
Accepted for publication inFuture Generation Computer Systems

Implementation and Evaluation of Update-Based Cache Protocols
Under Relaxed Memory Consistency Models1

Håkan Grahn, Per Stenström, and Michel Dubois*

Department of Computer Engineering, Lund University
P.O. Box 118, S-221 00 LUND, Sweden

Email: nesse@dit.lth.se
Fax: +46-46-104-714

*Department of Electrical Engineering-Systems
University of Southern California

Los Angeles, CA90089-2562, U.S.A.

Abstract

Invalidation-based cache coherence protocols have been extensively studied in
the context of large-scale shared-memory multiprocessors. Under a relaxed mem-
ory consistency model, most of the write latency can be hidden whereas cache
misses still incur a severe performance problem. By contrast, update-based proto-
cols have a potential to reduce both write and read penalties under relaxed mem-
ory consistency models because coherence misses can be completely eliminated.
The purpose of this paper is to compare update- and invalidation-based protocols
for their ability to reduce or hide memory access latencies and for their ease of
implementation under relaxed memory consistency models.

Based on a detailed simulation study, we find that write-update protocols aug-
mented with simple competitive mechanisms — we call such protocolscompeti-
tive-update protocols — can hide all the write latency and cut the read penalty by
as much as 46% at the cost of some increase in the memory traffic. However, as
compared to write-invalidate, update-based protocols require more aggressive
memory consistency models and more local buffering in the second-level cache to
be effective. In addition, their increased number of global writes may cause
increased synchronization overhead in applications with high contention for criti-
cal sections.

Corresponding author: Håkan Grahn

Keywords: Shared-memory multiprocessor, Write-update cache coherence protocols, Relaxed memory
consistency models, Lockup-free cache design, Performance evaluation.

Abbreviated title: Update-Based Protocols Under Relaxed Models

1This research was partially supported by the Swedish National Board for Industrial and Technical Development
(Nutek) under contract 9001797 and by the U.S. National Science Foundation under Grant No. CCR.9115725.

2

1 Introduction

Shared-memory multiprocessors do not easily scale to large numbers of processors because of the

latency of accesses to shared data. Using private caches with a directory-based write-invalidate

cache coherence protocol is a common approach to reduce these latencies [30]. However, as faster

processors are designed, cache coherence and miss handling can significantly reduce processor

efficiency. Several latency-tolerating and hiding techniques have been proposed and evaluated

[19] including prefetching [8, 10, 26], multiple hardware contexts [2], and memory access buffer-

ing under relaxed memory consistency models [1, 13, 16].

Previous studies have shown that under relaxed memory consistency models the write latency

can be easily hidden by overlapping write requests with each other and with local computation.

Gharachorlooet al. [17] studied the effectiveness of hardware mechanisms under memory consis-

tency model relaxation to hide write latency in the context of processors with blocking loads. Hid-

ing read latency has also been studied in two subsequent papers by Zucker and Baer [36] and by

Gharachorlooet al. [18] by considering processors that do not block on load accesses. Unfortu-

nately, the tolerance to read miss latency by relaxing the memory consistency model can be

severely restricted by the limited ability to schedule loads sufficiently far ahead of the miss or by

the hardware complexity needed in the processor to dynamically schedule the loads.

These observations have motivated us to evaluate update-based cache protocols, which main-

tain consistency by propagating the data values on each shared write, in the context of standard

blocking load processors. Update-based protocols trade a reduction in the miss rate for an

increase in the write traffic. Unfortunately, several problems may eliminate this performance

advantage. First, update-based protocols generate more write traffic and block the processors on a

write more often than invalidation-based protocols; therefore more aggressive hardware mecha-

nisms and memory consistency models may be needed to hide the write latency. Second, even if

the write latency can be hidden, the larger write traffic can cause network contention which, as a

secondary effect, may increase the latency of misses; to offset this effect, higher bandwidth net-

works may be required.

In this study, we quantify these performance effects to compare update-based to invalidation-

based protocols. As a basis for the comparison, we consider a two-level cache hierarchy in each

processor node consisting of a simple and fast write-through, direct-mapped first-level cache

interfaced to a second-level write-back cache with various degrees of write buffering. We espe-

cially focus on the implementation issues related to a lockup-free [23, 31] second-level cache. A

previous study by Gharachorlooet al. has partly addressed this issue in the context of write-inval-

idate protocols [17] but not for update-based protocols.

A detailed simulation study of four applications from the SPLASH suite [29] reveals that pure

write-update protocols have an unacceptable level of traffic in some cases. However,competitive-

update protocols, which are update-based protocols augmented with simple competitive mecha-

3

nisms to invalidate a block, have a potential to reduce the read penalty provided that the applica-

tion’s bandwidth requirement is moderate as compared to the available network bandwidth. We

show that competitive-update protocols can reduce the read penalty by as much as 46% as com-

pared to write-invalidate protocols. However, the management of the cache for competitive-

update protocols requires more complex hardware and is only effective under relaxed memory

consistency models. We identify the hardware mechanisms needed to fully exploit the read-

latency reducing capability of update-based protocols.

As a background, we begin in the next section by comparing the performance potentials and

limitations of write-invalidate and update-based protocols under relaxed memory consistency

models. Then, in Section 3, we describe the lockup-free mechanisms needed to hide the write

latency by reviewing the architecture of the simulated multiprocessor system used in our simula-

tions. In Section 4 we present the simulation methodology, the detailed architectural assumptions,

and the benchmark programs. The experimental results are presented in Section 5 and our find-

ings are contrasted with the work of others in Section 6. Finally, we conclude in Section 7.

2 Background

In shared-memory multiprocessors, the memory access penalty, i.e., the accumulated time the

processor has to stall for completing memory accesses during the program execution, consists of

two components— thewrite and theread penalties. In a write-invalidate protocol, the write pen-

alty is due to the invalidation of remote copies upon a write request whereas the read penalty

comes from the handling of cache load misses. Write latencies can be very high because copies in

remote caches, far away from the processor, must sometimes be invalidated. The effectiveness of

mechanisms to hide these latencies depends on thememory consistency model.

2.1 Memory Consistency Models
The memory consistency model refers to the logical model offered by the memory system to the

programmer or to the compiler. This model in turn constrains the possible ordering and interleav-

ing of memory accesses in the multiprocessor.

Sequential Consistency [24] is the most restrictive model as far as the ordering of memory

accesses is concerned. The major drawback of sequential consistency is the severe limitation it

imposes on the overlap of writes with subsequent reads, writes, or local computation in the pro-

cessor. In essence, no read or write request (to shared data) can be handled before a previous write

request has been completed.

To remedy this problem the constraints on the ordering of shared memory accesses [1, 13, 16]

must be relaxed by assuming that ordering is only enforced on special synchronization operations

rather than on all memory accesses. All synchronizations among parallel threads are done through

explicit, hardware-recognizable synchronization operations (i.e., these operations must be distin-

guishable from regular load/store instructions). The processor must perform all its preceding

4

loads and stores globally before it can issue a synchronization operation; moreover, a processor

may issue no memory loads or stores following a synchronization point in program order until the

synchronization operation is successfully completed. In systems where these two conditions

apply we say that loads and stores areWeakly Orderedand that the memory system is weakly

ordered (WO) [12].

Special types of synchronization operations allow additional relaxation of the above condi-

tions. For synchronization based on critical sections, a refinement calledRelease Consistency [16]

distinguishes between acquire (acquiring a lock) and release (releasing a lock). Release Consis-

tency requires that all global accesses preceding a release are globally performed before the

release, and that no global access following an acquire is issued before the acquire has completed.

In its strictest form, Release Consistency (RCsc) requires that all processors must execute their

acquires and releases in their program order. In essence, releases can be buffered with the stores in

the same write buffer provided all writes preceding a release in the FIFO order of the buffer are

performed before the release is issued from that buffer and acquires are not allowed to bypass

releases. In a more relaxed form of Release Consistency (RCpc), acquires are allowed to bypass

previous releases, but consecutive releases must still be performed in program order. Henceforth

we will only assume RCpc and will refer to it as RC for simplicity.

Under Release Consistency, previous work has shown that there is a potential to hide all the

write latency by local computation given enough hardware support [17]. However, the read pen-

alty cannot be reduced significantly by using relaxed memory models, unless loads are non-block-

ing in the processor. These non-blocking loads must either be scheduled statically by the user/

compiler or dynamically by dynamic instruction-scheduling mechanisms. Static scheduling of

loads is difficult because of intra-processor dependences. A study by Gharachorlooet al. [18] has

shown that the performance potential attained by dynamic load scheduling does not justify the

increased complexity of the processors. Therefore, in this study, we only consider standard pro-

cessors with blocking loads.

2.2 Write-Invalidate Versus Write-Update Protocols
Most implementations of and proposals for large-scale multiprocessors use write-invalidate pro-

tocols [3, 21, 25] because early studies based on bus-based multiprocessors such as [13] indicated

that they exhibit reduced traffic and overall better performance. Write-invalidate protocols have

lower traffic because in a sequence of writes from the same processor with no intervening access

from other processors, only the first write causes global traffic. Unfortunately, the invalidation of

remote copies leads to coherence misses. These misses can incur a significant read penalty

because the read request must be forwarded from the memory module to the cache keeping the

exclusive copy. The cache with the exclusive copy then must update the memory and the block

must be supplied to the requesting cache. Thus, the total read penalty to service a coherence miss

includes several node-to-node block transfers.

5

By contrast, in write-update protocols all coherence misses are eliminated since all copies of a

memory block are updated with the new value instead of invalidated on a write request to a shared

block. The price to pay for the elimination of the coherence misses is an increased number of glo-

bal write actions.

The write penalty under sequential consistency is substantially higher for write-update proto-

cols than for write-invalidate protocols because of two reasons: (i) each write action incurs more

latency to guarantee causal correctness [28] and (ii) the number of global write actions is larger

than under write-invalidate. To guarantee causal correctness, all writes must appear in the same

order with respect to each processor. Wilson and LaRowe presented a two-phase protocol [34]

which guarantees causal correctness. In their protocol, two transactions per update must take

place. During the first transaction, the data values are updated but the copies are locked. A proces-

sor that accesses a locked block is stalled. During the second transaction, the copies are unlocked

and the processors are allowed to access their copies again. Because of the large overhead associ-

ated with this two-phase protocol, write-update protocols are not feasible in the context of

sequential consistency models.

By contrast, under a relaxed consistency model, such as WO or RC, the write latency can be

completely hidden provided a sufficiently aggressive design of the processor node and the mem-

ory subsystem. In addition, since causal correctness is not required for ordinary loads and stores,

the two-phase update transaction is not needed. However, the potential increase in traffic can lead

to more read penalty because of increased contention which overall end up increasing the execu-

tion time as compared to write-invalidate protocols. The question then is whether the traffic of

update-based protocols can be kept at an acceptable level so that the reduction of read penalty

they provide is not eliminated or — even reversed — by contention.

2.3 Competitive-Update Protocols
In a write-update protocol, a block loaded into a cache stays there until it is replaced, which

results in update actions from other processors even if the local processor does not access the

block again. To remedy this problem the local copy should be invalidated if it has been updated

by remote processors a certain number of times with no intervening local access. Karlinet al.

introduced this mechanism which they callcompetitive snooping in [22], in the context of bus-

based systems, where each processing node snoops on the bus for write actions. The implementa-

tion requires a counter per cache block. On a processor access to the block, the counter is initial-

ized to a given value, thecompetitive threshold. Whenever an update message from a remote

processor is received, the counter is decremented. When the counter reaches zero, the block is

invalidated.

To study the potential of read-penalty reduction of update-based protocols, we will consider a

similar protocol, referred to ascompetitive-update. The competitive snooping protocol can easily

be adapted to a directory-based protocol. When a cache receives an update and the counter of the

6

block reaches zero, the copy is invalidated and the cache notifies the memory controller of the

invalidation so that updates to that cache ceases.

2.4 Summary
In summary, write-invalidate protocols have lower write traffic and write penalty at the cost of a

higher coherence miss rate whereas write-update protocols eliminate coherence misses at the cost

of increased write traffic in the network. Simple competitive algorithms added to a write-update

protocol have the potential for reduced read penalty as compared to write-invalidate protocols

while maintaining an acceptable traffic level.

Whereas the performance issues related to the policies that we consider in this paper are

important, the complexity and cost of the mechanisms needed to overlap write requests with each

other are critical issues. In the next section, we describe possible implementations for different

write-latency hiding mechanisms which we have considered in our study.

3 Processor Node Architectures for Latency Hiding

As a basic assumption for our analysis, we have only considered design alternatives that are appli-

cable to standard microprocessors which block on load requests. Future standard microprocessors

will have an on-chip cache for data and instructions as contemporary microprocessors have. We

assume throughout the paper that this on-chip cache is a write-through cache with no allocation

on write misses and is blocking on read misses. Such a cache is simpler and faster than a write-

back cache and is more likely to support processors with increasing clock rates. We also assume

that the microprocessor has an invalidation pin and a mechanism to invalidate blocks in the on-

chip cache. This pin will be required for maintaining coherence.

3.1 The Basic Processor Node
A simple and common way to hide write latencies is the cache hierarchy shown in Figure 1 which

consists of a First-Level write-through Cache (FLC) with no allocation on a write miss and a Sec-

ond-Level write-back Cache (SLC). To avoid processor stalls on writes, a First-Level Write

Buffer (FLWB) between the two caches holds the contents of all modified words that have not

updated the SLC; the processor executes all writes in one cycle in the FLWB for as long as the

buffer is not backed up. Since the SLC is only accessed on a read miss from the FLC, there is

plenty of SLC bandwidth to satisfy the writes in between two read misses.

FLC SLCP

First-level
write buffer

First-level
cache

Second-level
cache

FLWB Local bus

Figure 1: A basic two-level cache hierarchy.

7

The cache hierarchy in Figure 1 can partly take advantage of Weakly Ordered (WO) or

Release Consistent (RC) memory consistency models because the processor is not blocked when

a write misses or hits on a clean copy in the second-level cache: writes are buffered in the FLWB

and read misses in the FLC can bypass the writes in the buffer as long as intra-processor depen-

dences are respected, which only leads to the following three restrictions. First, synchronization

operations cannot bypass the write buffer. Second, reads cannot bypass synchronization opera-

tions. Third, a read miss to a block cannot bypass a write to one of its words in the buffer. Ideally,

if the read accesses a word in the write buffer, the read miss could return the value to the proces-

sor. However this would complicate the design of the buffer and the interface to the microproces-

sor, which might receive either a block or the word on a cache miss. For codes with read-after-

write dependencies such as recurrence relations, such a mechanism may improve performance.

The benchmarks we have run do not have such recurrences and therefore would not benefit from

the added complexity. For these reasons, we do not consider this possibility.

Under Release Consistency, releases can be buffered with the writes in the same write buffer

provided all writes preceding a release in the FIFO order of the buffer are performed before the

release is issued from that buffer. Subsequent acquires and FLC read misses may bypass the

releases in the buffer.

3.2 A Processor Node with a Second-Level Write Buffer
The processor node of Figure 1 is very similar to the architecture of the SGI cluster of the DASH

prototype [25]. In this architecture, the second-level cache stops accepting write or read miss

requests when a write emerges from the FLWB and the block is not owned in the SLC. This is a

severe limitation. If we want to make the processor node truly tolerant to write latencies, we need

to make the SLC lockup-free [23], meaning that it can allow multiple outstanding write requests.

However, for microprocessors that block on loads, only a single outstanding read request needs to

be supported. By including a second-level write buffer (SLWB), as shown in Figure 2, the SLC

can allow multiple outstanding write requests. All writes that cause global actions (including

write misses, invalidations, or updates) can be inserted temporarily in this buffer. Read misses in

the SLC may be allowed to bypass the writes in the SLWB, under the same restrictions as for the

FLWB. In contrast to the FLWB, which must be as fast as the FLC, the SLWB can afford more

complex mechanisms because it is interfaced to the slower SLC. There are many design options

for the architecture of the SLWB and of its controller, and we will cover some of the most impor-

tant ones in this paper.

3.2.1 Design Alternatives for the First-Level Write Buffer
The first-level write buffer is needed because processor writes must complete at the speed of the

processor. The major requirement of this buffer is that it must be simple and fast. Traditionally its

size has been small: depending on memory latencies, 4 to 16 entries are sufficient to avoid any

stall on writes in the processor.

8

One interesting design issue is whether read misses in the FLC should bypass the writes in the

FLWB. Since the on-chip cache blocks on a read miss, only one such miss will ever need to

bypass the buffer but the timing of the miss is critical to performance. To allow a read miss to

bypass the FLWB, a mechanism must check for words of the block in the write buffer; if there is a

match the read miss request is blocked until the buffer is empty.

In the case of Weak Ordering, the FLWB must be emptied at the execution of each synchroni-

zation instruction. By contrast, for Release Consistency, acquires are always allowed to bypass

the write buffer. We will investigate the effectiveness of allowing read and acquire requests to

bypass write and release requests in the FLWB.

3.2.2 Design Alternatives for the Second-Level Write Buffer (Write-Invalidate)
The SLWB contains entries for writes that cause global actions (misses or invalidations). It can be

organized as a FIFO queue containing addresses and values of modified words. The interface to

the memory system is relatively simple. If a write request is put in the buffer, the SLWB controller

issues a request for ownership to the memory controller. The memory controller must deal with

each request one by one. (It can queue them or it can reject them.) Based on the state of the block

in other caches, the memory controller decides whether the requester needs a fresh copy of the

block, which happens if the block is dirty in another cache. Note that, even if the cache had a valid

copy of the block when the write was buffered, an invalidation may have removed the copy by the

time the write emerges out of the SLWB. If there is a valid (non-owned) block copy in the cache

and a write to the block is pending in the SLWB, writes to the block update the SLC and read

misses from the FLC return the modified copy in the SLC; all updates to such blocks are also

inserted in the SLWB but no additional global actions are taken. We distinguish between the fol-

lowing cases:

1. The block was missing in the SLC when the write was buffered. In this case, a block copy is

returned by the memory system; the updates in the SLWB must be merged into the block

copy before the block becomes accessible in the cache.

2. The block was not missing in the SLC but the cache did not have ownership when the write

was buffered. There are two possibilities:

FLC SLCP

First-level
write buffer

Second-level
write buffer

First-level
cache

Second-level
cache

Local bus
FLWB SLWB

Figure 2: A two-level cache hierarchy with two separate write buffers and a
lockup-free second-level cache.

9

2.1. The block has been invalidated since the write was buffered. The local updates to the

block are in the SLWB. A block copy is returned by the memory system and the

updates in the SLWB must be merged into the block copy before it becomes accessible

in the cache.

2.2. The block has not been invalidated since the write was buffered. The memory system

gives ownership rights to the cache by returning a positive acknowledgment. All

updates to the block must be removed from the SLWB when this acknowledgment is

received.

A first question is whether the SLWB could issue more than one ownership request at a time.

In this case, the buffer controller must keep track of each issued request until it receives an

acknowledgment or a block copy; moreover, when a block copy is returned by the memory con-

troller, all entries for the block must be removed from the buffer and possibly merged into the

block copy.

A second question is the effect of read misses in the SLC. We assume that the SLC can only

accept one read miss at a time (since the processor and the FLC are blocked anyway). The prob-

lems associated with allowing read miss requests to bypass writes in the SLWB are very similar as

for the FLWB. If there is an entry in the SLWB for a word in the missing block, the read miss is

blocked until the block copy or ownership is received, and then the miss is retried in the SLC.

Finally, under RC, releases may be buffered in the SLWB as well. Whereas the buffer may

have multiple ownership requests pending, a release is not allowed to issue from the buffer until

the memory responses for all the entries preceding the release in the FIFO order of the buffer have

been received. Acquires may also bypass the SLWB under the same restrictions as for the FLWB.

3.2.3 Design Alternatives for the Second-Level Write Buffer (Write-Update)
Most of the design issues for the SLWB under write-invalidate also apply to a system using a

write-update policy. For example, if a write misses in the SLC, we must keep track of all modified

words in the SLWB and later merge them with the fresh copy from the memory. Also, we can

update the SLC on a write without awaiting the pending write’s completion. However, there are

two differences. First, under write-invalidate a block in the SLC can be invalidated while a write

to that block is in the SLWB but this cannot happen under write-update. Second, while only a sin-

gle write request per block is issued from the SLWB at the same time under write-invalidate,

write-update allows an unlimited number of issued writes (updates) at a time, given FIFO order of

requests between two nodes in the system. Therefore, in a write-invalidate protocol, all SLWB

entries to the same block can be de-allocated when the invalidation request has been globally per-

formed, but, under write-update, we can only de-allocate the entry containing the write request

which has been globally performed. Write-update protocols are likely to have a larger number of

issued writes and the size of the SLWB is expected to be larger in order to fully hide the write

latency. In turn, it becomes more advantageous to allow read and acquire requests to bypass

10

writes and releases in the FLWB when the SLWB becomes full. Note that, in order to maintain

coherence, the copy of a block in the FLC is invalidated upon receiving an update request from a

remote processor to a block residing in both the FLC and the SLC.

3.2.4 Design Alternatives for the Second-Level Write Buffer (Competitive-Update)
In order to keep the number of shared copies under control in an update-based protocol, a simple

competitive-update mechanism consisting of a counter per SLC line keeps track of the number of

updates by remote processors to a block. On a read miss in the FLC, the block is loaded into the

FLC and the counter associated with the block in the SLC is initialized to a predefined value C,

the competitive threshold. When the SLC receives an update message from another processor

node, the actions taken depend on the value of the counter.

1. If the counter is not zero, it is decremented, the corresponding block in the SLC is updated,

and the block in the FLC is invalidated. In addition, an UpAck (update-acknowledgment)

message is returned to the memory controller.

2. If the counter is zero, the blocks in the SLC and FLC are invalidated and an UpAckInv

(update-acknowledgment-invalidated) is returned to the memory controller indicating that

the processor node does not have a copy any longer.

Consequently, after C consecutive update messages to a block from other nodes with no inter-

vening local reference to the block, the block is invalidated. Like write-invalidate protocols, the

block becomes exclusive (dirty) in an SLC if no other SLC has a copy of the block. With this

implementation, we manage to keep the FLC fast and simple. The only two external operations on

the FLC are invalidation of a block and loading a block. All complexity of the competitive mech-

anism is handled in the SLC.

The competitive threshold is an important design parameter, which we will study later in this

paper. Too small a threshold prevents the protocol from reducing the coherence miss rate and thus

the read penalty, whereas too big a threshold generates excessive write traffic, which may impact

adversely on the read-penalty reduction.

4 Simulation Methodology, Architectural Designs, and Benchmark Programs

In this section, we present the evaluation methodology, including the simulation environment and

the detailed architectural assumptions (Section 4.1), the buffering alternatives for the cache hier-

archy (Section 4.2), and the benchmark programs (Section 4.3).

4.1 Simulation Environment and Memory System Assumptions
The simulation models are built on top of the CacheMire Test Bench [7], a program-driven simu-

lator and a programming environment. The simulator consists of two parts: (i) a functional simu-

lator of multiple SPARC processors and (ii) an architectural simulator. The SPARC processors in

the functional simulator issue memory references and the architectural simulator delays the pro-

11

cessors according to its timing model. Thus, a correct interleaving of memory references is main-

tained by keeping track of the global time because the sequence of memory references is derived

by correctly modeling the delays in the target architecture.

The high-level organization of the processor node model we study is shown in Figure 3. The

two-level cache hierarchy we simulate consists of a 2 Kbyte FLC and an infinite SLC, both with a

cache-line size of 16 bytes. While we also study variations on the size of the write buffers, we will

assume that they both contain 16 entries by default. The cache hierarchy, referred to as the proces-

sor environment, is interfaced to the local portion of the shared memory and the Network Inter-

face Control (NIC) by a local bus according to Figure 3.

Cache coherence is supported by a directory-based protocol similar to Censier and Feautrier’s

[9]; each memory block is associated with a directory entry containing a presence flag vector indi-

cating which nodes have a copy of the block. The memory module in which a particular block is

allocated is called thehome of that block. The page size is 4 Kbyte and we assume that pages are

allocated to memory modules in a round-robin fashion; pages are interleaved across nodes. A read

miss in the SLC sends a read request to home. If the home is the local node and if the memory

block is clean, the miss is serviced locally. Otherwise, the miss is serviced either in two or in four

node-to-node traversals depending on whether the block is clean or dirty. Upon an invalidation or

an update request, the home memory controller is responsible for sending explicit invalidations or

updates to each node according to the state of the presence flag vector and the global coherence

state of the block. An invalidation/update from the memory module generates one single message

FLC SLCP

First-level
write buffer

Second-level
write buffer

First-level
cache

Second-level
cache

The processor environment

Local bus

Memory Processor

Local bus

Network
Interface
Control

Memory

Local bus

Network
Interface
Control

4-by-4 wormhole routed mesh (16 nodes)

Figure 3: The processor environment and the simulated architecture.

environment
Processor

environment

FLWB SLWB

Standard microprocessor Interface for hiding the latency of the system

12

on the local bus, including a presence flag vector; then the NIC sends explicit messages to each

node with a copy of the block. The NIC is also responsible for collecting invalidation/update

acknowledgments from other nodes. When the NIC has collected all acknowledgments, it sends a

single acknowledgment over the bus to the memory controller. Finally, acquire and release

requests are supported by a queue-based lock mechanism similar to the one implemented in

DASH [25]. A block where a lock variable is allocated contains only that single lock variable and

no other variables.

As far as the timing and architectural parameters are concerned, we consider SPARC proces-

sors and FLCs that are clocked at 100 MHz (1 pclock = 10 ns). The access time of the SLC is

assumed to be 30 ns (SRAM technology). The memory is assumed to be built from DRAM tech-

nology and is fully interleaved with an access time of 90 ns. The SLC and its write buffer are con-

nected to the NIC and the local memory module by a 128-bit wide split transaction bus clocked at

100 MHz. Thus, it takes 10 ns to arbitrate for the bus and 10 ns to transfer a request or a block. We

simulate a very fast bus since the bus load is an orthogonal issue in this study. Table 1 shows the

time it takes to service a read request when data is fetched from different levels in the memory

hierarchy, assuming a 100 MHz processor and a contention-free system. (In our simulations,

requests will normally take a longer time as a result of contention.) We simulate a system with 16

nodes interconnected by a 4-by-4 wormhole routed synchronous mesh with a flit size of 64 bits

and clocked at 100 MHz to be compatible in speed with the processors. The aggregate bandwidth

out from and into each node is 800 Mbytes/second. We model contention for all components in

the processor node and in the mesh network.

4.2 Restrictions on Buffering
We have simulated three different design alternatives for the cache hierarchy under Release Con-

sistency. These designs differ in the aggressiveness of the lockup-free mechanism of the SLC. In

addition, we also evaluate the effectiveness of read misses bypassing writes in the FLWB in the

context of each model.

Table 1: Latency of processor read requests when data is supplied
from different levels in the memory hierarchy.

Latency of read requests
1 pclock=10 ns
(100 MHz)

Fill from FLC 1 pclock

Fill from SLC 4 pclocks

Fill from Local Memory 20 pclocks

Fill from Home (2-hop) 43 pclocks

Fill from Remote (4-hop) 82 pclocks

13

Model RC-I corresponds to an architecture with a FLWB between the first-level and second-

level caches as shown in Figure 1. The SLC is blocking and there is no SLWB; a write request

causing a global action (write miss, invalidation, or update) blocks the SLC for as long as the

request is pending. Note that the processor is blocked only if the FLWB is full or if a read access

misses in the FLC.

In models RC-II and RC-III, global write requests are buffered in the SLWB. Under model

RC-II and RC-III we evaluate read miss and acquire bypass in the SLWB, but not in the FLWB.

There can be only one pending acquire or read miss request in the SLC. The only difference

between model RC-II and model RC-III stems from the number of pending write requests in the

network. While model RC-II allows only one pending read and one pending write request issued

from the SLWB at a time, model RC-III allows as many pending write requests as there are entries

in the SLWB, with the restriction that no more than one request to the same block is issued to the

network in the write-invalidate protocol at any time. Table 2 summarizes the features of the

design alternatives.

Under WO and RC reads are allowed to bypass writes in the write buffers, as long as they are

not to the same address, and thus we also evaluate the effectiveness of a read-bypass mechanism

added to the FLWB of each model. Since acquires are treated as read requests to synchronization

variables, the processor blocks on acquires just like it does on read misses. Under RC, which is

the default memory consistency model, acquires are allowed to bypass previous writes and

releases. When the three models are extended with a bypassing mechanism in the FLWB, we refer

to them as RC-I-bp, RC-II-bp, and RC-III-bp.

Table 2: Simulated architectural models.

Architectural
model

Second-level cache (SLC) Second-level write buffer (SLWB)

RC-I Blocking. One pending request at
a time. The cache is blocked until
the global request is performed.

None

RC-II Lockup-free. The cache is blocked
only when the SLWB is full.

One pending read and one pending write
request at a time.
Read misses bypass the buffer if no write to
the same block is in the buffer.
Releases are buffered and acquires always
bypass the buffer.

RC-III Lockup-free. The cache is blocked
only when the SLWB is full.

One pending read and as many pending write
requests as entries in the buffer.
Read misses bypass the buffer if no write to
the same block is in the buffer.
Releases are buffered and acquires always
bypass the buffer.

14

4.3 Benchmark Programs
In order to understand the relative performance of our architectural models under various coher-

ence policies, we use four scientific and engineering applications, all taken from the SPLASH

suite [29] except for the C-version of Ocean which has been provided to us by Steven Woo at

Stanford University. The main characteristics of the four benchmark programs, MP3D, Water,

PTHOR, and OCEAN, together with the size of the data set used are summarized in Table 3. All

programs are written in C using the PARMACS macros from Argonne National Laboratory [6]

and compiled withgcc version 2.1 (optimization level -O2). Statistics are collected during the

execution of the parallel section in the applications.

5 Experimental Results

We start by comparing the performance of the three coherence policies in Section 5.1. In Section

5.2 we compare the performance of different buffering schemes. The impact of the competitive

threshold (Section 5.3) and of the consistency models (Section 5.4) follows. Finally, in Section

5.5, simulation results for different network speeds are given in order to see how sensitive our

qualitative conclusions are to network capacity.

5.1 Relative Performance of Write-Invalidate, Competitive-Update and Write-Update
In order to separate implementation issues from the performance gains of the various coherence

policies, we analyze the performance of write-invalidate, competitive-update, and write-update

by assuming an aggressive lockup-free second-level cache according to model RC-III in Section

4.2 with 16 entries in the second-level write buffer.

The execution times for the applications are found in Figure 4. All execution times are nor-

malized to the execution time for write-invalidate for each application. The different sections in

the bars correspond to (bottom to top): the busy time (or processor utilization), the processor stall

time due to read misses, the processor stall time to perform acquire requests, and the processor

stall time due to a full first-level write buffer. The three bars for each application correspond to the

three coherence policies: write-invalidate (W-I), competitive-update (C-U), and write-update (W-

U). In our measurements, we have assumed a competitive threshold of 4.

Table 3: Benchmark programs.

Benchmark Description Data sets/Input

MP3D Particle-based wind-tunnel simulator 10 000 particles, 10 time steps

Water Water molecular dynamics simulation 288 molecules, 4 time steps

PTHOR Simulation of a digital circuit at the logic level RISC circuit, 1000 time steps

Ocean Simulation of eddy currents in an ocean basin 128-by-128 grid, tolerance 10-7

15

Let us first compare write-invalidate with write-update. In Figure 4 we see that write-invali-

date results in significantly better system performance than pure write-update for two of the appli-

cations (MP3D and Water). While the stall time due to acquires and full buffers is about the same,

the reason for the performance difference is the longer read stall time under write-update. The rea-

son why the read stall time is increased despite of the elimination of coherence misses is because

of contention due to the increase in network traffic as a result of the updates. To see this, we also

measured the network traffic for all applications under write-invalidate and write-update. This

data appears in Figure 5.

Figure 5 shows the amount of network traffic for write-update (W-U) relative to write-invali-

date (W-I). The traffic is measured in number of flits sent through the network and is normalized

to the traffic rate under the write-invalidate protocol for each application. The traffic under write-

update is 7 to 10 times more than under write-invalidate for MP3D and Water. For Ocean, write-

update performs significantly better and the traffic level is acceptable. MP3D and Water have poor

performance under write-update because of migratory sharing [20, 32]; as a migratory block

migrates from cache to cache, it creates copies that may not be referenced for a long time, flood-

ing the network with updates. By contrast, Ocean is based on an iterative algorithm and values are

communicated among neighboring processes. Therefore, write-update performs much better than

write-invalidate.

Figure 4: Normalized execution time of the benchmarks for the three coherence policies under RC.

||0

|50

|100

|150

|200

|250

|300

|350
 N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e

100 96

343

100 97 108 100 87
101 100 91 88

Buffer full

Acquire

Read

Busy

MP3D Water PTHOR Ocean

W-I C-U W-U W-I C-U W-U W-I C-U W-U W-I C-U W-U

Figure 5: Relative amount of network traffic generated under the different coherence policies.

||0

|100

|200

|300

|400
|500

|600

|700

|800

|900

|1000

 R
el

at
iv

e
A

m
o

u
n

t
o

f
T

ra
ff

ic

100
184

798

100
185

947

100 129

250

100 127 163

MP3D Water PTHOR Ocean

W-I C-U W-U W-I C-U W-U W-I C-U W-U W-I C-U W-U

16

We now turn our attention to competitive-update protocols. The main objectives of competi-

tive-update protocols is to reduce the network traffic generated by write-update protocols and at

the same time to take advantage of the elimination of most coherence misses. In Figure 5 we see

that the competitive-update protocol successfully reduces the network traffic by up to 80%, as

compared to the write-update protocol. As compared to write-invalidate, competitive-update gen-

erates about 85% more traffic for MP3D and Water which are applications exhibiting migratory

sharing, but only about 30% more for the other two applications. This does not seem to be a criti-

cal issue since the network is capable of handling that extra amount of traffic effectively.

In Figure 6 we show the relative read penalty under the different coherence policies. We

observe that the competitive-update protocol successfully reduces the read penalty (from 6% to

46%) compared to the write-invalidate protocolfor all applications. The write-update protocol

can reduce the read penalty even further for applications with little migratory sharing (PTHOR

and Ocean). Thus, competitive-update is a better default policy than write-invalidate for all four

applications.

We now look at the two factors affecting the read penalty under competitive-update. The first

factor is the reduction of the coherence miss rate and the second factor is the fraction of times a

block is clean at the memory on a read miss, i.e., no cache has an exclusive copy of the block. The

effect of the first factor is clear, but some increase in network traffic is needed to update the

cached copies, which in turn may increase the latency time of a cache miss. The second factor has

a positive effect because if the block is kept up-to-date at the memory, a read miss to the block

costs at most 2 network traversals in contrast to at most 4 network traversals if the block is exclu-

sive (dirty) in another cache. The effects of the two factors are summarized in Table 4.

We see in Table 4 (right column) that competitive-update reduces the read latency for all

applications except MP3D. For example, the average time for a read request to complete in Ocean

is 75 pclocks under competitive-update whereas the corresponding number for write-invalidate is

87 pclocks. We also observe that a block rarely becomes dirty under competitive-update as com-

pared to write-invalidate (the middle column); as many as 100% - 16% = 84% of all misses to

blocks that are dirty under write-invalidate for Ocean can be serviced at the memory module

Figure 6: Relative read penalty under the different coherence policies.

||0

|100

|200

|300

|400

|500

 R
el

at
iv

e
R

ea
d

 P
en

al
ty

100 94

468

100
63

138
100

54 37

100
71 64

MP3D Water PTHOR Ocean

W-I C-U W-U W-I C-U W-U W-I C-U W-U W-I C-U W-U

17

under competitive-update. Since the competitive threshold is set to 4, i.e., a block becomes exclu-

sive in a cache if a processor writes 4 times to the block with no other processor accessing it, we

conclude that most data blocks are read and modified by different processors in an interleaved

fashion. There is a clear distinction in the reduction of coherence misses between PTHOR and

Ocean on one hand, and MP3D and Water on the other hand. For PTHOR and Ocean the coher-

ence misses are reduced by about two thirds, but for MP3D and Water the reduction is only 13%

and 20%, respectively. The difference can be explained by observing that most data objects in

MP3D and Water are migratory objects [20, 32]. For MP3D the time for a read request to com-

plete decreases very little under competitive-update as compared to write-invalidate; even though

the blocks are clean in memory for 95% of the misses, the network contention induced by

increased write traffic offsets the reduction in the pure miss latency. However, the reduced coher-

ence miss rate under competitive-update cuts the overall read penalty by 6% for MP3D as com-

pared to write-invalidate (see Figure 6).

An overall reduction in the execution time of 3 to 13% is observed in Figure 4. A negative

effect of competitive-update, however, appears in the case of PTHOR. Namely, the acquire stall

time is higher under competitive-update and under write-update than under write-invalidate. A

release residing in the write buffer can not be issued from the processing node until all previous

writes are performed. If another processor waits for the release, it may see an increased acquire

stall time due to the delayed execution of the release. The higher number of global writes under

write-update leads to an increased acquire stall time. As a result, for applications exhibiting con-

tention for critical sections (or locks) the write latency may be converted into increased synchro-

nization overhead.

In summary, competitive-update protocols successfully reduce the coherence miss rate and the

read stall time, which results in shorter execution times under competitive-update than under

write-invalidate for all applications. We have also seen that competitive-update maintains an

acceptable traffic level as compared to write-invalidate. However, update-based protocols may

increase synchronization overhead for applications that exhibit contention for critical sections.

Table 4: Statistics for read misses in the SLC for competitive-update relative to write-invalidate.

Application

Relative coherence
miss rate

Relative numbers of read
misses to dirty blocks

Time for a read miss request
to complete (pclocks)

W-I C-U W-I C-U W-I C-U

MP3D 100% 87% 100% 5% 95 92

Water 100% 80% 100% 6% 80 51

PTHOR 100% 34% 100% 19% 114 81

Ocean 100% 24% 100% 16% 87 75

18

5.2 Evaluation of Different Buffering Alternatives
In this section we compare the buffering alternatives described in Section 4.2 for write-invalidate

and competitive-update protocols.

5.2.1 Buffering Alternatives for Write-Invalidate Protocols
We start by analyzing the impact of the three buffering alternatives on the performance under the

write-invalidate policy. The results are compared with the performance of Sequential Consistency

(SC). Our implementation of SC forces the processor to stall on each shared data access. The

write buffers have a limited size; each buffer is 16 entries deep. Figure 7 shows the execution

times for the benchmark applications under write-invalidate.

In our first model (RC-I) buffering is limited to a FLWB with no read bypass. We observe

reductions of the execution times by 4% to 11% as compared to SC (Figure 7). The only write

latency we can hide is the time from a write access to a following read miss in the FLC. The read

request has to wait until the write is completed, which may be the time it takes to perform the

write globally if the distance between the write and the subsequent read miss is short. During that

time the SLC is blocked and can not handle the read request. Therefore, most of the write latency

from SC is converted into read latency in the RC-I model. The only exception is Ocean, where

less than 40% of the write latency is converted into read latency. This result indicates that there is

a longer distance between a global write access to a following read miss in the FLC in Ocean than

in the other three applications. From Table 5 we see that a read request spends only 3 pclocks in

Figure 7: Normalized execution time of the benchmark applications for the buffering
alternatives under write-invalidate.

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 100

89

65 64

100 96
91 91

Buffer full
Release
Acquire
Write
Read
Busy

MP3D Water
SC RC-I RC-II RC-III SC RC-I RC-II RC-III

||0

|10

|20

|30

|40

|50

|60

|70
|80

|90

|100

|110

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 100
94

82 82

100

89
84 80

Buffer full
Release
Acquire
Write
Read
Busy

PTHOR Ocean
SC RC-I RC-II RC-III SC RC-I RC-II RC-III

19

the FLWB for Ocean, as opposed to 42, 12, and 22 pclocks for MP3D, Water, and PTHOR,

respectively. MP3D is the only application where there is more than one request in the buffer

when the read miss occurs. This indicates that MP3D is the only application where read bypassing

in the FLWB has a potential to reduce the read penalty.

To test this intuition, we evaluated the effects of read bypassing in the FLWB for each bench-

mark under RC-I and did not observe any performance gain at all, except for MP3D where a small

decrease in read stall time was observed. The reason is that the SLC is still blocked due to pend-

ing write requests at the time the read miss occurs. We also see in Table 5 that at the time a read

request is issued to the FLWB the buffer is mostly empty. If there are multiple write requests in

the FLWB requiring global actions, we would expect to see a larger performance gain from read

request bypassing in the FLWB, but this is clearly not the case. For one of the applications,

PTHOR, we even observed an increase in execution time by 1% for the RC-I-bp model as com-

pared to the RC-I model. The reason is that the acquire stall time has increased as an effect of the

delayed issuance of releases. From our measurements we found that the average time a release

spends in the FLWB increases from 87 to 147 pclocks for PTHOR when read bypassing is

allowed in the FLWB.

From Figure 7, we see that the execution times drop when one outstanding read request is

issued in parallel with one outstanding write request, as in model RC-II. This requires the SLC to

be lockup-free [23, 31] and a SLWB is introduced with a single pending global write request. The

read latency is reduced to almost the same level as in SC for all of the applications because a read

miss request can be issued from the SLC at once. For MP3D we observe a slightly higher read

penalty under RC-II than under SC, which comes from increased network contention. The reduc-

tion in the total execution times with respect to RC-I comes from the reduced read stall times in

all four applications. We did not see any problems in hiding the write latency for any of the appli-

cations.

As can be seen in Figure 7, moving from model RC-II to RC-III does not buy us any signifi-

cant performance increase in general under write-invalidate. In model RC-III, the acquire stall

time for PTHOR is lower than RC-II because releases are issued faster from the SLWB when

Table 5: Queuing statistics for an FLC read miss in the FLWB under buffering model RC-I.

Application
Average time in the FLWB

(pclocks)
Average number of requests before a

read request in the FLWB

MP3D 42 1.4

Water 12 0.5

PTHOR 22 0.1

Ocean 3 0.1

20

multiple pending write requests (up to 16) are allowed. PTHOR is an application with a high rate

of synchronizations and it benefits from the fact that releases are issued faster from the processing

nodes. To take advantage of Release Consistency as much as possible in the general case, multiple

pending write requests are necessary. Unfortunately, in PTHOR we observe that the reduced

acquire stall time is converted into read latency because of network contention so the overall per-

formance increase is negligible.

We also evaluated the performance gains for RC-II and RC-III when read requests are

allowed to bypass write requests in the FLWB, leading to models RC-II-bp and RC-III-bp. We

did not see any performance benefit for the same reasons as for RC-I-bp; the SLWB is large

enough, so there is never any request in the FLWB when the read request is issued from the FLC.

Moreover, the SLC is not blocked by previous requests either.

In summary, we observe the main performance increase when the SLC is lockup-free and a

SLWB is present so that one read miss request can be issued in parallel with one global write

request. Supporting multiple pending global write requests does not yield any significant perfor-

mance improvement under write-invalidate. Allowing read requests to bypass write requests in

the FLWB does not yield any significant improvement either since the FLWB is mostly empty at

the time it receives a read request.

5.2.2 Buffering Alternatives for Competitive-Update Protocols
In this section we compare the different buffering alternatives under competitive-update. The

results are summarized in Figure 8. The baseline model is an implementation where the processor

is stalled at each shared read or write request and referred to as SC although it does not maintain

Sequential Consistency in a strict sense. The update transactions are performed in a single pass,

not in two as discussed in Section 2.2.

 When we go from SC to RC-I under competitive-update, we observe the same phenomenon

as for write-invalidate; a part of the write latency is converted into read latency. The amount of

write latency converted differs among applications. For MP3D, Water, and PTHOR almost all the

write latency is converted into read latency, whereas for Ocean only about two thirds of the write

latency is converted.

Introducing a SLWB in the cache hierarchy with one pending read and one pending write

request, as in model RC-II, yields a significant performance increase under competitive-update.

The execution time is reduced by 11% to 19% as compared to RC-I, mainly due shorter read stall

time. Since one read and one write request can be outstanding at the same time, the write request

does not delay the issuance of a read request as in model RC-I. There is a small increase in the

acquire stall time for Ocean, however, due to contention effects in the network which delay global

write requests and releases.

21

In contrast to write-invalidate, we observe from the results in Figure 8 that allowing the issu-

ance of multiple write requests from the SLWB further reduces the execution times for all appli-

cations. In MP3D this stems from the reduced time a read request spends in the FLWB. Global

write requests are retired from the SLWB at a higher rate in model RC-III than in model RC-II

which makes the SLC service the requests from the FLWB at a higher speed. In PTHOR and

Ocean the reduced execution times mainly stem from a reduced acquire stall time. Since global

writes are completed faster, releases residing in the write buffers can be issued from the process-

ing node faster and, as a result, acquires can complete faster if they are waiting for the release.

Thus, we conclude that it is essential to allow multiple pending writes in order to benefit from the

performance potential of the competitive-update protocol. By using a relaxed memory consis-

tency model and appropriate hardware support, the execution times for the applications are

reduced by between 22% and 59% as compared to our SC model.

When we allowed read requests to bypass the FLWB, as in model RC-I-bp, we did not see any

significant improvement as compared to RC-I, except for Water where a reduction of the execu-

tion time is due to an almost 50% shorter read stall time (not shown in Figure 8). For Water, a read

request that bypasses writes in the FLWB in model RC-I-bp, bypasses 3 write requests on the

average. As a result, the write requests and releases are delayed in the FLWB. However, since the

locks are not contended in Water, all write latency can be hidden. For MP3D and Ocean, we

observed a significant decrease of the read stall time, but the processor stall time due to a full first-

Figure 8: Normalized execution time of the benchmark applications for the
buffering alternatives under competitive-update.

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 100
93

75

41

100 97

79 78

Buffer full
Release
Acquire
Write
Read
Busy

MP3D Water
SC RC-I RC-II RC-III SC RC-I RC-II RC-III

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 100
94

78
70

100
90

80
71

Buffer full
Release
Acquire
Write
Read
Busy

PTHOR Ocean
SC RC-I RC-II RC-III SC RC-I RC-II RC-III

22

level write buffer was increased by the same amount. For example, in MP3D each read miss

bypasses 12 writes in the FLWB on the average. This causes the FLWB to be filled, and as a

result, the processor is stalled.

We have also evaluated the performance gain when read requests are allowed to bypass write

requests in the FLWB in the presence of an SLWB. We did not observe any overall performance

gain of read bypassing under competitive-update. We found that the read latency is slightly

reduced for some applications, but the processor stall time due to a full first-level write buffer is

increased by approximately the same amount as the read latency is reduced.

In summary, unlike write-invalidate, it is essential to allow multiple pending write requests

under competitive-update to benefit as much as possible from the latency hiding capability of

Release Consistency. Like write-invalidate, a significant performance gain is achieved with only

one pending read and one pending write request at the same time for all applications; moreover

read bypassing in the FLWB does not improve the performance significantly, especially when the

SLC is lookup-free.

5.3 Effects of Various Competitive Thresholds
In our default competitive-update protocol we have used a competitive threshold of 4, i.e., a

cached copy is invalidated when it has been updated 4 times since the last reference by the local

processor. In this section we show simulation results with competitive thresholds from 1 to 8.

Figure 9 summarizes the results from the simulations with various thresholds for the competi-

tive-update protocol. The execution times are normalized to the execution time under the write-

invalidate (W-I) protocol which is the leftmost bar for each application. The next four bars to the

right correspond to the execution times under competitive-update (C-U) with thresholds 1, 2, 4,

and 8, respectively. The sixth bar for each application is the normalized execution time under the

write-update (W-U) policy.

For MP3D we see that the execution time is almost the same for competitive thresholds of 1

and 2 as for write-invalidate. For a competitive threshold of 4 competitive-update has a shorter

execution time than write-invalidate, and for higher thresholds the execution time increases again.

The extreme point is for the write-update protocol, where MP3D runs almost 3.5 times slower

than for the write-invalidate protocol, as a result of the intense migratory sharing leading to high

communication bandwidth.

For Water, we see that a threshold of 4 or 8 results in the shortest execution time. In Water

most data objects are migratory, but the communication to computation ratio is lower than in

MP3D. Therefore, the mesh network is not so heavily loaded, and most of the write traffic can be

hidden by local computation without affecting the read requests. In fact, the read stall time

decreases as the competitive threshold increases since the coherence miss rate and read latency

decrease. Also Water suffers from a huge amount of write traffic under the write-update protocol

23

and an increased read penalty is observed. However, the execution time under the write-update

protocol is only 8% longer than under the write-invalidate protocol.

For PTHOR the best competitive threshold is 8. The read penalty for PTHOR decreases as the

competitive threshold increases, so the application benefits from keeping the caches updated.

However, when the write traffic increases as the threshold increases, releases are delayed in the

write buffers before they leave the processing node, which in turn increases the acquire stall time.

Ocean is the only application where the write-update protocol results in shorter execution time

than the write-invalidate protocol. The execution time is reduced by 12% under write-update as

compared to write-invalidate, mainly because of the reduced read stall time. We also observe that

the threshold is not critical for Ocean, as long as the threshold is larger than one.

In summary, we have observed that most applications benefit from keeping the caches

updated. The read penalty is reduced when the competitive threshold increases, but the acquire

stall time may increase at the same time due to the increased write traffic which delays the issu-

ance of releases. The best competitive threshold for an application is difficult, or even impossible,

to predict statically. The optimal threshold varies between applications depending on the commu-

nication to computation ratio and the access patterns to shared data structures. The best threshold

may vary between blocks within the same application and possibly for the same block during the

execution of the program. We may say that as long as the competitive threshold is not extremely

large, competitive-update protocols provide consistent performance improvement.

Figure 9: Normalized execution time under competitive-update with various competitive thresholds.

||0

|50

|100

|150

|200

|250

|300

|350

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

100 103 102 96
121

343

100 100 100 97 97 108

Buffer full

Acquire

Read

Busy

MP3D Water

W-I C-U1 C-U2 C-U4 C-U8 W-U W-I C-U1 C-U2 C-U4 C-U8 W-U

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 100

88 88 87 86

101 100 96
91 91 91 88

Buffer full
Acquire
Read
Busy

PTHOR Ocean
W-I C-U1 C-U2 C-U4 C-U8 W-U W-I C-U1 C-U2 C-U4 C-U8 W-U

24

5.4 Weak Ordering vs. Release Consistency under Update-Based Protocols
Previous studies [17, 36] have shown that there is little or no performance difference between

Weak Ordering and Release Consistency under write-invalidate. However, no previous study has

addressed the relative effectiveness of the two consistency models under update-based protocols.

One could argue that an application would run equally fast under WO and RC since both models

have the possibility to overlap write requests with local computation and read requests. On the

other hand, one could argue that the higher rate of global write actions under update-based proto-

cols favors RC.

In order to understand which relaxed consistency model is better, we ran the four applications

under both consistency models on an architecture with our most aggressive buffering alternative

(model III) and 16 entries deep write buffers. We simulated both a network with infinite band-

width and our default network; a 100 MHz mesh network with 64-bit wide links. The infinite-

bandwidth network allows us to isolate the differences stemming from the consistency models

and not from the implementation. Under WO, the processor must stall at a synchronization point

until the write buffers are emptied. This stall time is classified as write stall time.

We first discuss the results obtained with the infinite-bandwidth network. Comparing RC and

WO for each of the three policies, W-I, C-U, and W-U, we observed no significant difference in

performance between RC and WO for MP3D and Ocean. However, for Water and PTHOR we

found a difference between RC and WO, which is in accordance to the results for write-invalidate

in [17]. Water has very short critical sections and PTHOR is the only of our four applications with

a high synchronization rate. For Water and PTHOR, the lower execution times under RC than

under WO (8% and 12%, respectively, under C-U) stem mainly from the increased write stall time

and, to a lesser extent, from the increased time to perform release requests under WO. Simulation

results also showed that the difference between RC and WO increased as we go from W-I, to C-U,

and to W-U. As expected, the higher rate of global write actions directly affects the write stall

time under WO.

The results from the architecture with the mesh network yielded a similar difference between

RC and WO as the infinite-bandwidth network did. However, the difference is smaller as a result

of network contention. For C-U, the execution times under RC are 6% and 9% lower for Water

and PTHOR, respectively, than under WO. Also for the mesh network we found an increasing dif-

ference between RC and WO as we go from W-I, to C-U, and to W-U. The write stall times under

WO increase with the write traffic (from W-I to C-U to W-U) and this effect is even more pro-

nounced when contention is taken into account.

In summary, by running the four applications under both Weak Ordering and Release Consis-

tency we have not found any difference between WO and RC for two of the applications (MP3D

and Ocean) in terms of latency hiding capabilities under update-based protocols. However, for

Water and PTHOR we observed a slight difference between RC and WO as a result of very small

critical sections (Water) and a high synchronization rate (PTHOR).

25

5.5 Effects of the Speed Gap Between Processor and Network
To get a feel for the sensitivity of our results to variations in speed differences between the pro-

cessors and the network, we simulated an architecture with 100 MHz processors and three differ-

ent networks; (i) a network with infinite bandwidth but latencies comparable to a 100 MHz mesh,

(ii) a 100 MHz mesh, and (iii) a 33 MHz mesh. The latter case corresponds to a network clocked

three times slower than the processor. The execution times shown in Figure 10 are normalized to

the execution time under write-invalidate.

By comparing the execution times of all applications under write-invalidate (W-I) and under

competitive-update (C-U) for each network, we see that the relative difference between write-

invalidate and competitive-update is approximately the same for the infinite bandwidth network

and the 100 MHz mesh except for MP3D, which has a very high bandwidth demand. We also see

that competitive-update gives aconsistent performance improvement over write-invalidate in

the architecture with a 100 MHz mesh network. For the 33 MHz mesh network, Water and Ocean

have shorter execution times under competitive-update than under write-invalidate. For MP3D

the high communication-to-computation ratio and the predominance of migratory sharing result

in a high rate of update messages and in severe network contention. Therefore, it is not possible to

hide the write traffic as effectively as with the faster 100 MHz mesh. For PTHOR the high syn-

chronization rate affects the total execution time. Nevertheless, competitive-update reduces the

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

100

80

100 96 100

123

100 95 100 97 100
94

Buffer full
Acquire
Read
Busy

MP3D Water

Infinite 100MHz 33MHz Infinite 100MHz 33MHz
W-I C-U W-I C-U W-I C-U W-I C-U W-I C-U W-I C-U

Bandwidth Mesh Mesh Bandwidth Mesh Mesh

||0
|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

100
88

100

87

100 104 100

85

100
91

100

84

Buffer full
Acquire
Read
Busy

PTHOR Ocean

Infinite 100MHz 33MHz Infinite 100MHz 33MHz
W-I C-U W-I C-U W-I C-U W-I C-U W-I C-U W-I C-U

Bandwidth Mesh Mesh Bandwidth Mesh Mesh

Figure 10: Effects of varying the capacity and the speed of the network

26

read penalty for PTHOR even on the slower mesh, but the high rate of global write actions affects

the overhead of releases and acquires adversely. From our measurements we find that competi-

tive-update reduces the read penalty by 32% to 43% as compared to write-invalidate for all appli-

cations but MP3D on the architecture with a 33 MHz mesh.

Qualitatively our conclusion that competitive-update successfully reduces read penalty still

holds even with a mesh network three times slower than the processors. In other words, the read

penalty reduction of competitive-update protocols is not very sensitive to changes in network

capacity given that the ratio of computation to communication and the distances between syn-

chronizations are sufficiently large.

6 Discussion and Related Work

The performance evaluations reported in this paper show that competitive-update consistently

performs better than write-invalidate for applications with moderate bandwidth requirements and

small contention for critical sections. Although the idea of using hybrid update/invalidate proto-

cols is not new, previous proposals have been specifically studied in bus-based systems and rely

on snooping. As we will discuss in the following, the trade-offs become fundamentally different

in a directory-based environment.

In [14], Eggers and Katz compare write-invalidate and write-update snoopy-cache protocols.

They conclude that neither protocol is better than the other. Our results show that pure write-

update is highly undesirable in the general case because of the heavy traffic caused by updates.

Eggers and Katz also evaluate two extensions to pure write-invalidate and write-update called

read-broadcast and competitive snooping [15]. While they show that competitive snooping can

improve the performance of write-update, they do not compare the performance of competitive

snooping with write-invalidate as we do. Eggers and Katz’s competitive snooping protocol is an

implementation of Karlin’s Snoopy-Reading protocol [22]. A writing processor keeps track of the

number of its own consecutive writes to each address. When the threshold for broadcasts has been

reached, the processor sends an invalidation on the bus to the other caches. When another cache

re-reads the block all caches with an invalid copy of the block catch the copy of the block as it

propagates on the bus (read-broadcasting) and reset their counters to the threshold. Clearly, read-

broadcast is not feasible in a directory-based environment.

In [4], Archibald proposed an adaptive write-invalidate/write-update snoopy-cache protocol.

His adaptive protocol starts in update mode, just like ours, and when a single processor has issued

three consecutive writes to the same block without any intervening access by another processor,

all other copies of the block are invalidated. A significant difference between Archibald’s and our

protocol is the behavior for migratory data objects. His protocol invalidates all copies of a block

when the same processor has written three times to the block, while in our protocol writes from

several processors contribute to the invalidation of a block copy. As a result, for migratory data

objects where each processor updates a block less than three times, Archibald’s protocol will con-

27

tinuously update all block copies, which may degrade the performance. In contrast, our protocol

will update at most three copies of the block, given the same threshold as Archibald’s protocol,

which significantly reduce the write traffic in a directory-based environment.

Veenstra and Fowler have evaluated the performance of optimal hybrid protocols in [33].

They use three types of hybrid protocols: Static Hybrid (each block uses W-I or W-U for the entire

execution), Paged Hybrid (all blocks in a page uses either W-I or W-U for the entire execution),

and Dynamic Hybrid (the protocol chooses between W-I and W-U at each write). By using off-

line optimal analysis, they found that hybrid protocols may offer substantial performance advan-

tages over W-I or W-U, especially for large block sizes. As expected, the Dynamic Hybrid proto-

col performs best, followed by the Static hybrid and the Paged Hybrid protocols. However, they

found that using the static strategy was almost as good as the dynamic one. Their results also indi-

cate that, to be worthwhile, it is enough for an on-line algorithm to converge to a good static

choice between W-I and W-U after a reasonable amount time. Their results are based on off-line

algorithms while our competitive-update protocol is an on-line algorithm, so our study and theirs

are complementing each other to cover a broad range of hybrid protocols.

The success of competitive-update schemes as shown in this paper comes from using a

relaxed consistency model to hide the write latency. We have studied the detailed design issues

involved in supporting multiple outstanding requests, in essence the design considerations for

second-level lockup-free caches. Our study thus involves some of the issues studied by Gharac-

horloo et al. [17] to support relaxed consistency models but that paper does not investigate

update-based protocols and its primary purpose is to compare the effectiveness of various mem-

ory consistency models. Their implementation models are referred to as BASIC, RDBYB, and

LFC and correspond to our models RC-I, RC-I-bp, and RC-III-bp. While they show that bypass-

ing of read misses in the first-level write buffer in conjunction with a lockup-free second-level

cache is needed in order to fully hide the write latency in write-invalidate protocols, our study

shows that read bypassing is actually not needed. This is an important contribution of this paper

because read-bypassing complicates the write buffer design and can make it slower. As in their

study, however, we confirm that only a single outstanding write request needs to be supported for

write-invalidate protocols. However, as our study indicates, write-update protocols need lockup-

free cache controller designs that can issue multiple outstanding write requests. Our evaluations

of PTHOR, which uses fine-grain synchronization, show that Release Consistency exhibits better

performance than Weak Ordering. This is in accordance to the results in [17]. We have extended

their results by showing that this difference is even more pronounced for update-based protocols.

Update-based protocols have been considered in several distributed shared-memory systems

where coherence is maintained at the page level [5, 34]. In [5], an architecture relying on soft-

ware-controlled replication of pages and a write-update protocol in hardware for coherence main-

tenance is presented. The simulations show high processor efficiency over a range of applications

running on up to 64 processors.

28

Wilson and LaRowe present a novel technique in [34] to maintain coherence of shared data at

the page level. The technique is a hardware-supported but software-controlled mechanism that

supports both invalidate and update-based protocols. The operating system software is responsi-

ble for choosing which coherence policy to use for each page. This study also shows that most

write latency can be hidden by using a relaxed memory consistency model and by choosing an

appropriate coherence policy for each page. Another study by the same authors [35] shows that as

the block size increases write-update becomes preferable to write-invalidate in terms of memory

traffic. Therefore, overall, write-update should be a much better choice than write-invalidate for

page-level coherence in distributed shared memory systems.

In this study we show that competitive-update successfully reduces the read penalty for a wide

range of applications as compared to write-invalidate. However, for applications with a high

degree of migratory sharing competitive-update generates unnecessary write traffic, which may

offset the read penalty reduction in networks with low bandwidths. Therefore, in [27], Nilsson

and Stenström extend a competitive-update protocol with a previously published migratory detec-

tion mechanism [32]. The new adaptive protocol dynamically detects migratory data blocks and

handles them with a read-exclusive policy. All other blocks are handled according to the competi-

tive-update policy. They experimentally found that the adaptive protocol demands less than half

of the network bandwidth as the competitive-update protocol for some of the applications with

migratory objects (MP3D and Water). The reduction of network traffic is especially important

because it makes the competitive-update policy suitable for an even broader range of multiproces-

sors.

A continuation of the work in this paper is presented in [11] where Dahlgren and Stenström

propose to use awrite cache as a means to reduce the write traffic associated with a competitive-

update protocol. A write cache works in parallel with the second-level cache and is a small write-

back cache with an allocate-on-write-miss and a no-allocate-on-read-miss strategy and a single

valid/dirty-bit for each word. They evaluate the use of write caches together with a competitive-

update protocol in a similar architectural model as in this study. They find a significant decrease in

the write traffic and that a competitive threshold of one is sufficient when using a write cache

together with a competitive-update protocol. Moreover, they find that most of the performance

improvement is obtained with a very small (only four blocks) and direct-mapped write cache.

Finally, we speculate that the trends for larger systems are as follows. As more processors are

added to a multiprocessor system, network latencies are expected to be longer. We believe that it

is easier to achieve scalable bandwidth than scalable latencies, e.g., as a result of physical dis-

tances between processor nodes. This may impact the read and write penalties for the applications

making it even more important to reduce the cache miss rate as much as possible. It is also likely

that update-based protocols may require more extensive buffering as network latencies grow. We

also believe that the communication demand and synchronization overhead will increase as the

number of processors increases. It is interesting to note that a competitive-update protocol has a

29

potential to significantly reduce the read latencies as compared to a write-invalidate protocol, but

at some increase in network traffic. As a result, we believe that competitive-update protocols will

become even more favorable when the system size increases.

7 Conclusion

In this paper we analyze the relative performance of three different coherence policies: write-

invalidate, write-update, and competitive-update. While previous studies have addressed the rela-

tive performance mainly in bus-based systems, we consider in this paper a cache-coherent

NUMA architecture with a directory-based mechanism as a basis for the cache coherence proto-

cols. Based on program-driven simulations of a detailed multiprocessor system and four bench-

marks from the SPLASH suite we find that, contrary to what has been thought earlier, write-

update cache-coherence protocols augmented with simple competitive mechanisms, referred to as

competitive-update, have a potential to reduce the read penalty. We show that a competitive-

update scheme can reduce the read penalty by as much as 46% as compared to write-invalidate.

While it increases the traffic by 27% to 85%, this extra traffic did not offset the reduction in read

penalty as a result of coherence-miss reduction. A negative effect appearing in one application,

however, is the increase in synchronization overhead: Since release requests take a longer time to

be globally performed as a result of a larger number of global writes, the acquire stall-time may

increase in applications exhibiting contention for critical sections. We also found that update-

based protocols, such as competitive-update, are more sensitive to the choice of consistency mod-

els than write-invalidate protocols. We found for two of the applications that competitive-update

could perform as much as 9% better under Release Consistency than under Weak Ordering.

The two-level cache hierarchy organization we have adopted is compatible with high-perfor-

mance microprocessors because it uses a simple, and thus fast, first-level cache and associates all

protocol issues and lockup-free mechanisms with the second-level cache controller. Based on

three buffering alternatives in the second level cache, we find that all performance benefits of

Release Consistency can be exploited by allowing only a single outstanding write request in addi-

tion to a pending read-miss request under write-invalidate. However, in order to hide the write

latency for the increased number of global write actions under update-based protocols, multiple

outstanding requests are needed, although we did not see any use for more than 16 outstanding

writes. We also studied the potential of letting read misses from the first-level cache bypass the

first-level write buffer. We did not see any significant performance improvement from this design

option. This is an important observation because it makes it possible to design a simpler and faster

write buffer, which will scale with the processor speed.

This study suggests that update-based protocols augmented with a simple competitive mecha-

nism can reduce the read-latency by reducing the number of misses and the latency of the remain-

ing misses. However, since they trade the miss reduction for a larger number of global writes,

they require relaxed consistency models to be effective. On the premise that the programming

30

community accepts the use of relaxed memory consistency models, we feel that the techniques

presented in this paper are important to achieve the goal of scalable shared-memory systems but

there is room for additional improvements.

References

[1] S.V. Adve and M.D. Hill, Weak ordering — A new definition, Proc. 17th Internat. Symp. on Com-
puter Architecture, Seattle, WA (May 1990) 2-14.

[2] A. Agarwal, B-H. Lim, D. Kranz, and J. Kubiatowicz, APRIL: A processor architecture for multi-
processing,Proc. 17th Internat. Symp. on Computer Architecture, Seattle, WA (May 1990) 104-114.

[3] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B-H. Lim, G. Maa, D.
Nussbaum, The MIT Alewife machine: A large-scale distributed-memory multiprocessor, in: M.
Dubois and S.S. Thakkar, eds., Scalable Shared Memory Multiprocessors (Kluwer Academic Pub-
lishers, Boston, MA 1990) 240-261.

[4] J.K. Archibald, A cache coherence approach for large multiprocessor systems,Proc. Internat. Conf.
on Supercomputing,St. Malo, France (Jul. 1988) 337-345.

[5] R. Bisiani and M. Ravishankar, PLUS: A distributed shared-memory system,Proc. 17th Internat.
Symp. on Computer Architecture, Seattle, WA (May 1990) 115-124.

[6] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson, and R. Stevens, Porta-
ble programs for parallel processors (Holt, Rinehart and Winston, Inc., New York, NY, 1987).

[7] M. Brorsson, F. Dahlgren, H. Nilsson, and P. Stenström, The Cachemire test bench — A flexible and
effective approach for simulation of multiprocessors,Proc. 26th Annual Simulation Symp., Arling-
ton, VA (Mar. 1993) 41-49.

[8] D. Callahan, K. Kennedy, and A. Porterfield, Software prefetching,Proc. Fourth Internat. Conf. on
Arch. Support for Prog. Lang. and Operating Syst., Santa Clara, CA (Apr. 1991) 40-51.

[9] L.M. Censier and P. Feautrier, A new solution to coherence problems in multicache systems,IEEE
Trans. Comput. C-27(12) (Dec. 1978) 1112-1118.

[10] F. Dahlgren, M. Dubois, and P. Stenström, Fixed and adaptive sequential prefetching in shared mem-
ory multiprocessors,Proc. 1993 Internat. Conf. on Parallel Processing, Vol I, Chicago, IL (Aug.
1993) 56-63.

[11] F. Dahlgren and P. Stenström, Reducing the write traffic for a hybrid cache protocol,Proc. 1994
Internat. Conf. on Parallel Processing, Chicago, IL (Aug. 1994). To appear.

[12] M. Dubois, C. Scheurich, and F. Briggs, Memory access buffering in multiprocessors,Proc. 13th
Internat. Symp. on Computer Architecture, Tokyo, Japan (Jun. 1986) 434-442.

[13] M. Dubois and C. Scheurich, Memory access dependencies in shared memory multiprocessors,
IEEE Trans. Software Engrg. SE-16(6) (Jun. 1990) 660-674.

[14] S.J. Eggers and R.H. Katz, A characterization of sharing in parallel programs and its application to
coherency protocol evaluation,Proc. 15th Internat. Symp. on Computer Architecture, Honolulu, HA
(May 1988) 373-382.

[15] S.J. Eggers and R.H. Katz, Evaluating the performance of four snooping cache coherency protocols,
Proc. 16th Internat. Symp. on Computer Architecture, Jerusalem, Israel (May 1989) 2-15.

31

[16] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy, Memory consis-
tency and event ordering in scalable shared-memory multiprocessors,Proc. 17th Internat. Symp. on
Computer Architecture, Seattle, WA (May 1990) 15-26.

[17] K. Gharachorloo, A. Gupta, and J. Hennessy, Performance evaluation of memory consistency mod-
els for shared-memory multiprocessors,Proc. Fourth Internat. Conf. on Arch. Support for Prog.
Lang. and Operating Syst., Santa Clara, CA (Apr. 1991) 245-257.

[18] K. Gharachorloo, A. Gupta, and J. Hennessy, Hiding memory latency using dynamic scheduling in
shared-memory multiprocessors,Proc. 19th Internat. Symp. on Computer Architecture, Gold Coast,
Australia (May 1992) 22-33.

[19] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W-D. Weber, Comparative evaluation of
latency reducing and tolerating techniques,Proc. 18th Internat. Symp. on Computer Architecture,
Toronto, Canada (May 1991) 254-263.

[20] A. Gupta and W-D. Weber, Cache invalidation patterns in shared-memory multiprocessors,IEEE
Trans. Comput. C-41(7) (Jul. 1992) 794-810.

[21] E. Hagersten, A. Landin, and S. Haridi, DDM — A cache-only memory architecture,IEEE Comput.
25(9) (Sep. 1992) 44-54.

[22] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator, Competitive snoopy caching,Proc. 27th
Annual Symp. on Foundations of Computer Science (Oct. 1986) 244-254.

[23] D. Kroft, Lockup-free instruction fetch/prefetch cache organization, Proc. 8th Internat. Symp. on
Computer Architecture, Minneapolis, MN (May 1981) 81-87.

[24] L. Lamport, How to make a multiprocessor computer that correctly executes multiprocess programs,
IEEE Trans. Comput. C-28(9) (Sep. 1979) 690-691.

[25] D. Lenoski, J. Laudon, K. Gharachorloo, W-D. Weber, A. Gupta, J. Hennessy, M. Horowitz, and
M.S. Lam, The Stanford Dash multiprocessor,IEEE Comput. 25(3) (Mar. 1992) 63-79.

[26] T. Mowry and A. Gupta, Tolerating latency through software-controlled prefetching in shared-mem-
ory multiprocessors, J. Parallel Distributed Comput. 12(2) (Jun. 1991) 87-106.

[27] H. Nilsson and P. Stenström, An adaptive update-based cache coherence protocol for reduction of
miss rate and traffic,Proc. Parallel Architectures and Languages Europe (PARLE) Conf., Athens,
Greece (Lecture Notes in Computer Science, 817, Springer-Verlag, Berlin, Jul. 1994) 363-374.

[28] C. Scheurich, Access ordering and coherence in shared-memory multiprocessors, Ph.D. Thesis, Uni-
versity of Southern California, Los Angeles, CA, May 1989 (also U.S.C. Tech. Rep. CENG 89-19).

[29] J-P. Singh, W-D. Weber, and A. Gupta, SPLASH: Stanford parallel applications for shared-memory,
ACM SIGARCH Computer Architecture News 20(1) (Mar. 1992) 5-44.

[30] P. Stenström, A survey of cache coherence schemes for multiprocessors, IEEE Comput. 23(6) (Jun.
1990) 12-24.

[31] P. Stenström, F. Dahlgren, and L. Lundberg, A lockup-free multiprocessor cache design,Proc. 1991
Internat. Conf. on Parallel Processing, Vol. I, Chicago, IL (Aug. 1991) 246-250.

[32] P. Stenström, M. Brorsson, and L. Sandberg, An adaptive cache coherence protocol optimized for
migratory sharing,Proc. 20th Internat. Symp. on Computer Architecture, San Diego, CA (May
1993) 109-118.

32

[33] J.E. Veenstra and R.J. Fowler, A performance evaluation of optimal hybrid cache coherency proto-
cols,Proc. Fifth Internat. Conf. on Arch. Support for Prog. Lang. and Operating Syst., Boston, MA
(Oct. 1992) 149-160.

[34] A.W. Wilson, Jr., and R.P. LaRowe, Jr., Hiding shared memory reference latency on the Galactica
Net distributed shared memory architecture,J. Parallel Distributed Comput. 15(4) (Aug. 1992) 351-
367.

[35] A.W. Wilson, Jr., R.P. LaRowe, Jr., and M.J. Teller, Hardware assist for distributed shared memory,
Proc. 13th Conf. on Distributed Computing Systems, Pittsburgh, PA (May 1993) 246-255.

[36] R. Zucker and J-L. Baer, A performance study of memory consistency models,Proc. 19th Internat.
Symp. on Computer Architecture, Gold Coast, Australia (May 1992) 2-12.

