
Solving Dense Linear Systems on Platforms with
Multiple Hardware Accelerators

Gregorio Quintana-Ortı́ Francisco D. Igual
Enrique S. Quintana-Ortı́

Departamento de Ingenierı́a y Ciencia de Computadores
Universidad Jaume I

12.071–Castellón, Spain
{gquintan,figual,quintana}@icc.uji.es

Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
rvdg@cs.utexas.edu

Abstract
In a previous PPoPP paper we showed how the FLAME method-
ology, combined with the SuperMatrix runtime system, result in a
simple yet powerful solution for programming dense linear algebra
operations on multicore platforms. In this paper we providefurther
evidence that this approach solves the programmability problem
for this domain by targeting a more complex architecture, com-
posed of a multicore processor and multiple hardware accelerators
(GPUs, Cell B.E., etc.), each with its own local memory, result-
ing in a platform more reminiscent of a heterogeneous distributed-
memory system. In particular, we show that the FLAME program-
ming model accommodates this new situation effortlessly sothat
no significative change needs to be made to the codebase. All com-
plexity is hidden inside the SuperMatrix runtime scheduling mech-
anism, which incorporates software implementations of standard
cache/memory coherence techniques in computer architecture to
improve the performance. Our experimental evaluation on a In-
tel Xeon 8-core host linked to an NVIDIA Tesla S870 platform
with four GPUs delivers peak performances around 550 and 450
(single-precision) GFLOPS for the matrix-matrix product and the
Cholesky factorization, respectively, which we believe tobe the
best performance numbers posted on this new architecture.

Categories and Subject Descriptors D.m [Software]: Miscella-
neous

General Terms Algorithms, Performance

Keywords GPUs, algorithms-by-blocks, dependency analysis,
dynamic scheduling, out-of-order execution

1. Introduction
The limitations of current VLSI technology and the desire totrans-
form the ever-increasing number of transistors on a chip dictated
by Moore’s Law into faster computers has led most hardware man-
ufacturers to design multicore processors and/or specialized hard-
ware accelerators [19]. In response, the computer science commu-
nity is beginning to embrace (explicit) parallel programming as the
means to exploit the potential of the new architectures [1].How

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

to program these new architectures easily and efficiently isthe key
that will determine their success or failure. Given that architectures
have recently bifurcated and no vendor can even predict whatde-
sign will dominate five to ten years from now, the design of flexible
programming solutions is as important as it ever has been.

Dense linear algebra has been traditionally used as a pioneering
area to conduct research on the performance of new architectures
and this continues with the recent advent of multicore processors
and hardware accelerators like GPUs and Cell B.E. The traditional
approach in this problem domain, inherited from the solutions
adopted for shared-memory multiprocessors years ago, is based on
the use of multithreaded implementations of the BLAS [26, 16, 15].
Code for operations constructed in terms of the BLAS (e.g, for
solving a linear system or a linear least-squares problem) extract all
the parallelism at the BLAS level. Thus, the intricacies of efficiently
utilizing the target architecture are hidden inside the BLAS, and the
burden of its parallelization lies in the hands of a few experts with
a deep knowledge of the architecture. More recently, the FLAME,
PLASMA, and SMPSs projects [11, 12, 13, 31, 30, 32, 33, 9, 8, 4]
have advocated for a different approach, extracting the parallelism
at a higher level, so that only a sequential tuned implementation
of the BLAS is necessary and more parallelism is detected and
exploited. Cilk [27] is a precursor of these projects that suffered
from not being able to deal with dependencies well. FLAME and
PLASMA both focus on dense linear algebra, with the former
working at a higher level of abstraction (much in the spirit of
object-oriented programming), while the target domain forSMPSs
is more general.

In the last years, specialized hardware accelerators such as
graphics processors (GPUs), Field Programmable Gate Arrays (FP-
GAs), and the Cell B.E. have also attracted the interest of the de-
velopers of dense linear algebra libraries [25, 24, 18, 2, 3,10, 37].
Squeezing these architectures for performance is revealing itself as
a task of complexity similar to that of developing a highly tuned
implementation of the BLAS for a sequential processor, which typ-
ically requires very low-level coding.

The next evolutionary step has been the construction and use
of systems with multiple accelerators: NVIDIA offers nodeswith
multiple Tesla processors (GPUs) in the Tesla series which can
be connected via PCI-Express to a workstation and AMD/ATI
has recently built a similar system, IBM Cell B.E. processors are
currently available in the form of blades or PCI-Express accelerator
boards, and ClearSpeed PCI-Express boards are furnished with 2
CSX600 processors. The natural question that arises at thispoint is
how to program these multi-accelerator platforms.

For systems with multiple GPUs, a possibility explored in [37]
is to distribute the data among the video memory of the GPUs
and code in a message-passing style similar to that of the libraries

ScaLAPACK and PLAPACK [14, 36]. We identify two hurdles for
this approach:
• While the state-of-the-art numerical methods have not changed,

following this approach will require a complete rewrite of dense
linear algebra libraries (alike the redesign of LAPACK for par-
allel distributed-memory architectures that was done in the
ScaLAPACK and PLAPACK projects). Therefore, a large pro-
gramming effort and a considerable amount of funding will be
necessary to cover a functionality like that of LAPACK. Note
that coding at such low level can be quite complex and experts
are in short supply.

• The product that is obtained as a result of this style of program-
ming will likely exhibit a parallelism similar to that of libraries
based on multithreaded implementations of the BLAS and far
from that demonstrated by the dynamic scheduling techniques
in the FLAME, PLASMA, and SMPSs projects. While look-
ahead techniques [34] can increase the scalability of this solu-
tion to a certain extent, they do so at the cost of a much added
complexity.
Our approach in this context is fundamentally different. Inpre-

vious papers [11, 12, 13, 31, 30, 32, 33], we gave an overview
of software tools and methods developed as part of the FLAME
project, and we show how, when applied to a platform with mul-
tiple cores/processors, they provide an out-of-the-box solution that
attains high performance almost effortlessly. The key liesin main-
taining a separation of concern between the code and target archi-
tecture by leaving the parallel execution of the operation in the
hands of a runtime system. The advantages of this approach are
twofold:
• When a new platform appears, it is only the runtime system that

needs to be adapted. The routines in the library, which reflect
the numerical algorithms, do not need to be modified.

• The parallelism is orchestrated by a runtime system which can
be adapted to exploit different architectures.
While still focused on theprogrammabilityof the solution, this

paper makes the following new contributions:
• We target a fundamentally different architecture, consisting of

a multicore processor connected to multiple hardware acceler-
ators, which features properties of an heterogenous distributed-
memory multiprocessor. This architecture model is representa-
tive of a platform consisting of workstation connected to multi-
ple NVIDIA or AMD/ATI GPUs, IBM Cell B.E. blades, Clear-
Speed boards, etc.

• We give a practical demonstration that the FLAME program-
ming model easily accommodates for this generic multi-accelerator
architecture, while not requiring a significant modification of
the contents of the library.

• We describe how we tailor the runtime system for this generic
multi-accelerator architecture by incorporating software im-
plementations of cache/memory coherence techniques from
SMP platforms. Altogether, these techniques provide a soft-
ware distributed-shared memory (DSM) layer, which allows
to view the multi-accelerator architecture as a shared-memory
multiprocessor. Our experimental results show that the presence
of this layer does not decrease performance for large problems.

• We report high performance on an NVIDIA Tesla multi-GPU
platform with four G80 processors:

A single-precision peak performance of 550 GFLOPS (1
GFLOPS = 109 floating-point arithmetic operations, or
flops, per second) is attained for the matrix-matrix prod-
uct using four G80 processors. Compared with the best im-
plementation of the matrix-matrix product on a single G80
GPU (that of CUBLAS 2.0, based on the implementation

in [37]), and measuring the time to transfer the data in both
cases, a super-linear speed-up of 5.51 is obtained for the
largest problem size.

Overall, a (single-precision) peak performance of 460
GFLOPS is attained on the Tesla platform for a more elabo-
rate matrix operation, the Cholesky factorization, with com-
plex data dependencies.

The rest of the paper is structured as follows. Section 2 em-
ploys the Cholesky factorization of a dense matrix to offer a
brief overview of FLAME, the key to easy development of high-
performance dense linear algebra libraries that underliesour ap-
proach for multi-accelerator platforms. Section 3 describes how
the tools in FLAME accommodate for the parallel execution of
dense linear algebra codes on these platforms almost effortlessly.
More elaborate techniques are presented in Section 4 together with
their corresponding performance results. Finally, a few concluding
remarks summarize the results in Section 5.

2. The FLAME Approach to Developing Dense
Linear Algebra Libraries

Following [10], in this paper we will consider the Cholesky factor-
ization of ann×n symmetric positive definite matrixA to illustrate
our approach. In this operation, the matrix is decomposed into the
productA = LLT , whereL is then×n lower triangular Cholesky
factor. (Alternatively,A can be decomposed asA = UT U , with U
being upper triangular.) In traditional algorithms for this factoriza-
tion, L overwrites the lower triangular part ofA while the strictly
upper triangular part remains unmodified. Here, we denote this as
A := {L\A} = CHOL(A).

Key elements of FLAME are the high-level notation for ex-
pressing algorithms for dense and banded linear algebra operations,
the formal derivation methodology to obtain provably correct al-
gorithms, and the high-level application programming interfaces
(APIs) to transform the algorithms into codes. FLASH and Su-
perMatrix are also important components of FLAME that address
storage of matrices by blocks and automatic decomposition of lin-
ear algebra codes into tasks and dynamic scheduling of thesetasks
to multithreaded architectures (basically, SMP and multicore pro-
cessors). In this section, We briefly review these elements.

2.1 FLAME: Formal Linear Algebra Methods Environment

The fundamental innovation that enabled FLAME is the notation
for expressing dense and banded linear algebra algorithms.Figure 1
(left) shows a blocked algorithm for computing the Choleskyfac-
torization using the FLAME notation.

The formal derivation methodology consists of a series of steps
which, when systematically applied, yield families of algorithms
(multiple algorithmic variants) for computing an operation [21,
20, 6]. The significance of this for scientific computing is that
often different algorithmic variants deliver higher performance on
different platforms and/or problem sizes [7, 29]. This derivation of
algorithms has also been made mechanical [5].

The FLAME/C API for the C programming language captures
the notation in which we express our algorithms. Using this API,
the blocked algorithm on the left of Figure 1 can be transformed
into the C code on the right of that figure. Note the close resem-
blance between algorithm and code. As indentation plays an im-
porting role in making the FLAME/C code look like the algorithm,
we recommend the use of a high-level mechanical tool like the
SPARK webpage (http://www.cs.utexas.edu/users/flame/
Spark/) which automatically yields a code skeleton.

Algorithm: A := CHOL BLK VAR1(A)

Partition A→
„

ATL ATR

ABL ABR

«

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b

Repartition
„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

where A11 is b× b

A11 := {L\A}11 = CHOL UNB(A11)

A21 := L21 = A21L
−T

11

A22 := A22 − L21LT

12
= A22 −A21AT

21

Continue with
„

ATL ATR

ABL ABR

«

←

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

endwhile

FLA_Error FLA_Chol_blk_var1(FLA_Obj A, int nb_alg)

{
FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,

A20, A21, A22;
int b;

FLA_Part_2x2(A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)) {

b = min(FLA_Obj_length(ABR), nb_alg);
FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &A01, &A02,
/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22, b, b, FLA_BR);
/*---*/

FLA_Chol_unb_var1(A11);
FLA_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11, A21);

FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A21, FLA_ONE, A22);
/*---*/

FLA_Cont_with_3x3_to_2x2(
&ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* *************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22, FLA_TL);

}
return FLA_SUCCESS;

}

Figure 1. Blocked algorithm for computing the Cholesky factorization (left) and the corresponding FLAME/C implementation (right).

2.2 Storage-by-blocks using FLASH

Algorithms-by-blocks[17] view matrices as collections of sub-
matrices and express their computation in terms of these subma-
trix blocks. Algorithms are then written as before, except with
scalar operations replaced by operations on the blocks. Although
a number of solutions have been proposed to solve this prob-
lem [22, 35, 38], none of these have yielded a consistent method-
ology that allows the development of high-performance libraries
with functionality that rivals those of LAPACK or FLAME. The
problem is primarily one ofprogrammability.

Our approach to the problem views the matrix as a matrix of
smaller matrices using the FLASH API. This view thus yields
a matrix hierarchy, potentially with multiple levels. Codefor
an algorithm-by-blocks for the Cholesky factorization using the
FLASH API is given in Figure 2 (left). It may seem that the
complexity of the algorithm is merely hidden in the routines
FLASH Trsm andFLASH Syrk. The abbreviated implementation of
an algorithm-by-blocks for the former is given in Figure 2 (right)
while the latter routine has a similar implementation. The reader
can see here that many of the details of the FLASH implemen-
tation have been buried within the FLASH-aware FLAME object
definition.

2.3 SuperMatrix runtime system

SuperMatrix extracts the parallelism at a high level of abstraction,
decomposing the operation into tasks, identifying the dependen-
cies among these, scheduling them for execution when ready (all
operands available/dependencies fulfilled), and mapping tasks to
execution units (cores/accelerators) taking into accountthe target
platform. All of this is done without exposing any of the details
of the parallelization to the application programmer. The success
of this approach has been previously reported in a number of pa-
pers [11, 12, 13, 31, 30, 32, 33].

Further details on the operation of SuperMatrix will be illus-
trated in the next two sections as the strategy to adapt it to amulti-
accelerator platform is exposed.

3. Adapting FLAME to Platforms with Multiple
Accelerators

Much work on NVIDIA G80 graphics processors and the IBM Cell
B.E. view these accelerators as multicore architectures [37, 25]
and exploit the parallelism at this level. Our approach is different
in that we view one of these accelerators as the equivalent ofa
single core, for which a tuned “serial” implementation of (specific
kernels of the level 3) BLAS is available; our analog of a multicore
processor is then a system with multiple accelerators. We therefore
exploit parallelism at two levels: at a high level, the presence of
multiple accelerators (G80 processors or Cell B.E.) is addressed by
SuperMatrix. At the low level, parallelism within the 128 micro-
cores of a G80 or the 8 SPUs of a single Cell B.E. is extracted by
the BLAS. We hereafter do not pursue further this second level of
parallelism and assume the existence of a tuned implementation of
the BLAS.

Our generic multi-accelerator platform consists of a worksta-
tion, possibly (but not necessarily) with a multicore CPU, con-
nected to multiple hardware accelerators through a fast intercon-
nect. Processors in the accelerator boards are passive elements that
simply wait to be ordered what to do. The workstation RAM (sim-
ply RAM from now on) and the memory in the accelerator boards
are independent and no hardware memory coherence mechanismis
in place (though having one would certainly benefit our approach,
as will be reported in the experiments). Communication between
the CPU and the accelerators is done via explicit data copiesbe-
tween memories. Communication between two accelerators isonly
possible through the RAM and is handled by the CPU. This abstract
model is general enough to accommodate a workstation connected
to a multi-GPU platform or containing multiple boards with Cell
B.E. or ClearSpeed processors.

The SuperMatrix runtime computes the Cholesky factoriza-
tion by executing the algorithm-by-blocks in Figure 2 (left) in two
stages, both executed at run time. During theanalysis stage, a sin-
gle thread “symbolically executes” the algorithm code, butinstead
of computing operations immediately as they are encountered, it
simply annotates these in a queue of pending tasks. This happens

FLA_Error FLASH_Chol_by_blocks_var1(FLA_Obj A)

{
FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,
A20, A21, A22;

FLA_Part_2x2(A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)) {

FLA_Repart_2x2_to_3x3(
ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,
ABL, /**/ ABR, &A20, /**/ &A21, &A22,

1, 1, FLA_BR);
/*---*/

FLA_Chol_unb_var1(FLASH_MATRIX_AT(A11));
FLASH_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,

FLA_ONE, A11,
A21);

FLASH_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
FLA_MINUS_ONE, A21,
FLA_ONE, A22);

/*---*/
FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,
A10, A11, /**/ A12,

/* *************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL);

}
return FLA_SUCCESS;

}

void FLASH_Trsm_rltn(FLA_Obj alpha, FLA_Obj L,

FLA_Obj B)
/* Special case with mode parameters

FLASH_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,
FLA_TRANSPOSE, FLA_NONUNIT_DIAG,

...)
Assumption: L consists of one block and

B consists of a column of blocks */

{
FLA_Obj BT, B0,

BB, B1,
B2;

FLA_Part_2x1(B, &BT,
&BB, 0, FLA_TOP);

while (FLA_Obj_length(BT) < FLA_Obj_length(B)) {

FLA_Repart_2x1_to_3x1(BT, &B0,
/* ** */ /* ** */

&B1,

BB, &B2, 1, FLA_BOTTOM);
/*---*/

FLA_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,
FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
alpha, FLASH_MATRIX_AT(L),

FLASH_MATRIX_AT(B1));
/*---*/

FLA_Cont_with_3x1_to_2x1(&BT, B0,
B1,

/* ** */ /* ** */
&BB, B2, FLA_TOP);

}

}

Figure 2. FLASH implementation of the Cholesky factorization and thecorresponding triangular system solve.

inside the calls toFLA Chol unb var1, FLA Trsm, FLA Syrk, and
FLA Gemm encountered in the routinesFLASH Chol by blocks var1,
FLASH Trsm, andFLASH Syrk. As operations are encountered in
the code, tasks are enqueued, dependencies are identified, and a
DAG (directed acyclic graph) that contains all the dependencies
among operations of the overall problem is constructed. To illus-
trate the outcome of this first stage, the execution of the analysis
when the code in Figure 2 is used to factorize the3 × 3 blocked
matrix

A →

0

B

@

Ā00 Ā01 Ā02

Ā10 Ā11 Ā12

Ā20 Ā21 Ā22

1

C

A
, (1)

results in the “DAG” implicitly contained in Figure 3.
Once the DAG is constructed, thedispatch stagecommences.

In the SuperMatrix runtime for multithreaded architectures, idle
threads monitor the queue of pending tasks till they find a task
ready for execution (that is, an operation with all operandsavail-
able), compute it, and upon completion, update the dependency in-
formation in the queue. It is the part of the runtime system respon-
sible for the execution of this second stage that we tailor for multi-
accelerator platforms as described next, while the part in charge of
the analysis remains unmodified.

Specifically, in our basic implementationwe run as many
threads in the CPU as accelerators are present in the system.When
a thread encounters a ready task, it copies the data associated with
the operation to the memory of the accelerator, orders it to compute
the operation using the appropriate BLAS kernel, and transfers the
results back to RAM. We are exposing here a hybrid model of ex-
ecution where the CPU is responsible for scheduling tasks tothe
accelerators while tracking dependencies, and the accelerators per-
form the actual computations. In this hybrid model, tasks that are
considered not suitable for execution in the accelerator (due, e.g.,
to their low complexity or the lack of the appropriate BLAS kernel)

Operation/Result In In/out

1. Ā00 := CHOL(Ā00) Ā00

√

2. Ā10 := Ā10TRIL(Ā00)−T
Ā00 Ā10

√

3. Ā20 := Ā20TRIL(Ā00)−T
Ā00 Ā20

√

4. Ā11 := Ā11−Ā10ĀT

10
Ā10 Ā11

√

5. Ā21 := Ā21−Ā20ĀT

10
Ā20 Ā10 Ā21

√

6. Ā22 := Ā22−Ā20ĀT

20
Ā20 Ā22

√

7. Ā11 := CHOL(Ā11) Ā11

8. Ā21 := Ā21TRIL(Ā11)−T
Ā11 Ā21

9. Ā22 := Ā22−Ā21ĀT

21
Ā21 Ā22

10. Ā22 := CHOL(Ā22) Ā22

Figure 3. An illustration of the DAG resulting from the execu-
tion of the SuperMatrix analysis stage for the Cholesky factor-
ization of a3 × 3 matrix of blocks in (1) using the algorithm-
by-blocksFLASH Chol by blocks var1. The “

√
”-marks denote

those operands that are initially available (i.e., those operands that
are not dependent upon other operations).

can be executed in the CPU. (Hybrid CPU/GPU computation has
been previously explored in [2, 3, 10, 37].) Given that the major
computational cost is performed by the accelerators in thisscheme,
the existence of multiple cores in the CPU, though advisable, is not
necessary.

Obviously, this basic implementation incurs an undesirable high
amount of data transfers between RAM and the memories of the
accelerators so that, unless the cost of communication is negligible,

it will surely attain a low practical performance (at this point, we
encourage the reader to have a quick glimpse at the line labeled as
“Basic implementation” in Figure 4). In the following section we
improve the mechanism by including software cache and memory
coherence techniques to reduce the number of transfers.

4. Improving the Performance
4.1 Cache and memory coherence

Standard policies in computer architecture to maintain thecoher-
ence between data in the cache of a processor and the main mem-
ory arewrite-through(writes to data are immediately propagated
to main memory) andwrite-back(data in the main memory is up-
dated only when the cache line where the modified data lie is re-
placed) [23]. On shared-memory multiprocessors, policiesto main-
tain coherence among the caches of the processors arewrite-update
(writes to data by one of the processors are immediately propagated
to the copies in the caches of the remaining processors) andwrite-
invalidate(writes to data by one of the processors invalidate copies
of that cache line in the remaining processors) [23].

These policies all aim at reducing the number of data transfers
between the cache of the processors and the main memory. Now,
at a high level of abstraction, a shared-memory multiprocessor is
similar to a workstation connected to multiple accelerators. Each
one of the accelerators is the equivalent of one processor with
the memory of the accelerator playing the role of the processor
cache. The workstation RAM is then the analog of the shared-
memory in the multiprocessor. It is not surprising then thatwe can
employ software implementations of standard coherence policies
to reduce the number of data transfers between the memory of the
accelerators and the RAM of the workstation.

4.2 Application to the multi-accelerator platform

The target platform used in the experiments was an NVIDIA Tesla
S870 computing system with four NVIDIA G80 GPUs and 6
GBytes of DDR3 memory (1.5 GBytes per GPU), which exhibits
a theoretical peak performance close to 1400 GFLOPS in single-
precision. The Tesla system is connected to a workstation with two
Intel Xeon QuadCore E5405 processors executing at 2.0 GHz with
9 GBytes of DDR2 RAM. The Intel 5400 chipset provides two PCI-
Express Gen2 interfaces, for a peak bandwidth of 48 Gbits/second
on each interface, to connect with the Tesla. NVIDIA CUBLAS
(version 2.0) built on top of the CUDA API (version 2.0) together
with NVIDIA driver (171.05) were used in our tests. MKL 10.0.1
was employed for all computations performed in the Intel Xeon
cores. Single precision was employed in all experiments.

When reporting the rate of computation, we consider the cost
of the matrix-matrix product and the Cholesky factorization to be
the standard2n3 andn3/3 flops, respectively, for square matrices
of ordern. The GFLOPS rate is computed as the number of flops
divided byt × 10−9, wheret equals the elapsed time in seconds.
The cost of all data transfers between RAM and GPU memories is
included in the timings.

The top and bottom plots in Figure 4 respectively report the per-
formance of a blocked implementation of the matrix-matrix prod-
uct and the blocked algorithm for the Cholesky factorization in
Figure 2 (right), using several variants of the SuperMatrixruntime
system and all four G80 processors of the Tesla. Unless otherwise
stated, the enhancements described next are incremental sothat a
variant includes a new strategy plus those of all previous ones. Al-
though we describe the differences between variants using mostly
examples from the Cholesky factorization, the same holds for the
matrix-matrix product. Four variants are evaluated in the figure:
A. Basic implementation: This variant corresponds to the imple-

mentation of the runtime system described in Section 3. In the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Performance of runtime systems for the matrix-matrix product

D. Write-back
C. Cache + write-invalidate
B. 2D + write-through
A. Basic implementation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
F

LO
P

S

Matrix size

Performance of runtime systems for the Cholesky factorization

D. Write-back
C. Cache + write-invalidate
B. 2D + write-through
A. Basic implementation

Figure 4. Performance of blocked algorithms for the matrix-
matrix product (top) and the Cholesky factorization (bottom) using
variants A, B, C, and D of the runtime system and the four G80
processors of the Tesla S870.

0

B

B

B

@

Ā00

Ā10 Ā11

Ā20 Ā21 Ā22

Ā30 Ā31 Ā32 Ā33

1

C

C

C

A

→

G00

G10 G11

G00 G01 G00

G10 G11 G10 G11

Figure 5. Cyclic 2-D mapping of the blocks in the lower triangular
part of a4 × 4 blocked mapping to the four G80 processors:G00,
G10, G01, andG11.

matrix-matrix product all operations are performed in the G80
processors. For the Cholesky factorization, the diagonal blocks
are factorized by the Xeon cores of the CPU while all remaining
computations (matrix-matrix products, symmetric rank-k up-
dates, and triangular system solves) are performed in the G80
processors. FLASH provides transparent storage-by-blocks for
the data matrix with one level of hierarchy. The block size is
adjusted experimentally.

B. 2-D + write-through: In order to improve data locality (and
therefore reduce the costly data transfers between the memory
of the GPUs), workload is distributed following a cyclic 2-
D mapping of the data matrix to a2 × 2 logical grid of the

G80s; see Figure 5. (bidimensional workload distribution in the
context of shared-memory multiprocessors has been previously
investigated in [28].) In this scheme all operations that compute
results which overwrite a given block are mapped to the same
G80 processor. Thus, e.g., in the Cholesky factorization the
updatesĀ21 := Ā21 − Ā20Ā

T

10 andĀ21 := Ā21TRIL (Ā11)−T

are both performed inG01. Blocks are thus classified from the
viewpoint of a G80 processor into proprietary (owned= written
by it; “owner-computes” rule) and non-proprietary.

Initially all data blocks reside in the RAM and the memory of
the GPUs is empty. When a task is to be computed in a G80
processor, blocks which are not already there are copied to the
GPU memory. Proprietary blocks remain in that memory for
the rest of the execution of the algorithm while non-proprietary
blocks are discarded as soon as the operation is completed. A
write-through policy is implemented in software to maintain
the coherence between the proprietary blocks in the memory
of the GPU and the RAM so that any update of a proprietary
block is immediately propagated to the RAM. There is no need
to maintain the coherence between the memory of the GPUs
and the RAM for non-proprietary blocks as these are read-
only blocks. Following the previous example for the Cholesky
factorization, when the task which performs the updateĀ21 :=
Ā21 − Ā20Ā

T

10 is to be computed atG01, blocks Ā21, Ā20,
and Ā10 are copied to the memory of this GPU; the update
is computed and the new contents ofĀ21 are propagated to
RAM. Block Ā21 then remains in the GPU memory while the
contents ofĀ20 and Ā10 are discarded. Latter, when̄A21 :=
Ā21TRIL (Ā11)−T is to be computed, onlȳA11 is copied to the
GPU memory as̄A21 is already there. Once this second update
is computed, following the write-through policy the updated
contents ofĀ21 are sent back to RAM and̄A11 is discarded.

Other workload distributions (block row-wise, block column-
wise and cyclic variants) are easily supported by the runtime
system and, more important, are transparent to the developer of
the algorithms. In our experiments, no major differences were
found for the matrix-matrix product and the Cholesky factor-
ization between the performance of the (cyclic) 2-D workload
distribution reported in the figure and those of cyclic blockrow-
wise/column-wise layouts.

C. Cache + write-invalidate: The previous strategy reduces the
number of transfers from RAM to GPU memory of blocks that
are modified, but still produces a large amount of transfers of
read-only blocks. In this variant we implement a software cache
of read-only blocks in each GPU memory to maintain recently
used blocks. With this mechanism in place for the Cholesky
factorization, e.g., whenG10 solves the linear systems̄A10 :=

Ā10TRIL (Ā00)−T and Ā30 := Ā30TRIL (Ā00)−T, a copy of
Ā00 is transferred from RAM to the cache in the GPU memory
before the first linear system is solved and remains there forthe
solution of the second linear system, saving a second transfer.

To complement the cache system, when a task which updates
a given block is completed, the thread in the CPU in charge of
its execution invalidates all read-only copies of that block in the
memory of the “remaining” GPUs (write-invalidate policy).

The replacement policy, currently LRU (least recently used
first), and the number of blocks per cache can be easily modified
in the runtime system.

D. Write-back: The purpose now is to reduce the number of trans-
fers from the memory of the GPUs to RAM that occur when
(proprietary) blocks are updated by the G80 processors. For
this, write-through is abandoned in favor of a write-back pol-
icy which allows inconsistencies between proprietary blocks in

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Performance of the matrix-matrix Product on GPU/CPU

Algorithm-by-blocks on four G80 processors
Algorithm-by-blocks on a single G80 processor
CUBLAS sgemm on a single G80 processor
MKL sgemm on two Intel Xeon QuadCore (8 cores)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
F

LO
P

S

Matrix size

Performance of the Cholesky factorization on GPU/CPU

Algorithm-by-blocks on four G80 processors
Algorithm-by-blocks on a single G80 processor
MKL spotrf on two Intel Xeon QuadCore (8 cores)

Figure 6. Performance of the algorithms-by-blocks for the matrix-
matrix product (top) and the Cholesky factorization (bottom) using
four G80 processors, the implementation of the matrix-matrix prod-
uct in CUBLAS 2.0 on one G80 processor, and the implementation
of both operations in MKL 10.0.1 using all eight Xeon cores.

the memory of the GPUs and the RAM. Thus, blocks written
by a G80 processor are updated in the RAM only when a differ-
ent G80 (or the GPU) is to compute with them. (Software cache
for read-only blocks and the write-invalidate policy are still in
place.)

When the execution of the complete algorithm is terminated,
the data matrix in the RAM must be updated with the contents
of the blocks that have been updated in the memory of the GPU.
In summary, the coherence policies and use of cache imple-

mented in variants B, C, and D all aim at reducing the number of
data transfers among the different memories present in the system
(minimize communication time) while the 2-D distribution pursues
a balanced distribution of the work load. A trace of the execution
reveals that, from variant A to D, (the number of) block transfers
from RAM to the memory of GPUs for the largest problem sizes is
reduced from 4096/32760 to 256/2431 for the matrix-matrix prod-
uct/Cholesky factorization, while the block transfers in the opposite
direction are reduced from 12288/11440 to 1280/819. Hereafter all
results will refer to variant D of the runtime system.

In Figure 6 we compare the performances of the algorithms-by-
blocks for the matrix-matrix product and Cholesky factorization
with those of optimized implementations of these operations on
current high-performance platforms:

• Algorithms-by-blocks on four G80 processors: Our algorithms-
by-blocks for the two operations, combined with variant D of
the runtime system, and executed on the Tesla platform using
the four G80 processors.

• Algorithms-by-blocks on a single G80 processor: Our
algorithms-by-blocks for the matrix-matrix product and Cholesky
factorization executed on a single G80 processor of the Tesla
platform.

• CUBLAS sgemm on a single G80 processor: Implementation
of this routine in CUBLAS 2.0 and executed on a single G80
processor. To be consistent with the previous two algorithms,
the time to transfer the data from RAM to the memory of the
GPUs and retrieve the results is included.

• MKL sgemm/spotrf on two Intel Xeon QuadCore: Multi-
threaded MKL 10.0.1 implementation of the corresponding
BLAS/LAPACK routines executed on all eight cores of a work-
station with two Xeon Quad-Core processors (details given at
the beginning of the section).

The results show that the Tesla S870 combined with the algorithm-
by-blocks offers a notable GFLOPS rate when compared with the
multicore architecture.

Figures 7 and 8 evaluate the scalability and report the speed-
up of the algorithm-by-blocks. No bottlenecks are revealedin the
scalability experiment: the performance of the system steadily im-
proves as the number of G80 processors is increased and larger
problem sizes report higher execution rates. The speed-upsare cal-
culated comparing the performance attained by the algorithms-by-
blocks using 2–4 G80 processors with that of executing same al-
gorithm on a single G80 processor. For the largest problem size of
the matrix-matrix product, remarkable speed-ups of 1.83, 2.51, and
3.21 are attained using 2, 3, and 4 G80 processors. Compared with
the implementation of the matrix-matrix product in CUBLAS 2.0,
and including the time of data transfer between RAM and GPU, the
corresponding super-linear speed-ups are 3.14, 4.31, and 5.51. For
the largest Cholesky factorization, the results show speed-ups of
1.83, 2.55, and 3.25 using respectively 2, 3, and 4 G80 processors.

5. Conclusions
In this paper we have shown how separation of concerns leads to
great flexibility while reducing complexity when porting represen-
tative dense linear algebra algorithms to novel architectures. By
separating the API for coding algorithms-by-blocks, the part of the
runtime system that builds a DAG of operations and tracks thede-
pendencies, and the architecture-aware part of the runtimesystem
that executes operations with blocks, different scheduling heuris-
tics were shown to be easy to implement, allowing customization to
what otherwise would have been a hostile environment: a worksta-
tion connected to a multi-GPU accelerator. The particular difficulty
of the setting is the fact that the local memory of the GPU is not
shared with the host making it necessary to carefully amortize the
cost of data transfers.

While the experiments on the paper discuss specifically the
multi-GPU NVIDIA Tesla system, the techniques clearly are also
applicable to a similar setting where a standard workstation is
connected via a fast network to multiple ClearSpeed boards,IBM
Cell B.E. accelerators, AMD/ATI GPUs, etc.

Remarkable rates of execution are demonstrated for the matrix-
matrix product and the Cholesky factorization operation. Similar
results have been obtained for other important BLAS operations as
the solution of triangular linear systems and the symmetricrank-k
update.

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4

G
F

LO
P

S

Number of G80 processors

Scalability of the matrix-matrix product

n=8192
n=6144
n=4096
n=2048

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4

G
F

LO
P

S

Number of G80 processors

Scalability of the Cholesky factorization

n=20480
n=16384
n=12288
n=8192
n=4096

Figure 7. Scalability of the algorithms-by-blocks for the matrix-
matrix product (top) and the Cholesky factorization (bottom) using
1, 2, 3, and 4 G80 processors.

Additional information

For additional information on FLAME visithttp://www.cs.
utexas.edu/users/flame/.

Acknowledgments
This research was partially sponsored by NSF grants CCF–0540926
and CCF–0702714. Additional support came from theJ. Tinsley
Oden Faculty Fellowship Research Programof the Institute for
Computational Engineering and Sciences (ICES) at UT-Austin.

The researchers at the Universidad Jaime I were supported by
projects CICYT TIN2005-09037-C02-02 and FEDER, and P1B-
2007-19 and P1B-2007-32 of theFundación Caixa-Castellón/Ban-
caixaand UJI.

We thank NVIDIA for the generous donation of equipment that
was used in the experiments.

References
[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A. Patter-
son, William Lester Plishker, John Shalf, Samuel Webb Williams, and
Katherine A. Yelick. The landscape of parallel computing research: A
view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

 0

 1

 2

 3

 4

 0 2000 4000 6000 8000

S
pe

ed
-u

p

Matrix size

Speed-up of the matrix-matrix product

4 G80 processors
3 G80 processors
2 G80 processors

 0

 1

 2

 3

 4

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
pe

ed
-u

p

Matrix size

Speed-up of the Cholesky factorization

4 G80 processors
3 G80 processors
2 G80 processors

Figure 8. Speed-up of the algorithms-by-blocks for the matrix-
matrix product (top) and the Cholesky factorization (bottom) using
2, 3, and 4 G80 processors.

[2] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S.Quintana-
Ortı́. Evaluation and tuning of the level 3 CUBLAS for graphics
processors. In9th IEEE International Workshop on Parallel and
Distributed Scientific and Engineering Computing – PDSEC’08,
2008. To appear.

[3] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S.Quintana-
Ortı́. Solving dense linear systems on graphics processors. Technical
Report ICC 02-02-2008, Universidad Jaume I, Depto. de Ingenieria y
Ciencia de Computadores, February 2008. To appear in Proceedings
of the European Conference on Parallel and Distributed Computing –
Euro-Par 2008.

[4] Pieter Bellens, Josep M. Pérez, Rosa M. Badı́a, and Jes´us Labarta.
CellSs: a programming model for the Cell BE architecture. In
Proceedings of the 2006 ACM/IEEE conference on Supercomputing
– SC2006, page 86, New York, NY, USA, 2006. ACM Press.

[5] Paolo Bientinesi.Mechanical Derivation and Systematic Analysis of
Correct Linear Algebra Algorithms. PhD thesis, 2006.

[6] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S.
Quintana-Ortı́, and Robert A. van de Geijn. The science of deriving
dense linear algebra algorithms.ACM Trans. Math. Soft., 31(1):1–26,
March 2005.

[7] Paolo Bientinesi, Brian Gunter, and Robert A. van de Geijn. Families
of algorithms related to the inversion of a symmetric positive definite
matrix. ACM Transactions on Mathematical Software, 35(1):3, July
2008. Article 3, 22 pages.

[8] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A
class of parallel tiled linear algebra algorithms for multicore archi-
tectures. LAPACK Working Note 190 UT-CS-07-600, University of
Tennessee, September 2007.

[9] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra.
Parallel tiled QR factorization for multicore architectures. LAPACK
Working Note 190 UT-CS-07-598, University of Tennessee, July
2007.

[10] Maribel Castillo, Ernie Chan, Francisco D. Igual, Enrique S.
Quintana-Ortı́, Gregorio Quintana-Ortı́, Robert van de Geijn, and
Field G. Van Zee. Making parallel programming synonymous with
programming for linear algebra libraries. FLAME Working Note
#31 TR-08-20, The University of Texas at Austin, Departmentof
Computer Sciences, April 2009.

[11] Ernie Chan, Enrique S. Quintana-Ortı́, Gregorio Quintana-Ortı́, and
Robert van de Geijn. SuperMatrix out-of-order scheduling of matrix
operations for SMP and multi-core architectures. InSPAA ’07:
Proceedings of the Nineteenth ACM Symposium on Parallelismin
Algorithms and Architectures, pages 116–125, San Diego, CA, USA,
June 9-11 2007. ACM.

[12] Ernie Chan, Field G. Van Zee, Paolo Bientinesi, EnriqueS. Quintana-
Ortı́, Gregorio Quintana-Ortı́, and Robert van de Geijn. SuperMatrix:
A multithreaded runtime scheduling system for algorithms-by-blocks.
In ACM SIGPLAN 2008 symposium on Principles and Practices of
Parallel Programming – PPoPP 2008, pages 123–132, 2008.

[13] Ernie Chan, Field G. Van Zee, Enrique S. Quintana-Ortı́, Gregorio
Quintana-Ortı́, and Robert van de Geijn. Satisfying your dependen-
cies with SuperMatrix. InProceedings of IEEE Cluster Computing
2007, pages 91–99, September 2007.

[14] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK:
A scalable linear algebra library for distributed memory concurrent
computers. InProceedings of the Fourth Symposium on the Frontiers
of Massively Parallel Computation, pages 120–127. IEEE Comput.
Soc. Press, 1992.

[15] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff.
A set of level 3 basic linear algebra subprograms.ACM Trans. Math.
Soft., 16(1):1–17, March 1990.

[16] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J.
Hanson. An extended set of FORTRAN basic linear algebra
subprograms.ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[17] Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo Kagstrom.
Recursive blocked algorithms and hybrid data structures for dense
matrix library software.SIAM Review, 46(1):3–45, 2004.

[18] Nico Galoppo, Naga K. Govindaraju, Michael Henson, andDinesh
Manocha. LU-GPU: Efficient algorithms for solving dense linear
systems on graphics hardware. InProceedings of the 2005 ACM/IEEE
conference on Supercomputing – SC2005, page 3, Washington, DC,
USA, 2005. IEEE Computer Society.

[19] David Geer. Chip makers turn to multicore processors.Computer,
38(5):11–13, 2005.

[20] John A. Gunnels.A Systematic Approach to the Design and Analysis
of Parallel Dense Linear Algebra Algorithms. PhD thesis, Department
of Computer Sciences, The University of Texas, December 2001.

[21] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A.
van de Geijn. FLAME: Formal linear algebra methods environment.
ACM Trans. Math. Soft., 27(4):422–455, December 2001.

[22] Jia Guo, Ganesh Bikshandi, Basilio Fraguela, Maria Garzaran, and
David Padua. Programming with tiles. InPPoPP ’08: The 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Salt Lake City, UT, USA, 2008.

[23] J. L. Hennessy and D. A. Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufman, 3rd edition, 2003.

[24] Jin Hyuk Junk and Dianne P. O’Leary. Cholesky decomposition
and linear programming on a GPU. Master’s thesis, University of
Maryland, College Park.

[25] Jakub Kurzak, Alfredo Buttari, and Jack Dongarra. Solving
systems of linear equations on the CELL processor using Cholesky
factorization. LAPACK Working Note 184 UT-CS-07-596, University
of Tennessee, May 2007.

[26] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh.Basic
linear algebra subprograms for Fortran usage.ACM Trans. Math.
Soft., 5(3):308–323, Sept. 1979.

[27] C. Leiserson and A. Plaat. Programming parallel applications in Cilk.
SINEWS: SIAM News, 1998.

[28] Bryan A. Marker, Field G. Van Zee, Kazushige Goto, Gregorio
Quintana-Ortı́, and Robert A. van de Geijn. Toward scalablematrix
multiply on multithreaded architectures. InEuropean Conference on
Parallel and Distributed Computing – Euro-Par 2007, pages 748–
757, February 2007.

[29] Enrique S. Quintana-Ortı́ and Robert A. van de Geijn. Formal
derivation of algorithms: The triangular Sylvester equation. ACM
Trans. Math. Soft., 29(2):218–243, June 2003.

[30] Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́,Ernie Chan,
Robert van de Geijn, and Field G. Van Zee. Design and scheduling
of an algorithm-by-blocks for LU factorization on multithreaded
architectures. FLAME Working Note #26 TR-07-50, The University
of Texas at Austin, Department of Computer Sciences, September
2007.

[31] Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́,Ernie Chan,
Robert van de Geijn, and Field G. Van Zee. Design of scalable
dense linear algebra libraries for multithreaded architectures: the
LU factorization. InWorkshop on Multithreaded Architectures and
Applications – MTAAP 2008, 2008. CD-ROM.

[32] Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́,Ernie Chan,
Field G. Van Zee, and Robert A. van de Geijn. Scheduling of
QR factorization algorithms on SMP and multi-core architectures. In
F. Spies D. El Baz, J. Bourgeois, editor,16th Euromicro International
Conference on Parallel, Distributed and Network-based Processing –
PDP 2008, pages 301–310, 2008.

[33] Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́,Alfredo Remón,
and Robert van de Geijn. Supermatrix for the factorization of band
matrices. FLAME Working Note #27 TR-07-51, The University of
Texas at Austin, Department of Computer Sciences, September 2007.

[34] Peter Strazdins. A comparison of lookahead and algorithmic blocking
techniques for parallel matrix factorization. Technical Report TR-
CS-98-07, Department of Computer Science, The Australian National
University, Canberra 0200 ACT, Australia, 1998.

[35] Vinod Valsalam and Anthony Skjellum. A framework for high-
performance matrix multiplication based on hierarchical abstractions,
algorithms and optimized low-level kernels.Concurrency and
Computation: Practice and Experience, 14(10):805–840, 2002.

[36] Robert A. van de Geijn.Using PLAPACK: Parallel Linear Algebra
Package. The MIT Press, 1997.

[37] Vasily Volkov and James Demmel. LU, QR and Cholesky fac-
torizations using vector capabilities of GPUs. Technical Report
UCB/EECS-2008-49, EECS Department, University of California,
Berkeley, May 2008.

[38] David S. Wise, Jeremy D. Frens, Yuhong Gu, and Gregory A.
Alexander. Language support for Morton-order matrices. In
Proceedings of the eighth ACM SIGPLAN symposium on Principles
and practices of parallel programming – PPoPP 2001, pages 24–33,
New York, NY, USA, 2001. ACM Press.

