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Abstract. In this paper we initiate the study of job scheduling on related
and unrelated machines so as to minimize the maximum flow time or the
maximum weighted flow time (when each job has an associated weight).
Previous work for these metrics considered only the setting of parallel
machines, while previous work for scheduling on unrelated machines only
considered Lp, p <∞ norms. Our main results are:
(i) We give an O(ε−3)-competitive algorithm to minimize maximum

weighted flow time on related machines where we assume that the
machines of the online algorithm can process 1 + ε units of a job in 1
time-unit (ε speed augmentation).

(ii) For the objective of minimizing maximum flow time on unrelated ma-
chines we give a simple 2/ε-competitive algorithm when we augment
the speed by ε. For m machines we show a lower bound of Ω(m) on
the competitive ratio if speed augmentation is not permitted. Our
algorithm does not assign jobs to machines as soon as they arrive.
To justify this “drawback” we show a lower bound of Ω(logm) on
the competitive ratio of immediate dispatch algorithms. In both these
lower bound constructions we use jobs whose processing times are in
{1,∞}, and hence they apply to the more restrictive subset parallel
setting.

(iii) For the objective of minimizing maximum weighted flow time on unre-
lated machines we establish a lower bound of Ω(logm)-on the compet-
itive ratio of any online algorithm which is permitted to use s = O(1)
speed machines. In our lower bound construction, job j has a process-
ing time of pj on a subset of machines and infinity on others and has
a weight 1/pj . Hence this lower bound applies to the subset parallel
setting for the special case of minimizing maximum stretch.

1 Introduction

The problem of scheduling jobs so as to minimize the flow time (or response
time) has received much attention. In the online setting of this problem, jobs
arrive over time and the flow time of a job is the difference between its release
time (or arrival time) and completion time (or finish time). We assume that the
jobs can be preempted. The task of the scheduler is to decide which machine to
schedule a job on and in what order to schedule the jobs assigned to a machine.
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One way of combining the flow times of various jobs is to consider the sum
of the flow times. An obvious drawback of this measure is that it is not fair
since some job might have a very large flow time in the schedule that minimizes
sum of their flow times. A natural way to overcome this is to minimize the Lp
norm of the flow times of the jobs [3, 5, 10, 11] which, for increasing values
of p, would ensure better fairness. Bansal and Pruhs [5], however, showed that
even for a single machine, minimizing, the Lp-norm of flow times requires speed
augmentation — the online algorithm must have machines that are, say, ε-fraction
faster (can do 1 + ε unit of work in one time-unit) than those of the offline
algorithm. With a (1 + ε)-speed augmentation Bansal and Pruhs [5] showed that
a simple algorithm which schedules the shortest job first is O(ε−1)-competitive
for any Lp-norm on a single machine; we refer to this as an (1 + ε,O(1/ε))-
competitive algorithm. Golovin et.al. [10] used a majorizing technique to obtain
a similar result for parallel machines. While both these results have a competitive
ratio that is independent of p, the results of Im and Moseley [11] and Anand
et.al. [3] for unrelated machines have a competitive ratio that is linear in p and
which therefore implies an unbounded competitive ratio for the L∞-norm.

Our main contribution in this paper is to provide a comprehensive treatment
of the problem of minimizing maximum flow time for different machine models.
The two models that we consider are the related machines (each machine has
speed si and the time required to process job j on machine i is pj/si) and the
unrelated machines (job j has processing time pij on machine i). A special case
of the unrelated machine model is the subset-parallel setting where job j has a
processing time pj independent of the machines but can be assigned only to a
subset of the machines.

Besides maximum flow time, another metric of interest is the maximum
weighted flow time where we assume that job j has a weight wj and the ob-
jective is to minimize maxj wjFj , where Fj is the flow time of j in the schedule
constructed. Besides the obvious use of job weights to model priority, if we choose
the weight of a job equal to the inverse of its processing time, then minimizing
maximum weighted flow time is the same as minimizing maximum stretch where
stretch is defined as the ratio of the flow time to the processing time of a job.
Chekuri and Moseley [9] considered the problem of minimizing the maximum de-
lay factor where a job j has a deadline dj , a release date rj and the delay factor
of a job is defined as the ratio of its flow time to (dj − rj). This problem is in
fact equivalent to minimizing maximum weighted flow time and this can be easily
seen by defining wj = (dj − rj)−1.

The problem of minimizing maximum stretch was first considered by Bender
et.al. [7] who showed a lower bound ofΩ(P 1/3) on the competitive ratio for a single
machine where P is the ratio of the largest to the smallest processing time. Bender
et.al. [7] also showed a O(P 1/2)-competitive algorithm for a single machine, which
was improved by [8], while the lower bound was improved to Ω(P 0.4) by [9].

For minimizing maximum weighted flow time, Bansal and Pruhs [6] showed
that the highest density first algorithm is (1+ε,O(ε−2))-competitive for single ma-
chines. For parallel machines, Chekuri and Moseley [9] obtained a (1+ε,O(ε−1))-
competitive algorithm that is both non-migratory (jobs once assigned to a machine
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are scheduled only on that machine) and immediate dispatch (a job is assigned
to a machine as soon as the job arrives). Both these qualities are desirable in
any scheduling algorithm since they reduce/eliminate communication overheads
amongst the central server/machines.

Our main results and the previous work for these three metrics (Max-Flow-
time, Max-Stretch and Max-Weighted-Flow-time) on the various machine
models (single, parallel, related, subset parallel and unrelated) are expressed in
Table 1. Note that the Max-Flow-time metric is not a special case of the Max-
Stretch metric, and neither is the model of related machines a special case of the
subset-parallel setting. Nevertheless, a lower bound result (respectively an upper
bound result) for a machine-model/metric pair extends to all model/metric pairs
to the right and below (respectively to the left and above) in the table.

Max-Flow-time Max-Stretch Max-Weighted-Flow-time

Single Machine polynomial time
(1, Ω(P 2/5)) [9] and

(1 + ε,O(ε−2)) [6]
(1, O(P 1/2)) [7, 8]

Parallel Machines (1, 2) [1] (1 + ε,O(ε−1)) [9]

Related Machines (1 + ε,O(ε−3))

Subset Parallel (1, Ω(m)) (O(1), Ω(logm))

Unrelated Machines (1 + ε,O(ε−1))

Table 1. Previous results and the results obtained in this paper for the different machine
models and metrics considered. The uncited results are from this paper.

Our main results are:

(i) We give an O(ε−3)-competitive non-migratory algorithm to minimize max-
imum weighted flow time on related machines with ε speed augmentation.
When compared to a migratory optimum our solution is O(ε−4)-competitive.

(ii) For the objective of minimizing maximum flow time on unrelated machines
we give a simple 2/ε-competitive algorithm when we augment the speed by ε.
For m machines we show a lower bound of Ω(m) on the competitive ratio if
speed augmentation is not permitted. Our algorithm does not assign jobs to
machines as soon as they arrive. However [4] show a lower bound of Ω(logm)
on the competitive ratio of any immediate dispatch algorithm. Both these
lower bound constructions use jobs whose processing times are in {1,∞}, and
hence they apply to the more restrictive subset parallel setting.

(iii) For the objective of minimizing maximum weighted flow time on unrelated
machines, we establish a lower bound of Ω(logm)-on the competitive ratio of
any online algorithm which is permitted to use s = O(1) speed machines. In
our lower bound construction, job j has a processing time of pj on a subset
of machines and infinity on others and has a weight 1/pj . Hence this lower
bound applies to the subset parallel setting for the special case of minimizing
maximum stretch.

(iv) For minimizing the Lp-norm of stretch on subset parallel machines with a
speed augmentation of 1 + ε, we show a lower bound of p

ε1−O(1/p) on the com-
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petitive ratio. This compares well with the O( p
ε2−O(1/p) )-competitive algorithm

in [3] for minimizing lp norm of weighted flow time on unrelated machines.

The problem of minimizing maximum (weighted) flow time also has interesting
connections to deadline scheduling. In deadline scheduling besides its processing
time and release time, job j has an associated deadline dj and the objective is
to find a schedule which meets all deadlines. For single machine it is known that
the Earliest Deadline First (EDF) algorithm is optimum, in that it would find
a feasible schedule if one exists. This fact implies a polynomial time algorithm
for minimizing maximum flow time on a single machine. This is because, job j
released at time rj should complete by time rj + opt, where opt is the optimal
value of maximum flow time. Thus rj + opt can be viewed as the deadline of job
j. Hence EDF would schedule jobs in order of their release times and does not
need to know opt.

For parallel machines it is known that no online algorithm can compute a
schedule which meets all deadlines even when such a schedule exists. Phillips
et.al. [12] showed that EDF can meet all deadlines if the machines of the on-
line algorithm have twice the speed of the offline algorithms. This bound was
improved to e

e−1 by Anand et.al. [2] for a schedule derived from the Yardstick
bound. Our results imply that for related machines a constant speedup suffices to
ensure that all deadlines are met while for the subset parallel setting, no constant
(independent of number of machines) speedup can ensure that we meet deadlines.

The paper is organized as follows. In Section 2 and Section 4 we consider the
problem of minimizing maximum weighted flow time on related machines and
unrelated machines respectively. Section 3 considers the problem of minimizing
maximum flow time on unrelated machines.

2 Max-Weighted-Flow-time on Related Machines

In this section we consider the Max-Weighted-Flow-time on related machines
where the on-line algorithm is given (1+ε)-speed augmentation for some arbitrary
small constant ε > 0. In the related machines setting, each job j has weight wj ,
release date rj and processing requirement pj . We are given m machines with
varying speed. Instead of working with speed, it will be more convenient to work
with slowness of machines: the slowness of a machine i, denoted by si, is the
reciprocal of its speed. Assume that s1 ≤ . . . ≤ sm. For an instance I, let opt(I)
denote the value of the optimal off-line solution for I. We assume that the on-
line algorithm is given (1 + 4ε)-speed augmentation. We say that a job j is valid
for a machine i, if its processing time on i, i.e., pjsi, is at most T

wj
. Observe

that a (non-migratory) off-line optimum algorithm will process a job j on a valid
machine only.

We assume that all weights wj are of the form 2k, where k is a non-negative
integer (this affects the competitive ratio by a factor of 2 only). We say that a
job is of class k if its weight is 2k. To begin with, we shall assume that the on-line
algorithm knows the value of opt(I) — call it T . In the next section, we describe
an algorithm, which requires a small amount of “look-ahead”. We describe it as
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an off-line algorithm. Subsequently, we show that it can be modified to an on-line
algorithm with small loss of competitive ratio.

2.1 An off-line algorithm

We now describe an off-line algorithm A for I. We allow machines speedup of
1 + 2ε. First we develop some notation. For a class k and integer l, let I(l, k)

denote the interval
[
lT
ε2k

, (l+1)T
ε2k

)
. We say that a job j is of type (k, l) if it is

of class k and rj ∈ I(k, l). Note that the intervals I(k, l) form a nested set of
intervals.

The algorithm A is described in Figure 1. It schedules jobs in a particular
order: it picks jobs in decreasing order of their class, and within each class, it
goes by the order of release dates. When considering a job j, it tries machines in
order of increasing speed, and schedules j in the first machine on which it can
find enough free slots (i.e., slots which are not occupied by the jobs scheduled
before j). We will show that it will always find some machine. Note that A may
not respect release dates of jobs.

Algorithm A(I, T ):

For k = K downto 1 (K is the highest class of a job)
For l = 1, 2, . . .

For each job j of type (k, l)
For i = mj downto 1 (mj is the slowest machine on which j is valid)

if there are at least pjsi free slots on machine i during I(k, l) then
schedule j on i during the first such free slots (without caring about rj).

Fig. 1. The off-line algorithm

Analysis In this section, we prove that the algorithmA will always find a suitable
machine for every job. We prove this by contradiction: let j? be the first job for
which we are not able to find such a machine. Then we will show that the opt(I)
must be more than T , which will contradict our assumption.

In the discussion below, we only look at jobs which were considered before j?

by A. We build a set S of jobs recursively. Initially S just contains j?. We add
a job j′ of type (k′, l′) to S if there is a job j of type (k, l) in S satisfying the
following conditions:

• The class k of j is at most k′.
• The algorithm A processes j′ on a machine i which is valid for j as well.
• The algorithm A processes j′ during I(k, l), i.e., I(k′, l′) ⊆ I(k, l).

We use this rule to add jobs to S as long as possible. For a machine i and
interval I(k, l), define the machine-interval Ii(k, l) as the time interval I(k, l) on
machine i. We construct a set N of machine-intervals as follows. For every job
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j ∈ S of type (k, l), we add the intervals Ii(k, l) to N for all machines i such that
j is valid for i. We say that an interval Ii(k, l) ∈ N is maximal if there is no other
interval Ii(k

′, l′) ∈ N which contains Ii(k, l) (note that both of the intervals are
on the same machine). Observe that every job in S except j? gets processed in
one of the machine-intervals in N . Let N ′ denote the set of maximal intervals in
N . We now show that the jobs in S satisfy the following crucial property.

Lemma 1. For any maximal interval Ii(k, l) ∈ N , the algorithm A processes jobs
of S on all but ε

1+2ε -fraction of the slots in it.

Proof. We prove that this property holds whenever we add a new maximal interval
to N . Suppose this property holds at some point in time, and we add a job j′

to S. Let j, k, l, k′, l′, i be as in the description of S. Since k ≤ k′, and j is valid
for i, N already contains the intervals Ii′(k, l) for all i′ ≤ i. Hence, the intervals
Ii′(k

′, l′), i′ ≤ i, cannot be maximal. Suppose an interval Ii′(k
′, l′) is maximal,

where i′ > i, and j′ is valid for i′ (so this interval gets added to N ). Now, our
algorithm would have considered scheduling j′ on i′ before going to i — so it must
be the case that all but pj′si′ slots in Ii′(k

′, l′) are busy processing jobs of class
at least k′. Further, all the jobs being processed on these slots will get added to
S (by definition of S, and the fact that j′ ∈ S). The lemma now follows because
pj′si′ ≤ T

2k′
≤ ε|I(k′, l′)|, and A can do (1 + 2ε)|I(k, l)| amount of processing

during I(k, l).

Corollary 1. The total volume of jobs in S is greater than
∑
I(k,l)∈N ′(1 +

ε)|I(k, l)|.

Proof. Lemma 1 shows that given any maximal interval Ii(k, l), A processes jobs
of S for at least 1+ε

1+2ε -fraction of the slots in it. The total volume that it can
process in I(k, l) is (1 + 2ε)|I(k, l)|. The result follows because maximal intervals
are disjoint (we have strict inequality because A could not complete j∗).

We now show that the total volume of jobs in S cannot be too large, which
leads to a contradiction.

Lemma 2. If opt(I) ≤ T , then the total volume of jobs in S is at most∑
I(k,l)∈N ′(1 + ε)|I(k, l)|.

Proof. Suppose opt(I) ≤ T . For an interval Ii(k, l), let Iεi (k, l) be the interval of
length (1 + ε)|Ii(k, l)| which starts at the same time as I(k, l). It is easy to check
that if I(k′, l′) ⊆ I(k, l), then Iε(k′, l′) ⊆ Iε(k, l).

Let j ∈ S be a job of type (k, l). The off-line optimal solution must schedule it
within T

2k
of its release date. Since rj ∈ I(k, l), the optimal solution must process

a job j during Iε(k, l). So, the total volume of jobs in S can be at most∣∣∣∣∣ ⋃
I(k,l)∈N

Iε(k, l)

∣∣∣∣∣ =

∣∣∣∣∣ ⋃
I(k,l)∈N ′

Iε(k, l)

∣∣∣∣∣ ≤ ∑
I(k,l)∈N ′

|Iε(k, l)| =
∑

I(k,l)∈N ′
(1+ε)|I(k, l)|.

Clearly, Corollary 1 contradicts Lemma 2. So, algorithm A must be able to
process all the jobs.
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2.2 Off-line to on-line

Now, we give an on-line algorithm for the instance I. Recall that A is an off-line
algorithm for I and may not even respect release dates. The on-line algorithm B is
a non-migratory algorithm which maintains a queue for each machine i and time
t. For each job j, it uses A to figure out which machine the job j gets dispatched
to.

Note that the algorithm A can be implemented in a manner such that for any
job j of type (k, l), the slots assigned by A to j are known by the end of interval
I(k, l) — jobs which get released after I(k, l) do not affect the schedule of j. Also
note that the release date of j falls in I(k, l). This is described more formally in
Figure 2.

Algorithm A(I, T ):

For t = 0, 1, 2, . . .
For k = 1, 2, . . .

If t is the end-point of an interval I(k, l) for some l, then
For each job j of type (k, l)

For i = mj downto 1 (mj is the slowest machine on which j is valid)
If there are at least pjsi free slots on machine i during I(k, l) then

schedule j on i during the first such free slots (without caring about rj).

Fig. 2. An alternate implementation of A

We now describe the algorithm B. It maintains a queue of jobs for each ma-
chine. For each job j of class k and releasing during I(k, l), if j gets processed on
machine i by A, then B adds j to the queue of i at end of I(k, l). Observe that B
respects release dates of jobs — a job j of type (k, l) has release date in I(k, l),
but it gets dispatched to a machine at the end of the interval I(k, l). For each
machine i, B prefers jobs of higher class, and within a particular class, it follows
the ordering given by A (or it could just go by release dates). Further, we give
machines in B (1 + 3ε)-speedup.

Analysis We now analyze B. For a class k, let J≥k be the jobs of class at least k.
For a class k, integer l and machine i, let Q(i, k, l) denote the jobs of J≥k which
are in the queue of machine i at the beginning of I(k, l). First we note some
properties of B:

(i) A job j gets scheduled in B only in later slots than those it was scheduled on
by A: A job j of type (k, l) gets scheduled during I(k, l) in A. However, it
gets added to the queue of a machine by B only at the end of I(k, l).

(ii) For a class k, integer l and machine i, the total remaining processing time (on

the machine i) of jobs in Q(i, k, l) is at most (1+2ε)T
ε2k

: Suppose this is true for
some i, k, l. We want to show that this holds for i, k, l+ 1 as well. The jobs in



8

the queue Q(i, k, l + 1) could consist of either (i) the jobs in Q(i, k, l), or (ii)
the jobs of J≥k which get processed by A during Ii(k, l). Indeed, jobs of J≥k
which get released before the the interval Ii(k, l) finish before this interval
begins (in A). Hence, in B, any such job would either finish before I(k, l)
begins, or will be in the queue Q(i, k, l). The jobs of J≥k which get released
during I(k, l) will complete processing in this interval (in A) and hence may
get added to the queue Q(i, k, l + 1).
Now, the total processing time of the jobs in (ii) above would be at most
(1 + 2ε)|I(k, l)| (recall that the machines in A have speedup of (1 + 2ε)).
Suppose in the schedule B, the machine i processes a job of class greater than
k during some time in Ii(k, l) — then it must have finished processing all the
jobs in Q(i, k, l), and so Q(i, k, l + 1) can only contain jobs from (ii) above,
and hence, their total processing time is at most (1 + 2ε)|I(k, l)| and we are
done. If the machine i is busy during Ii(k, l) processing jobs from J≥k (in
B), then it does at least (1 + 2ε)|I(k, l)| amount of processing , and so, the
property holds at the end of I(k, l) as well.

We are now ready to prove the main theorem.

Theorem 1. In the schedule B, a job j of class k has flow-time at most T (1+3ε)
ε22k

.

Hence, for any instance, B is an
(

2(1+3ε)
ε2

)
-competitive algorithm with (1 + 3ε)-

speedup.

Proof. Consider a job j of class type (k, l). Suppose it gets processed on machine
i. The algorithm B adds j to the queue Q(i, k, l). Property (ii) above implies that
the total remaining processing time of these jobs (on i) is at most (1+2ε)|I(k, l)|.
Consider an interval I which starts at the beginning of I(k, l) and has length
(1+2ε)|I(k,l)|

ε = (1+2ε)T
ε22k

. The jobs of J≥k that B can process on i during I are
either (i) jobs in Q(i, k, l), or (ii) jobs processed by A on machine i during I
(using property (i) above). The total processing time of the jobs in (ii) is at most
(1 + 2ε)|I|, whereas B can process (1 + 3ε)|I| volume during I (on machine i).

This still leaves us with ε|I| = (1+2ε)T
ε2k

— this is enough to process all the jobs in

Q(i, k, l). So the flow-time of j is at most |I|+ |I(k, l)| = T
2k

(
1
ε + 1+2ε

ε2

)
. Finally,

given any instance, we lose an extra factor of 2 in the competitive ratio because
we scale all weights to powers of 2.

Extensions We mention some easy extensions of the result above.

Comparison with migratory off-line optimum: Here, we allow the off-line optimum
to migrate jobs across machines. To deal with this, we modify the definition of
when a job is valid on a machine. We will say that a job j of class k is valid for a
machine i if its processing time on i is at most T

2k
· 1+εε . Note that even a migratory

algorithm will process at most ε
1+ε -fraction of a job on machines which are not

valid for it. Further, we modify the definition of I(l, k) to be
[
(1+ε)lT
ε22k

, (1+ε)(l+1)T
ε22k

)
.

The rest of the analysis can be carried out as above. We can show that the on-line

algorithm is O
(

(1+ε)2

ε3

)
-competitive with (1 + ε)-speedup.
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Deadline scheduling on related machines: In this setting, the input instance also
comes with deadline dj for each job j. The assumption is that there is a schedule
(off-line) which can schedule all jobs (with migration) such that each job finishes
before its deadline. The question is: is there a constant s and an on-line algorithm
S such that with speedup s, it can meet all the deadlines? Using the above result,
it is easy to show that our online algorithm has this property provided we give it
constant speedup. We give the proof in the appendix.

Corollary 2. There is a constant s, and a non-migratory scheduling algorithm
which, given any instance of the deadline scheduling problem, completes all the
jobs within their deadline if we give speed-up of c to all the machines.

So far our on-line algorithm has assumed that we know the optimal value of
an instance. In the appendix B, we show how to get rid of this assumption.

3 Max-Flow-time on Unrelated Machines

We consider the (unweighted) Max-Flow-time on unrelated machines. We first
show that a constant competitive algorithm cannot have the property of immedi-
ate dispatch and it requires speed augmentation. Since our instances use unit-sized
jobs, the lower bound also holds for Max-Stretch. Recall that a scheduling al-
gorithm is called immediate dispatch if it decides, at the time of a job’s arrival,
which machine to schedule the job on.

The lower bound for an immediate dispatch algorithm follows from the lower
bound of Azar et al. [4] for minimizing total load in the subset parallel settings.
Here, we are given a set of machines, and jobs arrive in a sequence. Each job
specifies a subset of machines it can go to, and the on-line algorithm needs to
dispatch a job on its arrival to one such machine. The goal is to minimize the
maximum number of jobs which get dispatched to a machine. Azar et al. [4] prove
that any randomized on-line algorithm for this problem is Ω(logm)-competitive.
From this result, we can easily deduce the following lower bound for Max-Flow-
time in the subset parallel setting with unit size jobs (given an instance of the
load balancing problem, give each job size of 1 unit, and make them arrive at
time 0 in the same sequence as in this given instance).

Theorem 2. Any immediate dispatch randomized on-line algorithm for Max-
Flow-time in the subset parallel setting with unit job sizes must have competitive
ratio of Ω(logm).

Any randomized on-line algorithm with bounded competitive ratio needs speed
augmentation. We give the proof in the appendix.

Theorem 3. Any online algorithm for minimizing Max-Flow-time on subset-
parallel machines which allows non-immediate dispatch but does not allow speed
augmentation has a competitive ratio of Ω(m). This holds even for unit-sized jobs.



10

3.1 A (1 + ε, O(1/ε))-competitive algorithm

We now describe an
(
2
ε

)
-competitive algorithm for Max-Flow-time on multiple

unrelated machines with (1 + ε)-speed augmentation. The algorithm proceeds in
several phases: denote these by Π1, Π2, . . ., where phase Πi begins at time ti−1
and ends at time ti. In phase Πi, we will schedule all jobs released during the
phase Πi−1.

In the initial phase, Π1, we consider the jobs released at time t0 = 0, and find
an optimal schedule which minimizes the makespan of jobs released at time t0.
This phase ends at the time we finish processing all these jobs. Now, suppose we
have defined Π1, . . . ,Πl, and have scheduled jobs released during Π1, . . . ,Πl−1.
We consider the jobs released during Πl, and starting from time tl, we find a
schedule which minimized their makespan (assuming all of these jobs are released
at time tl). Again, this phase ends at the time we finish processing all these jobs.
Note that this algorithm is a non-immediate dispatch algorithm and does not
require migration. We now prove that this algorithm has the desired properties.

Theorem 4. Assuming ε ≤ 1, The algorithm described above has competitive
ratio 2

ε with (1 + ε)-speed augmentation.

Proof. Consider an instance I and assume that the optimal off-line schedule has
maximum flow time of T . We will be done if we show that each of the phases Πi

has length at most T
ε . For Π1, this is true because all the jobs released at time 0

can be scheduled within T units of time. Suppose this is true for phase Πi. Now,
we know that the jobs released during Πi can be scheduled in an interval of length
Πi+T. Using (1+ε)-speed augmentation, the length of the next phase is at most

|Πi|+ T

1 + ε
≤ T/ε+ T

1 + ε
=
T

ε
.

4 Max-Weighted-Flow-time on Unrelated Machines

In this section, given any constant speedup, any on-line algorithm for Max-
Weighted-Flow-time on unrelated machines is Ω(logm)-competitive. This
bound holds for the special case of subset parallel model, and even extends to
the Max-Stretch metric. We give the proof of the following theorem in the
appendix.

Theorem 5. Given any large enough parameter c, integer s ≥ 1, and an on-line
algorithm A which is allowed speedup of (s+ 1)/2, there exists an instance I(s, c)
of Max-Weighted-Flow-time on subset parallel machines such that A is not
c-competitive on I(s, c). The instance I(s, c) has jobs with s different weights

only, and uses (O(s))O(cs2) machines.

5 Lower bound for Lp norm of stretch

We show a lower bound for the competitive ratio for the Lp-norm of the stretches,
with speed augmentation by a factor of 1 + ε. We assume that there is an online
algorithm with competitive ratio c = o( p

ε1−3/p ) and derive a contradiction.
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The construction usesm = 2p machines. We start with the typical construction
to get a large load on one machine. For this we consider 2 machines. At time 0
we release two jobs of size 1 (and weight 1) - each can go on exactly one machine.
Then until time 1 we release tiny jobs, i.e., at each δ time step a job of size δ (and
weight 1/δ) is released that can go on any of the two machines. Note that at time
1 at least one of the machines has load (of size 1 jobs) at least 1/2− ε− cδ. This
is because, the total volume of jobs is 3, the two machines can process at most
2(1 + ε) units, and all tiny jobs except the last c have to be processed. It makes
sense to set δ = ε/c and hence cδ ≤ ε.

Now, we can use this as a gadget, starting with m/2 pairs of machines we
then take the m/2 machines with large load and pair them up arbitrarily and
recursively do the same construction. We end up with one machine with load
Ω(logm) (if ε is sufficiently smaller than 1/2). This concludes the first of two
phases.

Now that we have a machine with large load, we release tiny jobs for a time
interval of length log(m)/ε. Since the tiny jobs have to be processed first, the
initial load of Ω(logm) needs time Ω(log(m)/ε) to be fully processed, as it can be
processed only in the time that we have additional due to resource augmentation.
Hence, at least one size 1 job has stretch at least Ω(log(m)/ε). This concludes
the second phase.

Let us bound the number of jobs k that we release in these 2 phases. In the
first phase of the construction we release m + m/2 + m/4 + ... = O(m) jobs of
size 1 and O(m/δ) tiny jobs. In the second phase we release O(log(m)/(εδ)) tiny
jobs. Thus, k = O(m/δ + log(m)/(εδ)). Note that we can bound 1/δ ≤ p/ε2−3/p

and hence k = O(mp/ε3−3/p).
We want to repeat these two phases n/k times. After the first 2 phases have

been completed (by the optimal offline algorithm) we release again the 2 phases,
and we repeat this n/k times. Thus, for the optimal offline algorithm all repetitions
will be independent. Then in total we released any desired number n of jobs, where
n ≥ k.

Note that the optimal offline algorithm would have a max-stretch of 2 and,

thus, also an Lp norm of the stretches of
(
1
n

∑
i v
p
i

)1/p ≤ 2.
We now lower bound the Lp norm of the stretches of the online algorithm. We

already have a lower bound on the maximal stretch of any job, Ω(log(m)/ε), and
we know that there are at least n/k jobs with such a large stretch, one for each
repetition of the 2 phases. Now, let vi be the stretch of the i-th job. Then the Lp
norm of the stretches is

c ≥ Ω

(
1

n

∑
i

vpi

)1/p

Since we know that there are n/k jobs with vi = Ω(log(m)/ε) this is at least

c ≥ Ω

(
log(m)

ε

(
n/k

n

)1/p
)

= Ω

(
log(m)

εk1/p

)
.
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Plugging in our bound on k = O(mp/ε3−3/p) this yields a bound of

c ≥ Ω
(

log(m)

ε(mp)1/p/ε3/p

)
.

Since m = 2p and noting that p1/p = O(1) this yields the desired contradiction
to c begin too small,

c ≥ Ω
( p

ε1−3/p

)
.

The only condition for this was

n ≥ k =
2Θ(p)

εΘ(1)
.

which implies that n just has to be sufficiently large.
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A Proof of Corollary 2

Proof. As argued above, there is an algorithm for Max-Weighted-Flow-time

with competitive ratio c(1+ε)2

ε3 if we give speedup of (1+ε) to the machines, where
c is a constant. Note that, here ε can be any positive number, and so, if we pick
ε to be a large constant, then this ratio becomes less than 1, i.e., the weighted
flow-time of each job is even better than the optimal value T . Further, note that
there is no assumption of the weights of the jobs – they need not be power of 2.
The fact that we rounded them to power of 2 worsens the competitive ratio by a
factor of 2, which is getting absorbed in the constant c. We pick s to be (1 + ε),

where ε is such that c(1+ε)2

ε3 < 1.
Now consider an instance I of the deadline scheduling problem. We map this

to an instance I ′ of the Max-Weighted-Flow-time problem where we know
that the optimal value T is at most 1. The mapping is as follows. When a job j
with deadline dj arrives at time rj in I, we release j at time rj in I ′ as well (the
processing time of j is I ′ is same as that in I). Further, we set wj to be 1

dj−rj in

I ′. We claim that the optimal value for I ′ is at most 1. Indeed, there is a schedule
which finishes each job j by time dj , and so, its weighted flow-time is at most 1.
Now, our on-line algorithm with speedup s will also have objective value of 1, i.e.,
each job will now finish by its deadline dj .

B Removing the assumption about knowledge of T

In this section, we show how to remove the assumption about knowledge of T .
Again, we will construct an off-line algorithm C, which will invoke A for differ-
ent guesses for T . We begin with some definitions. We fix an instance I. For a

parameter T , let I(T )(k, l) be the interval
[
lT
ε2k

, (l+1)T
ε2k

)
(this is same as I(k, l)

defined in Section 2.1). Similarly, we say that a job of class k is of type (k, l)T if
rj ∈ I(T )(k, l).

Our algorithm will work with guess of T which are powers of C = 1+ε
ε . Assume

that all release dates and processing times are integers so that the optimum value
is at least 1. Let Tu denote Cu. We first slightly generalize the algorithm A
described in Figure 1. The new algorithm A′ will take as parameters an instance
I ′, guess T , and a starting time t0 — all release dates in I ′ will be at least
t0. It will run A(I ′, T ) with the understanding that time starts at t0. Also it
will run the machines at speed (1 + 3ε). So the interval I(T )(k, l) will be defined

as
[
t0 + lT

ε2k
, t0 + (l+1)T

ε2k

)
. With these definitions, we ready to describe our new

off-line algorithm. The algorithm is described in Figure 3.
We first show that the algorithm C is constant competitive. Suppose during

iteration u of Step 2 in the algorithm C(I), we find a job j? as in Step 2(iii),
where j? is of type (k?, l?)Tu

. Recall that tu+1 is the end-point of I(Tu)(k?, l?).
For a job j ∈ Iu, let ruj denote its release date in the instance Iu.

Lemma 3. Any job j ∈ Iu+1 with ruj < tu+1 must be of class at most k?. Further,

if such a job is of class k, then tu+1 − rj ≤ Tu+1

2k
.
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Algorithm C(I):

1. Initialize T0 = 1, t0 = 0, I0 = I.
2. For u = 0, 1, 2, . . .

(i) Run A′(Iu, Tu, tu) as described above.
(ii) If we are able to finish all jobs, then stop and output the schedule produced.
(iii) Else let j be the first job which the algorithm A′(Iu, Tu, tu) is not able to schedule.

Suppose j is of type (k, l)Tu . Define tu+1 as the end-point of I(Tu)(k, l).
Define Iu+1 as the jobs in Iu which are not scheduled yet.
Define release date of a job j ∈ Iu+1 as max(tu+1, rj). Set Tu+1 = Tu · 1+ε

ε
.

Go to the next iteration.

Fig. 3. The off-line algorithm which schedules jobs in instance I

Proof. Suppose j ∈ Iu and ruj < tu+1. If j is of type (k, l)Tu , where k > k?,

then I(Tu)(k, l) ⊆ I(Tu)(k?, l?), and so, the interval I(Tu)(k, l) ends on or before
tu+1. So An(Iu, Tu, tu) would have considered j before j?. By definition of j?, the
algorithm must have scheduled j in I(Tu)(k, l), and so, before tu+1. This proves the
first statement in the lemma. We now prove the second statement in the lemma.
We use induction on u. Suppose the statement is true for iteration u− 1. We now
show that it is true for u. Let j be a job of class k′ ≤ k such that j ∈ Iu+1 and
ruj < tu+1. Then j of type (k, l)Tu

, where the interval I(Tu)(k, l) ends on or after

tu+1. So, tu+1 − ruj ≤ |I(Tu)(k, l)| = Tu

ε2k
. If rj ≥ tu, then ruj = rj , and we are

done. Otherwise, ruj = tu. So we get tu+1 − tu ≤ Tu

ε2k
. By induction hypothesis,

tu − rj ≤ (1+ε)Tu

2k
. So,

tu+1 − rj ≤
Tu
ε2k

+
Tu
2k

=
Tu+1

ε2k
.

Now, we show that if C is not able to process all jobs in iteration u, then the
opt(I) must be at least Tu.

Lemma 4. If during iteration u, C does not finish all jobs, then opt(I) ≥ Tu.

Proof. The proof is similar to the proof in Section 2.1, so we sketch the main
ideas only. The set S is defined as in the section (with respect to the input Iu).
Proofs of Lemma 1 and Corollary 1 remain unchanged. However, machines in A′
have (1 + 3ε)-speedup. So, we get that the total volume of jobs in S is more than∑
I(Tu)(k,l)∈N ′(1 + 2ε)|I(Tu)(k, l)|.
We get a contradiction by showing that if opt(Iu) ≤ Tu, then the total volume

of jobs in S is at most
∑
I(Tu)(k,l)∈N ′(1 + 2ε)|I(Tu)(k, l)|. The proof is similar to

that of Lemma 2. The only catch is that for a job j of type (k, l)Tu
, rj may not

even lie in I(Tu)(k, l). So, the optimum algorithm may process j even before this
interval. But Lemma 3 shows that rj may lie at most ε|I(Tu)(k, l)| to the left
of I(Tu)(k, l). So, we define the intervals Iε,(Tu)(k, l) which attach two segments
of length ε|I(Tu)(k, l)| both before and after I(Tu)(k, l). Rest of the arguments
proceed as in the proof of Lemma 2.
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Theorem 6. Suppose opt(I) lies between Tu−1 and Tu. Then the algorithm C
completes a job of class k within (1+ε)Tu

ε2k
of its processing time. Further, the sched-

ule for k depends only on jobs released till time rj + (1+ε)Tu

ε2k
.

Proof. Lemma 4 implies that A must finish in iteration u. So, each job of class k
terminates in I(Tu′ )(k, l) for some u′ ≤ u. Lemma 3 now implies that it completes

within Tu′
2k

+ Tu′
ε2k

of its release date. The second statement in the theorem is also
easy to see.

We now describe the on-line algorithm. The on-line algorithm D(I) runs C(I).
Let Tu be as in Theorem 6. The theorem implies that for any job j, we will know

the machine on which it will get scheduled by time rj + (1+ε)Tu

ε2k
. At this time, we

place j on the queue of the machine to which it gets scheduled on by C. We give
machines in D speedup of (1 + 4ε). Further, each machine follows the following
rule: it prefers jobs of larger class, and within a particular class, it just goes by
release date. The following claim shows that the queues do not get big.

Claim. At time 2lTu

ε2k
, for any integer l, the total remaining processing time of jobs

of J≥k in the queue of machine i is at most Tu

ε2k
.

Proof. We prove this by induction on l. For ease of notation, let tl denote 2lTu

ε2k
.

Suppose it is true for some l. Now, the queue on i at time tl from J≥k could be (i)
jobs which are completely processed by C during [tl, tl+1], which have processing

time (1+3ε)Tu

ε2k−1 on machine i, (ii) jobs in the queue of i at time tl, which have

remaining processing time of Tu

ε2k
(by induction hypothesis), and (iii) jobs which

were partially processed by C by time tl: there will be at most 1 such job from
each class, and so their total processing tim will be at most Tu

2k−1 . The result now

follows because D can do (1+4ε)Tu

ε2k−1 amount of processing during [tl, tl+1].

The proof of the following theorem is analogous to Theorem 1.

Theorem 7. The algorithm D completes a job of class k within (3+ε)Tu

ε22k
of its

release date. Hence, D is (3+ε)(1+ε)
ε3 -competitive with (1+4ε)-speed augmentation.

C Proof of Theorem 3

Proof. Let the machines be numbered from 1 to m. Consider an online algorithm
A. We will use the decisions made by A to build an instance I on which A would
have a maximum flow time m− 1 while the optimum offline algorithm will have
value 2. Our construction involves defining a gadget Gi(t) as follows

(i) At time t, a job is released which can be scheduled on machine i or i+ 1 only.
(ii) For all times t, t+ 1 . . . , t+m− 1, two jobs are released one of which can go

only on machine i and the other only on machine i+ 1.
(iii) At time t + m, we release a job which can go only to the machine on which

A schedules the job released in step 1. Note that A must have scheduled the
job by time t+m− 1 or else it would have a flow time more than m.
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Fig. 4. Composing gadgets to increase load

The following properties of Gi(t) are immediate from the construction

(i) Jobs are released from time t to t+m.
(ii) An offline algorithm which had no unfinished jobs on machines i, i+1 at time

t can schedule all jobs released in Gi(t) within 2 time units of their release.
Further, the offline algorithm would have no unfinished jobs at time t+m+1.

(iii) SupposeA has a unfinished jobs on machine i and b unfinished jobs on machine
i + 1 at time t. Then at time t + m + 1, machine i (respectively i + 1) has
either a+ 1 (respectively max(0, b− 1)) or max(0, a− 1) (respectively b+ 1)
unfinished jobs.

Note that if a machine i has a unfinished jobs at time t in A, then we can
ensure that it continues to have a unfinished jobs at time t′ > t by releasing a
job which can be assigned only to machine i at each time instant from t to t′− 1.
This idea is used while composing gadgets to create an instance for which some
job has a large flow time in A.

We shall use the following statement by induction on the number of machines:
given k machines numbered 1, . . . , k, there is an instance such that time a certain
time tk, for every i, 0 ≤ i ≤ k− 1, there is a machine with i unfinished jobs in A.
For the base case (k = 2), we only need the gadget G1(0) and t2 is then m + 1.
Now assume that the statement is true for k machines, and we will prove it for
k + 1 machines.

Using induction hypothesis, and relabeling of machines, we assume that at
time tk the machine i has k − i unfinished jobs in A, for 1 ≤ i ≤ k. Note that
machine k+ 1 has 0 unfinished jobs at time tk. The gadget Gk(tk), which releases
jobs for machines k, k + 1 in the interval [tk, tk + m], ensures that one of the
machines k, k+1 has one unfinished job. There is no loss of generality in assuming
that the number of unfinished jobs on the lower numbered machine increases by
1. With this assumption, we create gadgets Gi(tk + (m+ 1)(k− i)) which ensure
that at time tk + (m+ 1)(k− i+ 1), machine i has k− i+ 1 unfinished jobs. Thus
at time tk + (m+ 1)k = t1k, machine 1 has k unfinished jobs in A (see Figure 4).

However, since machine i is part of gadgets Gi(·) and Gi−1(·), the number
of unfinished jobs on machine i at time t1k is the same as that at time tk. This
implies that while machine 1 has k unfinished jobs, machines 2, 3, . . . , k + 1 have
one less unfinished job than desired. To correct this, we repeat the construction
on machines 2, . . . , k + 1 from time t1k to time t2k = t1k + (m + 1)(k − 1) and on
machines 3, . . . , k + 1 from time t2k to time t3k = t2k + (m + 1)(k − 2) and so on.
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Hence at time tk+1
k = tk + (m + 1)(k + 1)k/2 = tk+1, algorithm A would have

k + 1− i unfinished jobs on machine i.
To complete the proof of Theorem 3, note that at time tm, A would have

m − 1 unfinished jobs on machine 1, which implies that some job would have a
flow time of m − 1. Further, the composition of these gadgets and the release of
the intermediate jobs does not increase the maximum flow time of the off-line
optimum.

D Proof of Theorem 5

Proof. We will prove a stronger statement: given s and c above, and an on-line
algorithm A (depending on s and c), we will construct an instance I(s, c), such
that the value of the optimal off-line solution will be 2, whereas the objective
value of A will be at least 2c even if each of the machines has average speed of
(s + 1)/2 during the time period 0 to T (s, c). Here, T (s, c) is the time by which
any c-competitive algorithm must finish all jobs in I(s, c), i.e., maxj(rj + 2cwj),
because the off-line optimum value will be 2.

We will prove this theorem by induction on s. We first show the base case for
s = 2, i.e., each machine is allowed average speedup of 3/2. Since c will remain
fixed throughout the proof, we will not parameterize various quantities by c.
Base Case: For the sake of contradiction, assume that A is c-competitive even
when we give each of the machines average speedup of 3/2 on instance I(s, c)
described below. We have two kinds of jobs: a type 0 job has weight 8c and size
1
8c , and a type 1 job has weight and size both 1. We first describe a gadget G(t):
here t denotes the starting time for this gadget. The gadget G(t) has 6 machines.
At time t we release 6 type 1 jobs — each of these jobs can go on exactly one of
the 6 machines. Further, during (t, t + 1) we release 5 type 0 jobs after every 1

8c
time. This completes the description of the gadget.

Before we give the actual construction, we note a useful property of the gadget.
Let the machines in G(t) be numbered from 1 to 6.

Claim. Consider any on-line algorithm B which incurs weighted flow-time of at
most 2c for each job in G(t). Assume that at time t, for each machine i, we release
extra bi volume of type 1 jobs which can only go on machine i. Further, suppose
machine i does si amount of processing during (t, t+ 1) (si could be bigger than
1 because we are allowing speedup). Then, at time t + 1, there must exist some
machine i, such that at least 13

8 + bi− si volume of type 1 jobs which can only go
on machine i remain unfinished.

Proof. Each of the type 0 jobs must have weighted flow-time at most 2c, and
so must finish within 1/4 units after its release date. So the type 0 jobs released
during (t, t+ 3

4 ) must finish during (t, t+1). During (t, t+ 3
4 ), we release 15

4 volume
of type 0 jobs — since these must be done during (t, t + 1) on the 6 machines,
it leaves us with

∑
i si −

15
4 amount of time for processing the type 1 jobs. So,

we must have
∑
i bi + 6 −

(
si − 15

4

)
= 39

4 +
∑
i bi −

∑
i si amount of unfinished

volume of type 1 jobs at time t+ 1. Now we claim that some machine i must have
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at least 13
8 + bi− si amount of unfinished type 1 jobs at time t+ 1. Indeed, if this

is not the case, then at time t+ 1, the total amount of unfinished type 1 jobs will
be less than 6 · 138 +

∑
i(bi − si) = 39

4 +
∑
i(bi − si), a contradiction.

Now, we give the actual construction of the instance I(s, c). The instance will
have M machines, where M = 630c. Our instance will release jobs during (0, 30c)
— let si(t) be the amount of processing that machine i does during (t, t + 1).
Again, note that si(t) can be quite large — we are only giving a bound on the
average speed of a machine.

We will maintain the following invariant at every integral time t = 0, . . . , 30c
— at the beginning of time t, there will be a set M(t) of M

6t machines, such that

for each of these machines i, the algorithm A will have at least 13t
8 −

∑t−1
t′=0 si(t

′)
volume of unfinished type 1 jobs which can only be assigned to i. All jobs released
after time t will only go on one of the machines in M(t). Further, at time t, the
off-line algorithm would not have any unfinished jobs on these machines.

Clearly, this invariant holds at time 0. Suppose it holds at the beginning of
time t. Let M(t) denote the set of these M

6t machines. We group these machines
into disjoint sets of 6 machines each — for each such group, we construct a copy
of the gadget G(t). So, let these gadgets be G1(t), . . . , Gr(t), where r = M

6t+1 .
Consider a gadget Gu(t) — Claim D implies that there must exist a machine, call

it u(t), such that it will have 13(t+1)
8 −

∑t
t′=0 su(t)(t

′) amount of unfinished type

1 job (we use bu(t) = 13t
8 −

∑t−1
t′=0 su(t)(t

′) using the invariant at time t). The set
of machines u(t), 1 ≤ u ≤ r, form the set M(t+ 1). This proves that the invariant
holds at time t+ 1 as well.

It is easy to check that M(t+ 1) ⊆M(t) for all t, and hence, after time t+ 1,
we will never assign any jobs to a machine outside M(t). The optimum off-line
algorithm has no unfinished volume on machines in M(t) at time t (by invariant).
Now, for each of the gadgets Gu(t), it will process the type 1 job released on
the machine u(t) during (t, t + 1) and all type 0 jobs released during (t, t + 1)
will be processed on the remaining 5 machines in this gadget. The 5 type 1 jobs
(other than the one which can be processed on u(t)) will be processed on the
corresponding machines during (t+ 1, t+ 2) — note that these machines will be
idle after time t + 1, and so this processing can always be done. Thus, all jobs
corresponding to this gadget have weighted flow-time of at most 2. Further, the
optimum algorithm finishes all jobs which can go on u(t) by time t+ 1.

Therefore, at time 30c + 1, there is some machine i which has more than
13(30c+1)

8 −
∑30c
t′=0 si(t

′) amount of unfinished type 1 jobs. Notice that T (s, c) =
30c + 2cmaxj wj = 32c, and so machine i is only allowed total of 3

2 · 32c = 48c

amount of processing during (0, 32c). So,
∑30c
t′=0 ≤ 48c. Since 13(30c+1)

8 − 48c > 0,
some type 1 job must remain unfinished at time 32c. This contradicts the fact
that A is c-competitive.
Remarks: Before we go to the induction step, we write down some more invari-
ants about the instance I(s, c) — it is easy to check that they hold at s = 2. First
of all, the instance I(s, c) is constructed with reference to an on-line algorithm
A — so we may refer to it as IA(s, c). Further, the jobs released at any time t
depend on the following: the speed profile of each of the machines until time t,
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and the amount of processing done on all the jobs released before t. In particular,
the instance does not depend on the average speedup of the machines. Further,
the number of machines and the duration of the instance do not depend on A —
so we will refer to these quantities as M(s, c) and T (s, c) respectively. Also, jobs
are released at epochs which are multiples of a parameter ε = 1

8c . In all of these
instances, the optimum off-line value will be 2.

Induction Step: Suppose the induction hypothesis is true for s and c. We show
it is true for (s+ 1). Fix an on-line algorithm A. We will first construct a gadget
G. The gadget G will be constructed depending on how A behaves. In addition,
we will also build another on-line algorithm B and the corresponding instance
IB(s, c). G will have lM(s, c) machines, where l = 3s. For each machine i ∈
IB(s, c), we will identify l of the machines in G — call these A(i); these sets are
disjoint for different i. Further, whenever a job j gets released in IB(s, c), we will
release (l − 1) identical jobs in G – call these C(j). If a job j can go on a set
of machines S in IB(s, c), then we allow a job in C(j) to go on the machines
∪i∈SA(i) in G. We shall call these jobs type C jobs. Besides these jobs, we will
have jobs of type D in G — these jobs will not have any analogues in IB(s, c).
Each job of type D will have size T (s, c) and weight 1

T (s,c) .

Let us now construct the gadget G and the instance IB(s, c) along with the
algorithm B. At time 0, if IB(s, c) releases a set of jobs, then we release the
corresponding set of jobs inG as described above. Further, we release (l−1)M(s, c)
type D jobs at time 0 in G — each of these jobs can go on exactly one of the
machines in G.

Now suppose we have constructed the gadget and the algorithm B until time
Tε for some integer T ≥ 0. During a time t ∈ (Tε, (T + 1)ε), if a machine i′ in
G processes jobs of type C at rate xi′(t), then we run a machine i ∈ G at speed∑

i′∈A(i) xi′ (t)

l−1 at time t. Hence, during this period, if A processes a job j′ ∈ C(j)
on machine i′ ∈ A(i), then B processes the job j on i at 1/(l − 1) of the rate at
which j′ gets processed on i′. Note that we will not process a job j in IB(s, c)
for more than pj amount of time. Thus, we have described B until time (T + 1)ε,
and so depending on which jobs get released at IB(s, c) at this time, we release
corresponding jobs in G. This completes the description of G. We now prove the
analogue of Claim D.

Claim. Suppose the algorithm A runs machine i at average speed of si in G
(during (0, T (s, c))). Further, suppose at time 0, for each machine i, we have
released biT (s, c) volume of type D jobs which can only go on machine i. If A
incurs weighted flow-time of at most 2c on all type C jobs, then there exists a
machine i for which we have at least T (s, c)

(
bi + 1

4 + s+2
2 − si

)
unfinished volume

of type D jobs at time T (s, c).

Proof. If A incurs weighted flow-time of at most 2c on all type C jobs, then B is
c-competitive on IB(s, c). So, by the induction hypothesis, there exists a machine
i ∈ IB(s, c) which runs at average speed at least (s+ 1)/2. So, if we consider the
machines in A(i), then they spend (l−1)(s+1)T (s, c)/2 amount of time processing
type C jobs. So, the total amount of time for which they can process a job of type
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D is at most
(∑

i′∈A(i) si′ −
(l−1)(s+1)

2

)
T (s, c). So, there must exist a machine

i′ ∈ A(i) which processes typeD jobs for at most
(
si′ − (l−1)(s+1)

2l

)
T (s, c) amount

of time (since |A(i)| = l). So the unfinished volume of type D jobs on this machine

is bi′T (s, c) + T (s, c)−
(
si′ − (l−1)(s+1)

2l

)
T (s, c). The claim follows because

1 +
(l − 1)(s+ 1)

2l
≥ s+ 2

2
+

1

4
.

The rest of the proof is as in the base case. We copy the same proof verba-
tim with suitable changes. We construct the instance I(s+ 1, c). The number of
machines will be M(s+ 1, c) = (lM(s, c))30cs. We will divide time into epochs of
size T (s, c). We will be releasing jobs during (0, 30cs · T (s, c)). Let si(e) be the
average speed of machine i during epoch e, i.e., (e · T (s, c), (e + 1) · T (s, c)). We
shall use G(e) to refer to the gadget G starting at time e · T (s, c).

We will maintain the following invariant at every epoch e = 0, . . . , 30cs —

at the beginning of time eT (s, c), there will be a set M(e) of M(s+1,c)
(lM(s,c))e ma-

chines, such that for each of these machines i, the algorithm A will have at least

T (s, c)
(
e
4 + (s+2)e

2 −
∑e−1
e′=0 si(e

′)
)

volume of unfinished type D jobs which can

only be assigned to i. All jobs released after time e · T (s, c) will only go on one of
the machines in M(e). Further, at the beginning of epoch e, the off-line algorithm
would not have any unfinished jobs on these machines.

Clearly, this invariant holds at time 0. Suppose it holds at the begin-

ning of epoch e. Let M(e) denote the set of these M(s+1,c)
(lM(s,c))e machines. We

group these machines into disjoint sets of lM(s, c) machines each — for each
such group, we construct a copy of the gadget G(e). So, let these gadgets be

G1(e), . . . , Gr(e), where r = M(s+1,c)
(lM(s,c))e+1 . Consider a gadget Gu(e) — Claim D

implies that there must exist a machine, call it u(e), such that it will have

T (s, c)
(
e+1
4 + (s+2)(e+1)

2 −
∑e
e′=0 si(e

′)
)

amount of unfinished type D job (we

use bu(t) = T (s, c)
(
e
4 + (s+2)e

2 −
∑e−1
e′=0 si(e

′)
)

using the invariant at epoch e).

The set of machines u(e), 1 ≤ u ≤ r, form the set M(e+ 1). This proves that the
invariant holds at the beginning of epoch e+ 1 as well.

It is easy to check that M(e + 1) ⊆ M(e) for all e, and hence, after epoch e,
we will assign all jobs to a machine in M(e) only. The optimum off-line algorithm
has no unfinished volume on machines in M(e) at time beginning of epoch e
(by invariant). Now, for each of the gadgets Gu(e), it will process the type D
job released on the machine u(e) during this epoch and all type C jobs released
during this epoch will be processed on the remaining machines in this gadget.
This can be done since by the induction hypothesis, the off-line algorithm can
finish all jobs by time T (s, c) in the instance IB(s, c). So the off-line algorithm
can do the same in the gadget Gu(e) — each job in IB(s, c) has l − 1 copies in
the gadget Gu(e), but then barring the machine used for type D job, we still have
l − 1 machines corresponding to each machine in IB(s, c).

The remaining lM(s, c) − 1 type D jobs (other than the one which can be
processed on u(e)) will be processed on the corresponding machines during ((e+
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1)T (s, c), (e + 2)T (s, c)) — note that these machines will be idle after epoch e,
and so this processing can always be done. Thus, all jobs corresponding to this
gadget have weighted flow-time of at most 2. Further, the optimum algorithm
finishes all jobs which can go on u(e) before the beginning of epoch e+ 1.

Therefore, at time (30cs+ 1)T (s, c), there is some machine i which has more

than T (s, c)
(
30cs+1

4 + (s+2)(30cs+2)
2 −

∑30cs
e′=0 si(e

′)
)

amount of unfinished type D

jobs. Notice that T (s+ 1, c) = 30csT (s, c) + 2cmaxj wj = (30s+ 2)cT (s, c), and
so machine i is only allowed total of s+2

2 · 32cT (s, c) = 16(s+ 2)c · T (s, c) amount

of processing during (0, T (s+ 1, c)). So,
∑30c
t′=0 ≤ (15s+ 1)c(s+ 2) · T (s, c). Since

30cs+ 1

4
+

(s+ 2)(30cs+ 2)

2
− (15s+ 1)c(s+ 2) > 0,

some type D job must remain unfinished at time T (s+ 1, c). This contradicts the
fact that A is c-competitive.

Now, note that M(s + 1, c) = (lM(s, c))30cs. This implies that M(s, c) is at

most (20s)30cs
2

.
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