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Abstract 

We present a specification composition technique, for improving the reliability of message 

passing applications composed by the Ensemble methodology. In Ensemble, applications are 

built by composing reusable executable program components designed with scalable 

communication interfaces. The composition is controlled by scripts. We define reusable 

specification components associated to program components, as well as their composition 

directed by the same Ensemble scripts, thus obtaining specifications of applications. We 

propose an extension of coloured Petri nets, which is used to define specification components. 

Composed specifications and applications may be validated or verified by available tools. 
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1  INTRODUCTION 

Software composition has been suggested as a methodology for building large-scale applications. Reusable 

software components having an open architecture are combined to compose applications. Software composition 

has three major aspects [15]: (i) macro expansion, (ii) higher order functional composition and (iii) binding of 

communication channels. Significant work has been done the past few years in the area of software composition, 

mainly on the first two aspects and their implications in the framework of object oriented methodologies [16] and 

less on the third [14]. 
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We have developed a message passing (MP) program implementation methodology, called Ensemble [4, 5], 

by which MP applications are composed out of reusable software components by binding point-to-point 

communication channels. Ensemble provides a common software architecture for MP applications, on any 

Message Passing Environment (MPE). The emergence of MPEs, such as PVM [6], MPI [12] and Parix [18], 

provide a useful abstraction of the underlying architecture thus simplifying implementation. However, the 

software engineering step from design to implementation remains a demanding task, as it involves the 

programming of the sequential parts, computing a result or providing a service, intermixed with the explicit 

programming of process management: process creation and identification, process interaction, process topologies 

and their mapping onto the virtual architecture. The programming imposed by process management makes 

programs much more difficult to develop and maintain. Important aspects of parallel programs, such as 

scalability and reusability are frequently neglected, as they have to be explicitly programmed. Scalability is 

relatively easy to program, only when the problem has some global regularity. Reusability of executables is 

limited as process management is usually encoded in them and consequently, processes may only operate within 

the context of a single application. 

Ensemble alleviates development and maintenance difficulties of MP programs. An application in Ensemble 

is an “ensemble” of a script, which specifies the application processes, their topology and mapping, and of 

reusable executable program components, which do not involve any process management activities. The script is 

interpreted by programs (tools of Ensemble) which compose the application. 

However, composing MP applications from reusable components is prone to a number of errors: wrong 

components, unspecified or incompatible binding of communication channels, etc. These errors may emerge 

during program execution in the form of undelivered messages, deadlock situations, non-terminating programs, 

etc. Furthermore, general problems of debugging (e.g. no guarantee of absence of bugs), as well as problems of 

parallel program debugging (e.g. non-deterministic behaviour of programs, non-reproducibility of behaviour) still 

apply. To improve the reliability of applications, we would like to predict the behaviour of the composed 

applications or even formally verify that the composed programs behave according to the required specifications. 

The behaviour of a composed MP application cannot be, in general, analytically determined from the known 

behaviour of its components. Nevertheless, we may compose the formal specifications of individual components 

to obtain a composed formal specification of the application, which may then be tested and verified. In the debate 

on the usefulness of formal methods in software development, we have followed the middle way [8]. In the 

presence of numerous formal models which all address the same problem, but very few of them are actually used 
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[17], we do not intend to present another model. We would use already developed formalisms and their 

associated theory and tools that are suitable for Ensemble as software engineering testing methods. We have used 

an extension of the Petri net formalism for expressing and composing specifications as it is well founded, has 

been widely used to specify parallel software systems and is supported by a number of tools. 

In the next section, we outline the Ensemble methodology and its tools. In section 3, we discuss the 

requirements for the specification of components and their composition. We also examine relative work on 

composition of Petri nets. In section 4, we describe the general form of component specifications and define their 

composition directed by scripts. In section 5, we apply the composition on example applications. Finally, we 

present our conclusions and plans for future work. 

2  OUTLINE OF THE ENSEMBLE METHODOLOGY AND ITS TOOLS 

We outline Ensemble using as a vehicle the Distribution of Maximum application: There are terminal processes, 

each of which is given an integer parameter and requires the maximum of these integers. Each terminal process 

sends its value to an associated relay process and (eventually) receives from it the required global maximum 

(GM). Relay processes receive values from their terminals, find their local maximum (LM), exchange LMs with 

the other relays, and find their global maximum (GM); they finally send GM to their terminal processes. The 

Ensemble implementation consists of the application script and the two executable reusable components, terminal 

and relay. The application is composed by a launching program, which interprets the scripts and sets-up the 

application. 

2.1 The Ensemble script  

The script for Distribution of Maximum application (with three relays and five terminals) is shown in the first 

column of Figure 1. The script is structured in three main parts:  

Figure 1 

The first part, headed by PCG, specifies the Process Communication Graph (PCG) of the application, 

independently of any MPE. PCGs are a natural structure for specifying processes and their communication 

dependencies and are close to program design [1]. Nodes on a PCG denote processes and arcs denote point-to-

point communication channels (dependencies) between them. PCGs have been used in modelling, in dynamic 
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analysis and simulation, in mapping techniques, etc. In the PCG part, we first specify the components involved 

(e.g. T and R), then the processes instantiated from each component (e.g. T[1],…,T[5] and R[1],…,R[3]) and 

finally, the communication channels between the processes.  

Scalability is an important aspect of parallel programs, which due to programming complexity, is usually 

considered in terms of global parameters in an application, e.g. sizes of dimensions of a grid topology. 

Nevertheless, there may be other local scalability parameters. For example, relays 1 and 2 have two terminals and 

relay 3 only one; if the number of terminals increases to ten, all five of the new may be assigned to relay 3, or to 

two new relays, two to relay 4 and three to relay 5. We consider these possibilities as design choices, which 

should all be supported. In general, scaling of an application requires replication of processes and their 

interconnections. For some process topologies, such as a torus, it is sufficient to replicate identical processes each 

having the same number of connections. But for other topologies, such as master/slave, each replicated process 

may have a distinct number of interconnections, possibly within a range. To support global as well as local 

scalability of applications, we specify for each process in the Ensemble script its number of ports. Process ports 

are identified by the name of their communication type and a unique index within the type. The terminal 

component, for example, has two communications types (Sin and Sout) and all terminal processes exactly one port 

of each type. The relay component however, has four communication types (Cin, Cout, Pin, Pout). All relay 

processes have two ports of type Pin and Pout, but different number of ports of Cin and Cout types. Point-to-point 

channels are defined by one-to-one associations of process ports. A tool program, the PCG-builder, reads the 

PCG part and actually generates the PCG. The PCG for our example is depicted in Figure 1, next to the PCG part 

of the script.  

The second script part, headed by Parallel System, specifies the annotation of nodes (processes) and arcs 

(channels) of the PCG with information required for the composition of the application on a specific target MPE. 

In the example script of Figure 1, the target system is PVM [4]. Nodes are annotated by the host name on which 

they will be spawned (optional in PVM). Arcs are annotated by the tag number, which is required to identify the 

abstract PVM channels between processes (default specifies the annotation of arcs by unique tags). 

The third script part, headed by Sequential Components, specifies the further annotation of nodes with 

process loading information. The executables corresponding to the reusable components are specified and, for 

each process, the command line parameters. The second and third parts are interpreted by the annotation Builder, 

which annotates the PCG, created by the PCG builder. In Figure 1, below the general PCG, the annotation of 

some of its nodes and channels is shown. 
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2.2 The reusable components 

The reusable components compute a result or provide a service and do not involve any process management or 

assume any topology in which they operate. They have open ports for communicating with any compatible 

processes in any application. A port is a structure, which may store communication parameters necessary for 

sending and receiving messages; for example in PVM these parameters are pairs of values of task identifiers, 

which are unique numbers identifying a process, and tag identifiers. Ports of the same type form arrays and arrays 

of all types form the interface of the component. All send and receive operations refer to ports, identified by a 

communication type and an array index. At the time of process creation, the launching program provides the 

actual number of ports of each type, as well as, the values for the communication parameters for each port. 

Processes set-up their interface by calling appropriate routines. Each MPE demands its own routines for setting 

up the component interfaces. A common structure for components (Figure 2) has been developed which hides 

these differences and unifies the appearance of components of any MPE. 

Figure 2 

For each component, we declare the number of communication types that it requires, indicated by the size of the 

array Interface. Terminals have two and Relays four communication types. Processes first call MakePorts to set-

up the appropriate number of ports in Interface, then call SetInterface to set values to ports of Interface and they 

call their realmain actions. The component executables are reusable in any application in the given MPE. 

2.3 The Launcher program  

The Launcher is the program that actually composes applications, universal for all applications in the same MPE. 

There is one Launcher program for each MPE. The Launcher visits the annotated PCG nodes and spawns 

processes. To each spawned process the launcher provides the number of its ports of each type (to be processed 

by MakePorts), the port information (to be processed by SetInterface) and its command line parameters. When 

the launcher terminates, the complete program is composed and running.  

We have only outlined the aspects of Ensemble methodology and its tools that are relevant in the context of 

this paper. A detailed description of Ensemble in PVM and Parix may be found in [4] and [5], respectively.  

3  REQUIREMENTS FOR SPECIFICATIONS AND THEIR COMPOSITION 
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Our aim is to support the Ensemble methodology with formal tools for testing and verifying programs prior to 

their execution. To reflect the Ensemble architecture of parallel programs we need to define component 

specifications, process specifications (instantiations of component specifications) and their composition. 

Component specifications specify the behaviour of program components. They should be reusable, permitting the 

generation of process specifications, as required by the script. Component specifications should have scalable 

interfaces, specifying the valid range of values for each of their communication types, e.g. fixed (as Sin of 

terminals) or any positive integer (as Cin of relays) or any non-negative integer (as Pin of relays). They should 

identify their input and output ports, as well as the type of data that is sent and received through them. Process 

specifications should be generated from component specifications as mechanically as processes are generated 

from program components. At the time of their generation, the number of ports specified in the script should be 

validated and their interface should be fixed. 

Specification composition involves point-to-point port interconnections integrating individual process 

specifications into one. During composition, we have to check the compatibility of port interconnections: that 

each output port is connected to a single input port and vice-versa, and that the data expected on the connected 

ports is of the same type. In general, the compatibility of port interconnections also depends on being 

synchronous or asynchronous. Although Ensemble supports synchronous communications, we restrict our 

presentation to asynchronous communications, for reasons of conciseness.  

At the end of the composition, we have to check for unconnected ports. Until this step all testing and 

validation is static. Having composed the specifications, we verify their integrated behaviour, that is to say the 

dynamic aspects of the composed system. Analytical tools may be employed proving general properties, such as 

absence of deadlock; occurrence graphs may be produced or simulations may be performed.  

We use the Petri net formalism for expressing and composing specifications, as they have a well-founded 

theory, they have been widely used to specify parallel software systems and are supported by a number of tools. 

More specifically, we use Coloured Petri nets (CPNs), which allow the modeller to create simple and easily 

manageable descriptions, without losing the ability of formal analysis [6]. Although, nets of higher level of 

abstraction (e.g. objects, hierarchies) provide more design possibilities, they are not necessary in our 

methodology and furthermore, they would restrict the choice of available analysis tools. In any case, analysis can 

be performed only on completely refined (flat) Petri nets. Petri net semantics have been shown suitable for the 

composition of specifications of MP applications. 
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In [11] partial order semantics for Petri net components has been proposed and components and composition 

of systems are formally defined. A Petri net component is a Petri net equipped with distinguished interface, input 

and output places. A component communicates with its environment through the interface places. The fusion of 

components at input and output places corresponds to asynchronous MP, in contrast to composition based on 

fusion of transitions, which corresponds to synchronous communication.  

In M-nets [2], large High Level nets are constructed from smaller components, by transition synchronisation, 

which allows composition in a manner similar to process algebras like CCS [13]. Communication is modelled 

with specific channel constructs [3]. These channels act as a FIFO buffer of size b. To enable concurrent send 

and receive actions, the contents of a channel are modelled by two sequences, held on two different places. There 

is one transition for the send action, which appends the communicated value to the channel. There is one 

transition for the receive action, removing the communicated value from the channel. When b=1, the channel may 

either be empty, or contain a singleton sequence of values. When, b=0, we have the case of synchronous 

communication, and the send and receive transitions are merged into a single transition. 

A summary on how communication can be modelled with elementary Petri-nets can be found in [7]. There are 

two variations for synchronous communication, called synchronous and rendezvous respectively. For 

asynchronous communication there are also two variations, called asynchronous and semi-asynchronous. Also in 

[7], Heiner studies the association of a “reduced grammar for code statements” to PN constructs, providing PN 

building blocks for constructs usually met in programs (e.g. for-while loops, if-then-else statements etc). 

4  COMPOSITION OF SPECIFICATIONS SUPPORTING ENSEMBLE 

In this section, we present the specifications of program components, according to the requirements of the 

previous section. We introduce the component specifications, named template CPNs, which are CPN components 

extended with open scalable interfaces. Template CPNs are very close to the notion of pages in [9] and in the 

design/CPN tool [10]. They are also “flat” structures (pages are non-hierarchical CPNs), and from them process 

specifications may be instantiated (as a page may have several page instances). The difference lies in the fact that 

from template CPN to process specifications a structural modification of the net occurs, where the page instances 

are exact copies of the original page. 
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4.1 Program component specifications: template CPN 

Coloured Petri nets are, in a way, very close to our needs. In the case where the interface of a component is fixed, 

as for example in the terminal component (it has one port of types Sin and Sout) its specification can be modelled 

directly with CPNs. The general case, however, where the interface of a component is parametric, cannot be 

directly modelled using CPNs, since CPNs must have a fixed structure (fixed number of places, transitions and 

arcs). Thus, we need to extend the component specifications with open scalable interfaces for them to be reusable 

and to generate process specifications. We define template CPNs, which resemble CPN formalism, but also 

contain additional information to specify the interface parametrically. The template CPN is a parametric net-

structure having a unique name, from which process component names may be generated by unique indexing. 

Similar to the Ensemble program components template CPNs also have two kinds of parameters: port interface 

parameters (the number of ports of each communication type) and application parameters (like the integer value 

of terminal components).  

Figure 3 

Application parameters appear in parentheses at the heading of the template and also symbolically index the 

initial place of the net structure (Figure 3). The symbolic initial marking will be replaced by actual values when 

process specifications are generated. Following the heading of the template, the valid range of ports for each 

communication type is specified. We have used a simple notation from..to, where from could be any non-negative 

number and from ?  to. When a communication type has a fixed number of ports, say N, the expression becomes 

N..N. For example in template T in Figure 3, Sin and Sout have a range 1..1. In the case where, there is no upper 

bound on the number of ports, the notation becomes from.., i.e. the value for to is unspecified. In Figure 3, R is 

specified to have an 1.. range for its Cin and Cout port types and an 0.. range for its Pin and Pout port types. The 

special case, where the value of from is 0, specifies that the component may not have any ports of this type. 

Usually the number of ports is required as a parameter in the net. For this reason the P.#ports symbol is used to 

indicate the number of ports of type P.  

Templates name their interface places according to the corresponding port types of the component, enclosed 

in square brackets distinguishing them from other places, e.g. [Sout] in template R. The bracket notation may also 

be used for array variables in the inscriptions on the arcs joining interface places to indicate distinct array 

elements associated with each port, e.g. [LM] on arc inscription of [Pin] of template R. The template structure 
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has a local declaration node, represented as a dotted line rectangle, which contains definitions of colour sets, 

variables, values etc., representing data types and tokens. All generic parts of a template are enclosed in a solid 

line (Figure 3).  

4.2 Process specifications: composable CPN  

Process specifications, named composable CPNs, are instantiated from their corresponding template CPN, by 

providing actual values for instance numbers, number of ports of each type and application parameters, as 

specified in Ensemble scripts. Composable CPNs are normal coloured Petri nets uniquely named by indexing the 

template name with an instance number. Figure 4 illustrates the composable CPNs for components T[1] and R[3] 

as specified in the script in Figure 1. Occurrences of PortName.#ports strings in the local declarations are 

replaced by their actual values. The net structure is generated by replicating interface places and the input and 

output arcs to and from these places along with their inscriptions. The brackets of template interface place names, 

e.g. [Pout], are removed and unique place names are obtained by uniquely indexing the port name, e.g. Pout[1], 

Pout[2]. Array names in brackets, e.g. [LM], are also replaced by specific array elements, e.g. LM[1] and LM[2], 

associated with each port. 

Figure 4 

4.3 The application specification: composed CPN 

The composable CPNs may now be composed in order to produce the complete application 

specification, which we call composed CPN. The composition of the composable CPNs is 

performed according to the channel section of the script. The names of the interface places are 

the same as the names of the corresponding ports in the script. Furthermore, the name of each 

composable CPN is the same as the name of the corresponding process in the script. By 

prefixing the name of the composable CPN to the name of the interface place, a unique name 

for each interface place is constructed. For each channel between two ports defined in the 
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script, the corresponding places of the composable CPNs are fused, provided they are 

compatible as explained in section 3.  

5  COMPOSING APPLICATION SPECIFICATIONS 

In this section, we present three example applications, which are design variations of Distribution of Maximum 

application, where the proposed technique is applied. All three applications use the template CPNs for terminal 

and relay components. 

5.1 An erroneous application  

In the first example, we demonstrate the composition of an erroneous script; its PCG is: 

Components 
 T port-types Sout, Sin;    R port-types Cout, Cin, Pout, Pin; 
Processes 
 T[1], T[2]   #ports = Sout:1, Sin:1; 
 R[1]       #ports = Cout:1, Cin:1, Pout:1, Pin:1; 
Channels 
 T[1].Sout[1] -> R[1].Cin[1];   R[1].Cout[1] -> T[1].Sin[1]; 
 T[2].Sout[1] -> R[1].Pin[1];  R[1].Pout[1] -> T[2].Sin[1];  

There are two terminals and one relay. The Sout[1] and Sin[1] ports of T[1] are connected with the Cin[1] and 

Cout[1] ports of R[1], respectively. But ports Sout[1] and Sin[1] of T[2] are connected with the Pin[1] and Pout[1] 

ports of R[1] respectively, instead of Cin[2] and Cout[2] ports respectively. The ports are compatible, they 

exchange integer values, but the behaviour of the application as specified by the script is not correct. The 

composition of the application is depicted in Figure 5. 

Figure 5 

The reachability graph of the composed specification will show that there is an invalid marking, where the two 

interface ports of T[2] are both marked. This indicates that its input value (the global maximum) is already 

determined before its output value has been consumed and processed by the relay. What actually happens is that 

T[1] gets the global maximum, but T[2] gets the value of T[1]. 
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5.2 Distribution of maximum application 

The Ensemble script is given in Figure 1. We use a box notation, similar to CPN pages, for the composable 

CPNs, which hides their internal structure concentrating to their interface connections. Each composable CPN-

box has the same name as the composable CPN and its ports are depicted by black dots in the boundaries of the 

box, along with their names. The net is shown in Figure 6. 

Figure 6  

We may verify that the behaviour of the composed specification is correct. 

5.3 Distribution of maximum by tree topology 

In this variation of the Distribution of Maximum application we maintain the relationship of the five terminals to 

the three relay processes, but relay processes are organised in a tree, with R[3] being the root. Relays 1 and 2 

have only one Pout and one Pin ports which are connected to the Cin and Cout ports, respectively, of their parent 

Relay 3, which has no Pout and Pin ports. The process structure is a tree of height 2: the terminal processes 1,2,3,4 

are at level two; R[1], R[2], T[5] at level one; and R[3] is the root. The PCG part of the application script and the 

PCG is depicted in Figure 7:  

Figure 7 

At each level, the relay processes receive the values from their clients, select the maximum and propagate it to 

the next level up. The root selects the maximum and sends it to its client processes, the two relays and T[5]. The 

relay processes below the root do the same until the maximum reaches their terminal processes. The composed 

specification net is shown in Figure 8. 

 Figure 8 

Again, by using CPN tools we may verify that this solution of the Distribution of Maximum application is valid. 

We demonstrated that although terminal and relay template specifications were originally designed for one 

solution, they are reused to verify that the tree solution to the Distribution of Maximum application is also 

correct.  
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6  CONCLUSIONS - FUTURE WORK 

We presented a specification composition, which improves the reliability of MP applications, composed by the 

Ensemble methodology. We defined descriptions of CPNs with scalable interfaces, called template CPNs, to 

specify the behaviour of scalable reusable program components. From the template CPNs, we generate 

composable CPNs, which are pure CPN descriptions. We have used the PN composition technique of [11] 

adapted to the composition of Ensemble applications as described by the script. During composition, static 

information specified by the script is validated (for example, the number of communication ports within the range 

and the compatibility of port interconnections). The composition is directed by the script.  

Although the composition is mechanical, it cannot be implemented on CPN tools using a graphical 

representation of nets, as we don’t know the internal representation of nets. We are currently developing 

equivalent grammatical representations of template CPNs and tools for generating composable CPNs and 

performing their composition by string manipulation. For our future work, we intend to extend template CPNs for 

synchronous point-to-point communications and to define non-deterministic communication channels. By using 

timed or stochastic PNs for component specifications, other aspects of application behaviour could be 

represented and analysed (e.g. real-time latency and throughput). 

The correspondence of program and specification composition is depicted in Figure 9. In the middle, there is 

the application script, which is used by the application Launcher to compose applications (left hand side). The 

script is also used by the specification composer to compose application specifications (right hand side).  

Figure 9 

Our effort does not simply aim to support the Ensemble methodology by a formal specification tool. We 

envisage of using Ensemble and its associated tools as a viable means of bridging the gap between the worlds of 

specifications and programs. Usually specifications are obtained before program design and program 

implementation. However, this view is not valid in the software composition approach. Programs and their 

specification may be composed independently of each other. In Ensemble, both may be composed from scripts. 

In a sense, the composed specifications are the semantics of composed programs under the assumption that the 

component specifications are correct.  

To alleviate possible discrepancies between component specifications and component implementations we 

may use one to test the other. On the one hand, tracing information of the composed application may be passed to 
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a simulator of the composed specifications. Thus, the behaviour of the application is not only monitored, as it is 

running, but actually tested. The programmer is not obliged any more to inspect detailed and confusing charts, 

visualisation of executions, but the simulation system may check against the specifications either automatically in 

the background or by analysing a trace file of erroneous behaviour. The use of tracing information in conjunction 

with specification simulation information should always be used during individual component development. On 

the other hand, the specification simulator may be used as an advanced breakpoint mechanism that controls the 

execution of the actual program. Specifications and programs are not in disjoint worlds any more, but are inter-

related. We believe that in this scheme, the extra effort of designing specifications of reusable components is 

justified as it assures reliability and reduction of production costs of MP applications. 
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APPLICATION Distribution_Maximum; 
PCG 
Components 

T port-types : Sin, Sout;  
R port-types : Cin, Cout, Pin, Pout; 

Processes 
T[1], T[2], T[3], T[4], T[5] #ports=Sout:1, Sin:1; 
R[1], R[2] #ports = Cout:2, Cin:2, Pout:2, Pin:2; 
R[3] #ports = Cout:1, Cin:1, Pout:2, Pin:2; 

Channels 
T[1].Sout[1] -> R[1].Cin[1]; R[1].Cout[1] -> T[1].Sin[1]; 
T[2].Sout[1] -> R[1].Cin[2]; R[1].Cout[2] -> T[2].Sin[1]; 
T[3].Sout[1] -> R[2].Cin[1]; R[2].Cout[1] -> T[3].Sin[1]; 
T[4].Sout[1] -> R[2].Cin[2]; R[2].Cout[2] -> T[4].Sin[1]; 
T[5].Sout[1] -> R[3].Cin[1]; R[3].Cout[1] -> T[5].Sin[1]; 
R[1].Pout[1] -> R[2].Pin[1]; R[2].Pout[1] -> R[1].Pin[1]; 
R[1].Pout[2] -> R[3].Pin[1]; R[3].Pout[1] -> R[1].Pin[2]; 
R[2].Pout[2] -> R[3].Pin[2]; R[3].Pout[2] -> R[2].Pin[2]; 
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PARALLEL SYSTEM 
Environment PVM3 
PVM3_Annotation  
   tagID : default; 
PVM3_Options 
 Allocation 
   R[1], T[1], T[2] at euridiki; 
   R[2], T[3], T[4] at kadmos; 
   R[3], T[5]          at lavdakos; 
SEQUENTIAL COMPONENTS 
Executable files 
   T : path default file terminal; 
   R : path default file relay; 
Execution Parameters 
   T[1]:6; T[2]:999; T[3]:7; T[4]:8; T[5]:9; 

a 
n 
n 
o 
t 
a 
t 
i 
o 
n 
 
 

Node 1  name          : T[1] 
              allocation   : euridiki 
              file             : terminal 
              path            : default 
              parameters : 6 
Node 6  name          : R[1] 
              allocation   : euridiki 
              file             : relay 
              path            : default 
              parameters : (None) 
Channel 1  : 1.Sout[1] -> 6.Cin[1] tagid 1 
Channel 4  : 4.Sout[1] -> 7.Cin[2] tagid 4 
Channel 7  : 6.Cout[2] -> 2.Sin[1] tagid 7 
Channel 11: 6.Pout[1] -> 7.Pin[1] tagid 11 
Channel 14: 7.Pout[2] -> 8.Pin[2] tagid 14 

1 

void main()                                /* terminal */ 
{ InterfaceType Interface[2]; 
  MakePorts(Interface); 
  SetInterface(Interface); 
  realmain(Interface);             /* main action */  } 
 

void main()                              /* relay */ 
{ InterfaceType  Interface[4]; 
  MakePorts(Interface); 
  SetInterface(Interface); 
  realmain(Interface); } 
 

void realmain (Interface);  
{ /* terminal pseudocode */ 
    send local value to relay (to Sout type) 
    receive maximum from relay (from Sin type)  
} 

void realmain(Interface);  
{ /* relay pseudocode  */ 
    receive values from terminals (from Cin type) 
    find the local maximum (LM) of values 
    send LM to all other relays (to Pout type) 
    receive LMs from all other relays (from Pin type) 
    find global maximimum (GM) 
    send GM to terminals         (to Cout type)  } 

2 

Template R;
port-types

Cin.range : 1..;
Cout.range: 1..;
Pin.range : 0..;
Pout.range: 0..;

color data = index D with 1..Cin.#ports;
color clm = index LM with 1..Pin.#ports;
color lm, gm = int;
color control = with c;

[Pout]

1`c
1`c

1`c
1`c

1`c

[Cin]

[Cout]

[Pin]

1`gm

1`gm

1`[D]

1`lm

1`[LM]

1`gm

color data = int;
color control = with c;
var d : data;

Template T(v : int);
port-types

Sin.range = 1..1;
Sout.range = 1..1;

[Sout]
[Sin]1`d

1`d

1`v

1`c
1`c

1`c
1`c

1`lm
1`lm

 

3 
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T[1]

Sout [1]
Sin [1]1`d

1`d

1`6

1`c
1`c

1`c
1`c

color data = int;
color control = with c;
var d : data;

R[3]

color data = index D with 1..1;
color clm = index LM with 1..2;
color lm, gm = int;
color control = with c;

1`D[1]1`c
1`c

1`c
1`lm

1`lm

1`lm

1`LM[2]

Pout[1]

Cin[1]

1`gm Cout[1]

1`c

1`c
1`gm

1`gm
Pin[2]

Pout[2]

Pin[1]

1`lm

1`LM[1]

 

4 

R[1].Cin[1]&T[1].Sout[1]

R[1].Pin[1]&T[2].Sout[1]

R[1].Pout[1]&T[2].Sin[1]

R[1].Cout[1]&T[1].Sin[1]

T[2]

color data = int;
color control = with c;
var d : data;1`d

1`d

1`9

1`c
1`c

1`c
1`c

T[1]

color data = int;
color control = with c;
var d : data;1`d

1`d

1`6

1`c
1`c

1`c
1`c

1`D[1]R[1] 1`c
1`c

1`c

1`lm

1`lm

1`lm

1`LM[1]

1`gm

1`c

1`c
1`gm

1`gm

color data = index D
 with 1..1;

color clm = index LM
with 1..1;

color lm, gm = int;
color control = with c;

 

5 

R[2]

Cin[1]
Cout[1]

Pin[1]

Pin[2]
Pout[2]

Pout[1]

Cin[2]
Cout[2]

T[3]

Sin[1]

Sout[1]

T[4]

Sin[1]

Sout[1]

R[1]

Cin[1]
Cout[1]

Pin[1]

Pin[2]
Pout[2]

Pout[1]

Cin[2]
Cout[2]

Sout[1]

Sin[1]

T[1]

Sout[1]

Sin[1]

T[2]

R[3]

Cin[1] Cout[1]

Pin[1] Pin[2]

Pout[2]Pout[1]

T[5]

Sin[1]Sout[1]
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APPLICATION Distribution_Maximum_Tree; 
PCG 
Components 

T port-types : Sin, Sout;  
R port-types : Cin, Cout, Pin, Pout; 

Processes 
T[1], T[2], T[3], T[4], T[5]   #ports = Sout:1, Sin:1; 
R[1], R[2]   #ports = Cout:1, Cin:1, Pout:1, Pin:1; 
R[3]      #ports = Cout:3, Cin:3, Pout:0, Pin:0; 

Channels 
R[1].Cout[1] -> T[1].Sin[1]; T[1].Sout[1] -> R[1].Cin[1]; 
R[1].Cout[2] -> T[2].Sin[1]; T[2].Sout[1] -> R[1].Cin[2]; 
R[2].Cout[1] -> T[3].Sin[1]; T[3].Sout[1] -> R[2].Cin[1]; 
R[2].Cout[2] -> T[4].Sin[1]; T[4].Sout[1] -> R[2].Cin[2]; 
R[3].Cout[3] -> T[5].Sin[1]; T[5].Sout[1] -> R[3].Cin[3]; 
R[3].Cout[1] -> R[1].Pin[1]; R[1].Pout[1] -> R[3].Cin[1]; 
R[3].Cout[2] -> R[2].Pin[1]; R[2].Pout[1] -> R[3].Cin[2]; 
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R[3]

Cin[3] Cout[3]Cout[1]

Cin[2]

Cout[2]
Cin[1]

T[5]

Sin[1]Sout[1]

R[2]
Cin[1]

Cout[1]

Pin[1]
Pout[1]

Cin[2]
Cout[2]

T[3]

Sin[1]

Sout[1]

T[4]

Sin[1]

Sout[1]

R[1]
Cin[1]
Cout[1]

Pin[1]
Pout[1]

Cin[2]
Cout[2]

Sout[1]

Sin[1]

T[1]

Sout[1]

Sin[1]

T[2]
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Figure 1   The application script and the annotated PCG. 

Figure 2   The structure of Terminal and Relay program components. 

Figure 3   The template CPNs for Terminal and Relay Components. 

Figure 4   The composable CPNs for T[1] and R[3]. 

Figure 5   The composed specification of an erroneous script. 

Figure 6   The composed CPN for Distribution of Maximum by all-to-all topology. 

Figure 7   The PCG part of the application script and the PCG for tree topology. 

Figure 8   The composed CPN for Distribution of Maximum by tree topology. 

Figure 9   Ensemble methodology supported by composition of specifications. 




