics for DBS surgery, we

conducted a search on industrial robotic manipulators to select the best candi-

dates. The geometric and differential kinematic equations are developed for each

robotic manipulator. To test the kinematic equations and the control application

in a virtual operating room environment, we used the CoopDynSim simulator. Be-

ing this simulator oriented to mobile robots, we introduced the serial manipulator

concept and implemented the selected robots with all specifications. We designed a

control application to manoeuvre the robot and devised an initial interface towards

positioning/manipulation of instrumentation along surgical trajectories, while em-

phasizing safety procedures. Although it was impossible to assess the robot’s

precision in simulation, we studied how and where to place the manipulator to

avoid collisions with surrounding equipment without restricting its flexibility.

Keywords: Deep Brain Stimulation; Robotic Neurosurgery; Non-redundant and

Redundant Manipulator Kinematics; 3D Robotics Simulator
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Resumo

O objectivo desta dissertação é o desenvolvimento de uma abordagem inicial a

um sistema robótico para desempenhar um papel de assistência em neurocirurgia

estereotáxica de Estimulação Cerebral Profunda (DBS). O robô deve posicionar e

manipular variados instrumentos cirúrgicos de uma forma passiva ou semi-ativa de

acordo com diretivas pré-operativas ou com as instruções da equipa médica. O im-

pacto atual dos distúrbios neurológicos sensíveis a DBS, o conhecimento subjacente

de neuro-estimulação e neuro-anatomia, e conhecimento prático sobre a cirurgia de

DBS são estudados para concluir sobre o objectivo final do nosso projeto. Nós ela-

borámos uma pesquisa sobre o estado da arte em robots neurocirúrgicos para per-

ceber o que tem sido feito e o que pode ser melhorado. Após determinar o conjunto

óptimo de características de um sistema robótico para cirurgia de DBS, nós procu-

ramos manipuladores robóticos industriais para escolher os melhores candidatos.

As cinemáticas geométricas e diferenciais são desenvolvidas para cada manipula-

dor robótico. Para testar as equações cinemáticas e a aplicação de controlo num

ambiente virtual de uma sala de operações, nós usamos o simulador CoopDynSim.

Sendo este manipulador orientado a robôs móveis, nós introduzimos o conceito

de manipuladores em série e implementamos os robôs selecionados com todas as

especificações. Nós projetamos uma aplicação de controlo para manobrar os robôs

e desenvolvemos uma interface inicial no sentido do posicionamento/manipulação

de instrumentação ao longo de trajetórias cirúrgicas, enfatizando os procedimen-

tos de segurança. Embora não tenha sido possível avaliar a precisão do robô em

simulação, nós estudamos como e onde posicionar o manipulador de forma a evitar

colisões com o equipamento circundante sem restringir a sua flexibilidade.
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Chapter 0

Aim and Outline of the dissertation

The aim of this dissertation is to contribute to the development of a robotic system

able to facilitate the implantation of intracortical electrodes for Deep Brain Stim-

ulation (DBS), for symptomatic treatment of neurological disorders. The robotic

system should be able to hold and manipulate instrumentation according to the

planned trajectories and assist other neurosurgeon needs. More important, the

aimed solution should be pragmatic, easy to integrate in a healthcare institution,

with low budget acquisition and maintenance costs. We will focus in implementing

an initial solution in simulation, to test the control application, the implemented

algorithms, the robotic systems selected and the feasibility of the overall project.

Due to time and resources limitations real robots implementation will not be cov-

ered in the dissertation.

Deep Brain Stimulation is a surgical treatment based in applying controlled

electrical pulses directly to specific regions of the basal ganglia, and it has proven

to be rather successful in mitigating symptoms of neurological disorders (e.g.

Parkinson’s disease, epilepsy, dystonia, among others) when other conventional

drug therapies or resection neurosurgeries fail [2] [3]. The number of cases as-

signed to DBS has been steadily increasing, however due to the time demanding

and exhausting characteristics of the procedure, they can not be performed at

the necessary pace [4]. Medical teams involved in DBS neurosurgery believe that

the procedure could be made less physically and cognitively demanding if robots

3



could take over some tasks, but naturally always under the ultimate control of

neurosurgeons. Skull drilling, implantation of multiple electrodes for monitoring

and stimulating brain structures are some examples of tasks that could be accom-

plished by a robotic system. Additionally, the precision, steadiness and tirelessness

so characteristic of robotic systems are a major contribute for improving the final

outcome of the treatment.

The presented dissertation is organized in three major parts that subdivide in

chapters and are presented as follows.

Part I, includes the introductory chapters:

In Chapter 1, we present the impact of the DBS sensitive diseases in current

society, some principles about neurostimulation and neuroanatomy. We describe a

typical DBS surgery and identify the potential benefits of using a robotic system.

In Chapter 2 is formalized the motivation of the dissertation and provided some

general concepts about robotic neurosurgery. It is also elaborated a state of the art

review on the robots in neurosurgery that can be potentially adapted to DBS. In

the end, we present the current trends and challenges for neurosurgery robotically

assisted.

Part II, describes the steps to reach an initial solution:

In Chapter 3 it is presented a search in industrial robotic systems that can be

used in our project. It starts by explaining the robotic features and its impact

in light of our aimed system. We defined an optimal robot profile and compared

the products of the most renowned industrial robots industries to find the best

candidate.

Chapter 4 describes the algorithms followed to develop the 6 DOF and 7 DOF

geometric and differential kinematics. It is also described some of the selected

robots specifications that have direct implication on the developed kinematic equa-

tions.

In Chapter 5, we present the work developed in upgrading the CoopDynSim

robotics simulator, the creation of the operating room environment and the imple-

4



mentation of the selected robotic serial manipulators. We also present the designed

controller application and all the embedded features, taking into account the ex-

pected DBS assistive behavior.

Part III, shows some first conclusions about the ongoing work:

Chapter 6, it is presented some results regarding the size and flexibility impli-

cations of each robotic system considering the intraoperative environment and the

placement of the robot within the operating room. It is also depict the robot’s

trajectory execution.

Chapter 7 has a brief overview of the developed solution, discusses some of the

findings and options taken along the dissertation, and suggests some objectives to

be answered in future work.

5
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Chapter 1

Neurological Disorders and Deep

Brain Stimulation

This chapter reviews the epidemiology of neurological disorders sensitive to DBS

treatment and attends theoretical principles regarding DBS treatment and surgery.

It also discusses the utility of a robotic manipulator as an assistive tool within the

operating room. This review is based in the following textbooks [5] [6] [7] [2] [8].

1.1 Neurological Disorders Impact in Public Health

Public health has always been a main concern in any complex society and a growing

effort has been put towards health promotion and disease prevention. Health

promotion is a process that enables people to have a better control over their health

and to further enhance it. It aims to raise the global consciousness about health

risks, establish healthy policies and provide environments to sustain good health

practices. The World Health Organization structured a healthy public philosophy

as a conjunction of health education, community development and interventions.

On the other hand, disease prevention stands for a policy of actively fighting the

disease in its various stages:

• Primary prevention, consists in quantifying health parameters to avoid the

appearance of a disease;

7



• Secondary prevention, stands for a correct diagnosis and administration of

the standard treatment while taking into account the risks involved;

• Tertiary prevention, includes rehabilitation, palliative care or treatment to

restrain complications and miniaturize the effect of the disease.

While recognizing the importance of each strategy, in this dissertation we will

focus the DBS treatment which is part of the tertiary prevention.

Neurological disorders are one of the major public health threats, causing mo-

tor and cognitive impairment that directly restricts an ordinary life style. Such

disabilities imply direct and indirect costs to the society, so it is of great interest

to prevent or manage its consequences. Several studies and projects have been

commenced to evaluate the impact of neurological diseases, more specifically the

epidemiology and burden to the community. Among the other epidemiology stud-

ies relative to specific neurological disabilities, it was also regarded a broader essay

known as the Global Burden of Disease leaded by WHO, the World Bank and the

Harvard School of Public Health. The primary objective of this section is to envis-

age the panorama of neurological diseases and the impact they exert in the society,

without acknowledging the causes. Furthermore, from all neurological disorders we

will narrow our scope to the ones sensitive to DBS therapy [9] such as Parkinson’s

Disease, Dystonia, Essential Tremor, Epilepsy, Neuropathic Pain and Psychiatric

Disorders.

1.1.1 General Burden

The Global Burden of Disease study, presents not only the raw numbers of in-

cidence and prevalence of each disease, but also quantifies the impact it has in

peoples lives in terms of DALY, YLD and YLL, (figure 1.1). The neurological

disorders consequences go beyond the statistical data, and to assess the real reper-

cussions one needs to consider the impairment caused to each afflicted individual.

Quoting data presented in GBD, neurological disorders contributed to 92 mil-

lion DALYs in 2005, overcoming Tuberculosis, HIV/AIDS, Malignant neoplasms

and Ischaemic heart, Respiratory and Digestive diseases. Epilepsy and Parkinson’s
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Figure 1.1: Disability adjusted life-year1.

disease alone constitute almost 9 million DALYs which represents more than 0.6%

of the total DALYs for all the diseases covered in the GBD essay. One of the most

worrying facts, is the detected growing tendency of both disease DALYs, which is

expected to ascend 6% by 2030.

Another interesting information regarding the motto of this dissertation, is to

quantity how DBS sensitive neurological disorders affect each stratum of society.

GBD presents in their table 2.5 [5], the impact of each neurological disease in

countries of high, upper middle, lower middle and low income categories according

to the World Bank. The Epilepsy and Parkinson’s disease, the only ones sensi-

tive to DBS treatment among the studied have the highest DALYs per 100 000

population in low income countries. Almost half of the total DALYs caused by

these disorders are associated to low and lower middle income categories, or in

other words, population with hardly any access to excellence healthcare services,

or rather expensive treatments like DBS or involving robotic surgery.

The large impact that these neurological disorders have in today’s society fur-

ther reinforce the idea that efficient solutions like DBS are welcome to brief the

problem. Along with the DBS treatment the numbers displayed in the subsec-

tions below justify the need of an auxiliary robotic system that would assist the

neurosurgical team to achieve better outcomes in less time, with better working

1subsection 1.1.1 Free licensed media from Wikimedia Commons, with the authorship

of Planemad http://commons.wikimedia.org/wiki/File:DALY_disability_affected_life_

year_infographic.png
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conditions and therefore allow more DBS procedures to be performed in the same

time interval. An affordable robotic equipment would enable more healthcare in-

stitutions, even in low income countries, to acquire and exploit all the advantages

of an assistive robotic system in DBS surgeries.

We will hereby list the more important diseases responsive to DBS treatment,

introducing its definition, enumerating the symptoms associated and providing an

overall perspective of its significance in todays society.

1.1.2 Parkinson’s Disease

Parkinson’s disease is a chronic and progressive neurodegenerative disorder of insid-

ious onset, recognized by the bradykinesia, rest tremor and posture disturbances.

It can be later on, associated to other motor and non-motor symptoms like postural

instability, falls, freezing gait, speech and swallowing difficulties, among others [5].

It holds the second position among the most common neurodegenerative disor-

ders, next only to Alzheimer’s disease, and is expected to cause increasing econom-

ical and social burden due to the populations aging. Parkinson’s disease causes

are largely unknown and furthermore its subtle progression and symptoms are also

similar to other motor disorders. Thus a neurologist can at best provide a probable

diagnosis, which may later be definitely confirmed post-mortem.

Adding to the variability inherent to an epidemiology study from sampling the

population, there is yet room for subjective methodologies relative to the diagnosis

criteria. To reduce the impact of these inconsistencies, we gathered information

from large sample studies. A broad study carried on in 2006, states that the

prevalence of PD in industrialized countries is estimated to be 0.3% and reaches

4% in elder population [10]. The same study reports an incidence rate of 8-18 per

100 000 person-years, however this range englobes the population from all ages

and the onset of PD is rarely noticed before 50 years old. As a result of being a

chronic disease, the prevalence is much higher than its incidence.

The disease’s course and outcome varies from patient to patient, and the symp-

toms which are usually mild and unilateral at the first stages, if left untreated after
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several years, can lead to significant motor deterioration with loss of independence.

The symptoms limit an ordinary lifestyle, emotionally, socially and economically

as it usually implies an early retirement, the stigma of a chronic and incurable

condition and an additional burden to families or communities.

1.1.3 Epilepsy

Epilepsy is a chronic neurological disorder prevalent in both genres and contrary

to PD, common at all ages. The WHO defined it as a disorder of the brain char-

acterized by an enduring predisposition to generate epileptic seizures, and by the

neurobiological, cognitive, psychological and social consequences of this condition.

The definition of epilepsy requires the occurrence of at least one epileptic seizure.

Theoretically any individual with a functioning brain can have a seizure, the factor

that triggers it is related to a threshold which can be set by genetic variations or

premature birth. Epileptic seizures can manifest in various forms depending on

the underling cause and lead to different prognosis, which ultimately condition

the treatment approach. The epilepsy can be characterized by the age of the be-

ginning of symptoms. When the seizures begin at childhood they normally remit

spontaneously, while when they begin in adolescence they are often lifelong but

frequently sensitive to antiepileptic drugs.

Epilepsy affects people of all ages, so the YLDs related to this disease are in

average more per individual than PD, and thus the need to measure the different

impact it has in society. According to Sander et al. [11], the incidence of Epilepsy

ranges 40-70 per 100 000 person year, and 100-190 per 100 000 person year in

poorer resource countries. So not only are the people in this countries more prone

to develop Epilepsy, they have also less access to quality healthcare. In the study

presented by the WHO, it states that the incidence among the children is higher

and more variable ranging from 25 to 840 cases per 100 000 population per year.

Even knowing from community based studies that 70 to 80% of the people afflicted

will achieve remission, the disability and stigma caused to the others makes it one

of the most dramatic psychological and social impairments since an early age.
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The burden of Epilepsy extends beyond the estimated 50 million peopled af-

fected worldwide, to roughly 200 million family members or friends who are ac-

countable for them and therefore indirectly affected too [5].

1.1.4 Essential Tremor

Essential tremor is known as the most prevalent tremor disorder, and one of the

most common neurological disorders. Despite this alarming fact, the etiology and

pathophysiology are still not well understood according to neurologists [12]. This

movement disorder is a chronic, progressive and degenerative brain disease, dis-

tinguishable by a 4-12 Hz kinematic tremor that occurs during volitional motions

unlike the tremor latent in PD, which is predominantly basal. Aside from the

tremor, ET afflicted patient’s often experience ataxic gait and balance problems.

Moreover in a psychological level it is usually diagnosed anxiety, depressive symp-

toms and social phobia [13].

Once again for ET, it is not an easy task to present a definite study that

describes the real impact of the disease in terms of prevalence and incidence in

population due to the flexibility of diagnose criteria. Quoting Louis, ED. [14], it

is estimated that 30 to 50% of supposed cases of ET are misdiagnosed as parkin-

sonian or other forms of tremor, which means that the epidemiology data may be

underestimated. Nonetheless, ET is expected to have a prevalence range from 0.4

to 3.9%, and an incidence rate of 77-326.3 cases per 100 000 person years as stated

by recent studies.

1.1.5 Dystonia, Psychiatric and other Neurological disor-

ders

Besides the previously mentioned nearological disorders, also Dystonia [15], Neu-

ropathic pain [16], and Psychiatric disorders [3] like Obsessive Compulsive Disor-

der [17] and Gilles de la Tourette [18] symptom’s can be lessened by means of Deep

Brain Stimulation. Despite displaying lower incidence and prevalence rates, they

are not in any way easier to bear than the previous ones. Patient’s afflicted face
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unsurmountable and incapacitating problems that go from the inability to carry

on a normal life, to the non-acceptance of disease related symptoms by society,

which ultimately results in depression, obsessive-compulsive behaviors, stress and

in extreme cases self-injurious behaviors or suicide.

Dystonia is a syndrome of sustained muscle contractions frequently causing

twisting and repetitive movements, or abnormal posture, which may be classified

according to the age of beginning of symptoms, body distribution and cause. It

has a prevalence of 2-50 cases per million population year for early onset, that

is before 20 years old, and 30 to 7320 per million of population year for the late

onset, after 20 years old [15].

Gilles de la Tourette is condition whose symptoms include repeated and quick

movements or sounds performed without the control of the patient, that last longer

than a year. These motor and vocal disorders are referred as tics. Tourette syn-

drome is also characterized by the relative young age of its onset that ranges from

2 to 21 years with a mean of 7 years old [18]. It has therefore a tremendous nega-

tive impact in any afflicted individual. Despite the expected remission [19] a study

by Pappert et al. showed that from a set of cases followed since the onset of the

disease, around 90% of the patients still presented tics in adulthood [20].

1.2 Deep Brain Stimulation Principles

Deep brain stimulation is a technique used in functional neurosurgery, which

consists in applying controlled electrical pulses directly to deep brain structures

through implanted electrodes linked to a neuropacemaker [21] [2]. It has proven

successful in mitigating symptoms of neurological disorders (e.g. Parkinson’s dis-

ease, Epilepsy, Essential Tremor, Dystonia, other Neurological and Psychiatric

disorders), where other conventional drug therapies or resection neurosurgeries

fail [3] [9]. Despite the previous works on brain stimulation through electric signals,

only in the 1990s did Benabid and his colleagues brought together the definitive

electrode implantation associated to a neuropacemaker device which introduced

the long-term chronic DBS [22]. The growing acceptance and success of this tech-
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nique is in large measure due to its non-destructive and reversible characteristics,

with unknown side effects to date [23]. Even though the theory of localized electri-

cal stimulation is known for decades, it has only recently been employed in patients

as a consequence of recent developments in imaging technology and clinical instru-

mentation [24].

The major impediment for the adoption of DBS surgical treatment is the re-

quired knowledge of both electrophysiology and neural principles with applied

electrical signals, which stands as a challenge to already overworked healthcare

professionals. As healthcare professionals are more familiarized with pharmaco-

logic concepts, the choice of treatment is often biased to drug therapy. Moreover,

the DBS method does not seem to be as attractive as genetics or stem cell studies

for treatment of Parkinson or Epilepsy disorders, if we compare the number and

impact of papers submitted per year for each solution. Specialists also tend to

amplify risks involved in a standard DBS procedure and disregard the drawbacks

latent in today’s drug based treatments. However the most relevant fact is the

fact that DBS symptomatic treatment clinical results far exceed those from stem

cell treatment [23].

Figure 1.2: Postoperative X-Ray scan after the attended DBS surgery that took

place at the Coimbra University Hospitals.
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Literature brings some guiding and approaches to obtain the best results from

DBS therapy, and addresses topics like number and configuration of electrodes,

type of stimulation used in terms of amplitude and shape of the signal, and the

type of electrical field generated by electrodes. DBS is focused in symptomatic

management, but also provides an unique chance to study brain function and

dysfunction theories [23] [9] [2].

One of the main drawbacks of this therapy is the absence of an absolute knowl-

edge about the electrical stimulation mechanisms of action on deep brain struc-

tures. The treatment works like a black box in which, the neurosurgeons place

stimulation electrodes in planned coordinates to cover a volume around the ex-

pected optimal target. Then it is applied controlled electrical inputs and assessed

the patient’s symptomatic variation in a qualitative scale by neurologists. Even

the slightest change in the input parameters, like electrode position or signal prop-

erties, has a significant impact in the symptomatic response. Consequently, it

is imperative to guarantee the correct positioning of each electrode, carefully se-

lect and program the input stimulus to obtain the optimal symptomatic response,

which will be in part referred in our work.

The success of DBS therapy is strongly dependent on three factors: i) a careful

selection of patients, ii) the correct placement of the leads into the sensorimotor

regions of the target nuclei, and iii) the optimal choice of electrical parameters

for stimulation. In this subsection we will address the candidate selection step

and discuss the major guidelines to choose the electrical parameters. Electrode

placement methodologies will be addressed in the Deep Brain Stimulation Surgery

section (cf. section 1.3).

1.2.1 Patient Selection

Patient selection is the first and one of the most crucial steps of DBS as not all

candidates are apt to receive the treatment. The final decision whether to apply the

treatment is usually deliberated based on a multidisciplinary group composed of

neurologists, neurosurgeons and neuropsychologists [25]. They must always weight
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the risks of both the surgery and treatment in light of the potential benefits.

Not all the patients afflicted by DBS sensitive neurological disorders are eligible

for this treatment. Therefore, it is particularly important to attend to patient

selection also as a mean to quantify the impact that a treatment like DBS can have

in society. However and as it will be shown, despite the relative high percentage

of people who would benefit from this treatment, a large number is left apart [26].

DBS treatment is currently considered a case of success, fact that lead to a

widespread interest and as a result, large and increasing numbers of patients are

regularly assigned to DBS surgery. The large number of patients adding to the

limited resources to provide this treatment, the limited experienced neurosurgeons

and movement disorders neurology teams, dictate the need to define a criteria to

restrict the number of patients with access to DBS. The selection method should

consider the potential surgery morbidity and mortality, all costs associated to DBS,

the time and effort demanded from the patient, caregivers and all the medical team

assigned [26].

Neurologists have understood to a certain point the advantages and limita-

tions of DBS and are able to predict different treatment improvements based on

the symptoms. DBS tends to be an effective solution for symptoms like tremor,

bradykinesia, rigidity, dyskinesia and motor fluctuations. On the other hand, the

therapy response is not convincing enough for symptoms such as dysautonomia,

cognitive dysfunction, dysphagia, micrographia, hypophonic speech and gait or

balance problems [27].

One of the first steps when evaluating the eligibility of a PD patient is to con-

firm the idiomatic PD diagnosis as it is the more sensitive to DBS than other

parkinsonian syndromes. Being this condition confirmed, the neurologist evalu-

ates the patient’s feedback to Levodopa2. Despite the fact that DBS is often a

substitute to conventional pharmacological treatments when they become ineffec-

tive, neurologists expect a minimum feedback from drugs as a sign of potential

improvement.

2subsection 1.2.1 One of the most common drugs used to treat PD and dopamine-responsive

Dystonia.
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Neurologists do not recommend DBS to patients above a certain age limit. This

decision is backed up by higher risks of intraoperative cardiopulmonary events and

to a direct relation between age and incidence of cognitive changes after surgery.

Patients who present preoperative cognitive decline tend to get worse postoper-

atively as concluded from empirical data. However it is hard to specify a rigid

threshold for a chronological age from which to deny DBS treatment, as it does

not necessarily correlate with the biological age.

The table 1.1 taken from [27] presents some practical and explicit criteria to

decide the eligibility of a PD patient for DBS treatment [25].

Table 1.1: Summary of generally accepted criteria of deep brain stimulation

candidacy for treatment of Parkinson’s disease.

Inclusion Criteria Exclusion Criteria

Diagnosis of idiopathic PD Serious surgical comorbidities

Disabling or troubling motor symp-

toms, including motor fluctuations or

dyskinesia, despite optimized pharma-

cological treatment

Uncontrolled psychiatric illness, in-

cluding anxiety and mood disorder

(BDI3 > 15)

Robust motor response (other than

tremor) to levodopa (> 30% improve-

ment of UDPRS III score4)

Dementia (MMSE5  24, MDRS6 

130)

Clear understanding of risks and real-

istic expectations from surgery

Preoperative MRI with extensive white

matter changes or severe cerebral atro-

phy

Also for Epilepsy, the cost and complexity associated to DBS surpasses the

anti epileptic drug treatment. Regardless of this fact, brain stimulation is often

3subsection 1.2.1 Multiple choice self-report inventory to assess the severity of depression
4subsection 1.2.1 Scale to assess motor signs in patients with PD
5subsection 1.2.1 Brief questionnaire to screen for cognitive impairment and/or dementia
6subsection 1.2.1 Scale that measures cognitive functioning dementia
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used as a suplementar method for patients affected with localized epilepsy and low

responsive/intolerable to drugs or that lack the precondition to undergo surgery.

One of the disadvantages of DBS is that, patients treated this way have the number

of seizures reduced but rarely become seizure-free, unlike in resection surgery. A

particular interesting advantage of DBS, is that its toxicity does not overlap the

medical therapy one, and until date there are no known side-effects [28].

Dystonia is one of the most difficult to evaluate movement disorders since it is

a clinical syndrome instead of a disease, which results from several causes. The

patient selection criteria for Dystonia follows the standard preventive and aware-

ness guidelines common to other disorders when entrusted to DBS. Neurologists

believe that when the patient is afflicted by focal dystonia, one can be successfully

treated with botulinum toxin injections in most cases. However in hemidystonia,

segmental or generalized dystonia as a result of the extent of muscles involved,

the medical treatment is often inefficient, which leaves stereotactic surgery as the

most indicated solution [29].

In 2006, Mink et al. [30] elaborated a viewpoint considering the current outcome

expectancy of DBS when treating Tourette syndrome patients, and presented some

guidelines to help select the best candidates for the treatment and consequently

assure the best results. Tourette syndrome is often associated to neurological or

psychiatric comorbid symptoms, that have a direct impact in the disorder ex-

pression, in the surgery outcome and in the recovery [30]. Regarding the patient

selection problem, the authors defined both inclusion and exclusion criteria, table

1.2.

To conclude the topic of patient selection it is essential for neurologists to

elucidate the patient about all the procedure since the preoperative until treatment

period, explaining the risks as well as the realistic expectations for the DBS. By

submitting to this therapy the patient should understand that it consists in a

palliative care and therefore will not have any effect in both curing or delaying the

progression of the disease, instead it is only focused in suppressing the symptoms

to provide a better quality of life. Patients should be aware of the duration of

the treatment and the necessity of tuning the parameters of DBS to reach an

18



Table 1.2: Summary of generally accepted criteria of deep brain stimulation

candidacy for treatment of Tourette syndrome.

Inclusion Criteria Exclusion Criteria

> 25 years old7 Movement disorders resulting from

other conditions

Chronic and severe tic disorder, with

major functional impairment (YGTSS

> 35

8)

Severe medical, neurological or psy-

chiatric disorders that may affect the

surgery outcome or the recovery

Failed conventional medical therapy

(lacking efficiency or unbearable side-

effects)

Sensitive to other non-invasive treat-

ments

Patient fit for surgery, with treated co-

morbidity conditions

Patient unwilling to undergo surgery,

or not totally aware of its implications.

optimal symptomatic response as it is not a straightforward solution. Furthermore,

candidates to DBS should not expect a functional improvement greater than the

best peak of effect of medication, for most symptoms except tremor.

1.2.2 Basal ganglia anatomy and circuitry

Being the deep cortical structures like the basal ganglia, the aim for electrode

placement and stimulation, we want to provide some insight regarding the basic

anatomy and circuitry of this area.

Deep inside the brain gray matter is located the basal ganglia which along

with the diencephalon and the cerebral cortex constitute the prosencephalon or

forebrain. This anatomical region is connected to the cortex and thalamus and

consists of four main nuclei: the striatum, the globus pallidus, the subthalamic

7subsection 1.2.1 Stable degree of severity with low chances for remission.
8subsection 1.2.1 Yale Global Tic Severity Scale that goes from 0 to 50, and provides score

to measure the frequency and gravity of symptoms .
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nucleus and the substantial nigra. In figure 1.3 we present a diagram layout of

a brain coronal section with the principal elements that form the basal ganglia

subtitled [31]. The basal ganglia system, is according to current standards sub-

divided into three functional territories comprising sensorimotor, associative and

limbic which process motor, cognitive and emotional or motivational information,

respectively. For that reason this anatomical region is the main target of DBS

electrode implants.

Figure 1.3: Schematic of the basal ganglia anatomy. [31]

The interaction between structures functions as a "center-surround" mecha-

nism to execute desired actions or inhibit unwanted movements. The caudate and

putamen are considered the input nuclei of the basal ganglia for sensorimotor in-

formation, and together form the striatum which receives excitatory information

mostly from the cerebral cortex. The information then flows from the striatum

to GPi and SNr, which are thought to be the main output, through anatomi-

cal and neurochemical distinct projections. From there it goes to the thalamus,

and afterwards to the frontal cortex or dorsolateral prefrontal cortex, depending

on whether the desired output is pallidal or nigral respectively. This corticocor-
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tical loop passes through the well-known direct pathway basal ganglia circuitry.

However to correctly modulate its functioning, it is important to refer the indirect

pathway which involves the GPe and then the STN. After reaching the subthalamic

nucleus, the information then proceeds to the GPi and SNr, ending in the same

structure as in the direct pathway. The striatum, the GP and the STN receive a

dopaminergic input from the SNc, which controls and balances the activity of the

direct and indirect pathways. Moreover, the STN also receives excitatory inputs

from both motor and premotor cortexes and applies a strong excitatory stimuli on

its target nuclei. Figure 1.4 summarily explains the relations between nuclei and

how the information is handled [8] [32].

Figure 1.4: Diagram of the basal ganglia pathways [33].

As we can see in figure 1.4, the dopamine has a differential effect on different

subpopulations of striatal neurons, playing an excitatory role in the direct pathway

and inhibitory role in the indirect pathway. This control decreases the inhibitory
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effect of the system and allows the execution of a desired movement/behaviour.

In the Parkinsonian state the lack of dopamine leads to a disinhibition of the

GPi and SNr and an increase inhibition of the thalamocortical projections. Such

events have as final effect the appearance of a resting tremor consequence of the

non-suppression of involuntary movement and bradykinesia or akinesia due to

the stronger inhibition felt at the thalamocortical projections, which are common

symptoms of PD.

According to a largely cited review by Perlmutter et al. [24], the neurosur-

geons/neurologists team select different neurological targets depending on the dis-

order to be treated. For instance, when treating essential tremor, the VIM stim-

ulation presents an average tremor reduction over 80% in most patients, however

stimulating the VIM region to reduce PD symptoms only affects limb tremor hav-

ing no effect in other symptoms. Still in PD, GPi stimulation can reduce most

of the motor disorders as well as brief medication related side-effects but it does

not free the patient from drug treatment which is a major drawback. So regard-

ing DBS to treat PD, the most common target is the STN, which can reproduce

similar symptom reduction effects while also reducing the patient dependency of

dopaminergic medication. However, the final target selection, follows a bit more

complex analysis than the one here described.

Since Dystonia manifestations are similar to PD and other tremor disorders

and in front of the success of GP and thalamus stereotaxic ablative procedures, it

was a matter of time before trying DBS on this very same structures. The result of

this trials, defined GP as the primary target to lessen Dystonia symptoms with an

improvement ranging from 30 to 50%, having the thalamus as a secondary target.

In a relatively recent application of DBS to treat Tourette syndrome, the target

selected was the centromedian-parafascicular complex of the thalamus.

1.2.3 Neurostimulation

Being the Neurostimulation the ultimate goal of our project, we decided to briefly

describe the fundamental theoretical basis behind the brain stimulation of deep
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structures.

The fact that DBS is relatively recent, the lack of complete knowledge about

the interaction between electrical pulses and brain activity plus the physiological

variability among the patients makes the programming process of DBS variables an

extensive and complex equation. To understand the effect of all electrode configu-

rations and stimulation parameters, it would be necessary to conduct a systematic

and thorough assessments [23]. The choice of mono over multipolar configurations,

the polarity and distribution of microelectrodes, even characteristics of stimulation

like amplitude, pulse width and rate of signals need to be adjusted while consid-

ering the inherent variability of each patient. An iterative approach would take

countless hours to determine the optimal selection of variables.

Despite the variety of combinations of DBS parameters for stimulation that

may rise to 12964 possible combinations of pulse width, frequency, and voltage

plus 65 electrode configuration combinations, the majority of patients responded

well to a known and specific set of configurations [34]. To the other cases however,

it is necessary to spend more time studying the patient and calibrating variables

to reach an optimal response.

One can brief the problem of DBS programming into two subquestions. The

first that indicates how to adjust the properties of the generated electric field,

which allows the selective stimulation of different neural elements within the field.

This method explores DBS’s electrophysiological principles and is based in the

influence of each variable such as pulse width, electric current or voltage of the

stimulus and electrode configuration. The management of this parameters has a

key influence in the improvement of DBS symptomatic control. The second takes

into account parameters like size, shape and anatomical positioning of the electric

field. It reduces or even eliminates side-effects and/or other possible complications.

Improved DBS efficiency

Dostrivsky et al. [35] believed that high frequency stimulation of GPi, STN and

VIM, the most common method used to suppress neurological disorder’s symptoms

had an inhibitory effect that lead to a decrease of the simulated structure output,
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by analogy to the outcome of ablative/resection methods. On the other hand, low

frequencies were thought to worsen symptoms and signs of PD, as it would excite

the target. However, Dostrivsky explanation left key issues untouched and has

recently been refuted due to clear evidence from studies like [36] and [37], which

confirm that both low and high frequency DBS stimulation can excite and increase

the output of the target structure [38].

Low frequencies have already proven their usefulness when compared to high

frequencies, by providing a better symptomatic control over dystonia, speech or

gait problems. High frequencies present finer symptomatic control in motor dis-

orders, ET and typical signs of PD. The exact mechanism of how the frequency

modulates the neural activity is yet to be uncovered.

In terms of signal modulation, there seems to be clear advantages pointing

out to current stimulation. When the signal is voltage modulated, the injected

current varies in inverse proportion to the local impedance obeying the Ohm’s Law.

However, the impedance is difficult to calculate due to the subjective nature of each

patient and to the properties of the brain volume around the target. Consequently

there exists a risk of the current overcoming the safety limits due to an unforeseen

abrupt drop of impedance9. If current modulation is chosen, the signal current is

controlled and its waveform is preserver [39].

Reduction of Side-effects

As previously referred in subsection 1.2.2, a stimulus can produce different re-

sponses depending on the stimulation site. This variations can be ascribed to the

singular neuronal circuitry related to each structure, to the variations of neurons

shape and properties among each region. The variation of symptomatic response

is so marked that even inside the same neural structure, the stimulation can re-

produce very distant effects as a result of the non homogenous shape of a nuclei.

There are authors like Montgomery et al. [37], that consider DBS success to be

a trade-off between efficient stimulation of desired targets and the ability to avoid

9subsection 1.2.3 Could easily occur as a result of an internal bleeding.
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the spreading of electrical current to nearby neural structures. By applying greater

intensities of current or stimulating larger areas it is possible to recruit more action

potentials in a greater number of neural elements. Aside from the increased efficacy

on briefing the symptoms, more unwanted structures are also being stimulated

which leads to more side-effects. This fact supports the categorical importance

of a precise electrode placement and also helps neurologists/neurosurgeons teams

to troubleshoot the current physiological position of the electrode based on the

symptoms and side-effects.

If the stimulation side-effects still have a significant impact even upon reaching

optimal stimulation coordinates, the medical team may change the combinations

of current, voltage, signal shape, area of effect and even the distribution of the

electrical field that can be modulated through the use of various contacts of the

quadripolar electrode.

Other policies to restrict the activation of undesired structures exploit the prin-

ciples of how neural elements react to the different characteristics of the stimulus.

For instance, axons with a larger diameter have lower thresholds than smaller ones.

Additionally, axons have lower thresholds when compared to dendrites, which in

their turn are easier to excite than cell bodies. Knowing this beforehand allows

the adjustment of the applied stimuli to exclusively affect more sensitive targets

like larger diameter axons or axonal terminals.

1.3 Deep Brain Stimulation Surgery

Deep brain stimulation affects only local brain structures and circuitry, instead of

the whole body as in medication. However, the amplitude of the stimulation sig-

nal decreases with the distance from the electrode, so the correct placement of the

lead is crucial for the success of the therapy. After addressing the basic anatomy

and circuitry of the Basal Ganglia and unveiling some of the principles behind

neurostimulation, we will now talk about the general DBS surgical procedure. As

we aim to develop a robotic oriented solution to aid in the intraoperative DBS pro-

cess it is of key importance to fully comprehend each surgery step. Understanding
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how the surgery unfolds and perceiving any pre or intraoperative requirements,

environment or procedure constraints is key information to set how the robotic

system will operate.

In order to acquire practical insight about the surgery, to grasp when and

how can a robotic manipulator be of use, why would it improve both working

conditions and the final outcome, we assisted a DBS surgery in the Service of

Neurosurgery, Coimbra University Hospitals in Portugal. It will be henceforth

described a bilateral DBS surgery conducted in a patient affected by Parkinson’s

disease. The surgical steps performed in a DBS procedure are independent of the

neurological disorder that affects the patient as the only difference is the location

of the target to be stimulated10. More information about DBS surgical technique

can be found in ( [9] chapter 1, [40], [24] and [25]).

One can briefly divide this procedure in sequential substeps that include: initial

image guided anatomical targeting, skin incision and burr hole drill and attach-

ment of the head reference system, intraoperative microelectrode recording and

micro/macroelectrode stimulating and finally macroelectrode quadripolar stimu-

lation upon reaching the optimal coordinates. This quadripolar electrodes are then

connected to a neurostimulator device called IPG or implantable pulse generator,

which goes under the skin [8].

1.3.1 Preoperative Management and Target Selection

After deciding the eligibility of the patient to DBS treatment, the next step is to

plan the surgical procedure regarding his symptoms, tolerance to surgery, medical

team preferences and available equipment. Furthermore, the medical team must

also decide whether to apply unilateral or bilateral stimulation according to the

pretended control over the patient’s symptoms and medication reduction. Neuro-

surgeons can either chose to implant bilateral DBS leads and IPGs in the same

day; or implant bilateral leads one day and insert both IPGs the day after; or

10section 1.3 The surgical technique described, does not exclude the fact that other surgery

services may carry it out differently.
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do an unilateral insertion of both devices simultaneously or in separate interven-

tions. Surgeons usually master the use of their institution’s medical equipment,

and comply with the center operating policies.

About a week previous to the surgical placement of the electrodes, the patient

undergoes a MRI scan to determine the targets to stimulate, figure 1.5. Although

other exams like CT or ventriculography are also eligible for the same effect, MRI is

the most advantageous because CT lacks the contrast and definition when analyz-

ing soft tissues with close densities, and ventriculography may provoke hemorrhage,

confusion and headache [41].

(a) T1-weighted preoperative MRI (GPi

pointed by black arrow).

(b) T2-weighted preoperative MRI. (STN

pointed by white arrow).

Figure 1.5: Preoperative MRI scans previous to the attended surgery at the

Coimbra University Hospitals.

In the surgery day, the reference system of the stereotaximeter is attached to

the patient’s head11. To assure the patient safety and prevent infections his head

is shaved and prepared with betadine12. Then the patient is sedated and the
11subsection 1.3.1 The reference system of the stereotaximeter used in the CHUC neuro-

surgery service had a ring shape. In order to simplify its notation we will henceforth call it

stereotactic ring.
12subsection 1.3.1 Common topical antiseptic used in hospitals to prepare patient’s skin

and/or used to clean and disinfect surgeon’s hands prior to surgery.
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pins of the stereotactic ring are inserted with caution to avoid the supraorbital

nerve. When placing the ring there must be a special care so that it does not

contact with the nose or the occipital bone/neck as it may cause skin erosion.

The stereotactic ring should also not block the patient medic line of sight and

thus allow the assessment of the ocular movement during the surgery. The pins

should firmly secure the ring to keep it from being displaced during each step of

the procedure, but not overly tightened, which may cause twists in the structure

and affect the system’s accuracy.

With the stereotactic ring correctly placed the patient undergoes a CT scan.

Computed tomography scans are more suited at this point, as it is compatible

with the ferromagnetic material of the ring, and unlike MRI, CT is less affected

by distortional artifacts caused by inhomogeneities in the magnetic field. In the

end, an imaging planning software merges the high contrast MRI scans where

the neurosurgeons segmented the targets, with the spatially precise CT scans and

superimposes the information of each exam to achieve a three dimensional repre-

sentation as similar as possible to the patient’s brain. This information is used

to aid the neurosurgeon to pick the target and the entry coordinates, so that the

final electrode trajectory does not cross any functional or vascular structures.

The final target coordinates to place the leads, can either be achieved using

the direct or indirect targeting method. Direct targeting is done by visualizing

STN and GPi in imaging scans like T2-weighted MRI or inversion recovery im-

ages. Being the STN one of the most common targets for treating PD’s symptoms,

together with GPi, both regions are generally identified recurring to T2-weighted

MRI scans due to the marked contrast between the white matter and both nu-

cleus. Some image processing techniques like windowing can facilitate this task and

improve the overall accuracy. Axial and coronal are the most important perspec-

tives when it comes to defining the spatial coordinates of the target. The indirect

method involves registering and overlaying brain anatomical atlases according to

the patient’s scans. From here the target position is inferred or calculated based

on established formulas that return the target coordinates based in the distance

to well identified landmarks. Indirect targeting while using atlases is both depen-
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dent on the accuracy of the given atlas and the topographical correlation between

the atlas and the patient’s neuroanatomy. The final coordinates may not be the

spot where the stimulation will produce the optimal symptomatic relief, but it is

still regarded as an initial target. In the surgery we attended, the neurosurgeons

team extrapolated the initial coordinates based in known distances from of well

identified landmarks.

1.3.2 Intraoperative

A stereotactic frame is mounted in the stereotactic ring, which orients the electrode

cannulae along the trajectory provided by the image planning software. Since the

skull has approximately a spherical form, the use of the arc stereotaxic frame set

with spherical coordinates is advantageous because it allows the selected trajectory

to be concentric with the hole rims in both skull outer and inner limits. The

settings for the stereotactic frame are directly provided by the imaging planning

software.

After setting the stereotactic frame spherical coordinates using mechanical

screws, the frame will orient the driver along the defined electrode insertion tra-

jectory. Then, the driver itself is responsible for lowering the electrode’s depth.

Each input coordinate in the stereotactic frame is confirmed via a millimetric scale

engraved between moving components, thus its precision is directly dependent on

the human visual precision.

Inside the operating room, while the patient is being prepared, the target

coordinates are simulated by means of a phantom device. This phantom has

similar sockets to the stereotactic ring fixated on the patient’s skull. For each

electrode or target coordinate, the x, y and z cartesian components have to be

introduced in the phantom and other 3 spherical coordinates this time are set in

the frame, so that in the end, the probe’s tip and the phantom’s tip are coincident,

guaranteeing this way that the electrode reaches the target position with a defined

orientation, figure 1.6.

The stereotactic frame is then detached from the phantom, attached to the
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Figure 1.6: Setting phantom coordinates.

stereotactic ring on the patient’s head and once again it is set along the desired

trajectory. A thin straight metal rod placed in the driver, marks the entry position

in the patient’s scalp, figure 1.7.

Figure 1.7: Marking the entry position.

Marked the entry position, the stereotactic arc is set aside to make the scalp

incision and to drill the hole in the skull to access the brain, figure 1.8.

Then the driver is placed again, along with the frame to guide the electrode
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(a) Making the scalp incision. (b) Hole drilling in the skull.

Figure 1.8: Surgical steps.

cannulae collinear to the defined trajectory. Firstly, a set of microelectrodes re-

sponsible for recording cortical electrical signals are positioned 15mm above the

target coordinates defined at the image planning software, along the trajectory

and the patient’s sedation lowered. The medical team used 5 electrodes cross posi-

tioned, set apart 1mm from each other to cover a wide area and thus increase the

probability to find the optimal stimulation site, figure within the nucleus (fig. 1.9).

The electrodes are lowered millimeter by millimeter in an iterative process until

reaching 5mm from the target. Upon reaching this point the electrodes advance

now half a millimeter between iterations, and by each step the signal is recorded.

At each iteration the neurophysiological readings are saved, compared and ana-

lyzed to assess the most proximal locations to the sensorimotor region, or in other

words, the coordinates where the electrodes retrieve an electrophysiological record

closer to the expected.

At the coordinates where the electrodes recorded the best signals, these record-

ing microelectrodes are replaced by stimulation macro/microelectrodes. For each

of this sub-solutions, the electrical current and depth of leads are changed individ-

ually in iterative steps. At each step the neurologist team qualitatively evaluates

the patient’s symptoms as responses to the stimulus applied, and once again they

save each in order to find the optimal electrode trajectory, depth and current,

figure 1.10.
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Figure 1.9: Electrode placement, signal registration and stimulation.

Figure 1.10: Calibration of stimulation parameters.

Depending in which nuclei we are stimulating there are different current limits

and levels of responsiveness, in other words, the GPi in comparison to the STN

needs higher current amplitudes to achieve the required therapeutic effect. This

becomes an important fact because if the patient complains about side-effects when

stimulation parameters should not provoke any, it may indicate a bad electrode

positioning. Another important fact to be aware of when introducing multiple elec-
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trodes is that it may cause edemas or bleedings which will change the interstitial

impedance allow the signal to spread to other structures and cause undesirable

effects. This kind of problem is one of the reasons that leads some neurosurgi-

cal teams to avoid using recording microelectrodes and implant the stimulation

electrode alone [42].

Upon finding the ideal stimulation signal properties and position, the electrodes

are replaced by a definitive quadripolar macroelectrode, that should later on be

connected to an Implanted Pulse Generator (IPG). If a bilateral brain stimulation

is needed, all intraoperative process must be repeated for the other side 13.

1.3.3 Which tasks can be accomplished by a robotic manip-

ulator?

After doing some research about robotic systems oriented to stereotactic keyhole

surgery, more specifically DBS surgery, the information found almost exclusively

describes the features of the system and displays qualitative data about its effi-

ciency. Notwithstanding the factual importance of such details, which shall be

discussed in chapter 2, there is quite scarce information about the practical and

clinical advantages of including such technology within the operating room. How

does it improve the work conditions for neurosurgeons, for neurologists and to

other staff? What tasks could be achieved by the robotic system? What are the

benefits for the patient?

As stated previously, a typical DBS surgery lasts several hours through which

the surgical team must remain utterly focused while performing each step to avoid

any failure. Due to its characteristics, robotic systems could provide a substantial

contribute in consistency, steadiness and precision and therefore improve at the

same time, the working conditions for neurosurgeons and the surgical outcome

for the patient [43]. After watching DBS surgery and upon a meeting between

neurosurgeons and robotic experts, we concluded that a simple robotic system

could upgrade the standard procedure in various aspects:

13subsection 1.3.2 The procedure here described lasted 18 hours.
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1. Enable coordinates and trajectory information retrieved from the image plan-

ning software to be managed by a communication protocol that would link

this program to a robotic controller software. The trajectories information

would be handled through software instead of having the medical team manu-

ally register and insert it both in stereotactic frame and the phantom screws.

2. Avoid the slow process of, mounting and setting the phantom, frame and

driver coordinates to test the position and trajectory generated by the image

planning software. Dismount the frame, attach it to the patient stereotactic

ring, input coordinates again (just to mark the entry position); disassemble,

make incision and drill burr hole, and assemble again to finally introduce

each set of electrodes. This procedure repeated for each target.

A robotic manipulator would position itself according to the desired tra-

jectory in a few seconds and would also open the possibility for frameless

stereotactic procedures with guaranteed precision.

3. Avoid stereotactic frame and driver mechanical slacks or loose parts, which

may require preoperative calibration. In figure 1.6, it is possible to see that

after setting each coordinate for both the phantom and the frame, there is

a slight mismatch in their tips meaning that when placing the electrodes

in the patient’s brain, they will not reach the target location but a nearby

one, which may lead to decrease in the treatment efficiency and increase of

side-effects.

4. Enable robotic manipulator to handle multiple end-effectors and surgical

instrumentation to execute consistent skull drilling based on force feedback,

swift positioning and driving of various sets of electrodes with improved

precision. The manipulator could swiftly and precisely constrain drilling and

insertion tasks to a predefined trajectory, instead of executing them based

in a marked entry position.

5. Enable medical teams to easily take control over the task of advancing the

depth of electrodes while evaluating the patient’s symptoms by simple inter-
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acting with the robot controller interface, therefore aiding neurosurgeons on

that task.

6. Enable an online monitoring of the instrumentation tips absolute coordinates

based on their physical dimensions and on the manipulator position relative

to the base referential, using geometric direct kinematics. However, this

feature can only be used if the instrumentation is moved along the trajectory

by the manipulator.

7. Providing assistance to younger and less experienced neurosurgeons as an

assistive and training platform and enabling senior highly experienced neu-

rosurgeons, who might lost some dexterity, to continue performing surgeries

later in their careers. [44].

8. Reduce the risk of data loss or human errors.

Cooperation between neurosurgeons and robots opens a new horizon of possible

improvements to quality healthcare and is therefore recognized as the final step in

the transition of surgery from the Industrial to Information Age [45].
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Chapter 2

Robotic Systems for Deep Brain

Stimulation Neurosurgery

In this chapter we will briefly talk about neurosurgical robots, point out their ad-

vantages and current problems when compared to human standard performances,

with a focus in DBS neurosurgery. We will also review the available robotic sys-

tems oriented or possibly adaptable to DBS procedures, designating the category

they fall in and their main features.

2.1 Motivation

As mentioned in the last chapter, neurological disorders have a tremendous impact

in today’s society, and burden millions of patients, families and caretakers. Accord-

ing to patient selection rules, not all patients affected by the previous enumerated

neurological disorders are eligible for DBS, but a significant part is [4] [27]. On

the other hand, DBS has proven to be a top notch treatment that despite having

no effect in disease progression, it shows very good results as a palliative care by

reducing the symptoms and allowing the patient and family to carry on a normal

life. Alongside the growing awareness for such procedure, also the number of actual

prescribed DBS surgeries is increasing [46]. Furthermore, DBS neurosurgeries tend

to be rather long procedures as stimulation parameters are yet to be programmed
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and the duration can drag even further if the surgery is bilateral. Consequently,

it is a very demanding procedure for the medical team involved, both physically

and psychologically.

Having presented the advantages and difficulties of DBS therapy, how would

it benefit from including robotic technology into the procedure? A successful

outcome of DBS is largely dependent of an accurate localization of target and a

precise guiding of electrodes to it [47]. General surgery and more specifically neuro-

surgery has been evolving towards increasing minimalist techniques, consequently

achieving lower recovery times and improved patient outcome. The continuous

search for a higher quality surgical practice, magnification of the operating field

and tool miniaturization brought healthcare professionals to the verge of natural

manual dexterity and spatial orientation [48]. Robots on the other hand can easily

surpass humans in precision, procedural consistency and by introducing features

like tremor filtered tool handling and movement amplification [49]. A robotic

manipulator could takeover some menial and repetitive tasks, (but always under

supervision of the surgeon) thus reducing the physical effort required.

Keeping in mind that DBS is a relatively recent therapy, and that robotic

neurosurgery has not long ago released the first products into the market, there

are yet a lot to be made in the Robotic DBS field. After searching on this topic

we found scattered systems and ideas but not a review that compiled information

exclusively about robotic assisted DBS. Thus, one of the goals of this chapter is

to provide a complete review about what can be done, what is expected, current

challenges and future trends.

2.2 Robotic Systems for Neurosurgery

The concept of robotic manipulator has been defined as "A reprogrammable, mul-

tifunctional manipulator designed to move material, parts, tools or specialized

devices through variable programmed motions for the performance of a variety

of tasks" by the Robot Institute of America in 1979. Robots can be divided in

classes and types depending on its function, shape or control mode, and cover a
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wide variety of tasks from human replacement in hazardous missions, repetitive

and stressful jobs and even menial tasks. Notwithstanding its shape or function

a robot architecture is generally divided into [50]: (i) a mechanical subsystem

composed of both rigid and/or deformable bodies, (ii) a sensing system, (iii) an

actuation subsystem, (iv) a controller and (v) an information-processing subsys-

tem [51].

For DBS surgery, the most common robotic body among the commercially

available is the serial arm because it is better fitted for tool handling and manip-

ulation. In theory, the robotic solution should be able to reach a desired three

dimensional position in space with a specified orientation. Six degrees of freedom

(DOF) manipulators are rather recurrent as they offer flexibility in both posi-

tioning and orientation, while keeping kinematic equations simple. Increasing the

number of joints would result in kinematic redundancy, which would increase the

number of possible configurations to reach the same position and orientation and

so the final arm pose can be decided upon user defined conditions ( [52], chapter

1). As neither execution time nor large forces are pre-requisites in neurosurgery,

robot kinematics can be conditioned to function with lower joint speed and forces.

Consequently increasing the stability and reducing the risk of failure since the

manipulator movements are less demanding for actuators [53].

The robotic system can be decomposed in: sensors that provide the controller

with feedback of the environment and itself, from which it is possible to extrap-

olate the robot spatial configuration through direct kinematics; actuators that

supply power to joints, responsible for moving each link to a final arm posture and

end-effector position; and finally in a controller and information-processing

subsystems which are accountable for controlling the inputs of each actuator, based

both in the controller algorithm and the received data from sensors [53] [47].

The advantages and limitations of robots over humans have been addressed for

a long time and despite the specificity of DBS surgery, the same arguments can be

used, (see table 2.1) [54] [53]. The healthcare institution must always weight the

benefits of a robotic system over the existing solution, and should also consider

the financial impact and the need to adapt or change methodologies. The problem
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Table 2.1: Advantages and disadvantages of human and robots capabilities.

Surgeons Robots

St
re

ng
th

s

Flexible, adaptable to tasks Stable, untiring with repeatability

Strong hand-eye coordination Good geometry accuracy

Dexterity above millimeter scale Motion scaling, tremor filtering

Judgement experience Use diverse types of sensors in control

Powerfull sensor capability Manage multiple, simultaneous tasks

Handle qualitative information Work in dangerous environments

L
im

it
at

io
ns

Tremor, Fatigue Limited dexterity, hand-eye coordination

Ineffective at sub-millimiter scale Large, Cumbersome and Expensive

Variability in skill, age, state of mind Unable to process qualitative information

Difficulties in handling quantitative data Technology still under development

Imprecision Not versatile

with most of the robotic neurosurgical systems is the fact that they are difficult to

include in the modus operandi, technically demanding to use and still exceedingly

expensive. On the other hand, the precision, steadiness and tirelessness so charac-

teristic of robotic systems are a major contribute for improving the final outcome

of the treatment [55].

Presently, robots are recognized as a cooperative tool that functions under

the supervision of a surgeon instead of a replacement. Consequently, the first

step towards improving surgical robot systems is to establish a base architecture,

essentially a well structured universal core from which any company could assemble

an oriented solution for the specific problem of DBS surgery. Keeping this in mind,

we dared to point out some guidelines about general features of a robotic system

for DBS surgery, relative to the desirable upgrades from the standard procedure

previously referred.
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The first desired upgrade consists in developing an interface to connect the

robotic controller software to the imaging planning software used by the medical,

so they can share the information about the planned trajectories. A simple im-

provement like this, would relieve the medical team from personally managing and

interpreting the relationship between the coordinates extracted from imaging data

and the chosen settings for the guiding hardware. Whether to devise an imaging

software to be used in parallel to the robotic controller system, or develop an inter-

face able to communicate with both existing planning software and manipulator,

is a choice of the project leader.

The robotic behavior for DBS surgery should be semi-active or passive, so the

robot can be manipulated online or moved accordingly to preoperative directives.

Having the manipulator perform independent actions is not a requirement nor a

desired feature in this case, since all motions are relatively simple and can be

previously coordinated. Two of the most desired progresses are the ability to pas-

sively hold and manipulate instrumentation in defined positions and orientations,

for electrode guiding or motion restriction in hole drilling. The knowledge required

of direct and inverse kinematics both geometric and differential for serial manip-

ulators, are already fully understood and studied. Therefore the biggest challenge

remains in conceiving a system able to adapt to the institution methodologies and

standards rather than understanding the mathematical equations and principles

involved.

As any other hardware within the operating room, also the robot must obey

antiseptic policies. The most common and recommended procedure defends that

all the parts of the robot should be covered with sterile drapes or pre sterilized

bags except for the end-effector that should be reusable and sterile [56]. It is de-

sired for the manipulator to handle different instrumentation, the developer should

once again decide between using an adaptable end-effector to hold each different

tools and consequently avoid the need for its replacement when changing tasks,

or use simple end-effectors for each task [57]. When projecting these components,

one must bear in mind that the solution should be able to undergo sterilization

processes like autoclave or be cheap enough to be disposable.
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It is recommended that the robotic system is mobile and able to be easily moved

around the operating room, because normally the same environment is used for

other neurological surgeries as well. A portable structure implies that both size

and weight of the manipulator and controller should be restricted. The assigned

tasks in DBS surgery are not demanding in terms of weight nor they require a

large workspace and so it is rather easy to find a light and compact manipulator

to fulfill that duty, refer to chapter 3. Another concern regarding the portability

of the robotic system is its capacity to attach its structure to the surgical table,

to guaranteed that in all moments the transformation between the manipulator

referential and the referential used for surgery is fixed. The surgery base referential

is recurrently situated at the center of the reference system of the stereotaximeter,

so the displacement and orientation between itself and the robot base needs to

be acquired previous to the surgery. Once again this problem can be tackled

from different angles, either using optical registration to match the operating field

to preoperative exams, using fiducial markers or direct kinematics to recognize

key points in the stereotactic reference system and then extrapolate the surgery

referential.

The simplicity of the required movements, demands an equally pragmatic and

intuitive user interface. Besides positioning along the desired trajectory and pos-

sibly execute collinear movements, the robot may also be manipulated so that its

body does not interfere with the neurosurgeon’s workspace. Adding an intuitive

control over the arm like floating mode or moving it with a six DOF controller,

would only make it more easily accepted in the medical community.

Safety is a paramount concern when developing a robotic system, and should be

addressed in every phase of the system conception because a small failure can lead

to drastic consequences or place bad labels on the product. There is a great concern

involved in assuring patients safety from undesired movements of the manipulator,

and same can be said for the medical team that shares the workspace. Fei [58]

splits the universe of possible system errors into four categories: pure hardware,

pure software, hardware triggered by software and software triggered by hardware.

Then he proposes a systematic method to analyze and evaluate safety issues based
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in seven core steps:

1. Definitions and requirements, of the surgical robot functionalities and work-

ing environment constraints;

2. Hazard identification, of robot actions relatively to patients, other persons

or surroundings;

3. Safety insurance control, in which implementation guidelines are specified

and established a monitoring mechanism to eliminate or reduce hazard;

4. Safety critical limits, sets each subsystem safety parameters thresholds;

5. Monitoring and control, is an assessment of the Safety insurance control

success;

6. Verification and validation, of the final product compared to the require-

ments;

7. System log and documentation, to record system status and interface instruc-

tions.

Also, if there is any malfunctioning or the manipulator just stops working it

must be assured at all moments a retract mechanism that allows a safe removal

of the instrumentation from the end-effector and the resumption of a standard

stereotactic surgery [59]. The predictability and simpleness of movements should

not be an excuse for neglecting safety protocols.

2.3 State of the Art Robotic Systems

Since the first report of a robotic neurosurgical system in 1985, a wide range

of neurosurgical solutions have been brought to stage [60]. In this section, we

will focus on the most relevant robotic devices for DBS surgery and their key

features. We chose to present not only the systems built specifically oriented for

DBS surgery, but also systems developed for general neurosurgery which can be

adapted to it, (see table 2.2).

43



T
ab

le
2.

2:
M

ai
n

ne
ur

os
ur

gi
ca

lr
ob

ot
ic

pr
oj

ec
ts

ab
le

to
pe

rf
or

m
D

B
S

an
d

pr
in

ci
pa

lf
ea

tu
re

s
(a

da
pt

ed
fr

om
[1

]).

P
ro

je
ct

P
ha

se
C

at
eg

or
y

In
st

itu
tio

n
M

ai
n

fe
at

ur
es

ORIENTED

N
eu

ro
bo

t
E

xp
er

im
en

ta
l

se
t-

up

Pa
ss

iv
e,

au
to

m
at

ed

Im
pe

ri
al

C
ol

le
ge

of
Sc

ie
nc

e,
Te

ch
no

l-

og
y

an
d

M
ed

ic
in

e,
Lo

nd
on

4
D

O
F

R
ig

id
pl

at
fo

rm
fo

r
to

ol
ho

ld
in

g,
m

ov
in

g
en

-

do
sc

op
e

al
on

g
de

fin
ed

tr
aj

ec
to

ry
an

d
re

st
ra

in
in

st
ru

-

m
en

ta
ti

on
w

or
ks

pa
ce

N
eu

ro
M

at
e

C
om

m
er

ci
al

us
e

Pa
ss

iv
e,

au
to

m
at

ed

IM
M

I
/

IS
S

/
Sc

ha
er

er
M

ay
fie

ld
N

eu
-

ro
M

at
e

Sa
rl

;L
yo

n,
Fr

an
ce

5
D

O
F

ar
m

im
ag

e-
gu

id
ed

,c
om

pu
te

r-
co

nt
ro

lle
d

ro
bo

t

fo
r

st
er

eo
ta

ct
ic

pr
oc

ed
ur

es

Pa
th

fin
de

r
C

om
m

er
ci

al

us
e

A
ct

iv
e,

au
to

m
at

ed

P
ro

su
rg

ic
s

Lt
d.

;H
ig

h
W

yc
om

be
,U

K
6

D
O

F
m

an
ip

ul
at

or
fo

r
ne

ur
os

ur
gi

ca
lp

ro
ce

du
re

s
us

-

in
g

fid
uc

ia
ls

to
m

ar
k

th
e

su
rg

er
y

fie
ld

R
ob

oc
as

t
E

xp
er

im
en

ta
l

se
t-

up

A
ct

iv
e,

au
to

m
at

ed

N
eu

ro
en

gi
ne

er
in

g
an

d
m

ed
ic

al
ro

bo
ti

cs

La
bo

ra
to

ry
,P

ol
it

ec
ni

co
di

M
ila

no
;M

i-

la
n,

It
al

y

Pa
ra

lle
l,

Se
ri

al
an

d
Li

ne
ar

m
ul

ti
-r

ob
ot

ic
13

D
O

F
sy

s-

te
m

fo
r

pr
ec

is
e

pr
ob

e
al

ig
nm

en
t

fo
r

ke
yh

ol
e

ne
ur

o-

su
rg

er
y

pr
oc

ed
ur

es
.

R
os

a
C

om
m

er
ci

al

us
e

Se
m

i-a
ct

iv
e,

au
to

m
at

ed

M
ed

Te
ch

SA
S;

M
on

tp
el

lie
r,

Fr
an

ce
6

D
O

F
m

an
ip

ul
at

or
fo

r
fr

am
el

es
s

st
er

eo
ta

ct
ic

ro
bo

t-

gu
id

ed
de

ep
el

ec
tr

od
e

pl
ac

em
en

t.

ADAPTABLE

E
vo

lu
ti
on

1
C

om
m

er
ci

al

us
e

Se
m

i-a
ct

iv
e,

au
to

m
at

ed

U
.R

.S
.

U
ni

ve
rs

al
R

ob
ot

Sy
st

em
s;

Sc
hw

er
in

G
er

m
an

y

4
D

O
F

he
xa

po
d

ba
se

d
on

pa
ra

lle
l

ac
tu

at
or

co
nfi

gu
-

ra
ti

on
fo

r
dr

ill
in

g
ap

pl
ic

at
io

ns
an

d
to

ol
ha

nd
lin

g.

M
in

er
va

E
xp

er
im

en
ta

l

us
e

A
ct

iv
e,

au
to

m
at

ed

La
bo

ra
to

ry
of

M
ic

ro
en

gi
ne

er
in

g,
Sw

is
s

Fe
de

ra
lI

ns
ti

tu
te

of
Te

ch
no

lo
gy

5
D

O
F

fo
rs

te
re

ot
ac

ti
c

in
st

ru
m

en
tg

ui
di

ng
w

it
hi

n
C

T

sc
an

ne
r

(d
is

co
nt

in
ue

d)

N
eu

ro
A

rm
E

xp
er

im
en

ta
l

se
t-

up

Se
m

i-a
ct

iv
e,

te
le

-o
pe

ra
te

d

U
ni

ve
rs

ity
of

C
al

ga
ry

;C
an

ad
a

M
R

I-
co

m
pa

ti
bl

e
am

bi
de

xt
ro

us
ro

bo
t.

44



2.3.1 NeuRobot

The robotic surgical simulator NeuRobot1 born from the European Community

funded project ROBOSCOPE to provide a joint solution for common problems in

Neurosurgery. The system consists of a robotic arm and a simulator image-guided

system, ROBO-SIM. First the patient’s physiology is captured as a 3D MR image

data-set, which is used by the surgeon to identify regions of interest like brain

lesions, ventricular system or vascular structures. The planning trajectory is then

calculated based in this preoperative information [64] [65].

The NeuRobot has 4 active DOF to manipulate the instrumentation around

the entry point in the burr hole, and 3 passive axes relative to each spatial co-

ordinate. The robot needs to be manually positioned in a desired XY location

inside the operating room while the patient in the surgery table is driven up or

down according to the robot’s workspace. Then the probe orientation is controlled

by Yaw, Pitch, Endoscope rotation and depth DOF. Although the control can be

configured to operate autonomously, it would arise several concerns such as "who

is in-charge" of the surgery and whether the responsibility should befall in the

surgeon or the robot manufacturer [64].

The final product comprises a control mechanism developed from a flight-

simulator experience by Fokker control systems, enhancing precise motion and

force-control using low force inputs [65]. A special attention was given to safety

issues, and thus one of the embedded features is the active constrain of move-

ment outside the safe operating region, which are preoperatively defined based

in MRI segmentation data. To solve the tissue deformation problem during the

procedure, the probe position is dynamically tracked in real-time with ultrasound

imaging, which despite having low spatial resolution has one of the best temporal

1subsection 2.3.1 Do not misunderstand by other systems called NeuRobot [61] [62] that

is a telecontroled micromanipulator system with a master-slave control hierarchy to perform

minimally invasive procedures using an endoscope and three robotic arms. This system is not

relevant for DBS surgery, as the only manipulation required in DBS procedures is done outside

the surgical field along a predefined trajectory. There is also another system also called NeuroBot,

which is used in skull-based surgeries [63].
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resolutions [64].

A stereotactic frame is used to register the external world coordinates to the

patient’s skull and thus relate the intraoperative manipulator location to the pa-

tient’s preoperative data. The robot was initially projected to hold and manipulate

a neuroendoscope, but as stated by the authors it could in principle be used to

handle electrodes for deep brain stimulation. This project still needs to attain

safety verification according to the legislation of medical robots. The need to

adapt the operating room to the robot’s workspace, due to its limited flexibility

can be considered as a disadvantage.

2.3.2 NeuroMate

The NeuroMate robotic system, which is FDA approved and now commercially

available at Renishaw company, is an image-guided and robotic assistive system

for stereotactic procedures in neurosurgery, (figure 2.1). It includes a kinematic

positioning software, as well as a 5 DOF arm that achieves an accuracy of 0.7mm

and a precision of 0.15mm, guaranteeing payload stability up to 7kg. Additionally

NeuroMate has an embedded state of the art planning and visualization system

able to work with computer tomography, magnetic resonance and angiographic

images. Furthermore, it has been designed with the possibility to either use con-

ventional stereotactic localizer frames or an exclusive frameless method based in

an ultrasound registration system to localize the robot’s position relative to the

patient’s skull. Being developed strictly towards neurosurgery, the NeuroMate

possesses some singular features that distinguish it from industrial robots, like low

speed, redundancy and safety devices [66] [67].

Li et al. [66] considered NeuroMate to be an extent to human capabilities, as it

reduces human errors and saves time in long term surgeries or biopsies that target

multiple structures, in which the human tiring and loss of attention might affect

the final outcome. In [66] the authors present the result of a study regarding the

2subsection 2.3.2 Available: http://www.futura-sciences.com/uploads/RTEmagicP_

Renishaw_neuromate_surgical_robot_txdam20315_07b6d2.jpg. (Accessed: 04-Mar-2012)
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Figure 2.1: NeuroMate2.

accuracy of different localization systems:

1. Standard procedure;

2. Infrared tracking system using the frame for fiducial registration;

3. Frame for fiducial registration;

4. Infrared tracking system using screw markers for registration.

In the end, the last method achieved better results, but a robotic frame based

configuration also presented better precision than the standard procedure3. The

frameless approach scored the worst precision among the studied methods, but

still managed to attain an average error below 2mm for target tracking in three

dimensions [66].

The NeuroMate works as a passive assistant for holding, supporting and stabi-

lizing tools controlled by the surgeon, it also increases surgical safety, improves the

efficiency and cost savings to the institution. This stereotactic oriented robotic sys-
3subsection 2.3.2 check Table 2 from, The application accuracy of the NeuroMate robot–A

quantitative comparison with frameless and frame-based surgical localization systems.
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tem uses its own imaging software for registration and trajectory planning, which

can also be an obstacle since it is difficult to adapt to other implemented imag-

ing systems in the healthcare institution. Furthermore, its static base can also

discourage its acquisition because it permanently restrains the space within the

operating room.

2.3.3 Pathfinder

The Pathfinder system (figure 2.2) developed by Prosurgics Ltd. is a robot built for

neurosurgical procedures as a response to the miniaturizing of instrumentation and

the increase of required accuracy that will soon transcend even the most skilled

surgeon capabilities. A 6 DOF robotic arm is installed on a mobile and stable

platform that allows it to be easily moved around the operating room and firmly

fixed to the patient head clamp during the surgery.

Figure 2.2: Prosurgics, Pathfinder4.

One of the remarkable improvements in Pathfinder is the introduction of re-

flectors attached to the patient’s head used as fiducial markers to identify the
4subsection 2.3.3 Available: http://www.designworldonline.com/uploads/

ImageGallery/prosurgics%20%20robot.jpg. (Accessed: 08-Mar-2012)
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surgical field. The markers are tracked by a camera system integrated at the end

effector, rather than other preoperative image-guiding. The neurosurgeon can ei-

ther choose to bound them to the scalp or rigidly attach them to the skull, while

keeping them uniformly spaced around the head and from each other to facilitate

the registration process. These markers consist of a black titanium sphere coated

in a reflective material to be easily seen in CT scans and by the robotic camera,

respectively [68] [69].

The Computed Tomography exam is used to pinpoint the markers positions

relative to the surgical volume, while the MRI image set is required to segment the

target brain structures. The CT and MRI datasets are then matched to overlay

both target and fiducial markers locations and after by the Mayfield Aciss IITM

planning software to calculate the probe’s trajectory, which may ultimately be

edited by the surgeon. The robot is then positioned sideward from the patient

position to provide the maximum DOF without getting in the way of the surgeon

when it is not being used. Several integrity tests are then performed to check

whether the robot is correctly connected to the controller workstation, to confirm

the surgical plans or to assess the correlation between preoperative and live in-

formation. Using external fiducial markers allows the system to iteratively track

its position relatively to the patient, thus solving one of the biggest issues with

preoperative image guided robots, and relieving the need for intraoperative online

image scans [68].

It achieves a registration accuracy comparable or superior to a stereotactic

frame without the need for it, with all the advantages of a frameless system and

permits moving the robot without the need for rescanning or replanning [70]. Fur-

thermore, this tracking system allows for a consistent precision and repeatability

below 0.5mm in all the surgical volume even in the deep targets, unlike other

frameless methods [69]. The most common problem with the Pathfinder approach

is the possible skin movements between the preoperative scans and during the

procedure and registration failures caused by misidentification of the markers due

to abnormal lighting conditions [68].
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2.3.4 Robocast

The Robocast acronym for Robot and Sensor integration for Computer Assisted

Surgery and Therapy project (FP7 ICT-2007-215190) aims to create a modu-

lar system that integrates image guided navigation and robotic devices for key-

hole surgery. Therefore the project developers pictured a human-robot interface

with context-intuitive communication, embedded haptic feedback, a multiple robot

chain with kinematic redundancy, an autonomous trajectory planner and a high

level controller [71] [72].

Robocast architecture consists of optical sensors, an electromagnetic tracking

system, ultrasound and three robotic actuators with haptic devices. There is a se-

rial arm called gross-positioner with 6 DOF, a fine-positioner parallel robot with

also 6 DOF to further improve accuracy and a linear piezo-actuator to grant a lin-

ear insertion of the electrode or biopsy probes. The optical sensors are used to reg-

ister the intraoperative environment according to the preoperative plan. Probe’s

tip position is constantly tracked with the electromagnetic system, while the ul-

trasound device is used for updating the preoperative plan during the procedure.

A 3 DOF haptic feedback actuator is used to move the probe inward [73].

The software part can be divided in six subsystems: preoperative planning,

human computer interface, sensor manager, high level controller, haptic controller

and safety check. The preoperative planning GUI autonomously calculates the

lower risk optimal entry point and trajectory, after the surgeon selection of both

the target and entry area [72]. Human Computer Interface allows the surgeon

to interact with the navigation system, while the sensor manager assembles data

from the ultrasound and tracking system and inputs it to the system control center.

The high level controller receives the information from the preoperative planning

and the sensor manager subsystems and iteratively calculates the gross positioner

and fine positioner kinematics. The haptic controller interfaces the linear actuator

robot with the haptic device, transmitting a force-feedback reaction to surgeon for

moving the probe. Finally, the safety check module runs regular state verifications

in each subsystem and if it catches any failure it immediately stops the probe
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movement [71].

As the Robocast is still at the development stage, we can only speculate about

possible drawbacks. Having to control 3 coupled different actuators with several

DOF to move the end-effector requires a consistent communication protocol and

a complex controlling software which may be more vulnerable to failure. On the

other side and by all the described features, ROBOCAST project is expected to

have a positive impact both in this field of neurosurgical robotics as well as in the

medical community.

2.3.5 Rosa

Rosa robot developed and commercially available by Medtech is the latest genera-

tion of neurosurgical computer controlled robot indicated for use as a stereotactic

instrument, (figure 2.3). Rosa system comprises a mechatronic part consisting of

a 6 DOF serial manipulator and a control part formed by neurosurgical oriented

navigation and registration software [74].

The robot is intended to be used within the operating room for spatial position-

ing and orientation, precise targeting and dexterous handling of minimally invasive

instrumentation. These parameters are calculated based in preoperative imaging

data of the patient and the intraoperative information of the robot position relative

to the physiological target. Spatial registration of the patient’s head during the

operation can either be done using fiducial markers, for which the surgeon manu-

ally moves the tip of the arm and the probe pinpoints the location of each marker

or using a laser telemeter to digitally register anatomical landmarks [75] [74].

Medtech conducted a study to evaluate the in vitro accuracy in 45 measure-

ments for each technique using a phantom head with 9 targets. In the end it was

concluded that the system localization using fiducial markers and optimal regis-

tration achieved both a mean accuracy below 2mm. The robot is immobilized

relative to the patient during the procedure, however the instruments can not be
5subsection 2.3.5 Available: http://www.medtechsurgical.com/var/ezwebin_

site/storage/images/mediatheque-galerie/galerie-photos/robot-rosa/photo-2/

720-2-fre-FR/Photo-2_tof.jpg. (Accessed: 04-Mar-2012)
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Figure 2.3: Rosa Robot5.

adjusted intraoperatively and thus must be calibrated from factory [75].

The Rosa robotic solution combines the planning and registration functional-

ities of the StealhStation and VectorVision systems and the mechanical guiding

and immobilization of Neuromate. The unavailability of technical information and

the lack of scientific papers about this system difficults its review.

2.3.6 Evolution 1

Evolution 1 is a robotic system developed by Universal Robotics Systems especially

designed for neurosurgical and endoscopic applications at a micro scale for brain

and spine surgeries. It falls out of the pack as a 4 DOF hexapod or Stewart-

platform based on a parallel actuator that combines high accuracy with great

payload capacity. Its 6 mechanical parallel axes work as a spherical joint to move

a platform that holds a slider joint, resulting in extremely precise movements in
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3D space with an absolute positioning accuracy of 20µm and motion resolution of

10µm even under loads of up to 500Newton [76] [77].

Figure 2.4: Universal Robots Systems, Evolution1.

The Evolution 1 system has a height of only 500mm thus being smaller than

most surgical robots. It is able to compute the movement of all axes in less than

120µsec. It comprises an universal adapter so it can incorporate different types

of surgical instrumentation like endoscopes and high speed drills. However and

due to the rather small working range, it must be pre-positioned approximately

5cm above the entry position in the desired orientation. Its user interface was

implemented recurring to a touch screen and a master joystick device where one

can for instance, select the speed and control the movement execution of the end-

effector [76] [77].

The trajectory followed by the end-effector instrumentation is set preopera-

tively by a planning software system VectorVision, that uses imaging data ac-

quired via a MRI 1.5 Tesla scanner. Intraoperatively, the patient’s face is scanned

for surface recognition using infrared flashes or laser surface scanning. This in-

formation is then used to match the MRI scans and, consequently guarantees a

matching between the coordinates of the surgical field and the three dimensional
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imaging data [77].

The main advantage of using a system like Evolution 1 is to achieve high

precision holding and positioning while manipulating the endoscope, or handling

other tools with smooth and slow movements within critical anatomical regions.

This system can be adapted to use instrumentation for DBS surgery however, a

high payload capacity is superfluous as both the instrumentation and the tasks are

not weight demanding. It thus briefs the need for a parallel actuator that would

occupy and greatly restrain the neurosurgeon workspace, (figure 2.4).

2.3.7 Minerva

The Minerva system was designed with the purpose of operating within a CT

scanning machine combining the advantages of a robotic tool and the dynamic

track of instrumentation with tomography images. It is mounted on a passive

translation guide fixed in horizontal rails that move on rails parallel to the CT

table. The manipulator has 5 DOF and 6 actuated joints, being the first 4 joints for

positioning the manipulator’s working axis along the defined trajectory and the last

two, to approach the patient. The last joints are collinear sliders, however only the

last one remains operative during the surgery, as the previous ones are disconnected

after positioning the instrumentation in the correct direction and close to the

surgical field. The 6th joint is used to guide the end-effector instrumentation in

or outward from the patient head in a straight trajectory [78] [79].

Additionally, the robotic system relies on a Brown-Roberts-Wells reference

stereotactic frame attached to the robot gantry and coupled to the motorized

CT table by two spheroidal joints, to match its base referential with the refer-

ential used in the imaging software. As the robot operates within the gantry it

must carry out all the procedure steps such as probe setting and orientation, skin

incision, bone drilling, dura perforation, probe handling and probe exchange [79].

This robotic system was indeed used in 2 surgeries back in 1993 at the CHUV

Hospital in Switzerland, but it was discontinued. The main reason behind this

decision was the robot’s limited DOFs and the fact that it did not get rid of the
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stereotactic frame rendering it to be cumbersome. And finally, as Minerva was

fixed to the CT it turned out to be unviable for neurosurgical procedures because

of the longer operation times and neither the scan was available for diagnostic

imaging during the procedure [78].

Aside from these disadvantages, this system could be adapted to assist DBS

operations. Despite this fact and adding to the previously stated drawbacks, hav-

ing a manipulator operate within a CT machine is not necessarily an improvement

since MRI provides greater contrast to segment anatomical structures in soft tis-

sues when compared to CT. Furthermore, if we consider that the brain shift in a

keyhole procedure like the DBS surgery is negligible and that the used electrodes

and canullas keep the linear profile when being inserted, there is no need for an

online tracking of the electrodes. It’s autonomous functioning nature can also

work as an inconvenience, because Minerva system withdraws the neurosurgeon’s

decision capacity in the outcome of the procedure.

2.3.8 NeuroArm

The awarded system NeuroArm developed by Dr. Garnette Sutherland from the

University of Calgary and engineers from Macdonald Dettwiler and Associates

(MDA) was introduce in 2002 as an extent of human abilities, representing a po-

tential dramatic change in the way surgery is performed. The Neuroarm project

aims to take advantage of a MR-environment as well as recent advances of tech-

nology like haptic feedback, 3D image reconstruction and hand-controller design.

It claims the title of the first image-guided, MR-compatible surgical robot capa-

ble of microsurgery and stereotaxy. It is constituted by two 7 DOF manipulators

semi-actively actuated in a master-slave control type and commanded by hand

controllers at a remote workstation. The human-robot interface filters undesired

hand tremors and can scale the movement of the controllers relatively to end-

effectors [48] [80].

The NeuroArm is built towards neurosurgery precision tasks, so each arm has

a limited payload of 0.5 Kg, force output of 10 N, a tip speed that ranges from
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Figure 2.5: NeuroArm concept6.

0.5 to 5mm/sec and a submilimetric 3D spatial accuracy. Patient safety was

a paramount concern throughout the development of the robotic solution. For

instance if the robot happens to leave the safe zone, a routine of active workspace

constraining would trigger to avoid possible complications. This policy granted this

system a Canadian Standards Association approval in 2007, Institutional Ethics

and Investigational Testing approval by University of Calgary and Health Canada

in 2008, (figure 2.5 ).

This robotic system is both capable of microsurgery and stereotaxy which

granted it the place among the robotic platforms able to assist a neurosurgeon

in a DBS procedure [81]. Despite increasing the surgery time, its precision, steadi-

ness and compatibility with a planning software resulted in reduced trauma and

blood loss, according to Pandya et al [48]. The end-effector positioning could be

verified by overlaying 2D and 3D MRI information of preoperative and intraoper-

ative, respectively. After positioning, a Z-Lock feature is used to restrict the tool
6subsection 2.3.8 Available: http://img1.qq.com/tech/pics/6270/6270273.jpg. (Ac-

cessed: 03-Mar-2012)
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movement along the defined longitudinal trajectory. The foresaw drawbacks of

this robotic system are the necessity of an available MRI scanning machine dur-

ing the whole surgery, the maintenance and acquisition costs, which are further

increased due to the manufacturing requirements of producing a manipulator with

exclusively non-ferromagnetic materials, primarily titanium and polyetheretherke-

tone [80].

2.3.9 Other robotic systems for stereotactic procedures

Arata and his colleagues [82], proposed a robotic system for neurosurgery that un-

like the serial manipulators previously described can be mounted in the stereotactic

frame to aid surgeons in brain tumor removal surgeries. Although such system is

still in a research stage, it offers a different approach for a similar problem and

in our point of view this ideas should not be neglected. Brain tumor resection

briefly resembles DBS procedures, it is also a difficult and time-consuming prac-

tice where even the slightest error in tumor resection can dramatically lower the

clinical outcome [83].

Other robotic teleoperated systems like Da Vinci can successfully manipulate

instrumentation while scaling down surgeon’s movements and filtering tremor how-

ever, in brain tumor removal it is critical to locate the lesion. The aimed solution

must therefore include an imaging navigation system to aid the neurosurgeons

detect the target and evaluate if the tumor was totally resected. Then a precise

robotic arm controlled by the surgeon would enhance his/her motion precision to

effectively remove the tumor, which should ultimately lead to improved clinical

outcome.

The robotic system proposed by Arata et al. can be divided into a surgical

motion base and a surgical tool manipulator, controlled by a master device. The

surgical tool manipulator incorporates a 3D endoscope, optical lights, an irrigation

system and the volume control suction tool. However, what distinguishes this

7subsection 2.3.9 Available: http://arata.web.nitech.ac.jp/fig/motionbase.jpg.

(Accessed: 09-Mar-2012)
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Figure 2.6: Brain tumor resection surgical robot7.

system from other solutions is its surgical motion base, (figure 2.6). It is a 7 DOF

robotic platform responsible for positioning the tool manipulator. It is mounted

in a conventional head frame and through its parallel mechanism it can achieve

high rigidity and accurate movements. The robot physical dimensions are 365 x

300 x 290 mm and its weight is circa 3kg with all the actuators included.

The surgical base achieved an accuracy of 0.04 mm along all axes, with a

rigidity of 6.5N/mm. The surgical tool manipulator registered an average accuracy

of 0.015 deg, and an average rigidity of 28N/mm. This surgical robot shows

promising results and could eventually be adapted to deep brain procedures. For

the best of our knowledge it is still in a research state and a practical evaluation

in animal/cadaver models is still needed to infer its advantages and potential

problems.

2.4 Current Challenges and Directions

In the previous section, it was already mentioned some current problems with

state of the art solutions. From the variety of robotic systems for DBS, the few

that are neither in a research phase nor adapted solutions are yet a considerable

expense for a healthcare institution. The current neurosurgical robotic systems

are only accessible to high-end healthcare facilities, which denies such foremost
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instrumentation to the majority of the population. This fact becomes even more

concerning, if we consider the epidemiology data of DBS sensitive diseases that

indicate higher incidence rates in lower income countries with further financial

strain.

In conclusion, neurosurgeons long for a low budget and simple platform that

can fulfill their requirements in terms of handling, guiding precisely instrumenta-

tion and be able to aid the surgeon without the need of a cumbersome stereotactic

frame. It should optimally have a mobile base, a pragmatic and reliable method

to attach itself to the operating table and register its positioning relative to the

patient. Also, as most institutions have already fully implemented navigation soft-

ware, the ideal solution would be to adapt the system to it, instead of imposing a

new one. Along the desired features come most of the current challenges, presented

below.

Safety

We will start by addressing Safety, because it plays a critical role in neurosurgery

assistive behavior and is the most cited reason behind the medical team’s appre-

hension to use robotic neurosurgery equipment. In the scope of a DBS assistive

role, safety definition is molded by high precision standards with consistent re-

peatability, being able to provide a stable and steady platform for instrumentation

positioning. The robot should not budge while performing a task and there must

exist a watch mechanism to prevent external inputs to interfere with the robot’s

performance. According to this requirements, the robot is recommended to move

in low velocity in order to avoid further stress/overheating the joints, and also

facilitate a motion stop action since the movement inertia is fairly less [84].

The robot position should be frequently assessed to check if the robot is capable

of restraining its end-effector movements within the desired trajectory. If the

positioning error deviates from the ideal position more than a defined threshold,

the system must warn the user and enter a safety subroutine either to rectify its

position or to stop all the manipulator actions. In any case, the robotic system

should be prepared for these eventualities and at any time allow the surgeon to
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remove the robotic equipment and carry on the surgery manually.

The final issue we wanted to address in terms of safety, is the need to provide the

robot with collision avoidance algorithms. Even moving at low speeds, the robot

collision must avoid equipment or people to prevent possible damages. Moreover,

the robot motion path and performance is directly affected/altered by collisions.

Regarding this issue, the desired collision avoidance routine should consider the

static environment where the robot is placed, but also the dynamical component

of the workspace or the unpredictable factors. The motion planning core of the

robotic control should stop or adapt the robot posture if any obstacle interferes

with the planned trajectory.

Haptic feedback

The capacity to handle and guide electrodes along a predefined trajectory, is a

feature common to almost all robotic solutions for DBS surgery. However, using

the same manipulator to through a commanded input, trepan a burr hole, requires

the capacity to handle higher payloads and the addition of an haptic feedback.

The fidelity in reproducing the sense of pressure while drilling is crucial to judge

when to stop and avoid potential lesions [73]. Haptic feedback involves force

and tactile pressure perception however, a tactile feedback feature is neither a

requirement nor an advantage in a neurosurgical robot oriented to stereotactic

electrode placement procedures. Notwithstanding the factual value of this feature

in a surgical robot, haptic feedback is still subject of ongoing research and despite

proving that it could achieve better results than a system without feedback in

telecontroled manipulation, it does not reliably represent yet the pressure felt by

the manipulator [85]. Moreover, the tasks performed during DBS neurosurgeries

more than a sensitive control architecture, they require precision and steadiness.

Such requirements could be achieved without depriving the neurosurgeon from the

direct control of instrumentation, simply by using the robot as a cooperative and

motion rectifier.
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Intraoperative registration

The mobility and flexibility to mount and dismount any equipment used inside the

operating room is a premise for its acceptance. A robotic system for assistance

in DBS surgery is usually large and despite its applicability in biopsies or other

minimally invasive procedures its use does not extend to the majority of neurosur-

gical practices. Having an equipment like that stationary inside an operating or

imaging room would restrict it to other practices, resulting in delays and financial

losses to the institution. However, having to mount an equipment each time before

the surgery, requires a consistent method to relate the preoperative coordinates to

the robotic referential. The state of the art systems presented, tackle this problem

from different angles however none of the solutions seem to be spotless. Frame

based configurations are cumbersome, frameless approaches lack the necessary pre-

cision, fiducial markers detection can be mislead by lighting conditions and optical

surface recognition accuracy is still far from ideal [1], [66], [48], [80].

Image guided robotic systems

A major problem with neurosurgery or any other soft tissue surgery, is the deforma-

bility and mobility of tissues, in this particular case within the skull. There are

many approaches to account for this brain shift problem, intra-operative imaging,

boundary condition methods, indentation and mathematical modeling. The ques-

tion we need to answer here is whether it is beneficial or not to use image guided

robotic systems, or resort to other methods to minimize the impact of brain shift.

Using MRI-guided instrumentation, one is capable of dynamically keep track of

the brain structures and of electrodes, and possibly make adjustments. On the

other hand, it implies building a robot from non-ferromagnetic materials exclu-

sively, which further enlarges its price and may affect its final precision. Also

the fact that the robot is assigned to a MR machine, means that it requires for

the institution to ensure a MRI machine, associated equipment and conditions,

which beyond the costs involved prevents the use of that equipment for any other

practices.
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Surgical simulation

Neurosurgical simulation has been referred by several authors as an important

tool to test the tools used at the procedure and to practice surgery or train new

surgeons, without causing any damage to humans in the process. This technology

could also serve to evaluate the surgeon’s skill and report errors and possible ways

to improve it. There are some commercially available systems for surgical simula-

tion like: RoSSTM oriented for stand-alone surgery and provides the experience of

controlling a da Vinci R� robot, or NeuroTouch more specifically oriented to brain

surgery with the Cranio version. Also in this area, it is expected a simulator as

close as possible to reality that can ideally provide multi sensorial instant feedback

and accurately emulate the patient reaction along the procedure.

Other research fields

Besides the investigation in unresolved issues of current solutions, other research

fields like nano robotics are giving the first steps towards providing nano robots

with the ability to monitor neural electrical activity in a non-destructive way.

The results of this study could in the future give rise to the development of nano

actuators to perform non-invasive surgery within the brain [86]. Other non-invasive

methods like transcranial Direct Current Stimulation (tDCS) allows for interacting

with brain endogenous activity and performance by applying electric fields. As

DBS is all about stimulating neural circuitry, this non-invasive method seem to

fulfill the needs however, its efficiency drops when targeting deep structures and

it can not stimulate as accurately as a cortical placed electrode yet [87].
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Part II

Developed Solution
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Chapter 3

Industrial Robot System Search

In pursue of a robotic system to satisfy our needs, we made a thorough market

search on industrial robotic manipulators. Why is the choice of the manipulator

important for the final aim of our project? The robotic system concept for neuro-

surgical purposes has a singular set of characteristics that are rather specific and

often deviate from the common scope of industrial oriented robots. Acknowledg-

ing the variety of tasks a robot could perform within an assembly line, most robot

manufacturing companies today present a wide range of solutions with different

sets of features for specific goals:

• High-payload capacity;

• Fast cycle task execution times;

• High movement stiffness, rigidity;

• Light and/or compact body and controller;

• High movement flexibility;

• Large/Small workspace;

• Mounting flexibility, environment tolerance;

• Hardware/Software adaptability to tasks;

• Interface user-friendliness;

• Custom specifications.
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3.1 Robot features

Here are some examples of commonly sought features. As the manipulator choice

is not straightforward and can not be based on our impulse, in this section we will

explain the relevance of each feature in the context of our problem and the thought

process behind the decision of the robotic systems. The information here presented

for each robot was entirely gathered from the manufacturer datasheets. Robot

characteristics with little or no relevance to our problem will be disregarded. We

are not affiliated to any of these companies, hence we have no underlying interest

on this review other than justifying the choice of the selected robot systems for

our project.

3.1.1 Mechanism type

The first question we need to answer is whether to choose a serial or a parallel

manipulator. In a manipulator with a parallel mechanism, each joint has an inde-

pendent contribution to the end-effector motion and its links connect the base to

the end-effector platform. A parallel manipulator provides rigid and stable move-

ments in the platform, and is (normally) assigned to heavy duty tasks, due to its

high payload capacity. On the other hand, these manipulators have a very limited

workspace and their kinematics are in general more complex and are frequently

undetermined systems.

Serial manipulators are described as a sequence of rigid bodies connected by

means of actuated joints that go from the base to the end-effector. The movement

performed by the end-effector depends on the consecutive displacements of each

joint, meaning that it accumulates errors from every single joint displacement.

A serial manipulator has less movement rigidity and steadiness then a parallel

mechanism, which can still be overcome by using more accurate motor-actuators.

Another disadvantage of serial robots, is their limited payload capacity. However,

they are still the most common manipulators used in industry due to its high

flexibility and broader dexterous workspace that allows it to avoid obstacles and

grasp objects from different angles and with different poses.
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When we contextualize this information in the scope of our problem we notice

that, the robot will not be required to manipulate heavy instrumentation and

despite the needed movement and positioning precision, it is also required some

dexterity to position the arm according to defined trajectories without crossing

the surgeon line of sight. Therefore we aim for a serial manipulator.

3.1.2 Degrees of Freedom

The DOFs in a serial manipulator, defines the number of independent motions

that can be performed by a robotic manipulator. Also the distribution and typol-

ogy of joints along the manipulator defines its flexibility and limits the dexterous

workspace. When selecting a robotic arm, the number of DOF, their type and

sequence along the arm should be chosen to match the procedure requirements.

The robotic system is expected to position and hold instrumentation along

defined trajectories. Thus we established that the manipulator should reach a

cartesian three dimensional position with a desired end-effector orientation, within

its dextrous workspace. To satisfy this condition, the manipulator should have at

least 6 DOF. With more than 6 DOF, the manipulator becomes kinematically

redundant as there would be a non direct relation between the 6 target coordi-

nates (position and orientation) to more than 6 joints. Robots with more than 6

DOF, have additional sources of error from the extra joints, but their redundancy

actually enhances the arm flexibility. One can determine the robotic manipulator

spatial configuration from an infinite number of solutions to avoid collisions with

intraoperative personnel or instrumentation.

According to the presented information, we chose to test our solution using 6

DOF and 7 DOF robotic manipulators, which shall be described in section 4.5.

3.1.3 Rigidity

Camarillo et al. [53] addressed another important set of characteristics namely

movement inertia, joint stiffness and speed/force tradeoff. The inertia of a robot

is defined by its mass and density of the building material. Having higher inertia
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implies lethargic movements because it is harder to accelerate or decelerate a larger

mass. A higher inertia is normally directly related to a higher payload capacity,

however within a neurosurgery context the payload is not a restrictive requirement.

Furthermore a higher inertia causes the robot to build up more kinetic energy as

it moves, which raises more safety concerns.

Stiffness on the other hand stands for the capacity of a robot to maintain a

determined position when nudged by an external force. The stiffness is granted by

the material and geometric disposition of the manipulator. This is one of the most

sought features in a surgical assistive robot as it allows a superior control, accuracy

and steadiness. However, joint stiffness is rarely displayed in the manipulator data-

sheets and we can only infer about this information.

The motor actuators can also be design towards force and speed driven tasks. In

these cases, the robot is optimized to perform repetitive tasks at very high cycle

times, thus enhancing productivity. However, productivity is not a concern in

surgery procedures. In light of our objectives, such features can be easily replaced

over precise and stiff task execution.

3.1.4 Workspace

Workspace is the volume around the manipulator that can be reached by the end-

effector. It is determined by the manipulator links dimensions, joint mechanical

limits and restricted by configurations that result in collisions between robotic

body links. Even among the serial manipulators there are several types of struc-

tures, designed for different purposes: cartesian, scars, cylindrical, spherical and

anthropomorphic.

Cartesian and scara robot types are both designed for pick and place, assembly

and packing tasks. A cartesian robot moves along the 3 cartesian axes XYZ and

it is known by the rigidity and stability of motion ideal for straight-line higher

payload tasks. On the other hand the scara robot type, does not require a rail

structure to operate which makes it more portable and capable of operating in a

smaller scale. Scara robots have a cylindrical workspace envelope and 4 actuated

68



joints, which provides an extra DOF and thus more motion flexibility compared

to the cartesian.

Cylindrical and spherical robot types are built towards specific workspace re-

quirements. As their names suggest they have cylindrical and spherical envelope

workspaces. One of the most remarked disadvantages has to do with the manip-

ulator fixed configuration, which prevents it from reaching a target that is in a

straight-line behind an obstacle.

According to the intraoperative conditions, space limitation, mobility require-

ments and task specifications, we concluded that the anthropomorphic configu-

ration would be the most appropriate. Its structure resembles the human arm,

and among the configurations is the one with most dexterity since all joints are

revolute. In a typical 6 DOF anthropomorphic manipulator, the arm is formed

by a cylindrical and two consecutive revolute joints, being the last called elbow,

which connects the arm to the forearm. The forearm is formed by a cylindrical,

a revolute and another cylindrical joint that connects to the end-effector, (check

figure 4.11 in section 4.3).

3.1.5 Force and Position Control

Another robot feature has to do with the type of control exerted on the manipula-

tor. Having already selected the structure, we still need to decide how to operate

it.

The control application can be developed to move the robotic manipulator

based on direct joint displacements or by indirectly selecting a position and orien-

tation for the end-effector to reach. Whatever the case, there must be a communi-

cation protocol between the robotic actuators and the control software, in which

the current joint positions and target joint displacements are interchanged. Since

we aim to keep the robot control as simple and intuitive as possible, we devised a

control architecture based in world coordinates for position and orientation that

should indirectly control the joint displacements.

As the manipulator actions will occur in a controlled environment where the
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free space is defined from the beginning, it is not required of the robotic system

to dynamically adapt to the changes in the environment. Moreover, it is intended

for the manipulator to have a predictive and well defined behavior for each input,

so that the neurosurgeon can also foresee its movements and feel comfortable with

it. Consequently, it is possible to abbreviate the motion planning problem by

manipulating the robot through point-to-point movements instead of computing

the desired path.

Finally, it is also important to decide whether the robot should be controlled

through position and/or force, knowing that such decision is primarily based in

task requirements. In the proposed solution, the robot should be manipulated

through both control types for different tasks. This issue will be further explained

in chapter 4.

3.1.6 Precision and Repeatability

Precision and repeatability are unquestionably desired robot specifications for al-

most any industry. The ability to consistently execute sub millimeter scaled tasks

is one of the advantages that sets robots apart from human labor. Although im-

portant some industries tend to overlook this aspect in favor of other priorities.

When we narrow our scope to neurosurgery and particularly to this project,

the precision and repeatability are the most critical features. At the same time,

they are also often omitted on the manufacturers data sheets. One of the reasons

behind this decision relates to the fact that the robotic manipulator precision is

not a constant value throughout the workspace. It varies for example with the

displacement of each joint actuators relative to their home position, since in most

cases, more rotation means less precision.

It is difficult to anticipate how each manipulator behaves and what level of pre-

cision it achieves without practical tests and real robot simulations. Consequently

the simulation will play an irreplaceable role in the development of a robotic system

of this nature.
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3.2 Available robotic systems

After fully understanding the purpose of a robotic system for an assistive role in

deep brain stimulation surgeries and after selecting a set of desirable characteris-

tics, we proceeded to do a market search. However some of the discussed features

like: joint stiffness, movement inertia, backdrivability1, can not be evaluated based

on the information gathered from the robotic systems datasheets.

The prize of the complete a robotic system is hardly accessible at the manu-

facturer website, but is also particularly difficult to obtain. After contacting the

respective companies, and upon some conversation we managed to get an aver-

age price of a complete robotic system of around 20 000 e, which is significantly

less than the average price of any available neurosurgical robot (more than 20

times) and is even cheaper than the mechanical surgical stereotactic frame used in

standard DBS surgical procedures.

Some information presented in the datasheets can not be directly used as a term

of comparison between systems. One example is the maximum joint displacement,

velocity or acceleration. These values are often very similar among all systems,

but even when they differ there is no easy way to anticipate their implication

in a practical environment. So this is another reason to test each solution in a

simulated environment before acquiring the system.

We compiled and listed all the serial manipulator robotic systems, with an-

thropomorphic configuration and 6 DOF from well-known and market established

companies like: Abb, Adept, Epson, Fanuc, Kuka, Mitsubishi, Motoman,

Nachi, Schunk, Stäubli, Toshiba and Universal Robots. A 7 DOF robotic

manipulator (Schunk Amtec LightWeightArm) was also evaluated for two reasons:

to assess its feasibility as we are adding and extra DOF and to test our approach

in a real environment, as this particular robot manipulator is available in our

laboratory for testing. Despite lacking the required precision which limits its ap-

plicability in an operating room, it suffices for assessing the kinematic equations

1Feature that allows the user to maneuver the manipulator by grabbing and moving the

end-effector, also known as floating mode.
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and test the control architecture.

The first characteristic to be compared between all the available robots is the

weight of both the manipulator and the controller, (figures 3.1 and 3.2). As the

robot must be carried in and out of the operating room for each surgery, it must be

as mobile and portable as possible therefore its weight is a limiter factor. In figure

3.1, we can see that most robotic manipulators fit inside a 20 to 40 kilogram range,

which is acceptable. Above 40 kilograms, the solution becomes overly cumbersome.

Figure 3.1: Manipulator weight.

The same can be said about the weight of the controller that must be brought

together with the manipulator to the operating room. However in this topic, the

differences are more pronounced, (figure 3.2). Also for the controller weight we

dare to set a maximum limit of weight of 50 kilograms, which leaves out some

choices.

The positioning and guiding assistive behavior do not require a high payload

capacity and as we can see in figure 3.3, the selected robots present payload values

recommended for the expected use. However, to avoid possible malfunctions and

to safeguard the consistency of the system from unpredicted circumstances we

discourage the choice of manipulators whose payload capacity is inferior to 3kg.

Across the features, the horizontal reach has a particularly significance in our

solution, (figure 3.4). As seen in the operating room, the neurosurgeon team
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Figure 3.2: Controller weight.

Figure 3.3: Payload.

operates within a restrictive and relatively small area, which will be shared by the

robot. The manipulator can not be so large that it will not fit the existing space

nor so small that it has no flexibility in its positioning and does only reach the

target coordinates from specific spots. Such inflexibility can be compromising if the

viable manipulator poses block the surgeon’s view or workspace. The horizontal

reach values of the candidate systems fall within an acceptable range (500 s 1000

mm), but can only be truly evaluated in simulation.

Lastly but perhaps the most vital in view of our project, is the repeatability

of movements that stands for the maximum expected deviation of position for the
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Figure 3.4: Horizontal reach.

same input using the same device, (figure 3.5). More than repeatability the most

interesting characteristic to differentiate systems would be the point accuracy but

it is rarely displayed in the information provided by the manufacturer. Also for this

feature, the short range of values shows the similarity of the candidate systems.

Thus, we are looking for the system with least repeatability, preferably inferior to

0.1 mm to best the repeatability achieved by the standard stereotactic frame.

Figure 3.5: Repeatability.

After reviewing the robot characteristics we looked for the companies of the

best candidate robotic systems ideally with branch offices in Europe to avoid the
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customs costs. We finally decided for the Motoman MH5, Abb Irb 120 and Schunk

Amtec LightWeightArm II. The last one because it is available for testing in our

laboratory.
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Chapter 4

Manipulator Kinematics

In this chapter we will introduce the fundamentals of kinematics to study the geom-

etry of manipulators using mathematics to describe positions and transformations

in tridimensional space. We decided to present the theoretic background on ma-

nipulator kinematics and the specific solutions/features for the selected robotic

systems. Background information about this section can be found at [88] [52] [89].

4.1 Kinematics Problem

Robotic tasks are performed by completing a sequential set of predefined motions,

directed by the controller subsystem that provides input to the robot actuators

while taking into account the values read from the sensors. However, specifying

the correct input to each actuator involves the analysis of the robot mechanical

model to obtain the desired output.

The first step toward setting the controller algorithm is to outline a mathe-

matical model of the robot that describes how the body moves according to given

directives and thus learn its input/output characteristics. Kinematics is the area of

mechanics that studies the laws of motion of bodies, independently of the causes.

Only purely geometric aspects of the movement are considered, such as the po-

sition or higher order derivatives of position like velocity or acceleration relative

to an independent variable such as time. Manipulators can be described as a set

of rigid links connected by actuated joints that can either be revolute or pris-
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matic producing respectively angular or offset displacements relative to neighbor

links. These links can be serial or parallel to each other depending on the desired

behavior and robotic features.

One can describe the position of each structural element of the manipulator,

relatively to the joint variables (q) or to the tridimensional space (xe) in which

the robot is inserted. Joint Space stands for the set of variables that parameterize

each joint variable commonly a (n ⇥ 1) joint vector,

q =

2

6664

q1
...

qn

3

7775
(4.1)

while Cartesian space describes the spatial coordinates and orientation of the end-

effector. The position can be represented by means of a XYZ (3 ⇥ 1) vector pe,

and the orientation is briefly specified in this dissertation by Euler Angles �e vector

(3 ⇥ 1),

xe =

2

4pe

�e

3

5 · (4.2)

The problem of Geometric Direct Kinematics consists in computing the tool

frame position and orientation relative to the base reference from a set of joint

angles and knowing the structural model of the robot. In other words, it means to

compute the Cartesian space representation, knowing the Joint space variables,

xe = f(q) (4.3)

On the other hand, if we want to calculate all the possible joint angle solutions

to attain a given end-effector position and orientation, this problem is called the

Geometric Inverse Kinematics problem. Since in our case the task is assign in a

workspace because it is easier to the user, there is great interest in translating the

coordinates and orientation from the Cartesian space to the joint space,

q = f�1
(xe) (4.4)
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This latter problem opposite to direct kinematics, does not always have a pos-

sible and determined solution due to the non-linearity of the inverse kinematics

equations, and might even be unreachable if the target position falls outside the

workspace, collides with the robot body or reaches a singularity.

Likewise geometric kinematics equations that establish the relation between

joint angles and end-effector position and orientation, there is the differential

kinematics, which relate the joint displacements/velocities to end-effector displace-

ments/velocities. The Differential Direct Kinematics problem computes the tool

velocities from each joint velocity,

ve = g( ˙q) (4.5)

and from the inverse relation, one can calculate each joint velocity to achieve a final

end-effector linear and angular velocity through Differential Inverse Kinematics,

˙

q = g�1
(ve) (4.6)

Differential kinematics allow the user to easily control and have feedback on

joint/end-effector velocities, forces or torques and permit the manipulation of in-

strumentation through incremental movements. Furthermore, it allows the user

to control the manipulator through back drive (in a free-mode) or along a desired

trajectory, which are some sought features for this project.

4.2 Spatial Descriptions and Transformations

A consistent method to define the position and orientation of an entity in tridi-

mensional space is one of the premises to study kinematics. We will represent this

information relative to the universe coordinate system, or other Cartesian referen-

tials relative to it. The origin frame is the coordinate system {O} formed by x̂, ŷ

and ẑ normed and orthogonal vectors that stand as the frame axes. To describe a

point in this referential we need a (3 ⇥ 1) vector (

AP 2 R3
), which we will call a

Position Vector and will be represented as
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AP =

h
px py pz

iT
· (4.7)

To specify an entity orientation in space, it is assigned a coordinate system {A}

to the body in question, whose axis are then described relatively to the reference

frame. If we express the unit vectors of the object axes x̂A, ŷA and ẑA relatively to

{O} we get,

Ox̂A = x̂A,X . x̂+ x̂A,Y . ŷ + x̂A,Z . ẑ (4.8)

OŷA = ŷA,X . x̂+ ŷA,Y . ŷ + ŷA,Z . ẑ (4.9)

OẑA = ẑA,X . x̂+ ẑA,Y . ŷ + ẑA,Z . ẑ (4.10)

which built into a 3⇥ 3 matrix, results in what is called a Rotation Matrix of {A}

relative to {O}, conventionally named after the notation ORA

ORA =

2

6664
Ox̂A

OŷA
OẑA

3

7775
=

2

6664

x̂A,X . x̂ ŷA,X . x̂ ẑA,X . x̂

x̂A,Y . ŷ ŷA,Y . ŷ ẑA,Y . ŷ

x̂A,Z . ẑ ŷA,Z . ẑ ẑA,Z . ẑ

3

7775
· (4.11)

Since both reference frames are orthonormal, the column vectors from the

respective rotation matrix are mutually orthogonal. This property suggests that

the inverse of this matrix is equal to its transpose.

ORA =

A R�1
O =

A RT
O· (4.12)

If we consider the frame {A} to be superimposed to frame {O}, by applying

a rotation1 to {A} around each of the {O} coordinate axes, we can describe the

new frame unit vectors component’s relatively to the reference axes according to

(4.11) as follows. If we rotate ✓ around the x axis we get,

1section 4.2 By convention we consider counterclockwise rotations positive.
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RotationX(✓) =

2

6664

1 0 0

0 cos(✓) � sin(✓)

0 sin(✓) cos(✓)

3

7775
(4.13)

if we rotate  around the y axis we get,

RotationY ( ) =

2

6664

cos( ) 0 sin( )

0 1 0

� sin( ) 0 cos( )

3

7775
(4.14)

and if we rotate � around the z axis we get,

RotationZ(�) =

2

6664

cos(�) � sin(�) 0

sin(�) cos(�) 0

0 0 1

3

7775
· (4.15)

The characterization of the orientation of a solid body in a tridimensional space

can be specified by no less than 3 parameters, usually called Euler angles [90].

There are exactly 12 possible Euler angles combinations fulfilling the requirement

of no consecutive rotations around the same angle. For the coherence of our

approach we will only use the X-Y-Z fixed angles orientation also referred as Roll,

Pitch, Yaw. Considering � = [ �  ✓ ]

T , as the set of angles that describe the

orientation around ZYX axes respectively and that all rotations occur about the

reference frame, we can write the combined matrix of each contribution (matrices

4.15, 4.14 and 4.13) by premultiplying them as follows2,

RPY (�) = RotationZ(�) RotationY ( ) RotationX(✓)

=

2

6664

c(�)c( ) �s(�)c(✓) + c(�)s( )s(✓) s(�)s(✓) + c(�)s( )c(✓)

s(�)c( ) c(�)c(✓) + s(�)s( )s(✓) �c(�)s(✓) + s(�)s( )c(✓)

�s( ) c( )s(✓) c( )c(✓)

3

7775
(4.16)

2section 4.2 The Roll-Pitch-Yaw matrix (4.16) is written in a compressed form to fit the

printing area. Therefore, c() stands for cos() and s() stands for sin().
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As referred previously, all the vectors represented in a rotation matrix are

unitary axes of an orthogonal frame, thus being mutually perpendicular. Conse-

quently, the following six constrains arise from the nine rotation matrix elements,

|x̂| = 1, |ŷ| = 1, |ẑ| = 1,

x̂ · ŷ = 0, x̂ · ẑ = 0, ŷ · ẑ = 0·
(4.17)

The problem of finding the � = [ �  ✓ ]

T set of angles from a rotation

matrix built as (4.16), is then abbreviated from solving nine to three equations as

we have six dependencies (4.17). Considering a rotation matrix

RXY Z(�, , ✓) =

2

6664

r11 r12 r13

r21 r22 r23

r31 r32 r33

3

7775
(4.18)

the solution for  in the range (�⇡/2, ⇡/2) is

� = arctan2 (r21, r11)

 = arctan2 (�r31,
p
r232 + r233)

✓ = arctan2 (r32, r33)

(4.19)

whether if  is within the (⇡/2, 3⇡/2) range, then

� = arctan2 (�r21,�r11)

 = arctan2 (�r31,�
p

r232 + r233)

✓ = arctan2 (�r32,�r33)

(4.20)

In the case that  = ± ⇡/2, the solutions (4.19) and (4.20) degenerate, as it

is only possible to determine the sum or difference of � and ✓. Therefore to solve

this cases, one can fix a value like � = 0, and find the solutions for  = ± ⇡/2,

� = 0,

 = +⇡/2

✓ = arctan2 (r12, r22)

� = 0,

 = �⇡/2

✓ = � arctan2 (r12, r22)

(4.21)

Now that we can fully describe a frame position and orientation in space relative

to another, we use what is called a homogeneous transform to compactly represent
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both rotation and translation. Being {O} our base referential, and {B} another

referential in the same tridimensional space, translated by OPB and rotated by
ORB, we can locate the same point with both frames following the equation

OP =

ORB
BP +

O PB (4.22)

The ORB
BP part represents the target point described as BP for the {B}

frame, in an intermediate referential whose origin is coincident to {O} but with

the orientation of {B}, achieved by premultiplying BP by ORB. Then we add
OPB as the vector that locates {B}’s origin relative to {O}. In the end we want

to transcribe this transformation as only one operand,

OP =

OTB
BP (4.23)

The transformation matrix suggested by the operand OTB was stablished as

the 4⇥ 4 matrix

OTB =

2

6666664

ORB
OPB

0 0 0 1

3

7777775
· (4.24)

Unlike the rotation matrix whose inverse is equal to the transpose (4.12), the

homogeneous transformation matrix (T) is not orthogonal and thus,

T�1 6= TT (4.25)

This operand will be rather useful along this section, as it serves to compactly

describe the spatial transformations between frames, and consequently help un-

derstand the robot’s behavior.

4.3 Geometric Kinematics

In this section, we will study the position and orientation of chain linked serial

manipulators and how this parameters change during movement. We will address
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both Direct and Inverse Kinematics geometric problems because they are essential

to controlling and understanding the system we are trying to develop.

A robotic manipulator can be described as a set of rigid links connected through

mechanically driven joints, known as a kinematic chain. The manipulator can be

considered as open-chained or close-chained, depending whether the configuration

has one sequence of links with two endings3 or if the sequence of links forms a

loop. In this dissertation we are particularly interested in open-chained robots.

Open-chained manipulators are formed by n+1 links connecting n joints, where

the base link is usually immobilized. There are several types of joints that directly

affect how the links move relatively to the previous one. Craig [88], listed six types

of joints commonly used in industry, (figure 4.11).

(a) Prismatic (b) Cylindrical (c) Revolute

(d) Screw (e) Planar (f) Spherical

Figure 4.1: Joint types4.

The robots studied in this dissertation belong to the R-R-R type, that stand

for revolutive wrist, revolutive shoulder and revolutive elbow. Thus, our focus will

be in revolute and cylindrical joints for the manipulator, and a prismatic joint for

the end-effector actuated mechanism.

3section 4.3 from the base to the end-effector.
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The structure and functionality of the manipulator is strongly influenced by the

type, number and order of joints as well as the properties of each link. Manipulators

are usually built with one degree of freedom joints, hence the common assumption

of the number of DOF from the number of joint articulations. Based in the selected

industrial robotic solutions, we will focus 6 DOF and 7 DOF anthropomorphic

serial manipulators.

4.3.1 Geometric Direct Kinematics

Regardless of the complexity of mechanical design of each link, the material prop-

erties, its shape and weight, it is enough to consider it as a rigid entity represented

by a line in space when we are elaborating the kinematic relations.

To describe how the configuration of the manipulator changes, we need to

assign a frame to each joint, to the base and to the end-effector. Homogeneous

transforms are a tool to express and manipulate the relation between frames and

to explain how they change over movement. Considering Frame 0 as base and

Frame n as the end-effector, the transformation from the base to the end-effector

is expressed as 0Tn and can be obtained through,

0Tn =

0T1
1T2...

n�1Tn (4.26)

We used the Denavit-Hartenberg convention to calculate the direct kinemat-

ics of an open-chain manipulator. The convention sets a systematic method to

describe the relative position and orientation of neighboring links, through four

parameters ↵i�1, ai�1, ✓i, di. We start by setting the manipulator to its home po-

sition, and assigning a frame to each joint, using the methodology5:

1. For a joint (i), the origin of the {i} frame is set by the intersection of two

lines coaxial with linki and linki+1;
4section 4.3 Available at: http://www.mathworks.com/help/toolbox/physmod/mech/ug/

f2-182101.html

5section 4.3.1 For further information regarding atypical cases, consult [52] pages 62 and

63.
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2. Having the origin defined, the Zi axis is defined along the joint motion axis;

3. The Xi is set along the direction from the origin of {i} to {i+1};

4. Finally the Yi axis is fixed to complete a right-handed frame.

Upon assigning the frames to the respective joints, we define the four parameters

that identify the relation between joints,

• ↵i�1, angle of rotation around Xi axis;

• ai�1, distance of translation along the Xi axis;

• ✓i, angle of rotation around Zi, after the rotation around Xi axis;

• di, distance of translation along Zi, after the rotation around Xi axis.

The homogeneous transform translates the position and orientation from frame

{i-1} to {i} and is defined by the result of all four transformations,

i�1Ti = RotationX(↵i�1) · TranslationX(ai�1) · TranslationZ(di) ·RotationZ(✓i)

i�1Ti =

2

6666664

cos(✓i) � sin(✓i) 0 ai�1

sin(✓i) cos(↵i�1) cos(✓i) cos(↵i�1) � sin(↵i�1) � sin(↵i�1)di

sin(✓i) sin(↵i�1) cos(✓i) sin(↵i�1) cos(↵i�1) cos(↵i�1)di

0 0 0 1

3

7777775
(4.27)

In the end, according to (4.26) the transformation from the base to the end-

effector is expressed as the product of each link transformation matrix, thus resolv-

ing the problem of Geometric Direct Kinematics for 6 and 7 DOF manipulators

since the method followed is the same for both.

0P =

0Tn
nP (4.28)

According to (4.28), one can compute any point coordinates relative to the

base frame, when the position relative to the end-effector is known.
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4.3.2 Geometric Inverse Kinematics

When we turn to the Geometric Inverse Kinematics problem, the solution depends

on the non-linearity of the equations that may lead to multiple solutions, infinite

number of solutions6, or no valid solutions when all the solutions exceed the at

least one joint limit. The existence of a set of joint variables that allow the end-

effector to reach a determined position and orientation, depends if the target falls

within the dextrous workspace.

Unlike Geometric Direct Kinematics, the inverse kinematics solutions for 6 and

7 DOF manipulators are different. We start by addressing the solution for 6 DOF

manipulators, and then present the differences to the method used for the 7 DOF.

6 DOF To make our method easier we decouple the manipulator in two parts,

from the base frame {B} to the wrist {W}, which we call arm and is mainly

responsible for positioning. And from the wrist {W} to the end of the robot’s

last link {T} called forearm, where the orientation is defined. The algorithm

proposed uses a geometric approach to determine the lower arm joint values, and

an algebraic method to determine the last three joint variables. It can be divided

in five elementary steps,

1. Calculate the wrist position {W};

2. Solve the inverse kinematics for the arm, (✓1, ✓2, ✓3) (see figure 4.2);

3. Compute 0R3(✓1, ✓2, ✓3);

4. Find 3R6(✓4, ✓5, ✓6) (figure 4.4) from, 3R6 =
0R�1

3
0R6;

5. Solve the inverse kinematics for the spherical wrist.

The user inputs the desired position and orientation for the end-effector as xe =

(pe,x, pe,y, pe,z, �e,✓, �e, , �e,�), according to (4.4). Knowing �e, one can compute

Roll-Pitch-Yaw matrix (4.16). The wrist position, denoted as pw = (pw,x, pw,y, pw,z),

6subsection 4.3.2 In cases of kinematically redundant manipulators.
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✓1

✓2 ✓3

pw,z

pw,z

pw,x

y0
z0

x0

LA

LB LC

Figure 4.2: Anthropormorphic arm.

is calculated by subtracting the length of the wrist to the end-effector (Lw) (figure

4.4) from the final position specified pe, taking into account the orientation, x̂RPY .

pw = pe � Lw . ẑRPY (4.29)

Then we check if the wrist position falls within range of the arm. Being LB

the length from the shoulder to the elbow and LC the length between the elbow

and the wrist, pe can only be reached with �e orientation if7,

|LB � LC |  kpwk  LB + LC (4.30)

If this condition is verified, we proceed to the next step of the algorithm to

calculate (✓1, ✓2, ✓3). As we are dealing with a standard anthropomorphic lower

arm, the only joint capable of positioning itself in the xy plan is ✓1 (figure 4.2)

and so it is calculated as follows,

✓1 =

8
<

:
arctan2(pw,y, pw,x) if pw,y 6= 0

0 if pw,y = 0

(4.31)

7subsection 4.3.2 pe, must consider the distance from the base frame to the center of the

shoulder (LA).
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We can simplify the problem of calculating the ✓2 and ✓3, by reducing the

problem from three to two dimensions using a plane formed by the z axis and the

direction of ✓1 set on the xy plane, figure 4.3.

pw

z0

✓3

✓2

r

pw,z

LB

LC

Figure 4.3: Plane projection formed by links 2 and 3.

Considering r =
p

pw,x
2
+ pw,y

2, we easily prove that,

8
<

:
r = LB sin ✓2 + LC sin (✓2 + ✓3)

pw,z = LB cos ✓2 + LC cos (✓2 + ✓3)
(4.32)

which allow us to solve this problem as a planar 2 DOF arm. With both expressions

we reach the following equation,

pw,x
2
+ pw,y

2
+ pw,z

2
= LB

2
+ LC

2
+ 2 LB LC cos ✓3 (4.33)

from which,

cos ✓3 =
pw,x

2
+ pw,y

2
+ pw,z

2 � LB
2 � LC

2

2 LB LC

(4.34)

and by the Pythagorean trigonometric identity

sin ✓3 = ±
p
1� cos ✓3

2 (4.35)

With the cosine and sine of ✓3 we can finally calculate ✓3 using,
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✓3 = arctan2(sin ✓3, cos ✓3) (4.36)

As we can see in (4.35), we can have two solutions for the same position. Knowing

the value of ✓3 we can determine ✓2 by means of,

✓2 = arctan2(r, pw,z)� arctan2(LC sin ✓3, LB + LC cos ✓3) (4.37)

After solving the inverse kinematics for (✓1, ✓2, ✓3) we proceed to compute 0R3,

using the homogeneous transforms from geometric direct kinematics. It is now

possible to calculate 3R6 through,

3R6 =
0RT

3
0R6 (4.38)

as both 0RT
3 and 0R6 are known, being the latter the Roll-Pitch-Yaw matrix com-

puted earlier with the orientation parameters �e. To simplify the notation we

denote the 3R6 matrix as,

R =

2

6664

r11 r12 r13

r21 r22 r23

r31 r32 r33

3

7775
(4.39)

From here, and due to the spherical wrist properties we directly compute ✓5 from,

✓5 = arctan2(±
p

1� (r23)2, r23) (4.40)

which similarly to the elbow (4.35) has two solutions, which allow the manipulator

to reach the same position and orientation with 2 different possible configurations.

In the end, we may reach the same wrist position with 4 possible configurations,

hence the need of a decision criteria. This criteria must firstly consider the limits

of each joint, since they can restrict the options to one configuration over the other.

However if more than one solution is possible, the spatial distribution of the arm

or the strain applied to each joint can bias the decision.

A particularity of the spherical wrist, is that it reaches an infinite number of

solutions if ✓5 2 {0, ⇡}, as a result of the collinear axes of joints 4 and 6. To solve
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✓4

✓5
✓6

z4

x4

y4

L

w

Figure 4.4: Spherical wrist.

this cases of singularity we chose to fix the 4th joint and only rotate the 6th, what

results in

8
<

:
✓4 = 0 ^ ✓6 = arctan2(r12, r32) if ✓5 = 0

✓4 = 0 ^ ✓6 = � arctan2(�r12,�r32) if ✓5 = ⇡
(4.41)

Otherwise, ✓4 and ✓6 can be computed by,

8
<

:
✓4 = arctan2(r33,�r13)

✓6 = arctan2(�r22,�r21).
(4.42)

With this last step, we have calculated the set of joint variables q, correspond-

ing to a specified end-effector position and orientation as (4.4), thus solving the

problem of Geometric Inverse Kinematics for 6 DOF manipulators.

7 DOF The method to compute the geometric inverse kinematics in a 7 DOF

is a bit more complicated as we want to control seven joints q = [✓1, ✓2, · · · , ✓7]T

based in six position and orientation coordinates (4.2). This leads to a case of

redundancy since we have more variables than equations. To develop the geometric

inverse kinematic equations for the 7 DOF robotic manipulator, we resorted to the

91



method proposed by Eliana in her PhD thesis [91]. To simplify the notation the

manipulator distances will be displayed as,

• L1, Base to Shoulder;

• L2, Shoulder to Elbow;

• L3, Elbow to Wrist;

• L4, Wrist to End-effector.

Similarly to 6 DOF manipulators, we can calculate the wrist position by sub-

tracting the wrist length from the target position along the desired orientation,

(4.29). Also the joint variables of the arm can be computed if we have the shoulder

position as we already know the base coordinates. The elbow that connects the

arm to the forearm has however no restrictions, which means that8 it can orbit per-

pendicularly to the shoulder-wrist line without changing the end-effector position

or orientation.

It was added an extra manipulator configuration constraint that defines the

minimum angle between the Shoulder-Elbow-Wrist plan and the floor, which we

will henceforth call ↵, (figure 4.5).
z0

y0

x0{S}

{E}

{W}

↵

L2

L1

L3

L4

R

Figure 4.5: Elbow redudancy.

Thus, the geometric inverse kinematics solution given in (4.4), now has 7 vari-

ables to 7 equations and takes the new form,
8subsection 4.3.2 unless the target position requires for the manipulator to be fully stretched
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q = f�1
(xe,↵) (4.43)

We start by calculating the wrist position using (4.29). Since the shoulder is

connected to the base through the first link and considering the world frame to be

represented by x0 y0 z0 as in figure 4.5, the shoulder is located at S = [0,�L1, 0]
T .

With the angle
�
⇡
2 � (�✓4)

�
(figure 4.6), we can compute the distance from the

shoulder to the wrist using the cosines law,

LSW = L2
2
+ L3

2 � 2 L2 L3 cos

⇣⇡
2

+ ✓4

⌘
(4.44)

which leads to,

✓4 = arcsin

✓
LSW � L2

2 � L3
2

2 L2 L3

◆
(4.45)

{S}

{E}

{W}

�✓4

C

û

v̂

↵

�

R

Figure 4.6: Elbow angle ✓4.

Having the value of the elbow angle computed, it can still take any orientation

along the circular orbit depict in figure 4.5. Thus, the next step of the algorithm

is to find the elbow position taking into account the angle ↵.

Using the cosines law once again it is possible to extrapolate the coordinates

of the point C. We calculate the L2 cos(�) (figure 4.5) which is the distance from

the shoulder to C,

SC = L2 cos(�) =
L2
SW + L2

2 � L2
3

2LSW

(4.46)
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Considering n̂SW to be the unit vector with the direction set from the shoulder

to the wrist, C is calculated by adding SC along n̂SW to the shoulder position,

C = S + SC · n̂SW (4.47)

With coordinates of C and by the Pythagorean trigonometric identity we com-

pute the radius (R) of possible elbow positions,

R = L2

p
1� cos

2
(�) (4.48)

Next, to obtain the final elbow position as a function of ↵ we will use some

auxiliary vectors. Firstly, we define û as an unit vector normal to n̂SW projected

in the xy plan, or in other words, parallel to the ground. Then v̂ is defined as the

unit vector normal to û and n̂SW , which is obtained by,

v̂ = û⇥ n̂SW (4.49)

The elbow position is now computed by the following expression,

E = C +R(û cos(↵)� v̂ sin(↵)) (4.50)

With the elbow position we can now compute the matrix that defines the

rotation between the base referential to the elbow referential. For this, we assume

that the elbow rotates along ẑ, perpendicularly to the plan formed by the shoulder,

elbow and wrist. Being v̂EW , v̂SW and v̂CE the unit vectors with the direction of

elbow-wrist, shoulder-wrist and center-elbow, respectively. The frame axes are,

ŷ4 = v̂EW

ẑ4 = v̂SW ⇥ v̂CE

x̂4 = ŷ4 ⇥ ẑ4

Therefore we can express the rotation matrix from the base to the elbow as,

0R4 =

h
x̂4 ŷ4 ẑ4

i
(4.51)
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As we know beforehand the value of ✓4 and thus the rotation 3R4, the matrix
0R3 is simply,

0R3 =
0 R4 (

3R4)
T (4.52)

With the 0R3 matrix, it is possible to extrapolate the ✓1, ✓2 and ✓3 using the

algebraic method presented for the spherical wrist in the 6 DOF manipulators,

(see equations (4.40), (4.41) and (4.42)).

Finally, for the last three joints the algorithm repeats as we know the rotation

matrices, 0R4 and 0R7, so it is possible to find 4R7 by,

4R7 = (

0R4)
T
(

0R7) (4.53)

Once again it is used the algebraic method from the spherical wrist to compute

the angle of the last joints.

We have thus solved, problem of Geometric Inverse Kinematics, for both 6 and

7 DOF manipulators as proposed.

4.4 Differential Kinematics

The differential kinematics equations establish the relation between the Joint and

Cartesian space velocities, forces or torques. As in the previous section, we will

start by explaining how to compute the Differential Direct Kinematics, whose

algorithm is similar for both 6 and 7 DOF manipulators, and then talk about

Differential Inverse Kinematics.

4.4.1 Differential Direct Kinematics

The functions that return the end-effector linear and angular velocities when given

the joint velocities are represented as a matrix named Geometric Jacobian, which

depends on the manipulator configuration. It is however possible to compute the

Jacobian matrix resorting to the differentiation of the geometric direct kinematics

functions relative to the joint variables, if the end-effector position and orientation
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are described by a minimal representation, such as the in Denavit-Hartenberg

convention. The Jacobian matrix obtained this way differs from the Geometric

Jacobian and is known as the Analytical Jacobian, which shall be denoted as

J(q) or simply J. This matrix is particularly helpful to analyze the manipulator

redundancy, to find singularities and to correlate not only the velocities but also

the forces and torques in the Joint and Cartesian Space.

In analogy to the geometric kinematics problem, the end-effector pose instead

of being represented by a position and orientation is, in the differential kinematics

context, expressed by a linear (ṗe) and an angular velocity (!e),

ve =

2

4ṗe

!e

3

5
= J(q) . q̇ (4.54)

The Jacobian matrix, can be split into two (3 ⇥ n) sub matrices9 that provide

the relation between each joint velocity and the end-effector linear (JP ) and angular

velocity (JO) components, respectively,

J(q) =

2

4JP

JO

3

5 · (4.55)

Acknowledging that the robotic manipulators used are anthropomorphic and

thus have only revolute and cylindrical joints, the full Analytic Jacobian (with

both sub-matrices) can be obtain from the expression [52],

0J(q)n =

2

4
0
ẑ1 ⇥ (

0
p̂n � 0

p̂1)
0
ẑ2 ⇥ (

0
p̂n � 0

p̂2) · · · 0
ẑn ⇥ (

0
p̂n � 0

p̂n)

0
ẑ1

0
ẑ2 · · · 0

ẑn

3

5

(4.56)

where 0
p̂n is the (3⇥ 1) position vector of the transformation matrix from the

base of the manipulator to the end-effector, 0
p̂i (3 ⇥ 1) position vector and 0

ẑi

(3⇥ 1) rotation vector component from the partial premultiplying transformation

matrix from the robot base to each joint given by [92],

9subsection 4.4.1 being n, the number of joints
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0Ti =

iY

j=1

j�1Tj =

2

6666664

0
x̂i

0
ŷi

0
ẑi

0
p̂i

0 0 0 1

3

7777775
(4.57)

With the Jacobian matrix defined, and the (4.54), one can compute the end-

effector linear and angular velocities, thus solving the Differential Direct Kinemat-

ics problem for either 6 or 7 DOF manipulators.

4.4.2 Differential Inverse Kinematics

As seen in the geometric inverse kinematics problem, there is a complex and non-

linear relation between the Joint and Cartesian space variables due to the ma-

nipulator configuration, redundancy or specific poses. However, when we turn

to differential kinematics, the equation represents a linear mapping relating both

spaces that varies with the current configuration [52].

6 DOF According to [52], given that the number of DOF is equal to the number

of operational space variables needed to execute a certain task (in our case 6 space

variables, thus 6 DOF), the differential inverse kinematics can be simply solved by

using the inverse Jacobian matrix,

q̇ = J�1
(q) ve (4.58)

As the surgical tasks assign to the robot require the control of the manipulator

along all position and orientation coordinates, we can use the equation 4.58 to

solve the differential inverse kinematics problem for the 6 DOF robots.

7 DOF In the case of the 7 DOF manipulator, the Jacobian is a (6⇥ 7) matrix

and thus is not directly invertible. Additionally, there is an infinite number of solu-

tions or joint velocity profiles for the same operational space requirements. Thus,

the approach suggested by [52], involves the formulation of a linear optimization

problem for the joint velocities, which should work as a secondary objective.
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Being J a regular Jacobian matrix where the number of columns (m) is greater

than the number of rows (n), it will be used the right inverse matrix (Jr) so that,

J Jr = Im (4.59)

where Im is the identity matrix. If the (m⇥ n) Jacobian matrix Jr has rank (m),

the right pseudo-inverse can be calculated as,

J†
r = JT

(J JT
)

�1 (4.60)

Such solution minimizes the norm of joint velocities. Thus the equation 4.6,

for a 7 DOF manipulator can be written as,

q̇ = J†
r(q) ve (4.61)

Nevertheless, one can also add a further linear optimization problem as stated

before by making use of the manipulator redundancy. Therefore,

˙

q = J†
r(q) ve + J†

r,null(q) q̇0 (4.62)

is also a solution for the differential inverse kinematics problem, being the q̇0

a vector of arbitrary joint velocities (the secondary objective). It is possible to

guarantee that the manipulator would move at the desired linear and angular

velocities and still endow behaviors like obstacle avoidance, by making use of the

null space10.

The J†
r,null(q) matrix is a projection of the J†

r(q), in the null space and can be

computed as,

J†
r,null(q) = (I � J†

r(q)J(q)) (4.63)

The flexibility provided by the extra DOF, in the context of our problem, can

be used to guarantee that the robot posture does not collide with intraoperative
10subsection 4.4.2 a Jacobian subspace, of joint velocities that reproduce no variation in the

end-effector velocity.
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elements, personnel or machinery. Despite secondary, this feature can greatly add

to the acceptance of a robotic system by the operating team.

4.5 Selected Robots Specifications

After presenting the fundamentals of manipulator kinematics for 6 and 7 DOF

manipulators, in this section we aim to describe the specific characteristics for each

of the selected robotic systems, along with their limitations. The information and

images of each manipulator are retrieved from the correspondent manufacturers.

Although it might seem repetitive, we chose to exhibit each robotic manipulator

in separated subsections to facilitate a quick access to the information regarding

each system.

4.5.1 ABB IRB 120

The ABB IRB 120 is the smallest robot of the ABB line and is recommended for

material handling and assembly applications. Having a weight of only 25 kg and

with a reach of 580 mm this manipulator excels in flexibility and efficiency specially

within limited spaces, like the available workspace within the operating room. The

modularity of the system, allows for the robot to be mounted in any angle, however

due to the location of the available workspace and the space restrictions caused by

the surgical lights at the ceiling, it was decided to mount the robots’ in a mobile

platform(cf. chapter 6).

Other captivating features of the manipulator are the smooth surfaces and the

internally routed cables, which greatly helps in the robot’s integration as it needs

to be covered with sterile drape for each procedure. The manipulator light body

is built in an aluminum structure that incorporates precise and reliable motors

that further enhance the robot’s agility and accuracy of movements. The robotic

manipulator is controlled with the IRC5 ABB compact controller which provides

increased accuracy and motion control previously only possible in larger installa-

tions. It adds to the robot’s portability and mobility around the operating room,
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✓1

✓2

✓3

✓4
✓5

✓6

(a) 3d model with each joint and correspondent

rotations represented.

(b) Photo of the real manipulator taken from

the manufacturer website.

Figure 4.7: ABB IRB 120 manipulator.

and could even be incorporated in the robot mobile platform base.

The robot can operate in environments from 5

�C to 45

�C and in conditions of

humidity up to 95%. The robotic system includes safety and emergency stops, has

supervision circuitry and is shielded for electromagnetic compatibility.

The ABB IRB 120 manipulator joint angles and velocity limits are presented

in the table 4.1. Its initial posture and each joint rotation direction is depict in

figure 4.7a. The real robot11 body is presented in figure 4.7b.

Robot kinematics considers the geometry and spatial configuration of the robot,

to describe relations between a chained joint action and its spatial implication,

either in position, velocity or acceleration. The links are simply considered to

be rigid bodies moved by means of actuated rotational or translational joints.

Therefore, one can represent the whole structure of the robot through a simplified

schematic (figure 4.8), in which, links are lines and joints are different symbols

standing for cylindrical12 or revolute13, since all the joints in the Abb manipulator

11subsection 4.5.1 For additional information regarding this manipulator please consult:

http://www.abb.com/product/seitp327/be2eef38406eaca4c125762000319182.aspx.
12subsection 4.5.1 Inverted triangles
13subsection 4.5.1 Bold circle, concentric with a semi-circumference

100



Table 4.1: ABB IRB 120 manipulator limits.

Joints Joint Limits Velocity Limits Acceleration Limits

(deg) (deg/s) (deg/s2)

✓1 [-165, 165] 250 -

✓2 [-110, 110] 250 -

✓3 [-90, 70] 250 -

✓4 [-160,160] 320 -

✓5 [-120, 120] 320 -

✓6 [-400, 400] 420 -

are rotative.

z0

x0

y0

x1

y1
z1x2

z2

y2

y5

z5x5

z4y4

x4

x6

z6y6

L4

L1

L2

L3

L5

x3
z3

y3

Figure 4.8: ABB IRB 120 manipulator at starting position with the frames

assigned to each link, according to Denavit-Hartenberg convention.

The lengths depict in figure 4.8, are presented in table 4.2.

Table 4.3, presents the Denavit-Hartenberg parameters for the ABB manipu-

lator. Each transformation presented in this very table is depict in the schematic

figure 4.8. Due to space limitations each frame should be considered to be assigned
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Table 4.2: ABB IRB 120 arm segments length.

Segments Description

Length (mm)

L1 = 290 Distance from base frame to the 2

nd joint.

L2 = 270 Distance from the 2

nd joint to the 3

rd joint.

L3 = 70 Eccentricity from 3

rd to the 4

th joint along the base frame z-axis.

L4 = 302 Distance from the 3

rd to the 4

th joint along the base frame x-axis.

L5 = 72 Distance from the 4

th to the end-effector.

to the closest joint, or in case of the 0

thframe to the base and the 6

thframe to the

end-effector. Having the Denavit-Hartenberg parameters, each transformation can

be represented by a matrix that is computed according to 4.27 and the Geometric

Direct Kinematics for this manipulator is simply the product of those matrices

from the base to the end-effector.

Table 4.3: Denavit-Hartenberg parameters for the ABB IRB 120 manipulator.

iTi+1 ↵i�1 ai�1 ✓i di

(deg) (mm) (deg) (mm)

{0} ! {1} 0 0 ✓1 L1

{1} ! {2} -90 0 ✓2 � 90 0

{2} ! {3} 0 L2 ✓3 0

{3} ! {4} -90 L3 ✓4 L4

{4} ! {5} 90 0 ✓5 0

{5} ! {6} -90 0 ✓6 L5

The Geometric Inverse Kinematics can be calculated with the algorithm pre-

sented in section 4.3 for the 6 DOF manipulators. There is however a slight differ-

ence caused by the offset between the 3rd and 4

thjoint, which means that these two

joints are not connected by a straight line. The solution outlined, involved using

an auxiliary line to directly connect each joint instead of the actual link layout.
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For the Differential Kinematics, the only information we need from the manipu-

lator are the Denavit-Hartenberg parameters here displayed. The algorithm and

further explanation are found in the previous section 4.4.

4.5.2 Motoman MH5

The MH5 Motoman manipulator, similarly to the previous robot from ABB has a

compact design and is aimed towards high performance material handling, pack-

ing, assembly among other tasks within a restricted floor space and workspace.

Focusing in precision and dexterity, this robot has a maximum payload capacity

of 5kg, but on the other hand it can easily achieving repeatability results below

±0.02mm.

✓1

✓2

✓3

✓4
✓5

✓6

(a) 3d model with each joint and correspondent

rotations represented.

(b) Photo of the real manipulator taken from

the manufacturer website.

Figure 4.9: Motoman MH5 manipulator.

To improve the robot’s repeatability and steadiness, it can adapt its perfor-

mance to the load, which has effective results in payloads inferior to 1kg. Simi-

larly to ABB it can be mounted in the floor, walls or the ceiling, but once again,

the operating room disposition and space limitations will force us to fix it in a

mobile platform. It can operate at temperatures ranging from 0

�C to 45

�C and
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Table 4.4: Motoman MH5 manipulator limits.

Joints Joint Limits Velocity Limits Acceleration Limits

(deg) (deg/s) (deg/s2)

✓1 [-170, 170] 376 -

✓2 [-65, 150] 350 -

✓3 [-136, 255] 400 -

✓4 [-190,190] 450 -

✓5 [-125, 125] 450 -

✓6 [-360, 360] 720 -

at a maximum relative humidity of 90%.

The manipulator has internally routed cables and hoses to maximize the sys-

tem portability and reliability, and has also built-in collision-avoidance routines.

It comes with a small size controller DXM100, certified and compliant to inter-

nationally recognized safety standards, which uses a programmable, user-friendly

interface. The controller’s interface also incorporates straightforward commands

that allow the user to easily start, hold, stop, teach, play, or execute emergency

routines. After contacting the Yaskawa Motoman representatives we found on one

of the most desired features for our project, that is the floating mode, or backdriv-

ing trait. Such characteristic is exclusive of this manipulator from the selected set.

It would certainly be a major contribute for the acceptance of a robotic system

within the medical community as the surgeons should be able to freely move the

manipulator by hand to the proximity of the entry point, from where it could

precisely adjust to the closest pre-planned trajectory.

Joint, velocity and acceleration limits are found in table 4.4. The initial ma-

nipulator posture is depict in 4.10, and the specific arm segment lengths can be

found in table 4.5.

The Geometric Direct Kinematics are computed by multiplying the transfor-

mation matrices generated from the Denavit-Hartenberg parameters (see matrix

4.27) from the base to the end-effector. Similarly to the ABB manipulator, the
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Table 4.5: Motoman MH5 arm segments length.

Segments Description

Length (mm)

L1 = 330 Distance from base frame to the 2

nd joint.

L2 = 88 Eccentricity from base to the 2

nd joint along the base frame x-axis.

L3 = 310 Distance from the 2

nd joint to the 3

rd joint.

L4 = 40 Eccentricity from 3

rd to the 4

th joint along the base frame z-axis.

L5 = 305 Distance from the 3

rd to the 4

th joint along the base frame x-axis.

L6 = 86.5 Distance from the 4

th to the end-effector.

z0

x0

y0

x1

y1
z1x2

z2
y2

y5

z5x5

z4y4

x4

x6

z6y6

L5

L1

L3

L4

L6

L2

x3
z3

y3

Figure 4.10: Motoman MH5 manipulator at home position with the frames

assigned to each link, according to Denavit-Hartenberg convention.

MH5 model is endowed with an offset in the 3

rd to the 4

thjoint link, moreover it

has an additional eccentricity on the link from the 1st to the 2ndjoint. To guarantee

that each link is represented by a straight line, so we can apply the algorithm for

Geometric Inverse Kinematics drafted in section 4.3, for each eccentricity instead

of the actual link layout we used the shortest line segment between both joints.
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Table 4.6: Denavit-Hartenberg parameters for the Motoman MH5 arm.

iTi+1 ↵i�1 ai�1 ✓i di

(deg) (mm) (deg) (mm)

{0} ! {1} 0 0 ✓1 L1

{1} ! {2} -90 L2 ✓2 � 90 0

{2} ! {3} 0 L3 ✓3 0

{3} ! {4} -90 L4 ✓4 L5

{4} ! {5} 90 0 ✓5 0

{5} ! {6} -90 0 ✓6 L6

As presented in section 4.4, the Differential Kinematics calculation need only the

Denavit-Hartenberg parameters for this manipulator.

Having displayed the characteristics of the Motoman MH5 manipulator, the

algorithms to achieve the kinematics relations are also fully described in section

4.4.

4.5.3 Schunk LightWeightArm II

The Light Weight Arm II by Schunk is a 7 DOF manipulator with a human-like ar-

chitecture focused in having a light body with a flexible and mobile structure. The

robotic controller is incorporated in the arm, thus relieving the need to transport

a cumbersome external controller case.

The manipulator real appearance is shown in figure 4.11b, while in figure 4.11a

it is displayed the initial position of each joint and the respective rotation direc-

tion used to compute the kinematic relations. The robot’s cables and hoses are

internally routed, in an integrated arm structure that weights only 12kg and has a

maximum payload of 3kg. The manipulator joint, velocity and acceleration limits

can be found in table 4.7.

The schematic figure 4.12, depicts the manipulator initial position with the

revolute and cylindrical joints disposed along the arm. The frames assigned to

each key-point, either at revolute joints, at the manipulator base or at the end-

106



✓1

✓2

✓3

✓4

✓5

✓6

✓7

(a) 3d model with each joint and correspondent

rotations represented.

(b) Photo of the real manipulator taken from

the manufacturer website.

Figure 4.11: Schunk Light Weight Arm manipulator.

Table 4.7: Schunk Light Weight Arm manipulator limits.

Joints Joint Limits Velocity Limits Acceleration Limits

(deg) (deg/s) (deg/s2)

✓1 [-165, 165] 52.2 208.8

✓2 [-105, 91] 52.2 208.8

✓3 [-165, 165] 52.2 208.8

✓4 [-25,196] 41.2 164.8

✓5 [-165, 165] 41.2 164.8

✓5 [-120, 120] 240 960.0

✓7 [-165, 165] 360 1440.0

effector were sequentially placed according to the Denavit-Hartenberg convention,

whose parameters are displayed in table 4.9. Arm segment lengths, denoted as Lx,

specific of the Schunk LWA II manipulator are presented in table 4.8.

Algorithms to compute both Geometric Kinematics and Differential Kinemat-

ics for 7 DOF manipulators with a similar structure similar to this robot are fully

explained in sections 4.3 and 4.4.
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Figure 4.12: Schunk Light Weight Arm at starting position with the frames

assigned to each link, according to Denavit-Hartenberg convention.

Table 4.8: Schunk Light Weight Arm segments length.

Segments Description

Length (mm)

L1 = 400 Distance from base frame to the 2

nd joint.

L2 = 395 Distance from the 2

nd joint to the 4

th joint.

L3 = 370 Distance from the 4

th joint to the 6

th joint.

L4 = 95 Distance from the 6

th joint to the end-effector.
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Table 4.9: Denavit-Hartenberg parameters for the Schunk Light Weight Arm.

iTi+1 ↵i�1 ai�1 ✓i di

(deg) (mm) (deg) (mm)

{0} ! {1} 90 0 ✓1 L1

{1} ! {2} 90 0 ✓2 0

{2} ! {3} -90 0 ✓3 L2

{3} ! {4} 90 0 ✓4 � 90 0

{4} ! {5} -90 0 ✓5 L3

{5} ! {6} 90 0 ✓6 0

{6} ! {7} -90 0 ✓6 L4
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Chapter 5

Simulator

Being our purpose the development of a full robotic architecture and system to-

wards stereotactic neurosurgery, it is rather difficult to create and build a product

just from scratch and put it to use. Each step towards the objective brings new

challenges, and the path is marked by a continuous struggle to solve upcoming

problems. Therefore, regardless of how good the blueprints are, there must always

be a test phase which usually reveals implementation issues [93].

Computer robotic simulators are programs that replicate a robotic system’s

behavior in an environment as close as possible to reality. It allows the user

to thorough test the robotic emulated hardware/software or control application,

make adjustments, devise new features, solve unforeseen problems or simply collect

data in a controlled context without the risk of damaging expensive machinery or

jeopardize the safety of users. Moreover, computer simulation is always accessible

while real testing environment might not, the simulation runs are usually quicker

than real ones and are also less demanding in terms of personnel and resources.

The steady progresses in computer technology and processing power now permits

state-of-the-art simulators to replicate not only complex system models but also

physical and graphical environments with high accuracy [94] [95].

For these reasons and due to the inaccessibility to the desired robotic resources

in light of this project objectives, simulation was a paramount element in devising

a solution, which explains the importance given to it along this dissertation. The
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simulator hereby presented can also be used for the robotic system end-users, to

become accustomed to the robotic capabilities, movements and to the UI (User-

Interface) used to maneuver it. It can also be used intraoperatively to predict and

evaluate the robotic manipulator movements before executing any actions, (figure

5.1).

Figure 5.1: CoopDynSim interface window (operating room environment).

According to our work, the computer developed simulator is expected to repli-

cate the behavior of a robotic platform, commanded through a high level controller

via a third party communication layer. As stated in chapter 3, there are several

variables that account to choose the most fitted robotic system and while some

robotic features might be straightforwardly better or worse, other information such

as joint limits, horizontal reach and degrees of freedom require practical testing,

to understand their repercussions.

The simulator chosen was closest to a robotic simulator rather than a sur-

gical simulator. In other words, it is meant to test how the robot will fit in the

workspace, how it will interact with the user and to further elaborate on its motion
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planning. Interaction with tissues, surface compliance, forces exerted during the

assigned tasks and physiological implications were not included in the objectives

of the sought simulator.

5.1 CoopDynSim 3D robotics simulator

Upon evaluating the most renowned robotic simulator softwares, we decided for the

CoopDynSim 3D robotics simulator [96]. The thought process behind this selection

had as a primarily focus the ability to emulate specific environments (operating

room) and robotic systems. We sought an open source software, flexible enough to

add and edit custom equipment and implement specific manipulator functionalities

(adapted to DBS surgical procedure).

Furthermore, the simulator should have physical and graphical representations

of a tridimensional world with several objects and robotic manipulators. There are

several solutions with both graphical and physical tridimensional representations

like Player-Stage-Gazebo, USARSim, SimRobot, Microsoft Robotics Developer Stu-

dio and Webots. However, we sought a simulator either free or available at our

laboratory, to which we were familiar with. This way we can avoid further com-

mitment to a software that would not meet our ultimate goals and also shorten the

learning curve associated to working with the new tool. For additional information

regarding available robotic simulators please consult [96] [97] [98].

Upon deciding for the CoopDynSim home made simulator, it was necessary to

become acquainted with the software, understand how was the program structured,

its basic functionalities and finally how could it be customized to include our

robots and environments. We will now explain what was done previous to the

developed work and the basic structure of the simulator which was somewhat

respected throughout the upgrades.

CoopDynSim, or in its extended version Cooperative Dynamics Simulator, is

a robotics simulator developed in C++, originally conceived to emulate multiple

mobile robots or teams of robots in a world with basic obstacle and targets, (figure

5.2). As stated previously each element comprehended in the simulator has a
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graphical representation rendered using OpenGL [99], and a physical counterpart

emulated with Newton Game Dynamics engine [100]. Being a software developed

in the laboratory from scratch, it has a slightly limited user interface and has a

strict number of included robot entities large enough to cover the investigation

needs. However and at the same time, its flexibility to accommodate custom made

components, worlds and third party control applications is unmatched.

Figure 5.2: CoopDynSim interface window (mobile robotic simulator).

The simulator basic architecture can be partitioned in six main cores schemat-

ically related as in figure 5.3.

Starting with Dialog, these classes comprise functionalities and properties that

form the UI. It was created so that the user could easily setup a world with different

objects, targets or robots in specific positions and orientations, and then update

or remove them at will. The main UI window (figure 5.1 or 5.2) displays the

world and allows the user to navigate in all 3 dimensions. However, this window

does not establish any interaction between the user and the virtual world other
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Figure 5.3: Diagram of CoopDynSim basic architecture.

then visualization. It is possible to simulate a world by setting each entity1 to

its assigned position and orientation, or by importing script wise files containing

the information about each object, target and robot. The simulator input stream

recognizes two types of script files:

1. *.world files - specify floor dimensions and each object type, dimension,

position, orientation, color and mass;

2. *.scenario files - sets up a testing environment by specifying targets with

designated colors and positions; robots with a type, name, position, orien-

tation and color respectively; and the world where the simulation will take

place (associated *.world file).

Additionally the UI allows the user to toggle several view options either to

track the robot’s path, see the world axes, display the physical contours of each

element or to show the distance ray of robot embedded sensors.

However, the dialog classes only establish the bridge between the user intentions

and the implemented code. The code that represents and manages all the objects

within the simulator is the Data class, which stands as the CoopDynSim main

core. As the user presses any button in the UI, an associated function from Data
1section 5.1 object, target or robot
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is called. Insert or remove functions call the specific entity’s class constructor

or destructor respectively, while update functions call entity’s class methods to

change its location. Data also includes functions to select the virtual world for

simulation, to manage the graphic/physic threads access to entities and even to

set the graphics refresh cycle as it calls the draw functions for all inserted entities.

The World and all incorporated entities can be break down to a group of Ob-

jects with a 3D graphical representation created from a set of vertices, normals,

materials, etc. and a physical associated shape either represented by elemental

entities (box, cylinder or sphere) or a compound of entities. A physical represen-

tation is associated to a mass, mass distribution, friction coefficients and other

physical properties. When an object is created in the simulator, it is associated to

a memory block that shares both graphic and physic information, which is accessed

in an intercalary fashion, (figure 5.4).

Figure 5.4: Object’s properties in the simulated world.

Each CoopDynSim thread running either physics, graphics or the UI window

threads are independent and managed separately. The graphics thread has an up-

date cycle of 100ms while the physics thread has an update cycle of approximately

116



10ms, since it requires a higher refresh rate. However, both values can be adjusted

to meet the requirements sought for simulation.

Since all entities can be separated in several objects, also the included Robot

platforms are a set of associated objects grouped rigidly or linked through joint

connections that can be actuated at each physics thread update. Being the initial

focus of this simulator mobile robotics, the virtual robots emulated were created

as close as possible to the real ones in terms of dimensions, weights, actuators,

wheels and sensors. The only difference lied in the vision system, which instead of

visually identifying targets through a camera input, the vision simulated module

simply returns the target’s position.

Similarly to other threads, also mobile robot threads are updated regularly in

an interval defined by the developer regardless of having or not a new Commu-

nication event. Each robot instantiated is assigned to a new thread responsible

to update the robot’s modules, according to communication received directives.

Robot classes are implemented as close as possible to their real forms, which means

that its interface follows a server-client model, communicating via a middleware-

layer. This architecture implies that each robot’s hardware module is associated

to a server that communicates to a client responsible for managing the received

information and commanding the respective module, figure 5.5. The robot’s name

should be an unique char sequence as it will be used to identify the module’s server

ports.

Since the communication is simple and abstract, the user can directly transpose

the implemented code from the simulator to a real robotic platform. The abstrac-

tion middleware was implemented using YARP2 [101] an open-source software

library oriented to humanoid robots. It provides a wrapper for the communication

of each API to the control software based on a socket interface topology. To guar-

antee the integrity of the communication, it was devised a protocol that defines the

communication rules between the control application and any hardware module,

simulated or real. The message format is as follows, figure 5.6.

The Error Code is an integer that represents the success or not of the command
2section 5.1 Yet Another Robot Platform
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Figure 5.5: Middleware abstraction layer modularity.

Figure 5.6: Communication message protocol.

sent, while the Text field carries a string type variable. The Command field is an

unique key used for Remote Procedure Call either on the server or client application

as specified by the developer. The message’s numerical data is transmitted through

a M number of integer Parameters and a N number of float Datum. This level

of abstraction permits the communication to be accepted cross-platform using

different languages, attribute that is taken into account and put to use in our

project.

In addition to the standard features referred so far, the simulator also counts

with a playback mode that allows the user to save in a log file the robot’s position at

each iteration as long as the selected scenario. Upon finishing the experiment, the

user can replay or pause the saved simulation with a visual feedback. It provides

a significant help in debugging a control application, specially if there are several

robots or variables updating simultaneously.
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5.2 Adaptation of CoopDynSim

Having as a starting point the CoopDynSim 3D robotic simulator oriented for

mobile platforms, it was not ready yet to test robotic manipulators, even less to

emulate an operating room environment. After selecting the robotic systems to

be tested from the market supply (chapter 3), visiting a Neurosurgery operating

room in Coimbra University Hospitals and attending to a real procedure in the

same room, all the requirements were met to start upgrading the simulator and to

devise a control application.

The objective is to create a virtual environment as close as possible to the

real operating room, with all the equipments included in their right positions and

dimensions, with a physical body associated. Therefore the developer can stipulate

where to place the robot, how the robot should move inside the available workspace,

understand possible motion restrictions and based on this data elaborate the best

possible control solution. Having a visual feedback close to the operating room

also turns the simulator more appealing and provides an extended sense of reality.

5.2.1 Objects and World

In this first subsection, it will be described how were the new simulator objects

created, how were they processed to be included in the simulator, how are they

managed inside the simulator project and summarily depict and list some of them.

As the objects in the virtual world have physical and graphic shape, we started

by gathering 3D models of the equipment found inside the operating room. The

first attempt to obtain these graphical representations lead us to 3D model libraries

like:

• 3D Content Central [102]

• GrabCAD [103]

• RevitCity [104]

Some models found matched the characteristics of the intraoperative equip-

ment, however the medical equipment in the Neurosurgery Service of Coimbra
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University Hospitals operating room had singular shapes not matched by the mod-

els available. In order to create the desired environment, we had to design some of

the medical equipment and furnitures ourselves. Such task was accomplished with

the help of the 3D computer assisted drawing software SolidWorks R� and Deep

ExplorationTM a product by Right Hemisphere.

On our first visit to the neurosurgery service, we were authorized to take mea-

sures of most objects, note the equipment brand and model and take pictures of

the operating room from various angles. The photos taken during the surgery day

served to identify the location of each equipment.

The design of each 3D model followed a more or less extensive sequence of

commands and transformations. Each model was either integrally designed in a

solid works "*.part" file, or divided in elemental components drawn in separate

"part" files and then grouped in an "*.assembly" file. It is common to include in

the assembly, conditions that restrict the interaction between parts. Moreover, in

an assembly file the user can position each part in a desired position and orientation

relative to the Solidworks origin referential, while in a part file the object placement

in the world is defined from the moment it is drawn. This feature comes really

handy, since the object origin in the simulator is the same as in Solidworks.

Several equipment related to the operating room were added (e.g. figures 5.7

and 5.8), to create a virtual environment as close as possible to the real operating

room, and thus have a closer perception of the robotic systems’ performance in a

customized workspace.

Upon finishing the 3D models it was necessary to introduce them in the virtual

world of CoopDynSim. This was achieved by using a conversion tool provided by

Deep ExplorationTM , figure 5.9. The software handles several types of 3D CAD or

DCC files, allows the user to edit the model and export the result into 2D or 3D

supported graphic formats.

The models were exported as OpenGL CPP code files. The converter identifies

and lists all the materials, face indices, vertices and normals contained in a 3D

model. Material is an array of structures each one containing several color/lighting

properties to be emulated like the ambient, diffuse, specular, emission and alpha
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Figure 5.7: Operating Table 3D Model with Stereotactic Frame in Solidworks.

Figure 5.8: Utility Cabinet 3D Model in Solidworks.

or opacity. The objects can also be represented by a texture. Being objects in

OpenGL rendered as a set of triangles, face indices is the bi-dimensional array
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that represents the indices of the vertices to form triangles, while vertices array

defines the position of each vertex and normals array defines the normal vector to

each triangle.

Figure 5.9: 3D model conversion to OpenGL readable cpp files.

The program is structured so each graphical object has its own class, derived

from the CObjectSim base class, (figure 5.10). In its turn the CObjectSim

inherits from:

• COpenGLObject class, responsible for generating the 3D graphical models

within the simulator environment;

• CNewtonGDObject class, where are implemented methods to create or in-

teract with the physical representation of objects;

• CDataLocation2GraphicsAndPhysics class, in charge of managing the object

location information and make it accessible to graphics and physics, while

avoiding conflicts.

The constructor parameters for CObjectSim are, a pointer to the Newton-

World being emulated, a Matrix defining the insertion location of the object in the
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world, a Vector defining the size factor3 relative to the input model, a float value

for the mass and a Vector for the color4. The object creation flexibility, granted

by the possibility to change all these parameters, is particularly helpful when the

user works with basic shapes like boxes, spheres or cylinders. However, since we

are creating a virtual environment comprising objects with custom size and color,

such object classes only require as parameters a NewtonWorld pointer, a location

matrix and a mass value.

Figure 5.10: Simulator architecture on object classes and dependencies. Base

classes, CObjectSim and some examples of derived object classes.

The CObjectSim class has virtual functions common to all the objects, such

as Draw, Release and a pure virtual function Setup. Each object class can either

use the Draw and Release functions defined at the base class, or implement their

own. On the other hand, the Setup function is responsible for setting the object’s

singular graphics and physical representations, which are subjective to each one.

Therefore it needs to be defined for every object. In figure 5.11 it is presented the

surgical lights object, graphical and physical representation by black line contours

that depict the NewtonGD collisions. The physics engine allow the use of boxes,

cylinders and spheres as basic collisions, therefore to create complex physical bod-

ies, the developer needs to aggregate several basic shapes to create a compound

collision as represented in figure 5.11.

3subsection 5.2.1 By X,Y and Z.
4subsection 5.2.1 By RGB(Red Green Blue) standard.
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Figure 5.11: Surgical lights graphical and physical representations.

To create one single collision, the physics engine requires a position, orientation

relative to the origin referential5, dimensions and type of collision. Some of the

created compound collisions have up to 10 basic shapes, which must be altogether

specified for the 65 objects existing in the simulator, currently.

The NewtonGD provides the tools and methods to create physic shapes based

in convex hull envelope approach. Using this functionality would greatly reduce

the developer effort to emulate precise physic shapes, however it would also come

with a large computational expense. Since we are simulating environments with

rather complex objects, the simulator could become slow when running in less

powerful machines. For this reason we did not follow the convex hull functionality.

In terms of visualization, the CoopDynSim UI window navigation tools were

slightly improved. Both rotate and pan navigation were adjusted to be sensitive

to the current value of the Z axis visualization plan, in order to allow a finer and

precise navigation close to objects set in the world floor and to provide quicker

navigation from an higher view to briefly adjust the visualization plan to a de-

termined world coordinate. It was also added keyboard navigation functionalities

with even greater visualization resolution than the previous implemented mouse

events, so the user can combine both input devices to have an intuitive and further
5subsection 5.2.1 This is one of the reasons why the referential should be correctly assigned

to the object in Solidworks (design stage).
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control over the visualization plan and angle.

5.2.2 Manipulator Robots

Being a simulator oriented to mobile robots, we still needed to implement robotic

manipulators to be used in our project. The first task, similarly to the object

creation task, was to find the graphical representations of each robot. Both Abb,

Motoman and Schunk companies made the selected robotic systems 3D models

available at their homepage.

The obtained 3D models, presented in section 4.5 (figures 4.7a, 4.9a and 4.11a),

had every screw, nut, internal parts, wires and other details. Despite being visu-

ally more appealing, the truth is that each detail would hardly benefit the system

simulated performance, while further adding to the computational resources re-

quired to render all details. The 3D robotic models were then modified to remove

superfluous components, leaving only the body structure.

To simulate a robotic serial manipulator each link is an independent object,

linked through simulated joint actuators created by the physics engine. The full 3D

model was split in several links that were posteriorly introduced in the simulator

for which it was assigned a physical body (compound collision). Since we are

working with anthropomorphic serial manipulators, the cylindrical and revolute

joints are emulated using hinge joints from NewtonGD libraries.

Each robot has a robot and a manipulator class. The robot class stands for

the robotic system, so it includes both the manipulator as the robotic base and

is responsible for setting all components and handling the communication. The

manipulator class, includes all the link objects and is responsible to set the position

of each link relative to the robot origin referential and also to define the hinge joints

positions and orientations of rotation along the kinematic chain. When all the links

are correctly positioned and connected through joints. The robots at their home

position look like in figure 5.12.

At this moment the manipulator is no more than a chain of rigid bodies linked

by free, non-actuated joints. In fact the robot’s body could not hold their home
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Figure 5.12: ABB IRB 120, Motoman MH5 and Schunk LWA II assembled in

their home position.

position as in figure 5.12 and would fall right after their placement in the world.

NewtonGD allows the developer to associate to each joint, an user defined callback

that will exert control over the joint and will be updated every physics cycle. As

in real manipulators, the simulated manipulators can be maneuvered through po-

sition or velocity. Each joint callback has a position and velocity control functions,

that receive as parameters the current joint position or velocity6 and the desired

final position or velocity passed by the user, respectively.

Like mobile platforms, also robotic manipulators when inserted in the virtual

world, are assigned to a new thread that runs independent from other threads.

After initiating a thread, the robot is set on a run cycle where it updates its

variables based on external communication. One of the upgrades made to the

simulator was the implementation of signal/wait events, in order to update the

robot variables only when a new communication message was received, instead of

updating it every 50ms. Upon receiving a new message, the robot will check the

communication variables from each module and then update its own objects.
6subsection 5.2.2 In our case, read directly from the physics engine. In real platforms such

information is retrieved from sensors.
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Joint controllers

Real robotic platforms have controllers with embedded control algorithms capable

of moving each joint based in high level commands where the user only needs to

explicit desired positions or velocities for the manipulator to follow. Being the goal

of the robotic simulator to replicate as close as possible the real robot performance,

the virtual joint controllers implemented are responsible to move the associated

joints according to a target position and velocity, passed as parameters. By doing

so, we guarantee that the same communication protocol implemented to control

the simulated manipulators can be ported and used to actuate the real robots.

The hinge joints created using the NewtonGD libraries can only be controlled

by acceleration. Thus, for both the position and velocity controllers, the differ-

ence between the current and desired values must be shortened by changing the

acceleration. Additionally, each joint has a maximum and minimum friction value

associated, which means that the acceleration input is not exactly reflected in the

final joint acceleration.

In light of these system requirements, we chose to implement the position con-

trollers using a PID algorithm, and the velocity controllers using a PI algorithm,

based in Wescott, T. [105]. The control algorithm is the same for every joint,

however each joint has a structure type object associated that keeps the propor-

tional, integral and derivative gains, and also records previous errors. Starting

with the position control function, it receives as parameters the target joint angle

(value_desired), the current joint angle (value) and the joint to be actuated. It is

presented below the pseudocode of the implemented controllers:

function Joint_Position_PIDController(value_desired, value, joint_index):
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error = value_desired - value

P_term = Kp * error

integral = sum_previous_errors + error

I_term = Ki * integral

derivative = error - previous_error

D_term = Kd * derivative

previous_value = value_desired - previous_error

current_velocity = (value - previous_value) / time_step

output_velocity = P_term + I_term + D_term

previous_error = error

output_acceleration = (output_velocity - current_velocity) / time_step

return output_acceleration

Despite being omitted in the pseudocode, the joint_index variable was respon-

sible for accessing the right joint controller structure with the correct gains and

errors. To keep the algorithm simple to read, other details were also excluded in

the example but still used in real code.

One of those details is the limits imposed to the integral term value. We noticed

the sum of errors escalated too quickly as a result of disparity between the error

decrement and the initial error value, which usually exceeded the decrement by

several orders of magnitude. This situation lead to a large overshoot and posterior

instability. Reducing the integral gain to nullify this behavior in all situations

would render the integral term contribution too small, when the error was smaller

or the joint angle was in the vicinity of the target value, regarding the output term.

The solution found was to implement superior and inferior limits, so the integral

term saturates when the initial error is too large, while keeping its contribution
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significant for the final output when the error becomes smaller. We also limited the

number of entries that were summed for the integral value, from all, to the previous

10. The initial differences between the initial joint positions to the desired position,

were relatively large. The cumulative parameter was storing values since the first

instant and those errors affected the arm performance throughout the movement

disregarding how the manipulator was successfully approaching the final position.

Several conditions were also added to the control algorithm so that the joint,

velocity and acceleration limits (tables 4.1, 4.4 and 4.7) of the selected manipulator

would not be crossed.

The proportional, integral and derivative gains were manually tuned based in

the methodology presented in [105]. Although real robots have different controller

parameters for each joint, the information provided by the robot manufacturers

fail to mention this details. In the absence of a better approach and facing the

positive feedback of the adopted solution, the controller gains were set equally to

every joint.

The velocity controllers are implemented similarly to the position controllers,

the only differences reside in the use of desired and current velocities instead of

joint angles, and the controller is a PI type. The derivative component was taken

since the signal had some noise. While in the position control, it is rather easy to

stop the joint from exceeding their angle limits by simply introducing a condition,

in velocity controllers, this task gets more complicated since the control is based on

velocities. The solution found was to pass the current joint angle as a parameter,

and if the angle was within a certain range from the angle limits, the joint would

respond normally to the controller whether if it was outside the range, it would

stop. To assure that the joint stops before the limit, the condition was set for a

slightly inferior range compared to the joint limits imposed. In some cases, the

joint angle would be within the allowed limits, but violating the range imposed

in this condition, which would stop the joint movement, even if the velocity was

set in the opposite direction of the limit. To compensate for this exception, we

added an alternative condition that would allow the joint to move if the signal of

the current angle, was inverse to the signal of the velocity, figure 5.13.
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START

READ 
CurrentVelocity
DesiredVelocity

CurrentAngle

Yes

END

PI Controller

RETURN 
Acceleration

Acceleration =
(- CurrentVelocity / 

timeStep)

No
IS CurrentAngle within (Joint 

Limits - 0.2 rad) 
AND

IS (CurrentAngle*
DesiredVelocity) < 0?

Figure 5.13: Flowchart of a velocity controller callback function.

The velocity proportional and integral gains, were also set using the manual

tuning method [105]. We chose not to share the gains for each joint, since they are

not the closest choice to the real system, nor totally reliable in terms of precision

for the sake of our project. This is not considered to be a major problem, since the

real robotic manipulators have optimized controllers with guaranteed precision and

repeatability standards. One the other side, the implemented simulator controllers

fulfill their duty to provide a reasonable precision, so the user can grasp how the

robot will behave, how should it fit inside the operating room without conflicting

with the intraoperative equipment and medical team and how should it be used

in an assistive context in DBS surgery.
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NewtonGD limited angle range

One of the problems that appeared along with the control code implementation had

to do with the limited range ([�⇡, ⇡] radians) of how the physics engine deals with

angles. Since the joint angles can go in some cases beyond ±2⇡ radians without

overcoming the joint limits, when it went past the [�⇡, ⇡] radians range, the current

joint angle would go from �⇡ to ⇡ radians and vice-versa. These discontinuities

would result in a sudden peak on the difference between the desired and current

angle, which would lead to an unstable behavior of the manipulators within the

simulator. The easy solution to deal with this problem was to convert the desired

joint angle into an angle within the ([�⇡, ⇡] radians) range. But, by doing so we

would be reducing all the joint’s range to this interval and consequently alter the

robot’s performance. We had to find a way to adapt the NewtonGD angle range

to [�2⇡, 2⇡] radians, at least7.

Since this problem only occurs when the desired joint angle goes past [�⇡, ⇡]

radians and since the angle value read from the physics engine is updated at each

iteration, we set a condition to trigger when the joint desired value transposes ±⇡

and when the absolute value of error overcomes 1.9⇡. Then, if the joint current

angle is positive, on that physics cycle we subtract 2⇡ to this value whereas if the

it is negative, we add 2⇡. Considering the maximum velocity allowed for joint, the

controller response time and the frequency of physics update, we know that when

the joint overcomes the angle range set by NewtonGD, the error would be inferior

but close to 2⇡. If we had chose an absolute error value of 2⇡ instead of 1.9⇡ the

condition would only trigger when the current joint angle was coincident with the

desired value, thus not giving enough time for the controller to respond, (figure

5.14).

7subsection 5.2.2 Only the 6th joint limits from the ABB IRB 120, slightly overcome

[�2⇡, 2⇡] radians range. To brief the problem the limits of this joint were shortened to [�2⇡, 2⇡].
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START

READ 
CurrentAngle
DesiredAngle

IS |Error| > 1.9π  AND 
|DesiredAngle| > π?

IS CurrentAngle > 0?

Yes

END

PI Controller

RETURN 
Acceleration

No

Error = 
DesiredAngle - 
CurrentAngle

NewCurrentAngle =
CurrentAngle – 2.0π

NewCurrentAngle =
CurrentAngle + 2.0π NewError = Error

Yes No

NewError = 
DesiredAngle - 

NewCurrentAngle

Figure 5.14: Flowchart of method to extend NewtonGD range from [�⇡, ⇡] to

[�2⇡, 2⇡] radians.

Communication

The robotic manipulator communication was devised using the same standards as

mobile robots, which were already established in CoopDynSim. Based on YARP,

we created a communication class for each manipulator module: actuated joints,
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end-effectors and surgical plan.

The communication classes emulate the server that receives and stores or replies

information from the client via a message protocol (figure 5.6). The information

received can be handled by reply or process methods, depending on whether it is

expected the server to provide feedback or not, respectively. On the server side,

the client commands can either be an information request or simply a directive

to exert control over the simulated elements. In both cases it is used the reply

over the process method, because even outside the commands that request feed-

back, the simulator will return a response concerning the successful delivery of the

instruction or not and why.

Regarding the joint actuator module, the server recognizes commands for:

• ARM_GET_NJOINTS to retrieve the number of joints of the manipulator;

• ARM_GET_ANGLE to set the desired joint angles for each actuator;

• ARM_SET_ANGLE to retrieve the current joint angles from each actuator

of the manipulator;

• ARM_GET_VELOCITY to set the desired joint velocities for each actua-

tor;

• ARM_SET_VELOCITY to retrieve the current joint velocities from each

actuator of the manipulator.

Despite having the same structure, the message carried differs depending on the

command. The Error code, Text and Command variables (figure 5.6) are always

present in the message, the integer and float variables might or not be included and

can vary in number. When the client sends GET_NJOINTS, the server returns

the number of degrees of freedom as an integer variable. When the client sends

GET_ANGLE or GET_VELOCITY commands, the server returns a vector of

floats with the joint angle or velocity of each joint with the size corresponding

to the number of joints. The SET_ANGLE and SET_VELOCITY message is

defined so the user can selectively actuate in different joints. The message integer

variables carry a vector with the indexes of the joints to be actuated; the float

variables carry the desired joint angles or velocities of the correspondent joint

indexes. Example following the protocol established (figure 5.6):
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Message = (0, "Send Desired Joint Angles", 7604, 3, [1,3,5], 3, ...

[1.047, 0.524, 0.785]);

If the example message was sent, the robotic manipulator 1st, 3rd and 5th

joints would be moved to 1.047 rad, 0.524 rad and 0.785 rad respectively. When

a communication event is signaled, the message updates the server desired values

(joint angles or velocities) based on the client message, while the server current

values (joint angles or velocities) are refreshed based on the robot classes. The

robot class is then responsible to pass the desired and current values to their

actuator’s callback functions, so the physics engine can move the selected joints.

The other modules will be addressed in the End-effectors and in the Surgical

plan subsections below.

End-effectors added

One of the most desired features in CoopDynSim, was the possibility to add and use

robot operative oriented end-effectors8 in the manipulators. The robotic system

as idealized for neurosurgeon assistance is expected to be able to change its end-

effector instrumentation during the procedure, without the need to recalculate the

robot’s position. In light of this feature we also developed the simulator towards

the capability to change its end-effector on robot instantiation and during runtime.

The robot can either be used to lower the medical instrumentation itself using

Differential kinematics or be used to simply orient the instrumentation for the

neurosurgeon to move it along the defined trajectories. However, in simulation

there is no human to move the surgical tools, so we implemented the end-effectors

as rigid bodies and as 1 DOF slider actuators. It was created a passive end-effector

for instrument orientation (figure 5.15a), an actuated end-effector to simulate the

guidance of a probe (figure 5.15b) and another active end-effector to simulate a

trepan instrument (figure 5.15c).

Like any other operating room objects inserted in the virtual world, we started

by creating the 3D models and including them in the simulator as standard objects.

8subsection 5.2.2 which we will henceforth, simply refer as end-effectors
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(a)

(b) (c)

Figure 5.15: Robot end-effectors.

The guiding end-effector (figure 5.15a) was the easiest to implement, since it is a

static single object that should only be positioned and attached to the last robot

link. The actuated end-effectors implementation involve NewtonGD slider joints,

to displace the surgical tools relative to the end-effector body attached on the

robotic arm. Similarly to the robotic arm joints, a callback function was assigned

to the slider, which in its turn calls a controller function based in a PID control.

The controller receives the current and the desired position of the slider, and

iteratively manages the acceleration of the joint until both positions are coincident.

The control algorithm is the same used for the manipulator joints.

Updating the end-effectors during run-time was a challenging task since it

involves several program cores: the Dialog where the user selects the end-effector,

Data that links the dialog interface to the robot’s class, Robot where the end-

effector is actually attached to the robotic arm and the Communication classes
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responsible for handling the client commands towards end-effector maneuvering.

If the end-effector was attached when the robot is instantiated, the end-effector

position relative to the robot would be always the same, since the robots are

inserted in their home position. However, the position to attach an end-effector

on the manipulator’s last link during run-time is dependent on the current robot

body configuration.

When the end-effector is instantiated, it is possible to specify a transformation

matrix to define the position and orientation of the object insertion. To calculate

this matrix, we started by obtaining the location of both the last (pn) and the sec-

ond last link (pn�1) from the manipulator class. With both positions we computed

the coordinates of the vector that passes through both points and normalized it

(v̂) .

v̂ =

pn � pn�1

kpn � pn�1k
(5.1)

The coordinates to place the end-effector (pe) are also dependent of the distance

from the last link referential to its outer limit where the end-effector is attached.

This distance is represented by Ln,

pe = (v̂ ⇤ Ln) + pn (5.2)

The orientation to attach the end-effector is the same as the last link one.

On the communication side, the client only has 3 commands to interact with

the simulator on the end-effector module:

• ARM_GET_ACT_TYPE to retrieve the type of the end-effector currently

attached to the manipulator;

• ARM_GET_ACT_DIST to retrieve the current end-effector slider position;

• ARM_SET_ACT_DIST to set the desired end-effector slider position;

The end-effector type is sent in the message as code integer value: 0(none), 1

(empty), 2 (probe) and 3 (trepan). The current and desired distance for the end-

effector slider actuator is a continuous number and thus is passed as a float value.
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Surgical plan

It was developed a new feature that allows the user to visualize the preoperative

directives inside the simulated room, namely the target to be stimulated and the

trajectory through which the instrumentation must descend. The robotic simu-

lated system at this point was capable of maneuvering based on position or velocity

directives, hold different end-effectors, follow trajectories and reach target points.

However, the visual sense of the robot moving in the virtual world was not enough

to evaluate how the manipulator was behaving relative to the preoperative plan.

The idea was to create basic shapes without a physical body in the virtual world

to represent the preoperative coordinates, to see how was the instrumentation

befitting the planned trajectories and also to facilitate the debug process of the

control algorithms. The target to be stimulated was marked as a red sphere while

the trajectory to be followed was depict as a green thin cylinder of fixed dimensions

having one of its tips coincident with the target and the other 45 centimeters away

from the target along the trajectory vector, (figure 5.16). Both entities were design

with transparency, so the user could visualize the instrumentation passing through

the trajectory or reaching the target.

In terms of implementation, these targets were designed in Solidworks and the

resulting 3D models introduced in the simulator. The target and trajectory classes

derive from the CObjectSim, however since these shapes do not have a physical

representation, the Draw, Release and Setup methods had to be reimplemented

instead of using the ones from the base class. Neither the Setup nor Release func-

tions have any reference to the physical engine, so they only generate/destroy the

graphical representation. The Draw function is very similar to the CObjectSim

one, however it does not have the possibility to draw the physics contours.

Starting with a single preoperative directive of a target position (ptar) and an

entry position (pent) from the imaging system, the simulator was expected to place

both surgical plan entities (target and trajectory) according to these coordinates.

We started by positioning the center of the target sphere at the target location

specified. Since the trajectory cylinder had its origin frame at the center of one
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Figure 5.16: Probe end-effector guided by the MH5 robotic arm towards a sur-

gical target.

of its bases, we placed the cylinder base coincident to the target position. The

trajectory orientation is defined by a vector (u) created from the target to the

entry point and not on the contrary, because one base of the trajectory cylinder

must be coincident with the target instead of the entry point9.

u = pent � ptar (5.3)

The final trajectory orientation is the rotation matrix that places the trajectory

z-axis collinear to u, being z-axis the axis along the cylinder’s height, (refer to the

left and center subfigures of figure 5.19). We calculate this rotation matrix based

in 2 consecutive rotations, firstly around the z-axis and the secondly around the

x-axis. The first rotation around z-axis, places the trajectory x-axis collinear to

a vector (w) that is normal to both the world z-axis and to u. This step will

guarantee that the posterior rotation around the x-axis can place the cylinder z-

axis straight with u. Being ẑ the unit vector [0, 0,�1], the vector w is given by

9subsection 5.2.2 The entry position can have difference euclidean distances from the target,

but the trajectory graphical representation has a fixed length of 45 cm
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the cross product:

w = ẑ⇥ u (5.4)

With the resulting vector, the desired angle for the initial z-axis rotation is given

by the arc tangent of the y and x components of the w:

✓ = � arctan2(wy,wx) (5.5)

The second rotation angle, around the new x-axis, should be:

� = arctan2

✓q
(ux)

2
+ uy)

2,uz

◆
(5.6)

Since the trajectory is a cylinder, the rotation can be made in 2 steps and thus

the  angle is kept 0. With the rotations along each axis, the rotation matrix for

the trajectory is provided by simply pre-multiplying the Roll-Pitch-Yaw matrix.

Hence, when the user inputs the target and entry coordinates, the surgical plan

class will generate the correspondent target and trajectory marks in the virtual

world, figure 5.16.

The preoperative information can contain coordinates for several trajectories.

The end-user will be interacting with the virtual world through the client control

application. The client program has a manageable list that contains all the surgical

entities represented in the simulator. Each surgical entity is handled in the client

and by the communication as a vector containing the coordinates of target and

entry points. Through the client, the user can add, remove single entities or the

entire list, additionally the user can select one surgical entity from the list.

Since each entity is represented by a target sphere and a trajectory cylinder,

when the user is working with multiple entities at the same time it can get a little

confusing. With the select function, only the selected entity trajectory is shown

while all the others are omitted, except for the target marks which are always

visible (see example with 2 entities and only one selected in figure 5.16). It is also

provided the option for the user to reveal all the entities again.
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The surgical plan together with the joint and end-effector modules, form the

communication supported for manipulators, towards a surgical assistive role. Like

the joint and end-effector modules, also the surgical plan, is associated to a

robot instance whose variables are updated when a communication event is re-

ceived/triggered, during the robot running cycle.

In the simulator code, the surgical plan is represented by a structure that stores

a vector with information relative to each entity, namely: i) the entry and ii) target

coordinates, iii) a flag that indicates whether the entity is selected or not and iv)

an unique ID that identifies each added entity.

The communication commands that establish the link between the client and

server applications are as follows:

• ARM_SET_SURGICAL_PLAN to set the entire surgical plan entities co-

ordinates;

• ARM_SELECT_SURGICAL_PLAN_ENTITY to select one entity from

the surgical plan, and hide the others;

• ARM_ADD_SURGICAL_PLAN_ENTITY to add a surgical plan entity

to the existing ones;

• ARM_REMOVE_SURGICAL_PLAN_ENTITY to remove a surgical plan

entity from the list;

• ARM_REMOVE_ALL_SURGICAL_PLAN to remove the whole surgical

plan;

• ARM_SHOW_ALL_SURGICAL_PLAN to show all the surgical plan en-

tities trajectories;

Starting with the SET_SURGICAL_PLAN, the message from client has 1

integer value that counts the number of entities sent and a continuous vector of

floats for all the entities, which concatenates groups of 6 values that stand for the

entry and the target coordinates. The simulator goes through each set of 6 values,

adds the first 3 to the entry coordinates variable and the other 3 to the target

coordinates, sets the current ID to the read entity and increments the global ID for

the next entity, and sets the trajectory flag as selected. In the SELECT_ENTITY
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command the client sends the index of the entity to be selected as one integer

value. The simulator module upon receiving the message will go through the

vector of entities and set the select flag value to 0 in all elements except for the

index indicated in the message. When drawing each surgical plan entity, the

simulator will check if that entity is selected or not and draw the trajectory when

the condition is met. In a ADD_ENTITY command message, the float parameters

include 6 values that represent the entry and target coordinates, which are added

to the surgical plan vector in a similar fashion as the command to set the whole

surgical plan. In the REMOVE_ENTITY command it is specified the index of

the entity to be removed while in REMOVE_ALL command, all the entities are

removed. When the command SHOW_ALL is received the selected flags of each

entity are toggled to 1.

5.3 Controller Interface

Having built the simulator basis and upon establishing the communication proto-

col, we headed to develop the control application. This application is expected to

establish a communication link with the simulator or an external device, to con-

trol virtual or real robots via different kinematic approaches, introduce and set the

surgical plan, manipulate actuated end-effectors and to provide online information

back to the user about the robots.

The need to quickly develop an application where it was possible to promptly

implement, test algorithms and scrutinize data, with further abstraction from com-

puter domain drove us to pick a high-level language. Aside from the need to

easily create customized UIs, the other programming language’s pre-requisite is

the ability to support and call YARP library, which is responsible for setting up

the client-server communication. Being YARP a C/C++ based project and due

to the high portability and wide reach of the language it can be used in several

programming languages through the interface compiler SWIG10, among others:

• Java
10section 5.3 http://www.swig.org/
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• PERL

• Python

• C#

• MatLab (via Java)

SWIG is responsible for generating wrapper code that higher-level/interpreted

languages require to access and use underlying C/C++ code.

Upon evaluating the possibilities and regarding the acquired knowledge and

previous experiences, we selected MatLab as the implementation language. It

rounds up all the sought characteristics, which makes it a perfect platform to de-

veloped at least the initial approach towards a final control application solution.

Furthermore, MatLab was the language suggested to develop the control appli-

cation by the medical team involved. The process of porting YARP to MatLab

followed, can be referred at:

1. http://eris.liralab.it/wiki/Calling_yarp_from_Matlab

2. http://eris.liralab.it/viki/images/6/63/Yarp4Matlab.pdf

After importing the shared YARP library and the generated classes to MatLab,

the following step was to implement a class capable of managing the communi-

cation events on the client application side, named YarpClient. This class con-

structor loads the YARP library, initializes the Network class responsible for ma-

nipulating the YARP network including initializing and shutdown, sets the client

port, initializes the carriers of messages ("bottle" objects) and defines several flags

that indicate whether the client port is opened and connected. The YarpClient

class has methods for connecting the client device to another device through the

network, several methods to send information (with, without and ignoring the re-

ply), a method to close communication, a network check function and accessors to

change the devices names.

With the client-communication interface implemented, we started developing

the client application. Since the application revolves around an event driven UI, its

core ends up being the function and figure files of the UI. The program structure

is composed by various functions and classes, that can be summarily grouped
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in central cores depicted in figure 5.17, which will be described in the coming

subsections.

User Interface

Client_DBS

Client_Communication

YarpClient

Client_Robot Kinematics

Utilities

Figure 5.17: Diagram of Control Application basic architecture.

5.3.1 Utilities

The core entitled "Utilities" (see figure 5.17) is independent from all the others

and most of its implemented functions are recurrently used across the application.

It gathers a set of isolated tools that fulfill general and basic duties, to make the

code simpler and easier to read.

Among the files we can find methods to convert from the Roll-Pitch-Yaw values

to the rotation matrix equivalent and vice-versa, to compute the transformation

matrices from Denavit-Hartenberg parameters, to calculate the transformation

matrices from the surgical referential to the robotic base referential and also from

the tip of the manipulator last link, to the tip of the end-effector. If the end-effector

is an actuated device, the transformation is updated at each iteration according

to the displacement of the instrumentation.

One fundamental issue with surgical manipulator robots on mobile platforms

is the ability to firmly attach its base and grasp its position relative to the surgical

referential, relative to which all intraoperative process is planned. In spite of not
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having developed any procedure to retrieve the surgical referential relative coordi-

nates, we still implemented the function to calculate the resulting transformation

if the coordinates were known. With this transformation the user can coordinate

the robot actions, and understand its position relative to the surgical referential

instead of its base referential. The same can be said for the end-effector instru-

mentation, the transformation matrices calculated allow the user to understand at

each moment the position and orientation of the tools instead of the arm. With

these, we can isolate the robotic control from the operating room positioning and

end-effector used.

5.3.2 Kinematics

The Kinematics core rounds up a set of functions distributed by several files that

include the geometric and differential kinematic functions, the full Jacobian com-

putation method and also some cost function algorithms for optimal arm posture

for each manipulator included. The kinematic equations presented along chapter 4

are implemented in these methods, always taking into account each robot’s specific

features also described in chapter 4. Before looking with detail at the developed

algorithms, it is important to refer that the kinematic methods implemented are

rather similar across the different robots. In order to avoid an extensive and

repetitive descriptive process for all the robot types, we chose to present the basic

algorithm and highlight only the differences.

Implemented Geometric Direct Kinematics

The geometric direct kinematics function expects as parameters Client_Robot ob-

ject containing specific characteristics of each robot, the current joint angles, the

surgical reference frame11 to the robotic base reference frame12 and the manipula-

tor’s last link to the end-effector tip transformation matrices. It returns a vector

with the position and orientation of the current end-effector relative to the surgical

11subsection 5.3.2 henceforth, referred as surgical frame
12subsection 5.3.2 henceforth, referred as robot base
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referential. The Denavit-Hartenberg values are accessed through the Client_Robot

object and the joint displacement variables (✓1, ..., ✓n) associated to the current

joint angles, see table 4.3, 4.6 and 4.9.

According to equation 4.26, one can express the transformation from the ma-

nipulator base referential to its last link (0Tn) as the product of transformations

from link to link taking into account the robot’s singular dimensions.

Each link to link transformation is computed using an Utilities function that

receives the Denavit-Hartenberg and returns the correspondent transformation.

After multiplying the matrices, the resulting manipulator position and orienta-

tion alone can be calculated using equation 4.3. To obtain the final end-effector

transformation relative to the surgical frame, the surgical frame to manipulator

base (bT0) and manipulator’s last link to end-effector’s (nTe) transformation are

needed:

b
Te =

b
T0

0
Tn

n
Te (5.7)

From the resulting matrix the user can retrieve the end-effector position coor-

dinates (4.24) and a rotation matrix to be converted to Roll-Pitch-Yaw parameters

using the Utilities tools.

Implemented Geometric Inverse Kinematics

The geometric inverse kinematic function receives as input a Client_Robot object,

the desired final end-effector position and orientation (bTe), and the transformation

matrices: from the end-effector to the manipulator’s last link (eTn) and from the

robot base to the surgical frame referential (0Tb) . It returns a set of possible arm

configurations as vectors of joint angles, that enable the end-effector to reach its

target.

The first step of this function is to transform the desired position and ori-

entation into a matrix shape. Following the same philosophy as for geometric

direct kinematics, it is expected that provided position and orientation would be

relative to the surgical target and to be achieved by the end-effector. These coordi-
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nates passed as parameter need yet to be be translated to the robotic manipulator

space, which is accomplished by multiplying the (0Tn) with the transformations

also passed as parameters:

0
Tn =

0
Tb

b
Te

e
Tn (5.8)

With the manipulator desired position and orientation (0Tn), the geometric

inverse kinematics inverse algorithm is presented in figure 5.18. Following the

algorithm presented in chapter 4, we start by calculating the wrist position for a

given orientation, equation 4.29. Then the program does an initial check, to assess

whether the wrist position can be reached by the lower arm or not. If the condition

fails, the algorithm stops and instead of possible joint angle solutions it retrieves

an error code to notify the user for the fact that the target position falls outside

the robotic manipulator workspace. If the position is reachable, the algorithm

tests every combination of the 4 possible configurations, (see equations 4.35 and

4.40) which will be latter subjected to a selection criteria to decide which robot

configuration to chose. The rest of the algorithm presented in chapter 4, is strictly

followed and implemented using standard geometric and algebraic tools, since the

computation of the inverse kinematics for the arm to solving the spherical wrist

coordinates. In the end, the joint angles vector solution is tested to check whether

any joint limits are violated, and only viable solutions are returned.

The only significant different between the implemented algorithm and the the-

ory equations resides in the fact that similarly to real robots, the simulated systems

do not have infinite precision. In conditions where a variable was checked to have

a specific value like 0 or ⇡ (equations 4.31 or 4.41), we had to set the condition to

trigger when the variable was within a short range (±0.01rad) of the limit value.

The cost function sets the criteria to distinguish the best arm configuration

for the desired target among all the possible solutions. As stated previously, the

selection condition is biased by the premises of avoiding collision to intraopera-

tive elements and having the smallest joint displacement relative to their home

position, situation in which the joints are considered to achieve their maximum
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Figure 5.18: Geometric Inverse Kinematics generic algorithm.

precision. We started devising the collision detection algorithm, but the complex-

ity of the problem regarding a dynamic environment and time limitations rendered

the solution unfeasible in this dissertation. Nevertheless, we will describe an ini-

tial approach and the main ideas towards a solution in subsection 5.3.7. To avoid

hazardous interactions between the robot and the surgical team or other surgical

equipment, we will initially rely in a weighted spatial placement of the manip-
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ulator. Therefore the cost function implemented only focus the principle of the

smallest joint displacement relative to their home position. Being (q) a vector of

joint angles from the k number of solutions, the initial cost function approach was,

C = min

i=1,2,...,k

DOFX

n=1

qi(✓n) (5.9)

The inverse kinematics function for the 7 DOF arm, is slightly different since

besides the end-effector expected position and orientation, the function also ex-

pects the arm plane angle (↵), (refer to chapter 4 section 4.3.2). The geometric

inverse kinematics function starts by converting the desired coordinates for the

end-effector relative to the surgical referential to the robot space coordinates (from

robotic base to the tip of its last link), (see equation 5.8). The algorithm presented

in chapter 4 was thorough followed to retrieve the final joint angle displacements,

(see figure 5.18).

However, the algorithm presented was developed considering the arm to be

placed along the negative y-axis, whereas our solution is drafted accounting that

the manipulator is placed with its shoulder along the positive z-axis. To bypass this

problem, in addition to the initial transformations to the parameter coordinates,

we added on further transformation to account for the base referential rotation.

One might wonder why not to develop a solution according to the expected robot

placement. The fact is that the actual Schunk LWA II arm in our laboratory,

used for testing, is mounted in the position depict in figure 4.5, and the kinematic

functions for this configuration were already implemented by [91]. By simple

adapting the base referential we can reuse the developed code to our solution,

and easily manage/remove this transformation to test our solution with the actual

mounted robotic manipulator without further coding.

In the end, the inverse kinematics returns the possible joint angle solutions

(at most 4) for a specified end-effector position, orientation and arm plane angle

(↵). The cost function besides selecting the lowest sum of joint angles among

the solutions, also simulates the geometric inverse kinematics for all the possible

arm plane angles. By iterating the arm plane angle value, one can explore other
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manipulator configurations and perhaps find possible or better solutions. For

each arm plane angle value, the geometric inverse kinematic function needs to run

again, so there is a tradeoff between the arm plane angle iteration step and the

computational demand/time. After some empirical experiments, we converged to

an iteration step of 5 degrees and therefore 72 cycles.

In 6 DOF manipulators, the k number of solutions is at most 4, while in

7 DOF the number of solutions can ascend to 288 (5.9). In the end, only the

possible solutions that fit within the joint limits are considered as viable, and from

the selected group the one with the lowest joint angle displacement sum will be

chosen, equation 5.9. If there is no solution, the control UI notifies the user.

Implemented Differential Kinematics

Since our differential kinematics method is based in the Analytical Jacobian, the

first step is to compute the Jacobian matrix that establishes the relation between

the joint velocities and the end-effector linear and angular velocity. To build the full

jacobian matrix given by 4.56, we first need to calculate the transformation from

the base of the manipulator to its end-effector, and each partial premultiplication

matrix from the base to each manipulator joint13.

The Jacobian function receives as parameters a Client_Robot object, the cur-

rent joint angles, the transformation from the robot to the end-effector (or vice-

versa if we are dealing with direct kinematics) and a flag vector variable to enable

or disable control over specific linear or also angular velocities components. By

accessing the Client_Robot object and adding the current angles to the Denavit-

Hartenberg parameters, we stored each transformation matrix from link to link.

With each separate matrix it was possible to briefly compute the transformation

from the base to the end-effector, by premultiplying all, but also to compute each

partial cumulative premultiplication matrix used in the Analytical Jacobian. With

both these matrices we can compute the Jacobian following the expression 4.56 in

chapter 4 section 4.4.1.
13subsection 5.3.2 (Example) The partial premultiplication matrix from the base to the 3rd

joint would be: 0T3 =

0 T1
1T2

2T3
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The differential direct kinematics can be computed by multiplying the resulting

Jacobian matrix with the current joint velocities (equation 4.54), to obtain the

cartesian and angular velocities. On the other hand for the differential inverse

kinematics, the required joint velocities can be computed by multiplying the inverse

Jacobian matrix with the desired velocities vector (equation 4.58). The differential

inverse kinematics function, returns an error code and a vector of each joint velocity

if the error code returns null (success). The error code identifies whether the

result is approved, if the manipulator has reached a singularity or if the output

joint velocities cross any manipulator velocity limits, for which cases the returned

velocity is ignored.

There is however a slight difference in the algorithm for the 7 DOF manipulator

in the differential inverse kinematic function only, because its Jacobian matrix is

not square shaped. Therefore, we resorted to the solution described in chapter 4,

where we used the right pseudo-inverse calculated as in equation 4.60, in this case

the each joint velocity is computed following the formula 4.61.

5.3.3 Client Robot

The UI file function called immediately after the pre-generated initialization code,

also known as the dialog create function is in charge of initializing all the classes

and global variables. Since the control application is expected to control several

types of robots with different features and dimensions, this starting function calls

an initialization script file created to set all the specific characteristics of each

simulated manipulator. This file is called whenever a new UI window is opened

and instantiates the 3 types of Client_Robot objects used throughout the pro-

gram (Abb IRB 120, Motoman MH5 and Schunk LWA II), and all the associated

information required for the developed control algorithms.

In the initialization script file the robot name and type are specified at the

constructor stage. Afterwards the number of joints, manipulator physical dis-

tances between links, joint, velocity and acceleration limits and Denavit-

Hartenberg parameters are also assigned. After fitting all the properties to the
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associated robot types, a vector of robot objects is dispatched to the UI function

handles to be accessed by callbacks or other classes.

The Client_Robot class properties have private "set" privileges and public

"get" access privileges, so the script file instantiation had to resort to accessor

methods. Aside from the properties previously referred, the class also includes the

offset, variable that saves the offset from the origin joint position to the used home

configuration joint position; the transformation matrices from the manipulator’s

last link to the end-effector tip, and vice-versa; and the transformation matrices

from the surgical referential to the robot base and vice-versa.

The class has a method to check the joint limits that receives as parameters

the target joint values and checks whether they overcome or not the specific limits

for the current robot type. The class has the geometric direct kinematics, inverse

kinematics and differential kinematic functions that in their turn call the function

associated to each type of robot. So when the instantiated robot is selected in the

control application the same function can be used to control any of the included

manipulators.

5.3.4 Client Communication

The communication class works as an additional layer to smooth data transition

from robot oriented commands to abstract communication, YarpClient. It has

several properties of private "set" and public "get" access. The Client_ Commu-

nication class stores information about the server port and client port, has a

variable to account for the state of connection and communication (providing the

information to the user by an UI field). Regarding the communication details, it

keeps track of the desired and current joint angles and joint velocities, end-effector

type and displacement.

The class has implemented methods for standard connect and disconnect events,

and functions to send the desired joint angles, joint positions and end-effector

displacement. All functions receive as parameters the desired values, which are

verified to check whether the values fit in an acceptable range and if the number
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of parameters is correct for the selected robot, before sending them to the server.

Also the commands to retrieve information from the server, such as the current

joint angles, joint velocities, end-effector displacement and type have protection

conditions responsible for doing a quick check on the variables received. The com-

munication class is also responsible for managing and sending to the virtual world,

the surgical plan directives. It has implemented methods for sending, removing and

showing the entire surgical plan, and singular commands for inserting, removing

and selecting a surgical plan entity (target and trajectory).

In the UI function, a communication object is associated to each device (joint,

end-effector control and surgical plan management), thus making the code more

perceptible and easier to restructure. This communication classes are instantiated

at the dialog create function, immediately after initializing the robot classes.

5.3.5 Client DBS

This class has variables and methods associated to intraoperative information and

intends to be an initial approach to some basic robot functionalities towards an

assistive intraoperative role. Once this class is instantiated, a key procedure

number variable is associated so that each surgery is an unique event. The

Client_DBS properties include a target and entry position variables used for

trajectory addition to the surgical plan, the current selected trajectory along which

the manipulator should move, the desired initial distance from the tip of the

end-effector to the entry point. Additionally, the class counts with an increment

distance variable that controls the distance to be covered by the end-effector at

each descending or ascending movement within the selected trajectory. Another

class property is the control type which allows the user to either move the end-

effector by commanding the robot arm through velocity commands or by moving

the end-effector instrumentation alone. Lastly, the class stores the surgical plan,

which is no more than a list containing the surgical entities that can be manipu-

lated through the UI and have direct impact on the surgical plan generated at the

virtual world.
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Among the implemented methods we can find, a trajectory generation that

from entry (pnet) and target (ptar) coordinates is able to generate an unit vector

to define the tridimensional direction of the trajectory (v̂).

v̂ =

ptar � pent

||ptar � pent||
(5.10)

It has some surgical plan manipulation functions and a method to generate the

manipulator target position and orientation when provided the selected trajectory

and the starting distance to the entry point. The desired position (pd) is easy to

calculate, by subtracting the starting distance (Lsd) from the entry point along

the selected trajectory.

pd = pent � Lsd ⇤ v̂ (5.11)

The orientation however is a bit more complex to define, since the trajectory and

instrumentation is cylindrical it only requires 2 orientation coordinates to be de-

fined. Thus the robot end-effector can positioned concentrical to the trajectory at

the desired cartesian coordinates with its last link revolving 360 degrees perpen-

dicular to the trajectory.

To find the orientation, we followed the method one described in the Surgical

plan subsection 5.2.2. However, the algorithm described only computes the initial

✓ and �, thus positioning the end-effector z-axis concentric to the trajectory, left

and center subfigures of figure 5.19. The end-effector can rotate along the new

z-axis while still being collinear to the desired trajectory, therefore exploring new

approaches for the manipulator using the Euler Angles Z-X’-Z” notation, figure

5.19 (right subfigure).

To explore all the possible orientations and after calculating the initial angles,

we proceed to multiply the initial rotation matrix with a posterior rotation matrix

around the new z-axis. The angle of rotation of this latter matrix should cover

the [0, 360o] with an iteration step of 5 degrees15. We started by gathering all the
14subsection 5.3.5 Free licensed media from Wikimedia Commons, with the authorship of

DF Malan and edited by C. Faria http://en.wikipedia.org/wiki/File:EulerG.png

15subsection 5.3.5A lower iteration angle means that the best result can be closer to the
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Figure 5.19: Euler Angles Z-X’-Z” convention14.

possible end-effector position and orientations. The geometric inverse kinematics

is run for each solution to identify the feasible ones, which are later added to a

new vector.

This new vector of only possible solutions is then submitted to a selection

criteria, which was originally defined to achieve the least joint displacement from

their home position (5.9). After some trials where the robot was expected to

position along a desired direction, we realized that in several cases, the arm posture

either obstructed or hindered the access to the instrumentation. Most of the time

this was caused by a eccentric position of the wrist revolute joint (see figure 4.1f)

commonly the penultimate joint. Based on the visual feedback, we changed the

cost function, so the penultimate joint had the least displacement, eq 5.12 (where

i is the index of each of the k solutions, and n � 1 is the penultimate index of

number of joints).

C = min

i=1,2,...,k
qi(✓n�1) (5.12)

By doing so, we are forcing solutions where the wrist revolute joint displacement

is minimum, which also generates more natural postures and facilitates the access

to the end-effector instrumentation, see example in figure 5.20.

optimal solution, however having a smaller step means more cycles and thus a greater compu-

tational demand. For such reason and after some tryouts, we decided that the iteration angle

should be 5 degrees.
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(a) Standard cost function, based in the min-

imum sum of all joint displacements.

(b) New cost function, based in the least dis-

placement of the penultimate joint.

Figure 5.20: Different cost functions to decide the best approach orientation for

the manipulator, considering the specified trajectory.

5.3.6 User Interface

In this last subsection we intend to provide some insight regarding the control

application UI, since it is one of the best ways to explain what was developed

and what can the user count on. Looking at the user interface figures 5.21 and

5.22, we can partition the application in 3 blocks: i) Connections interface, ii)

Developer interface and iii) User interface. Before going into further details

involving these blocks, we want to emphasize some global aspects.

Firstly, to help the user become acquainted to the application we left the fields

where the user can input information with a white background color, while the

fields that strictly display information are colored in a light yellow background.

Also the toggle buttons that trigger a continuous Update of Geometric Direct

Kinematics or Distance to target, are easily identified by a green color when toggled

and with a red color when they are set to "off". The variables presented are either

in millimeters for cartesian coordinates/distances or in degrees if they measure

angular displacements. On the code behind the application, the angular values

are treated as radians however to facilitate the user perception, the angles are

presented as degrees at the UI.

Starting with the Connections interface, upon launching the YARP server and

instantiating the world, robots, end-effectors and other equipment in the CoopDyn-
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Figure 5.21: Control Application UI, Developer panel.

Sim robotics simulator, the server ports for each device are created and ready to

be connected. In the client application, the user must insert the specific robot

port to be controlled. The example presented in figure 5.21, the robot instantiated

at the simulator was an Motoman MH5 with the identification number 0, so the

port name is "/Mh50". Since the CoopDynSim simulator associates 3 devices to

each robot, it also creates 3 server ports for the inserted manipulator. Following

a convention protocol, the server ports created are named after the manipulator

reference name plus the name of each device:

/"Robot_name"+"Robot_number"/"Device_name"

so for the example presented in figure 5.21, the server ports are: "/Mh50/arm"

to control the joints, "/Mh50/ee" to control the end-effector and "/Mh50/sp" to
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manage the surgical plan. To simplify the interface for the user, the client only

requires the robot name and number from where, it generates the 3 server port

names and the correspondent 3 client ports. Also for the client port it only requires

an unique port name, to which it assigns 3 client ports, like

/"Client_port_name"/"Device_name"

which in light of the presented example turns out to be: "/port1/arm", "/port1/ee"

and "/port1/sp".

Upon indicating the server and client ports, the user can now connect the

server to the client. The field in light yellow immediately below the Connect and

Disconnect button, feeds the user with the current state of connection (either

Connected or Disconnected). Below this connection state field, the user is ex-

pected to select 1 from the list of 3 available robot types. By selecting one robotic

manipulator, the control application will automatically load all specific features

for that robot and work only with the respective kinematic equations.

The Developer interface was initially designed to debug and test the control

application in terms of developed features and implemented kinematic relations. It

allows the user to specify the joint angles individually, to verify online the manip-

ulator’s end-effector position and orientation at the Geometric Direct Kinematics

sub-panel, as well as the arm plane angle denoted as Alpha, for the 7 DOF Schunk

LWA II robotic arm. For the 6 DOF robotic manipulators, it does not make sense

to use the arm plane angle variable so it is omitted (displayed as "X" in figure

5.21). To test the geometric inverse kinematics, the user needs to specify a target

position and orientation to be reached by the robot. After introducing both at

the Geometric Inverse Kinematics sub-panel, the inverse kinematics functions are

called by pressing the Inv Kin button and depending on the result returned the

following report messages are shown in the status field below:

1. Success, if at least one viable solution was found;

2. Ouside workspace, if the specified target coordinates fall outside the robot

workspace;
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3. All solutions exceed joint limits, if the specified target coordinates fall outside

the dexterous workspace, and despite the position being reachable by the

manipulator, it can not be grasped from the desired orientation;

4. Incorrect elbow angle, if the elbow angle violates the joint limits for the 7

DOF robotic arm in all solutions (no solution available);

If the kinematic equations return Success, the application displays the best solu-

tion set of joint angles in the Desired Input Joint Angles sub-panel. From here

and likewise the process to send directly desired joint angles, the user must press

the Send DIJA button to send the set of angles through communication to the

simulator, or eventually the real robot.

Figure 5.22: Control Application UI, User panel.

The User interface is an initial attempt to devise a control application specif-
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ically oriented towards robotic assisted DBS. Although some of the implemented

functionalities are exclusive of the simulated environment, most of them can be

ported to a real robot. Starting by the Trajectories panel, at the top left there

is a table where the user can introduce the entry and target coordinates from the

preoperative plan. By pressing the Add button, the coordinates previously in-

serted are added to the surgical plan list (also depict in figure 5.22 to the right

of the Add button) and sent to the simulator where it draws the surgical plan

trajectory and target. The Delete button allows the user to remove a highlighted

item from the surgical plan list. By selecting (highlighting) an item in the surgical

plan list it tells the manipulator to follow the chosen trajectory and communicates

to simulator to hide the remaining trajectories, drawing only the selected.

The Sim. Traj. sub-panel gathers a set of functions exclusive to the interaction

with the simulator. The Send All button lets the client user, communicate the

entire list of surgical plan at a time for the client to draw. On the other hand,

the Clear All button removes all surgical plan entities from both the simulator

and the client application. The Show All button as the name says, reveals all

hidden trajectories on the simulated world. This set of functionalities, come really

handy since both softwares are independent so theoretically one can set all the

preoperative plan on the client application and only later on, connect to the server

(simulator or real platform) and send the information.

Having selected the desired trajectory, the next step is to define the distance

to the entry position. The user can set this distance at the Electrode Insertion

sub-panel, which in figure 5.22 is set to 150 mm. Below the distance input field,

there is a toggle button to continuously check the distance from the end-effector

to the target. By pressing the Start button, the control application computes the

geometric inverse kinematics to place the end-effector at the desired distance from

entry along the selected trajectory. Once again, the manipulator may not be able

to reach the desired coordinates so it returns the same messages as enumerated for

the geometric inverse kinematics. When it is successful it inputs the desired joint

angles in the Desired Input Joint Angles table. The Released/Locked toogle

button is part of a safety routine. When locked, the robot is not allowed to move
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away from the currently selected trajectory. It can only move its end-effector

collinear to the defined direction and even the path points must be coincident to

the trajectory. More details regarding this functionality are discussed in subsection

5.3.7.

In the Manipulation sub-panel we will start by talking about the New End

Effector button. It basically checks the communication to grasp what end-effector

is currently attached to the robot. Different end-effectors have different sizes and

may or not have movable parts, information that is vital for the control applica-

tion to understand how to handle the manipulator control and kinematics. The

Retract and Insert buttons withdraw or approach the target, respectively, by an

increment distance defined in the field below. The movement can be executed us-

ing a Backdrive control to simulate the floating mode throughout velocity control

(Differential Kinematics) or by End-effector control. In this last control option,

only the end-effector actuator is controlled (this option is exclusively available for

actuated end-effectors).

Finally, the Abort button stops the current motion sequence and stops the

robotic manipulator actions. This event was created to be launched in emergency

situations or to prevent any damages, when the robotic manipulator is not behav-

ing as expected.

5.3.7 Safety

Safety should always be one of the pillars of any system towards surgical activity.

As stated by Lavellée et al. [84], safety was and still currently is the fundamental

reason why robotic systems are so difficult to include in an operating room and be

accepted/trusted by a medical team. As referred in chapter 2, the safety concerns

should be addressed at all stages of the system development. We listed some

of the desired safety features that meet the interest of this project like movement

restriction, precision control collision detection and system log. Most of these were

implemented in the simulated environment while others like collision detection were

impossible to achieve in time, however the algorithm we envisioned to develop them
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will be described nonetheless.

Movement restriction We split the whole motion planning of robot actions in

2 stages: the positioning and the manipulation phases. At the positioning phase,

the robot moves to a desired position along a planned direction (trajectory) to

hold the instrumentation. In this step, it should only avoid collisions with the

surrounding environment (people and equipment) and precisely achieve the target

position and orientation. The movement restriction problem is thus limited to

collision avoidance.

In the manipulation stage, the robot moves the instrumentation strictly along

the defined trajectory either by arm joint action or through tool manual actuation.

Also at this stage, the robot is expected to adapt its functioning based on colli-

sion avoidance routines. But the implemented feature we wanted to emphasize is

the motion restriction when the computed solutions are not coincident with the

selected trajectory. Since the motion restriction should be a behavior exclusive

of the manipulation stage we created a toggle event button Released/Locked.

When released the robot is able to freely maneuver, while at the Locked state, it

actively restricts any motion outside the selected and locked trajectory.

It was implemented by controlling the joint angles passed by communication.

Before sending the desired joint angles, the control application simulates the final

end-effector position and orientation through Geometric Direct Kinematics. If

either the expected position or orientation fall outside a safety range around the

selected trajectory, the communication no longer sends the angles to the robot and

notifies the user of the safety issue. To move outside the selected trajectory, the

user needs to toggle the motion restriction to Release the trajectory.

Another movement restriction policy implemented was the imposed limits on

the joint velocity actuation. The joint controller should be aggressive ,i.e, higher

gains to assure that the target is reached with utmost precision. On the other hand,

higher gains imply higher inertia and velocity so we introduced a limit velocity of

5 deg/s to every joint.

The safety measures implemented also include the expected robot behavior
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with the different end-effectors. Specifically, the trepan instrument should strictly

be used to open a burr hole in the patient’s skull. Therefore we established a

condition to avoid the trepan to go beyond the entry point, thus avoiding any

injuries even if the user erroneously commands the robotic arm to move further.

This control is implemented through a simple euclidean distance check16,

trepan_check = k pEEPosition � pTarget k � k pEntry � pTarget k (5.13)

A simple condition like this suffices, because previously the controller checked if

the instrumentation position and orientation are collinear to the desired trajectory.

The robot only moves if both conditions are met.

Finally, the robot posture is invariant during the whole manipulation stage

(as suggested by Lavallée et al. [84]). During positioning, the motion plan cost

functions, choose one optimal posture over the others possible (at most 4). As

the robot passes to the instrumentation manipulation stage (trepan drilling, probe

inserting), the robot posture is fixed and next position and orientation points can

only be reached with that posture.

Precision control The precision control is closely related to the motion restric-

tion, and its implementation follows the same methodology. In fact the precision

control is also a two step process: i) the evaluation of the generated solution pre-

cision, specifically position and orientation; ii) assessment of the result robot joint

angles distance to the expected values17. To better explain how the algorithm was

implemented we present some key variables in figure 5.23.

The broken line represents the desired trajectory to be followed, where the al-

most parallel segment represents the probe position (or any other instrumentation

used). Since the instrumentation can assume several positions along the selected

trajectory, our first concern was to measure how collinear to this trajectory were

the computed solutions.
16subsection 5.3.7 Returns 1 if the movement is safe and 0 otherwise.
17subsection 5.3.7 We are considering that the robotic joint sensors are able to return trust-

worthy feedback.
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pTarget
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Figure 5.23: Representation of the precision control algorithm variables.

The generated joint angles solution or sequence of joint angles18, is firstly

converted to end-effector/instrumentation final position and orientation variables

through Geometric Direct Kinematics. To see how precise are the generated solu-

tions we will measure the distance of the end-effector tip position relative to the

closest point of the desired trajectory (d).

We started by using the trajectory unit vector v̂TE from the target coordinates

(pTarget) to the entry coordinates (pEntry), to obtain a new point (pNewEntry) whose

distance (L) is fixed to the target coordinates along the trajectory vector,

pNewEntry = pTarget + (v̂TE ⇤ L) (5.14)

We want to reduce a much as possible the problem variables, and this was the

thought method to avoid dealing with a variable distance from the target to the

entry. With the pNewEntry, pTarget and end-effector position point (pEEPosition)

known, we form a triangle in 3D space. The shortest distance between the pEEPosition

and the trajectory chosen (d), forms a normal line to the trajectory whose coinci-

dent point will be henceforth called "c".

18subsection 5.3.7 If the movement of the robotic manipulator is defined after a set of path

points.
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Considering,

8
>>><

>>>:

�!v ne_c = c� pNewEntry

�!v ne_eep = pEEPosition � pNewEntry

�!v ne_t = pTarget � pNewEntry

from basic geometry we know that,

cos↵ =

||vne_c||
||vne_eep||

(5.15)

and based on the dot product geometric interpretation,

vne_c · vne_eep = ||vne_c|| ||vne_eep|| cos↵ (5.16)

By simple algebraic manipulation we get that,

||vne_c|| =
vne_c · vne_eep

||vne_t||
(5.17)

Using the Pythagorean theorem, we can compute (d) by,

d =

q
||vne_eep||2 � ||vne_c||2 (5.18)

and thus get the closest distance between the tip of the probe and the selected

trajectory. Then a safety threshold can be defined to mark the safety region around

the desired trajectory. If the "d" is inferior to the threshold, the end-effector tip

position is considered safe.

However simply having the probe tip close to the trajectory does not mean

the instrumentation is correctly placed, since the orientation can be inaccurate.

Unlike position, the orientation coordinates are harder to compare because there is

several sets of coordinates that grant a safe solution. Additionally the orientation

coordinates change along the trajectory as the end-effector gets closer to the target.

Confronting this problem we made use of the instrumentation linear profile and

instead of comparing the orientation coordinates, we extrapolated the instrumen-

tation position 200 mm above the tip along the end-effector orientation (depict in

figure 5.23 as pEEOrientation) and measured its distance to the selected trajectory.
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In order to find the pEEOrientation, we started by computing the Roll-Pitch-Yaw

rotation matrix from the orientation coordinates, Re. The orientation coordinates

(Re) set the end-effector z-axis along the desired trajectory. Therefore, with the

3

rd column of the rotation matrix (Re,z) we can compute pEEOrientation by,

pEEOrientation = pTarget + (Re,z ⇤ �200) (5.19)

With the point coordinates, we can follow the same procedure described for pEEPosition

to check the distance to the desired trajectory. The precision condition is only ver-

ified if both the position and orientation are fit within the safe limits.

Actions history log One of the steps of Fei’s [58] systematic method to eval-

uate/improve safety conditions referred the use of a log system to record all the

robotic equipment actions and controls sent. It is a great tool to evaluate not

only the robot performance, but also to study how the medical team is using the

equipment, potentially correcting some misuses.

The control application was developed so that each surgery or procedure car-

ried out, would be labeled as a single event independent and distinct from all

others. Following the same philosophy, a new system log file is generated for each

procedure. The generated log files have a universal *.txt format. At the heading,

the procedure key number is registered, along with the current date and each event

is saved together with the current system time.

The log keeps track of the connection success between client and server, the

selected robot type, the manipulation control mode and end-effector tool installed.

It saves the joint angles sent during single or sequential motions and for both

of them, it registers if the movement is executed on a safe or free maneuvering

routine. Finally, the log file also contains surgical plan managing actions like

adding, deleting or selecting the pre-planned trajectories.

This initial solution can not be considered final however, because a *.txt file

can be edited which compromises the registration reliability.
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Figure 5.24: Example of a typical log file.

Collision Avoidance Despite not having a final solution implemented for col-

lision avoidance we thought of a simple and realistic method whose main idea is

described below. We split collision detection into 2 sub-problems: i) relative to

a static environment where the robot manipulator is placed and ii) the other as-

sociated to moving elements within the robot workspace. To implement collision

detection routines we need a stereocamera to record tridimensional images of the

environment.

For the first part of the problem and considering that the equipment sur-

rounding the robot is static during the surgery, we only need a tridimensional

representation of the environment previous to the operation. The vision system
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identifies the objects in the robot workspace and assigns a cloud of points or lines

to represent their limits.

To check if the robotic arm collides with the surrounding environment we need

to assign reference points along its arm and to each point indicate a radius of

collision. Then we check if the object limits are within the collision radius of each

point and if so, launch a collision warning. Since reference points are assigned

to the robot links, they move along with the manipulator. To brief this prob-

lem, we considered saving each point information as a transformation matrix from

the preceding joint (mTref ). By doing this we can calculate each reference point

transformation from the robot base frame (0Tref ) by,

0
Tref =

0
Tm

m
Tref (5.20)

being 0
Tm the transformation from the robot base frame to the m joint. One

potential problems with this approach is the tradeoff between a having an object

representation closer to reality with more points but at the expense of a higher

computational demand, since the number of collisions increases exponentially. To

avoid checking all the potential collisions, we can divide the robot workspace into

smaller subspaces, and only test collisions with points that share the same sub-

space.

The task of obstacle avoidance gets more complex with moving objects within

the robot’s workspace. The computational resources and the optimization of al-

gorithms are even more critical in this problem, because the robotic controller

is expected to answer as quick as possible to an obstacle. This implies that the

vision system object vertices computation and the collision detection algorithms

must be quick enough to search for collisions with an acceptable refresh rate. Here

is another reason for using a low velocity profile on the robot joint actions because

during the time interval when the controller checks for collisions and actually

launches a warning the manipulator movement is smaller.

Granting that the detection algorithm is quick enough, how should the robotic

manipulator react to a potential collision event. Once again we chose to split
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the manipulator motion planning in positioning and manipulation. During po-

sitioning stage, the only requirement is for the robot to achieve a final precise

position/orientation and so if the current posture leads to a collision the robot

may opt by an alternative collision-free posture to reach its goal. If no alternative

is viable or is collision free, the robot should stop its motion and promptly notify

the user.

On the manipulation stage however, the robot is committed to a specific trajec-

tory, from which it must not deviate even to change its posture. In this phase, the

robot should not adapt its trajectory to avoid collisions. Even before executing the

motion, it checks for collision with the static environment, during the movement

if any obstacle crosses the robot path, it should simply stop, and notify the user

for the collision possibility. This way, the robot motion is consistent and always

predictable during the manipulation phase.
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Part III

Conclusions
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Chapter 6

Results

With the acquired knowledge about the DBS surgery and using the simulation

tools developed, we devised a method to test how each robotic manipulator suited

the operating room and how aptly it accomplished the assigned tasks. In chapter

3, we analyzed the different robotic features provided by the manufacturers and

labeled the key characteristics sought for the "perfect" neurosurgery robot. How-

ever and as said previously the consequences of features like workspace, degrees

of freedom, joint rigidity and horizontal reach, on an assistive role can not be

reviewed exclusively on numbers.

Assessing these variables and the robotic control algorithms was our main focus

on gathering results, since task precision and repeatability can not be evaluated due

to the lack of information about the real robots controllers and functionalities. The

virtual robots evaluation was carried based on visual feedback of how each system

carried out different tasks. Most of the findings became apparent after numerous

experiments which makes it hard to represent in paper format. Therefore we chose

to comment and discuss along with the results to emphasize the conclusions and

point out other, not so evident, aspects.

6.1 Fitting in the Operating Room

Where and how to position the robot regarding the operating room arrangement

and equipment/personnel positions? This was the question that we tried to answer
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along this section. The formulated method evaluates how successfully the robot

reaches a designated position and orientation, while measuring if it can descend

the end-effector instrumentation collinear to the selected trajectory. We tested

a wide range of trajectories (figure 6.1) that cover the area where the robot is

expected to hold the instrumentation as an assistive agent during a DBS surgery,

and even further.

(0, 1, 1)

(0, 0, 1)

(0,�1, 1)

(�1, 1, 1)

(0, 1, 0)

(�1, 0, 1)

(�1, 1, 0)

(�1, 1,�1)

(�1,�1,�1)

(�1, 0,�1)

(�1, 0, 0)

(�1,�1, 0)

(0,�1, 0)

(�1,�1, 1)

Figure 6.1: Generic trajectories to be reached by the manipulator.

Figure 6.1 depicts each trajectory tested, along with the correspondent vector

coordinates that originated them on the operating room environment1. Each tra-

jectory vector starts from the same point within the patient’s model head, placed

to simulate deep brain targets. In a real DBS surgery, there rarely is only a single

target and their position changes from patient to patient. However in the robotic

control domain, the consequence of reaching different targets distanced a few mil-

limeters from each other (figure 1.5) while maintaining the same entry position,

1section 6.1 The simulation environment also includeds the robotic manipulator, but it was

omitted in this case to avoid obstructing the view of the trajectories.
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has a minimal impact on the trajectories generated. Therefore we chose to keep

the target coordinates constant and vary the entry point position.

To simplify the notation of the trajectories they will be represented by different

cells as in the odd-shaped table, figure (6.2).

(0, 1, 1) (0, 0, 1) (0,�1, 1)

(�1, 0, 1)(�1, 1, 1) (�1,�1, 1)

(0,�1, 0)(�1,�1, 0)

(�1,�1,�1)(�1, 0,�1)

(�1, 0, 0)(�1, 1, 0)(0, 1, 0)

(�1, 1,�1)

x

z

y

Figure 6.2: Generic trajectories representation.

Due to the large number of tests and to make the results easier to read, we will

be using a color code to represent whether the robot could reach and move along

each trajectory, table 6.1.

Table 6.1: Simulation results color code.

Color Description

Positioning the end-effector at 150 mm from the entry point, and advancing

the end-effector collinear to the trajectory until reaching the target.

X Positioning the end-effector at X mm from the entry point, and advancing

the end-effector collinear to the trajectory until reaching the target.

The manipulator posture, obstructs the access to the end-effector and/or

prevents instrumentation handling.

The robotic manipulator can not reach the defined trajectory.

For easier understanding of what the Color code (table 6.1) descriptions stand

for, in figure 6.3 we depict the initial position of the manipulator at 150 mm

(green color) from the entry point and the consequent 100 mm and 50 mm distance

positions (yellow color), for an example trajectory.
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150 mm

100 mm

50 mm

Figure 6.3: End-effector positioned at X mm from the entry point collinear to

the desired trajectory.

To find the adequate mobile platform height and the optimal position for the

robot within the operating room we tested several combinations. Starting with the

platform where the robotic manipulator is mounted, its shape was not addressed in

this project, even so we can anticipate its dimensions. Relative to the dimensions

parallel to the ground, it is desired to occupy as less space as possible but it still

needs to be large enough to provide a stable base for the manipulator. These

proportions do not seem to affect the robotic manipulator performance, however

the same can not be said for the height. The effectiveness of the manipulator

approach to the selected trajectories was one of the main criteria for the decision

of the base platform height. We started by testing 4 different heights for the

robotic manipulator: i) -100 mm, ii) 0 mm, iii) +100 mm, iv) +200 mm. These

values stand for the difference between the end-effector tip and the target position

along the Z-axis (height). At the end of the tests and due to the success of the

+200 mm height, we decided to assess how the robot behaved for +300 mm and

add this option to the results.

To study the best manipulator position we started by positioning the robot
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in front of the patient with its arm along the world X-axis and the end-effector

around 100 mm away from the patient’s head as in figure 6.4.

Figure 6.4: Initial position for testing the robotic manipulator placement.

We distanced the robotic manipulator from the patient’s head so the arm move-

ments would not collide and potentially hurt the patient. Besides this configuration

which shall be denoted as 0o, we tested the manipulator performance at +15

o, +30

o

and +45

o angles. Each angle corresponds to the manipulator orientation around a

central point fixed on the patient’s head while always keeping a distance of about

100 mm from the same. We only test positive angles because the manipulator

structure is symmetric, so the results would be exactly mirrored when the angle

was negative. The choice of the [0, 45] degrees range has to do with the workspace

limitation caused by the mobile X-ray imaging system also depict at the figure 6.4.

The last detail we want to point out is that in terms of the trajectory representa-

tion (figure 6.2), as the robot position angle increases its end-effector gets nearer

the trajectories on the left side of the odd-table.

175



6.1.1 ABB IRB 120 results

Starting with the ABB IRB 120 manipulator, we expected this robot to display the

worst results since its horizontal reach is the shortest among the selected robots.

The following results were gather:

ABB

+300 mm

+200 mm

+100 mm

0 mm

�100 mm

+45

o
+30

o
+15

o
0

o

50

50

100

100

50

50

50

50

50 50 505050

50

50
100

100

100

100 100
10050

50

Figure 6.5: ABB IRB 120 trajectory reaching results.

Our initial prediction pointed to the 0 mm height, 0o orientation as the best

configuration since it was supposed to be the closest to all trajectories. We soon

realized that the ABB manipulator at this height was not capable of reaching most

of the pre-defined trajectories. Not only were the top trajectories unreachable, also

the trajectories immediately below are achieved at the limit of the robot range,

or in other words when the arm was fully stretched. This concerns us regarding

the stability and movement resolution of the robot when driven to these limits,

since a superior precision is required. At 0 degrees, the trajectories reached are
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as expected symmetrical for the left and right sides of the representation. Aside

from the limited reach of the outer trajectories, at the 0

o and +45

o the robot

configuration for the (�1, 0, 0) and (�1, 1, 0) trajectories respectively restrained

the possibility to manipulate instrumentation. These results marked as orange,

mean that while the manipulator is in fact able to reach and move along the target

trajectories the end-effector instrumentation collides with the preceding link for

all the configurations possible.

As we increased the robot position angle, the robot becomes unable to reach

the outer trajectories (when the vector y-axis value is negative), begins reaching

the most proximal trajectories (when the vector y-axis value is positive) and the

central trajectories remain unchanged. When we lowered the arm height by 100

mm, the ABB manipulator was incapable of reaching most of the trajectories even

the central ones2 considered as the most likely to be chosen in a DBS surgery.

Therefore, a robotic system that is unable to match the flexibility of the currently

used mechanical stereotactic frame is held as a step backwards and would largely

discourage medical teams to acquire and accept it. We aim to provide a better

solution in terms of flexibility and precision, so the manipulator should at least

be able to flawlessly reach and move along the central trajectories. This condition

immediately excludes all the 0 mm and �100 mm height ABB possibilities for any

robot position angle.

Following the same criteria, the possibility of using a height of +100 mm with

a +45

o position angle is also excluded. The +100, +200 and +300 mm present

quite similar and the best results. There is a clear tendency relating the increase of

height with an increase of the number of reachable trajectories, which eventually

lead us to test the +300 mm possibility not programmed originally. With an

height of +100mm, the ABB robotic manipulator can successfully reach the central

trajectories and even has some margin to work on outer coordinates. However

for the upper central trajectories, the arm is almost completely stretched which

raises the stability problem referred above. At the +300 mm, we noticed that the

2subsection 6.1.1 The (�1, 1, 1), (�1, 0, 1), (�1,�1, 1), (�1, 1�0), (�1, 0, 0) and (�1,�1, 0),

refer to figure 6.2.
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manipulator despite reaching almost all trajectories had some problems positioning

for the central ones due to the proximity between the target position and the inner

limits of the manipulator workspace. That is noticed in the results for the +45

o

and +30

o angles, marked in orange. Not only that, but also the arm configuration

at this height required the neurosurgeon to work from below the robot links, which

may cause some discomfort and unable a clear view of the operative field.

For the reasons cited above, we decided that the ABB IRB 120 robot platform

should take into account position of the patient before the surgery and optimally

place the robot end-effector around 200 mm above the patient’s head. In terms of

the position angle, the somewhat unexpected results revealed that the robot body

configuration only varied slightly to reach the same trajectories from different

angles. Acknowledging that, we purpose to position the robot to the side, around

+45

o to +30

o so the neurosurgeons can have more workspace available.

During the experiments, we noticed that the ABB manipulator configuration

and motion path rarely conflicted with the intraoperative equipment or the patient.

This conclusion was unexpected since the manipulator flexibility on reaching the

desired trajectories depends on the proximity of the robot to the patient, thus

sharing a small space with other equipment.

6.1.2 Motoman MH5 results

Considering the horizontal reach, link dimensions and the overall characteristics of

Motoman MH5, we expected it to be more flexible and able to reach further from

the same position, when compared to ABB. However the link length also raised

concerns regarding the possibility of collisions with the equipment or the patient.

The results are displayed below:

Starting at the 0 mm height, the robot was able to reach the central trajec-

tories, when its position angle was between +0

o to +15

o. When the position

angle increases, the (�1,�1, 1) and (�1, 0, 1) trajectories become unattainable

for a starting distance of 150 mm along the trajectory. In this cases the ma-

nipulator needs to extend to its limits which drives us to a potential instability
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Figure 6.6: Motoman MH5 trajectory reaching results.

problem. Even for the lower position angles at this height, where the manipulator

comfortably reaches the most central trajectories, the arm configuration restrains

instrumentation handling for trajectories around the vector (�1, 0, 0). Based on

these reasons, we discourage placing the robot at a 0 mm relative height. When the

manipulator end-effector is lowered by -100 mm, no orientation allows the robot to

reach all the central trajectories which directly sets this possibility as non-viable.

The remaining solutions for +100, +200 and +300 mm relative heights, the

manipulator is generally capable of comfortably reaching all the most common

trajectories. At +100 mm height and for lower position angles (0o to +15

o), the

robot can easily reach the most common trajectories. Increasing the position angle

made the MH5 manipulator extend the arm to its outer limits to reach the right

side trajectories, which can be problematic. At +200 mm the manipulator is in

general able to reach all the central and even some outer trajectories successfully.

179



On the +300 mm mark the results in terms of trajectory reaching are similar to

the +200 mm height, however at this point the manipulator configuration hinders

the instrumentation substitution and handling from the part of the neurosurgeon.

As a result we concluded that the optimal manipulator height should be around

+100 and +200 mm. If the robot can occupy any position (angle) within the avail-

able workspace, both heights are viable. However if the space needs to be shared

by the robot and the neurosurgeons team, we suggest to place the manipulator at

a relative height of +200 mm, at an angle of around +30

o to +45

o.

The MH5 manipulator, despite having larger links it does not reflect on colli-

sions with intraoperative equipment. In fact, the only issue with the robot, had

to do with the robotic links movement path when moving between trajectories on

opposite sides of the of the patient. This problem can be abbreviated by making

the robot follow strategic safety points along its trajectory to guarantee that it

avoids collisions.

6.1.3 Schunk LWA II results

From the 7 DOF structure of the manipulator and the length of its links, we foresaw

that this robot would be able to reach more trajectories than its 6 DOF alterna-

tives. The actual results however, overcame our expectations, and the manipulator

can effectively achieve the central coordinates for almost any combination of height

and position angle.

It only has problems reaching the trajectories when the manipulator is set

to -100 mm height. The extra DOF grants it the flexibility to avoid situations

where the instrumentation intercepts the robotic body or avoid poses where the

instrumentation handling by the neurosurgeon would be hindered. The Schunk

LWA robot is however more problematic because its body easily collides with the

equipment or the patient. However, since the robot can reach the same trajectory

from several configurations, we can make use of that property to set its pose based

on collision avoidance parameters. Implementing this feature requires the robot to

have a constant perception of the surrounding elements position, perhaps resorting
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Figure 6.7: Schunk LWA II trajectory reaching results.

to visual feedback of the environment.

Regardless of achieving the best results for this test mainly due to the extra

DOF, this same characteristic is also a setback as the end-effector precision and

repeatability is dictated by the cumulative error on the displacement of each joint

in a serial manipulator. Despite not being accounted on this test the precision

still plays a major role on the final system and so if the superior flexibility of a 7

DOF manipulator is desired, it needs to be accompanied by a greater investment

on precision actuators and control algorithms.

6.1.4 Comparative analysis

Before going into detail on comparing all three robotic systems, we want to ad-

dress some potential critics to the test and the results attained. Firstly, why so
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few trajectories, heights and position angles tested? This decision is based on 2

reasons: i) the manipulator joint displacements and the arm configuration change

little and predictably from trajectories near one another, considering the several

combinations; ii) there needs to be a limited number of trajectories since we are

testing so much parameters combined (height, position, trajectories and different

manipulators). Therefore we can consider that each trajectory represents a larger

area where the manipulator reaching configuration is similar. Adding further com-

binations largely increases the number of tests, that even now still ascended to

840.

Despite testing 14 trajectories, the viability of the height and position angle

combination is decided as whether the manipulator can effectively reach the 6

central trajectories. These trajectories cover the area where the end-effector should

most commonly be placed to hold the instrumentation throughout a DBS surgery.

Nonetheless we still tested for the outer trajectories to anticipate how the robot

would behave in less common surgery plans. Moreover if we want to broad our

horizons and apply this robotic technology in other types of neurosurgeries, we can

understand how the manipulators would perform on more eccentric trajectories.

For instance, we noticed that literally in every combination of height, position angle

and robot model the 3 lower trajectories were always successfully reached. This

conclusion tells us that the robotic models selected are specially apt in assisting,

manipulating and holding instrumentation for skull base surgeries.

Comparing the results of this test, the Schunk LWA II achieved the best results

followed by Motoman MH5 and the last one was the ABB IRB 120. By best results

we mean that the robot is more flexible in terms of reaching trajectories and can

reach further from the same starting position. At the same time we verified that

all the selected systems can successfully fulfill an assistive role, since they all

have height and position angle combinations where the manipulator can reach the

central and even more extreme trajectories.

The Schunk LWA manipulator was built towards a low weight, controller em-

bedded 7 DOF robotic body with precision standards being left to a secondary

objective. It was included in this project to measure the performance and influence
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of an additional DOF. Also the fact that such robot is available at our laboratory

opens the door to future tests with a real robotic system. The low precision stan-

dards of the LWA manipulator (around 1 mm) does not fit the surgery demands,

and so it was regarded as a test equipment only.

Between the 6 DOF viable robots, the MH5 slightly surpassed the ABB and

since we can not evaluate their precision we dare to point MH5 as the most ade-

quate robotic system for our purpose.

6.2 Trajectory execution

Another topic we wanted to address is how each manipulator was able to move

along a defined trajectory. The objective of this section is to depict how each ma-

nipulator changes its configuration to move its end-effector always collinear to the

defined path passing the entry point towards the target location. For each robot,

only one motion sequence will be portrayed since the remaining are conceptually

similar with only the manipulator configuration varying. Therefore they do not

add any further conclusions and thus will be omitted.

In figure 6.8, we can see the ABB IRB 120 model executing a descending

trajectory of 200 mm. In the context of the DBS surgery the robot will rarely

perform descending motions with such extent. The arm is required to move to a

starting position distanced of X mm along the selected trajectory, and from here

the movements along the trajectory should be really small and controlled steps,

even until reaching the entry point. From here and as referred in section 1.3, the

electrodes should be lowered carefully until reaching 15 millimeters from the target

and then proceed by millimeter or half-millimeter steps.

We chose to depict a sufficiently long trajectory to see the manipulator changing

its configuration across the several images presented, otherwise the manipulator

posture change would be undetectable. Figure 6.9, shows 8 instants of a slightly

lower trajectory (200 mm) executed by the Motoman MH5. Figure 6.10 depicts the

LightWeightArm II robotic manipulator, executing a 200 mm linear in a sequence

of 8 stages.
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(a) ABB-0 (b) ABB-1

(c) ABB-2 (d) ABB-3

(e) ABB-4 (f) ABB-5

(g) ABB-6 (h) ABB-7

Figure 6.8: ABB IRB 120 executing a trajectory.
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(a) MH5-0 (b) MH5-1

(c) MH5-2 (d) MH5-3

(e) MH5-4 (f) MH5-5

(g) MH5-6 (h) MH5-7

Figure 6.9: Motoman MH5 executing a trajectory.
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(a) LWA-0 (b) LWA-1

(c) LWA-2 (d) LWA-3

(e) LWA-4 (f) LWA-5

(g) LWA-6 (h) LWA-7

Figure 6.10: LightWeightArm II executing a trajectory.
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Chapter 7

First Conclusions

7.1 Summary and Discussion

The aim of this master’s thesis was to contribute for the development of a robotic

system to assist the medical team in Deep Brain Stimulation (DBS) neurosurgeries.

We started by collecting information and understanding the paradigm of the

treatment in the panorama of the treatment sensitive neurological disorders. Sev-

eral studies (e.g. [10], [13], [15], [11]) and broader essays (e.g. [5], [106]) about

these neurological disorders place them among the most debilitating and stigma-

tizing disorders with higher incidence and prevalence rates. Moreover, there were

clear indicators to the increasing numbers of these disorders and to the signifi-

cant relation between low income population and the disease incidence/prevalence

rates.

The growing success and acceptance of the DBS treatment [23], is not sup-

ported by the numbers of experienced neurosurgeons and healthcare institutions

that perform this treatment [46]. Additionally, DBS neurosurgeries tend to last

for several hours during which is required utmost steadiness and precision. The

combination of both factors, have lead neurosurgery services that actually perform

DBS surgeries to their limits [26]. After attending to a Parkinson’s disease DBS

surgery we were able to summarily point out some aspects that could be upgraded

by using an assistant robotic manipulator (cf. subsection 1.3.3).
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Upon acquiring insight about DBS treatment/surgery and the epidemiology of

the associated disorders, we did a thorough search on neurosurgical robotic systems

that could be used in stereotactic procedures. In table 2.2 in section 2.3, we com-

piled several systems either oriented towards stereotactic minimal invasive surgery

or potentially adaptable. Despite having unique features like MRI-compatible [81],

modular multi-body actuators [71], hexapod parallel structures [76] that set them

apart from the others, none rounded up the optimal set of characteristics. In

conclusion, the desired features for a DBS assistive robotic manipulator include:

1. handling and precisely guiding instrumentation without a stereotactic frame;

2. having a mobile platform easy to attach to the skull clamp;

3. having a vision system able to register the robot’s position relative to the

surgical reference frame;

4. having a controller able to interface/adapt to the imaging softwares being

used in the neurosurgery service;

5. having a low budget acquisition/maintenance costs, be simple and intuitive

to use;

With this we went to search the industrial robots market for a system to fulfill

our needs. Initially we gathered a set of desired features to narrow our scope,

and converged to serial, at least 6 DOF, anthropomorphic, with preferably rigid

and precision oriented joint actuators. The search covered the most renowned

industrial robot companies and compared the provided data sheet information

like manipulator and controller weight, payload capacity, horizontal reach and

repeatability. It was briefly discussed the implication of each of this characteristics

in an assistive neurorobot. In the end, we selected the ABB IRB 120, Motoman

MH5 and Schunk LightWeightArm as the most fit robotic systems.

The next step was to develop the kinematic equations for each robotic system.

It included the geometric and differential direct and inverse relations taking into

account the singular body structures of each robot. It is described the kinematic

equations for both 6 DOF and 7 DOF manipulators. In chapter 4, we introduce

the singular characteristics of each manipulator needed to generate the kinematic
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equations.

Having selected the robotic systems and created the kinematic equations, the

next step was to test both with a robotic simulator. After examining several paid

and free solutions, facing the required flexibility to add custom components and

considering the expected modularity between the robotic system and the control

station we decided on an ongoing robotic simulator program know as CoopDynSim,

currently being developed in our Anthropomorphic and Mobile Robotic Labora-

tory. The shared knowledge and all the simulator characteristics like the OpenGL

graphical representations, the NewtonGD precise physics engine and modular com-

munication also contributed to the final decision.

Although promising, the simulator was not ready to include robotic manipula-

tors, and so part of this dissertation’s work had to do with implementing robotic

manipulators and the surgical room environment in CoopDynSim. We began by

designing several intraoperative equipment, adding the physical counterparts and

position them creating an environment as close as possible to the operating room in

Coimbra University Hospitals neurosurgery service. All the selected serial manipu-

lator systems were created and it was also added several new features like ability to

change between several end-effectors and to represent the pre established surgical

plan containing the trajectories followed to introduce the electrodes.

The controller application developed in MatLab was created separately from

the Simulator and communicates with it using YARP (cf. section 5.3). The con-

troller software provides basic functionalities for testing the developed kinematics

and the control algorithms. Moreover, it presents an initial approach towards po-

sitioning and manipulating tasks specifically oriented for a DBS surgery assistive

role. Special attention was given to safety and thus we implemented mechanisms

like: i) movement restriction, to prevent the robot from moving outside a safe

area; ii) precision control, to check if the generated kinematic solution precision

was acceptable; and iii) actions history log to keep track of all the events taking of

the controller application. Also some key thoughts were presented regarding the

collision avoidance problem.

Since the robot manufacturers choose to omit some of their product’s speci-
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fications, mostly relative to their motion execution, the CoopDynSim simulator

can only partially reproduce their behavior. Thus, it is unrealistic to assess the

robot’s precision in simulation since the results would most likely differ from the

real robots. In spite of this limitation, we still wanted to address the question

of where and how to position the robotic manipulator within the operating room

to have the least interference with the equipment and yet the optimal reach to

fulfill its function. We defined a successful reach the ability to position the tip of

the end-effector at least 150 mm from the entry position and moving the instru-

mentation along the selected trajectory towards the target location. Among the

selected manipulators, the 7 DOF Schunk LightWeightArm had the larger reaching

workspace followed by the Motoman MH5. Positioning the manipulator laterally

to the patient’s head allowed the robot to successfully reach the majority of the

tested trajectories without restricting the neurosurgeon workspace and did not

cause harmful interactions with the surrounding equipment. We also concluded

that to increase the robot’s flexibility to reach more trajectories, in its home po-

sition, its end-effector should be around 200 mm above the patient’s head / entry

point.

Despite the initial aim of the robotic system being towards stereotactic neu-

rosurgery, we became recently aware for other potential applications of the same

technology. Upon contacting some of the future collaborators they noticed us

of their endeavor to study the electrical cortical activity in mice brains, which

demanded a precise placement of microelectrodes. Outside the operating room

environment, a precise manipulator for instrumentation holding and guidance can

still prove to be useful, for instance in research laboratories.

Furthermore, the robotic system in development can be easily adapted to per-

form other stereotactic functional neurosurgeries. For instance, in StereoElec-

troEncephaloGraphy the neurosurgeons in mean insert around 12 stimulating elec-

trodes per patient [107]. For each singular electrode the target position needs to

be tested in the phantom, and the stereotactic frame placed both in the phantom

device and for the patient. In this case the robotic flexibility and swiftness would
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be an even more remarkable advantage.

The existence of robotic resources suitable for our purpose, the knowledge

about robotic control paradigm along with the overall insight about the DBS

proceedings, lead us to believe that the development of a robotic manipulator

towards a neurosurgery assistive role is definitely viable. Moreover, if the system

can round up the sought safety features, be simple, pragmatic and have low-cost

acquisition and maintenance prices it will be very welcome by the medical society.

There is already a good feedback on behalf of the contacted neurosurgery services

and there is an evident determination to bring this project to fruition, which

encourages us to carry on with our work.

7.2 Future Work

Developing a robotic system from practically nothing to be brought and used

at an operating room is a challenging task and was realistically an unattainable

objective in light of a master’s thesis. Notwithstanding this fact, we still embraced

the project and during this dissertation we have been continuously building up

evidence that point towards the success of our outlined solution.

Foreseeing the potential of the final product and given the novelty and practical

sense of this investigation, we sought to continue our work into a PhD program

where we aim to develop a final robotic system to assist in neurologic stereotactic

procedures. In future work we want to answer some unattended issues like:

• Implement the developed control algorithms into a real robot platform;

• Create a stable mobile platform with an attach mechanism to link the robot

to the skull clamp;

• Implement the collision avoidance algorithms;

• Introduce vision system so the robot controller can have a perception of the

surrounding environment;

• Develop a reliable method to compute the transformation from the robot

reference frame to the surgical reference frame.
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