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Abstract. This paper describes a biometric method for user authentication on 
smart cards. Smart cards are chip cards with the ability for data processing 
directly on the card. They are not only usable for storing biometric reference 
data, but biometric user authentication methods can also be performed on card 
in order to protect security-relevant functions or data on the cards. The biomet-
ric data under consideration are handwritten signatures captured by means of a 
graphic tablet and a special pen. The feature-matching algorithm is a variant of 
dynamic time warping, taking the limited resources of smart cards into account. 
It is implemented as an operating prototype on two types of smart cards.  

1 Introduction 

Smart cards are chip cards with an integrated microprocessor chip. For smart cards providing 
security-relevant functions (like the creation of electronic signatures) or carrying values (like an 
electronic purse) or sensitive data (like medical data), the verification that the person who 
wants to use the card is the legitimate card holder should take place inside the card itself. On-
card matching prevents the feigning of a positive result to the smart card. Moreover, on-card 
matching effects that the sensitive reference data remain safely stored inside the smart card. 
The function protected by on-card matching can only be used after successful user authentica-
tion. Figure 1 illustrates the division of labor between the smart card service system and the 
smart card in case of on-card matching. On-card matching implementations are available for 
fingerprint biometrics, but so far not for handwritten signatures.  

The major advantage of handwritten signatures over other biometric features is their high 
level of user acceptance. Handwritten signatures have long been accepted in many places as a 
means for authenticating persons. Moreover, a handwritten signature is regarded as evidence of 
a deliberate decision on the part of the signer because, in general, a signature is not delivered 
coincidentally or unintentionally.  

There is a multitude of methods for analyzing on-line signatures, i.e. handwritten signatures 
captured by means of a graphic tablet and/or a special pen [1, 2]. Since smart cards possess 
only a limited memory capacity and their computing power falls far short of that of PC’s, algo-
rithms for on-card matching must be chosen carefully and must be adapted to these conditions. 
In this paper, we discuss the selection of a signature recognition method that is suitable for 
implementation on smart cards. In a feasibility study, the selected method has been imple-
mented as an operating prototype on two types of smart cards.  



The remainder of the paper is arranged as follows: In Section 2 the side conditions for the 
on-card matching implementation are described. Section 3 deals with design decisions. Sec-
tion 4 contains first experimental results obtained with our prototype implementations. Sec-
tion 5 summarizes the results and gives an outlook.  

2 Side conditions 

2.1 Capture devices  

The on-card matching method should be widely independent of the capture device used for data 
acquisition, so that the smart card can be used in different environments.  

Graphic tablets provide time series for the pen position (x and y coordinates). Some tablets 
also provide time series for the pen-tip pressure and the pen orientation, which may support 
signature matching. However, because not every kind of tablet provides this information, pen-
tip pressure and pen orientation are left out from our on-card matching method. Even if differ-
ent tablets provide time series for the pen-tip pressure, their uniform calibration is difficult.  

Since the signature dynamics of a person vary slightly from signature to signature and sig-
natures must be accepted anyway within a certain range of tolerance, for signature capture an 
approach “as accurate as necessary” and not “as accurate as possible” is needed. We assume a 
resolution of at least 1,000 dpi and a sample rate of 100 per second to be sufficient not to lose 
substantial information about on-line signatures. The time series produced should be equi-
distant, so time stamp information need not be recorded.  

The graphic tablets deployed should record the pen position not only if the pen touches the 
tablet (pen-down strokes), but also if the pen is close-by above the tablet (pen-up strokes) since 
these movements may bear signer-specific information.  

2.2 Implementation platforms  

Java cards. Java cards are smart cards with an interpreter (Java Card Virtual Machine) [3] for 
the execution of processor-independent byte code. Code development for Java cards is based on 
a subset of Java and Java development tools.  
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Figure 1 Biometric user authentication with matching on card 



Java cards provide only limited memory space and their computing speed is limited 
because the Java byte code is interpreted at run-time. On Java cards, only a subset of the Java 
language is available. Java cards support the data types Boolean, byte, short, and optionally 
also int; the data types char, double, float, and long are not available. Only one-dimensional 
arrays are supported. By default, only basic arithmetic operations and no mathematical libraries 
are available. There is no garbage collection and no finalize(). Objects and arrays once created 
cannot be deleted; their storage location remains occupied. Therefore, all necessary objects and 
arrays have to be created at the installation of a Java card applet and be reused later. Dynamic 
loading of classes is not supported; all necessary classes must be brought onto the Java card at 
production time or during the installation of a Java card applet. 

We selected rather powerful Java cards as implementation platform (CPU word length: 
16 bit, 2 Kbytes RAM, 64 Kbytes ROM, 32 Kbytes EEPROM, default clock rate: 3.5712 MHz) 
[4]. However, their computing power falls far short of that of today’s PC’s.  

The shortage of RAM causes considerable problems. There would be sufficient EEPROM 
available to use it also as main memory; however, writing into EEPROM cells is substantially 
slower than writing into RAM, and the number of write cycles for EEPROM is limited.  

Java cards are well suited for the rapid development of prototype smart card applications. 
That’s why the signature recognition approach described in this paper has first been imple-
mented on Java cards. However, their drawback is that the interpretation of Java card applets by 
a Java Card Virtual Machine is rather slow.  

Native-code cards. Program execution on smart cards running native code is considerably 
faster than on Java cards. Therefore, native-code cards would be a better choice for developing 
an end-product rather than a prototype. However, the memory space on native-code cards is as 
limited as on Java cards. Code development for native-code cards is based on cross-compiling 
programs in higher programming languages.  

The signature recognition approach described in this paper has also been implemented as an 
operating prototype on a smart card running native code, viz. on a Funcard 2. The Funcard 2 is 
available e.g. from hobby electronics shops and is well suited for applications requiring rapid 
development and small volume roll-outs. It is a programmable multi-chip smart card with an 
AVR-based RISC microcontroller (Atmel AT90S8515A: CPU word length: 8 bit, 512 bytes 
RAM, 8 Kbytes programmable flash, 512 bytes EEPROM, default clock rate: 3.5712 MHz) [5] 
and a separate 8 Kbytes EEPROM chip.  

3 Design of the on-card matching method  

3.1 Signature recognition approach 

Methods for analyzing on-line signatures can be roughly classified into methods for the statisti-
cal, spatial, temporal, and spectral analysis and combinations thereof. The statistical analysis is 
too weak alone. The spatial analysis considers features perceptible in the shape of on-line 
signatures. For a temporal analysis, the features to be compared are time series, i.e. sequences 
of values at successive points in time. The spatial or temporal analysis could be implemented 
on smart cards. For a spectral analysis today’s smart cards do not have sufficient resources. 

With standardization of the feature data format in mind, it stands to reason to use directly 
the time series for x and y, possibly supplemented with time series for velocity, acceleration, 
pen orientation, etc., as biometric features. Therefore, we have chosen the temporal analysis of 
on-line signatures as on-card matching algorithm.  



3.2 Preprocessing, feature extraction, and formatting 

Preprocessing the captured on-line-signatures. The goal of preprocessing is to suppress 
insignificant information that is expression of random variation, but not of individual signature 
dynamics, and to even out differences between the data captured with different graphic tablets. 
Preprocessing steps include translation and rotation of the signature, removal of the linear 
component from the x-time regression line, normalization and scaling.  

If the time series for the x and y coordinates had a normal (GAUSSian) distribution, then 
about 70% of the normalized x and y coordinates lay in the interval between –1 and 1, almost 
100% of them lay in the interval between –4 and 4. Due to the lack of floating-point arithmetic 
on Java cards, floating-point numbers are not suitable for on-card processing. Therefore, the x 
and y coordinates are scaled such that they each can be coded in a signed byte, i.e. as an integer 
in the interval from –128 to 127. In order that almost all values lie in the desired interval, the 
normalized x and y coordinates are scaled by multiplying with 324128 =  and rounding off 
towards the nearest integer. In case a value lies outside the desired interval after scaling (which 
is possible, but very improbable if the values were normally distributed), it is replaced by –128 
or 127, respectively. Rounding off to integers entails a quantization error. We assume it to be 
negligibly small compared to the random variation among signatures of the same person.  

Figure 2 (a) shows pen-down and pen-up strokes of a sample signature. Figure 2 (b) shows 
the preprocessed time series of the x and y coordinates of the sample signature.  

Feature extraction. The features to be compared are the preprocessed time series of the x and y 
coordinates and time series for the velocity in x and y direction derived from the time series of 
the x and y coordinates by forming difference sequences. If the derivation of the difference 
sequences takes less time on the card than their derivation outside the card plus the trans-
mission to the card, then the difference sequences should be derived on card.  

Format of the signature feature data at the smart-card interface. Reference data are trans-
mitted to the smart card in the command data fields of CHANGE REFERENCE DATA APDU’s; 
verification data are transmitted in the command data fields of VERIFY APDU’s. Both, reference 
data and verification data are required to be packed in a biometric data object [6, 7]. The struc-
ture of biometric data objects used in the prototype implementation is described in Table 1.  

In general, only 255 bytes can be transmitted in the data field of a smart-card command. 
Because the feature data may be longer than this, we use command chaining for the APDU’s 
[9] and send the data belonging to a signature in subsequent APDU’s.  
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Figure 2 (a) Sampled signature (b) Preprocessed pen-position time series 



3.3 Feature matching on card  

The feature-matching algorithm compares the verification data presented by the user with the 
reference data stored on the card and determines their “distance” as a measure for their dis-
similarity. If the distance is larger than a threshold value, the presented signature is regarded as 
a forgery; otherwise, it is regarded as a genuine signature. The threshold depends linearly on 
the length of the reference data. The reference signature is one signature selected from several 
signatures captured during the enrolment phase.  

The “distance” of two signatures can be determined by nonlinear time warping of the time 
series of the signature to be verified to the time series of the reference signature [2, 10, 11]. 
Nonlinear time warping is achieved by dynamic programming. The goal is to determine a 
mapping between the time axes of the signatures to be compared (distortion path) minimizing 
the distance of the two signatures and observing certain side conditions. The side conditions are 
that the start and end points of verification and reference data must be mapped one on the other, 
that the temporal ordering of the sample points must be maintained, and that no sample point be 
omitted. The distance between verification data and reference data is the sum of the local 
distances along the optimal distortion path. The local distance between the feature vectors of 
verification data and reference data (consisting of x and y coordinates as well as velocities in x 
and y direction at a sample point) can be defined in different ways. On the smart card we use 
the absolute value norm of the difference vector as a distance measure because its computation 
requires less resources than more sophisticated distance measures.  

Dynamic programming algorithms are described in the literature (e.g. [11]) and are not 
repeated here. Dynamic programming is a time-consuming procedure. The computing time is 
reduced by looking for the optimal distortion path only within a limited band (Sakoe/Chiba 
band [12]).  

4 Experimental results  

For testing purposes, the prototypes reveal the distance values of each matching attempt. In 
normal operation, the distance values should not be revealed to avoid hill-climbing attacks 
(where an attacker systematically modifies the verification data to obtain smaller and smaller 
distances until the decision threshold is met). 

The false acceptance rate (FAR, probability that an unauthorized user is falsely accepted) 
and the false rejection rate (FRR, probability that a legitimate user is falsely rejected) can be 
estimated experimentally with a certain statistical significance using large test databases [13]. 
We carried out a preliminary technology evaluation of our prototype implementations by 
testing against a signature database collected within our research group. The signatures were 
collected during several sessions from 5 colleagues, all male right-handers under 40 years of 
age. The signature data were captured on a WACOM tablet. The database contains a total of 50 
genuine signatures and 69 forgery attempts. For a statistically more significant technology 
evaluation, a larger database will be needed.  

Table 1 Format of biometric data objects for signature feature data 

Tag Length Value 
5f 2e  
(Card Holder Biometric Data 
[6]) 

1–3 bytes, coded according 
to the ASN.1 Distinguished 
Encoding Rules [8] 

OCTET STRING x1y1...xnyn 



For the forgery attempts, the impostors had the original signatures to be forged available on 
paper (a quite realistic scenario) and were allowed to produce forgeries to the best of their 
ability. They were allowed to practice the signatures to be forged, to look at the original while 
forging, and even to retrace the original.  

Figure 3 summarizes the preliminary performance results in a receiver operating character-
istic curve [13] plotting the relative frequency of correct acceptances over the relative fre-
quency of false acceptances at varying threshold values. The equal error rate (where FRR 
equals FAR) lies at about 8%.  

The time needed for transmitting verification data to the card and for on-card matching 
grows linearly with the size of the verification data. For the shortest on-line signature in the 
database consisting of 70 sample points (i.e. writing it took 0.7 seconds), the computing time is 
about 7 seconds on the Java card and about 2.5 seconds on the native-code card. For an on-line 
signature consisting of 250 sample points, the computing time is about 25 seconds on the Java 
card and about 8.5 seconds on the native-code card. On the native-code card computing takes 
about one third of the time it takes on the Java card. For practical applications, less waiting time 
would be desirable.  

5 Summary and outlook  

Biometric user authentication on smart cards by means of handwritten signatures is feasible. 
We have implemented first prototypes of an on-card matching algorithm for handwritten 
signatures. The challenge consisted in implementing the feature-matching algorithm using only 
the limited resources available on smart cards.  

The approach we selected for implementation on smart cards is the temporal analysis of 
signatures. The features to be compared are the time series of the x and y coordinates, which are 
captured by a graphic tablet and a special pen and pass through some preprocessing steps, and 
the time series for the velocity in x and y direction, which are derived from the time series of 
the x and y coordinates. By means of dynamic programming, a nonlinear time warping of the 
signatures to be compared is performed and their distance is determined as a measure for their 
dissimilarity.  

A more thorough statistic evaluation of the attainable error rates based on larger signature 
databases is pending. An improvement of the performance is expected from dissecting the 
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Figure 3 Receiver operating characteristic curve 



signatures into pen-down and pen-up strokes, as discussed in [11]. The recognition perform-
ance may be further improved by taking into account more features, like pen orientation. The 
computing time needed for on-card matching will decrease as smart cards become more and 
more powerful.  
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