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ABSTRACT

Remains of a woolly mammoth (Mammuthus primigenius) were found in QagnaX Cave, a lava tube cave on
St. Paul Island in the Pribilof Islands, 500 km west of the Alaskan mainland in the Bering Sea. Several dates
converge on 5725 C yr BP, making these the youngest mammoth remains discovered in North America, and
among the few Holocene mammoths known. Genetic analysis of the cytochrome b gene and adjacent regions
of the mitochondrial genome demonstrates that the QagnaX mammoth is highly derived, possessing several
unique polymorphisms not found in other mammoths. However, while this is consistent with a recent insular
isolation scenario, phylogenetic analysis suggests that the specimen represents a population whose isolation
from other mammoths occurred at or well before the terminal Pleistocene submergence of the Bering Land
Bridge. It is possible that it represents a member of a “land bridge subclade” of woolly mammoths that
remained distinct from mainland Alaskan populations, but was not restricted to highland areas until the land
bridge was submerged. Additional eastern Beringian, and particularly insular, mammoth DNA sequences are

required to explore this possibility.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A mid-Holocene vertebrate faunal assemblage including woolly
mammoth [Mammuthus primigenius (Blumenbach, 1799)] has recently
been obtained from Qagnax Cave, a lava tube cave on St. Paul Island in
the Pribilof Islands. Approximately 90 km? in area, St. Paul Island is
one of two smaller and three larger islands comprising the Pribilof
Islands group in the eastern Bering Sea (Fig. 1). The islands are among
the most isolated places in North America, lying some 500 km WSW
from the nearest point on the Alaskan mainland and 400 km NW of
the eastern Aleutian Islands. Like the eastern Aleutian Islands, the
Pribilofs were separated from the Alaskan mainland by at least 13,000
14C yr BP, gradually shrinking in size, achieving their present size of
~90 km? by around 5000 '*C yr BP, when sea level rose to within 4 m
of its current position before stabilizing (Manley, 2002; Guthrie,
2004). Since no prehistoric archaeological sites have been found on
the islands, it is likely that their isolation resulted in an absence of
human occupation prior to their 1786 discovery by Russian sailors and
the subsequent transport there of Aleut (Unangan) people.

Mammoth remains have occasionally been documented from
St. Paul Island over the past 100 years. Initial discoveries of mammoth
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remains were detritally derived from coastal erosion; Stanley-Brown
(1892), Preble (1923), and Ray (1971), for example, all reported the
discovery of mammoth tusks or molar teeth from Northeast Point on
St. Paul Island. Among all of the Bering Sea islands, however, St. Paul
Island in the Pribilofs is unique in possessing lava tube caves from which
animal bones have been collected. An 1897 expedition under R.E.
Snodgrass and D.S. Jordan obtained two mammoth teeth from Bogoslof
Cave (Stanley-Brown, 1892; Preble, 1923), but they were lost in transit to
the Smithsonian Institution in 1904 and never recovered (Ray, 1971).
Qagnax Cave, in the central highlands of the island, was discovered by
hunters in August 1999. The cave was initially tested in 2000 as a part of
an archaeological project conducted by Veltre and McCartney (2002),
and was followed by more intensive collection during 2003 (Crossen
etal.,, 2003). Hundreds of animal bones and mammoth tooth plates were
collected from the floor of the cave, which had apparently served as a
natural trap for local animal populations. Seven mammoth bones were
recovered, including four molar teeth (two partial and two nearly
complete) and three postcranial bones, at least one of which is a
proximal scapula fragment, including the glenoid facet. Hundreds of
additional mammoth molar plate fragments were spread among 24
collection units.

Dates of bones and mammoth teeth, using both AMS and
conventional methods, yielded nearly identical results ranging from
5630 to 5800 C yr BP, with most dates falling between 5710 and
5740 yr "C yr BP (Crossen et al., 2003; Guthrie, 2004; Veltre et al.,
2004; Crossen et al., 2005; Yesner et al., 2005a,b). The high degree of
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Fig. 1. Coastline (dashed lines) and glaciated regions (shaded areas) of Beringia at ~14,000 C yr BP. Arrow points to St. Paul Island. Adapted from Yesner et al. (2005b).

similarity in both tooth and bone dates suggests that all of the
specimens may have derived from a single individual mammoth, with
a pooled mean age of 5725 yr BP. Slightly older dates have been
obtained by Guthrie (2004) and Grover and Tedor (2006) on detrital
mammoth specimens from the Pribilofs; these are the youngest
mammoth dates ever produced in North America. Morphological
characters of the molar teeth of the QagnaXx mammoth (Maglio, 1973;
Haynes, 1991; Veltre et al., 2008) suggest that this individual is
consistent with other terminal Pleistocene specimens, sometimes
considered at the small end of the size range for woolly mammoth
(Lister, 1996; Stuart et al., 2002), but not a truly dwarfed individual in
the sense of the California Channel Island mammoths (Mammuthus
exilis) (Agenbroad, 2003).

The QagnaXx mammoth offers a unique case study for research in
woolly mammoth phylogeography, due to both its insular context and
very recent date. Accordingly, we isolated mtDNA from the QagnaX
mammoth to help elucidate its evolutionary and taxonomic status.
Our primary research goal was to determine the degree and depth of
isolation of the QagnaX mammoth relative to both eastern and
western Beringian mammoths, as well as whether the presence of
mammoths on St. Paul might be related to human-induced population
displacement from mainland areas during the LGM.

2. Results
We targeted a continuous sequence of the mitochondrial genome

including the cytochrome b gene, two adjacent tRNA genes, and the
first portion of the control region. We designed 30 primer pairs using

all available definitive M. primigenius mitochondrial sequences (Yang
et al., 1996; Ozawa et al., 1997; Noro et al., 1998; Greenwood et al.,
1999; Debruyne et al., 2003; Krause et al., 2006; Rogaev et al., 2006;
Barnes et al., 2007; Gilbert et al., 2007; see recently Gilbert et al., 2008
and Debruyne et al., 2008 for more sequences). These primers provide
thorough overlap between targeted PCR amplicons (see Table 1).
Seven of 9 (77.8%) individual extracts yielded positive PCR products. Of
two hundred thirty-three PCR amplification attempts, 94 (40.3%) were
successful. A single reaction indicated some degree of contamination
and was removed from the analysis. Only one hundred eighty-three of
233 PCR attempts were necessary to build thorough sequence
coverage, and 60 (32.8%) of these were successfully amplified. We
used these sixty positive amplification products for sequencing,
resulting in a total of 107 individual sequencing reactions. A summary
of PCR success rate per primer pair, as well as the sequencing reactions
obtained for each extract/PCR are also included in Table 1.

The final 107 sequencing reactions provided enough overlap such
that each nucleotide position is corroborated by at least 2 (and up to
9) independent extracts, at least 2 (and up to 9) independent PCRs,
and at least 2 (and up to 16) individual sequencing reactions. Of the
1652 bp obtained, 31 positions (1.9%) were determined with less than
100% consensus among individual sequencing reactions. However, all
bases have 75% or greater consensus among the reactions obtained.
For those positions with less than 100% consensus among sequencing
reactions, a summary of the results is included in Table 2. When
compared to all available mammoth sequences, we observed 9
transitions unique to the QagnaX mammoth, representing 0.54%
sequence divergence for this individual among all other mammoths.
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Table 1

Primer map, PCR and sequencing results

Pair® Position” BP¢ PCRs! Sequences®
11 5’ 14106-14216 3’ 155 2/6 3b, 5b

12 5’ 14182-14301 3’ 165 3/3 3b, 5b

13 5’ 14301-14476 3’ 219 2/15 4b

1.4 5 14456-14601 3’ 185 5/14 1b, 3b, 4r, 51
1.5 5’ 14596-14685 3’ 131 2[2 1b, 2b

1.6 5’ 14658-14745 3’ 130 4/6 4b, 5b

1.7 5’ 14702-14802 3’ 141 2/2 1b, 2b

1.8 5’ 14793-14926 3’ 176 2[4 4b, 5b

19 5’ 14886-14995 3’ 161 2/6 2f

1.10 5’ 14916-15024 3’ 154 1/4 3b

111 5’ 14936-15157 3’ 264 3/5 1b, 2b, 3f
112 5'15123-15254 3’ 172 4/9 1b, 3b, 4b, 5b
113 5’ 15179-15332 3’ 198 3/6 1b, 3b, 5b
21 5’ 14182-14315 3’ 177 4/17 1bf, 2ff
2.2 5’ 14301-14435 3’ 177 1/5 5b

23 5 14339-14476 3’ 181 57 3f, 4f, 5f
24 5’ 14793-14871 3’ 125 3/4 4b, 5r

2.5 5’ 14936-15024 3’ 134 2/3 1f, 3f

2.6 5’ 14969-15094 3’ 170 2[6 4b, 5b
2.7 5’ 15179-15254 3’ 116 2[2 2r

28 515219-15332 3/ 158 1/4 5b

31 5’ 14106-14162 3’ 101 2[2 1f

3.2 5 14339-14443 3’ 149 3/4 1b, 2b
33 5 14824-14926 3’ 146 3/4 1b, 2b

41 5 15276-15371 3’ 140 4/8 8b, 9b
4.2 5’ 15370-15475 3’ 127 4/9 8b, 9b
43 5’ 15443-15536 3’ 136 3/3 8b, 9b
44 5’ 15535-15612 3’ 120 5/7 8b, 9b
4.5 5’ 15602-15724 3’ 167 3/4 8b, 9b
46 5’ 15700-15784 3’ 130 5/12 8r, 9r

¢ Primer pair ID#; format is [Group].[#].
Base positions (mitochondrion) flanked by each primer pair.
Amplicon length, including primers.
PCR results; format is [# Successful]/[# Attempts].
Sequences used of each primer pair; format is [Extract#][direction], where “f” = forward
sequence, “r” = reverse sequence, and “b” = both directions.
f The reverse primer for this pair is from Barnes et al. (2007).

o a n o

Each of these polymorphisms is corroborated by 100% (2/2 to 9/9) of the
sequencing reactions covering them (also included in Table 2). We
believe that the thorough coverage and consistency of multiple
sequencing reactions from multiple independent extracts and amplifi-
cations sufficiently controls for any potential taphonomic damage or
faulty incorporation of base pairs during experimental reactions. Thus,
we are confident that our experiments provide a valid DNA sequence for
this specimen.

It is interesting to note, however, that we observed multiple
instances of damage/misreads at certain base positions. Of the thirty-
one sites with less than 100% consensus among sequencing reactions,
15 exhibited damage (non-consensus calls) in at least two of the
sequences obtained for those sites. For six of these 15 sites, non-
consensus calls were obtained not only from independent sequencing
reactions, but also from independent extracts. Most of the chromato-
graph peaks at these sites were indeterminate nucleotides in one or
both of the ‘damaged’ sequencing reads. However, at a single position
(14388), two (of 5) independent extracts yielded identical and
confident non-consensus nucleotides (T). The occurrence of damage/
misreads at the same site in two independent reactions is especially
good evidence for the “damage hotspot” phenomenon (Gilbert et al.,
2003a,b). In light of this, we note that three of the transitions unique
to QagnaX are only corroborated by 2 independent extracts/PCRs/
sequencing reactions as well; however, each is a type 1 (G>A or T>C)
rather than type 2 (A>G/C>T) transition. The latter transition type is
considered a much more likely consequence of post-mortem cytosine
deamination (Gilbert et al., 2003b). This fact, combined with the high
consensus rate for these sites, lead us to conclude that these are in fact
in vivo mutations.

2.1. Phylogenetic analysis

Our computed maximum likelihood and Bayesian trees are
presented in Fig. 2b and c, coupled with nodal bootstrap values and
posterior probabilities. Referring to topological features outlined by
Barnes et al. (2007), it is evident that the QagnaX mammoth sorts at
the base of clade 1, along with two mainland Alaskan mammoths.
However, the QagnaX mammoth is considerably derived, representing
a unique lineage within its clade. Taken on topological features only,
the Qagnax and all clade 1 mammoths, as well as the other Alaskan
mammoths, shared common ancestry sometime before the death of
sample AK>41027, which has an infinite radiocarbon date.

3. Discussion

Based solely on topological features, its relatively ancient common
ancestry with other mammoths suggests that the QagnaXx mammoth
was isolated from mainland Alaskan mammoths long before its arrival
on St. Paul Island (peri- to pre-Last Glacial Maximum), and likely
before 13,000 ™C yr BP, when the island became separated from the
Alaskan mainland (Guthrie, 2004). This does not suggest that the
QagnaX mammoth was displaced from mainland Alaskan populations
by Pleistocene humans. If this had been the case, we would expect
QagnaX to share most recent common ancestry with the younger
Alaskan specimen (AK 15540) to the exclusion of the infinitely-dated
Alaskan (AK>41027). This early-isolation scenario contrasts with
conclusions drawn from analysis of mammoths occupying other
Holocene refugia. A Wrangel Island mammoth, for instance, analyzed
here and by Barnes et al. (2007), likely became reproductively isolated
from mainland populations only after its arrival on the island, since it
sorts very closely with other western Beringian mammoths in clade 1.
The QagnaX mammoth, on the other hand, does not share close
affinity with either the Alaskan or Siberian members of clade 1. In light
of this, we hypothesize that the QagnaX mammoth represents a
population that was native and restricted to the Bering Land Bridge
itself, the remnants of which were gradually displaced to highland
areas as sea levels rose after the LGM. The land bridge subclade
hypothesis is difficult to test, as sampling mammoths from what was
once the land bridge, in the absence of seafloor excavation, would be
restricted to other islands, such as St. Lawrence and St. Matthew.
Furthermore, the sample of Alaskan mammoths is very small
compared to the sample from western Beringia (4 versus 49; 3 versus
30 used here), leaving many phylogeographic details of the eastern
region in question and any conclusions about the relative isolation of
the QagnaX mammoth tentative.

One notable feature of our phylogenetic analysis is the placement of
sample “Eu 40,900.” In the analysis by Barnes et al. (2007), this
Estonian sample appeared to represent a clade distinct from the
Beringian mammoths. Our maximum likelihood tree (Fig. 2b) is in
agreement with this conclusion. However, based on our Bayesian
analysis, this sample falls within, but at the base of, clade 1 (Fig. 2c). We
suspect that this is partially attributable to a single G>A transition at
position 15599, which the Estonian sample and QagnaX share to the
exclusion of all other mammoths. This suggests that the Estonian
mammoth does not represent a distinct third clade among woolly
mammoths, and may in fact have its origins in eastern Beringia (along
with other clade 1 mammoths). Again, our ML tree and the tree
produced by Barnes et al. (2007) both suggest the same general
topological scheme, and therefore more thorough sampling and rigorous
phylogenetic procedures are required to resolve this discrepancy.

Initially, we used the Bayesian program BEAST v.1.4.6 (Drummond
and Rambaut, 2006; Drummond et al., 2006) to calculate mutation
rates and coalescent dates for various nodes within our trees,
particularly the timing of common ancestry for the Alaskan mam-
moths and QagnaXx in our dataset. We restricted the dataset to only
mammoths with finite radiocarbon dates, and used a variety of model
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Table 2
Coverage map for base positions with <100% consensus among sequencing reactions and/or that are unique to the QagnaXx mammoth
O | 5 5 (] s 5 G 5 G 5 (8 6 5 1 A 5 S50 5 s R 5 6 60 A ) 8 1 8 0 1 5 o G ] 1 5 B 1 B 1 ] 5
41 4|4 (4|4|4|4(4|4|4|4|4|4(4)|4|4[4|4|4(5|5|5[5|5|5[5|5|5[5([5|5|5|5|5|[5|[5]|5|5|5]|5]|5
“11(2|2(2(2|3|3[4|5|7|8|8|8|8|[8|8s8|9|9|ojojofofo|o|1|1 11|11 |1]|1]|2]|2|2|[2|2|5]|5]|6
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LT | 3 AlA|A . IN|N|[N
N|[N|NJ|A |A N |N
4144|444 5|4(4|4]|12)|4(4|4|4|4]|4|14|3[5|5|5|5|5[5]|5|4|4|4|4]|14|5[5|4|4]|3 212 (2
“|5|4|4|4|4|2|6[8|4a|6|4]|6|6|6|[5|5[4]4 ) WA | A S 4(4|4|4(4|8|8|8([8]4 2|22
“Base position.
bConsensus reference base among those available and listed in Table 3.
“Sequence calls from individual sequencing reactions; “.” = identity w/reference base; “:" = gap; “N” = unknown base; “Y” = pyrimidine (C or T).

dNumber of independent extracts from which PCRs contributing template for sequencing were obtained.

¢Number of independent PCRs contributing template for sequencing.
fQagna shares an A at this position with sample “Eu 40900” — see text for discussion.

parameters similar to those used by Barnes et al. (2007). However,
there was considerable variation in the calculated evolutionary rates
and estimated dates of coalescence. Results varied depending not only
on specified model parameters, but particularly on the size of the
dataset (all available mammoths vs. our truncated set [see Materials
and methods section]). Calculations were also greatly affected by the
inclusion or exclusion of an outgroup sequence and whether or not
constraints on the coalescent times were implemented (e.g., between
the Asian elephant and mammoths). This is not surprising, as there
has been considerable recent debate (Woodhams, 2006; Ho et al.,
2007; Bandelt, 2007) on the reliability of calculated evolutionary rates,

such that temporal inferences are especially affected by the relative
depth of inquiry (i.e., timing of samples-outgroup common ancestry).
However, there are good reasons to believe that sequence data from a
closely related species would aid in temporal inferences (Ho and
Larson, 2006). Asian elephants and woolly mammoths shared
common ancestry roughly 6.7 million years ago (Rohland et al.,
2007), while Columbian (Mammuthus columbi) and woolly mam-
moths likely shared common ancestry approximately 2 million years
ago (Agenbroad, 2005). This recent shared ancestry potentially makes
Columbian mammoths a more suitable outgroup species for resolving
temporal issues within mammoth phylogeny. We are currently

QAGNAX QAGNAX
4 ) ° ) ¢ r
> Clade 1 > Clade 1 Clade 1
. M l = o
(n=33) 84 (n=22) 100 (n=22)
89(59) 54| 97|
62(58) / / L
100(93) AK >41027 AK>41027 AK >41027
AK 15540 AK 15540 AK 15540
WB 43600 WB 43600 Eu 40900
WB>44000 WB>44000 WB 43600
WB 48000 55 WB 48000 WB>44000
WwB>41100 52 WB>41100 25 WB 48000
WB>40800 WB>40800 88 WB>41100
megf [ L |
WB>33000 WB>33000 58 85 WB>47700
WB>51000 WB>51000 WB>33000
Eu 40900 Eu 40900 WB>51000

Fig. 2. Summarized and abbreviated cladograms from a) the tree produced by Barnes et al. (25) including posterior probabilities and bootstrap values (in parentheses); b) our
maximum likelihood tree with bootstrap values; c) our Bayesian MCMC tree with posterior probabilities. NOTE: Clade 1 [Barnes et al. (2007)] includes Alaskan samples AK>41027

and AK 15540, but are separated to show their comparison to the QagnaX mammoth.
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acquiring mitochondrial DNA sequences from a Columbian mammoth
(M. columbi) in our laboratory to address this issue.

In conclusion, our analysis indicates that the mitochondrial DNA of the
QagnaX mammoth is substantially derived relative to other mammoth
sequence obtained to date. Considering the mid-Holocene age of the
specimen and its isolation from the Alaskan mainland, this unique
sequence may be the result of local insular evolution during the early
Holocene. However, there is good evidence to suggest that its isolation
from other Alaskan mammoths occurred well before the LGM, and thus
before the separation of St. Paul Island from the Alaskan mainland
(Guthrie, 2004). It is possible that the specimen represents a “land bridge
subclade” that was relatively isolated from mainland mammoths in both
eastern and western Beringia for a considerable period. However, the
extent to which eastern Beringian mammoth populations were geogra-
phically structured in this way, and the ecological factors that might
explain it, remain to be deciphered. Furthermore, we have yet to fully
understand the dynamics and pace of recent evolution within the woolly
mammoth lineage, leaving the temporal and ecological context of
mammoth dispersals and extinctions (Barnes et al., 2007) uncertain. We
see potential resolution to these questions, mainly by using genetic
sequences from additional Alaskan woolly mammoths, as well as other
mammoth species (e.g., M. columbi), to improve our temporal inferences
in woolly mammoth phylogeography.

4. Materials and methods
4.1. DNA extraction

An enamel plate from one maxillary molar of woolly mammoth
specimen number SPC-03-102D from QagnaX Cave was selected for
mtDNA extraction. This specimen was stored at room temperature until
our experiments began, shortly after which it was kept frozen. A
fragment of the enamel plate was used for the extraction. We performed
all ancient nucleic acid extractions using the ancient DNA-dedicated
facilities in the Molecular Anthropology Laboratory of the Department of
Anthropology, University of Utah, Salt Lake City, Utah, USA. No DNA
research has been performed on other mammoth specimens or modern
elephant samples in the laboratory. Anti-contamination procedures
included the use of UV irradiation of all experimental materials (tubes,
pipettes, hood surfaces, etc.), cleaning of all working surfaces with 6%
bleach solution, and the use of gloves, sleeves, face masks, hair nets, and
laboratory coats. We performed all extractions with “blank” solutions as
negative controls in order to detect contamination.

Approximately 0.5 g (£0.2 g) of tooth material (enamel with
residual dentin) was used in each of nine extraction digests (#1-9).
Tooth fragments were reduced to powder and UV-irradiated for 5 to
15 min prior to chemical digestion in a solution of 2-3 ml 0.5 M EDTA
and 50-130 ml of 20 mg/ml proteinase K for 18-72 h at a temperature
of 37-53.5 °C. Roughly 1 ml of digest supernatants were isolated and
subjected to silica purification using the GENECLEAN® for Ancient
DNA kit (Q-BlOgene). Each individual purification (between 2 and 3
for each digest) yielded 100 ml of purified template.

4.2. DNA amplification

We targeted the cytochrome b gene, adjacent tRNA-Pro and tRNA-
Thr genes, and a section of the D-loop (nucleotide positions 14151 to
15784) of the mitochondrial genome for this analysis. We designed 30
primer pairs, divided into four groups (Table 1) — group #1, consisting of
thirteen overlapping fragments that cover the entire cytochrome b gene
as well as short flanking regions; group #2, consisting of eight fragments
that were used to resolve coverage or sequencing consensus needs;
group #3, consisting of three fragments used solely for additional
experimental material, not necessary for consensus resolution; and
group #4, consisting of six fragments meant to obtain sequence
comparable to those obtained by Barnes et al. (2007) (Table 1).

PCR reactions were prepared in a UV-irradiated, HEPA-filtered, and
positive-pressurized laboratory, and performed in a HEPA-filtered PCR-
dedicated workstation, its surfaces frequently UV-irradiated and
bleached before and after use. Laboratory-dedicated garb as described
previously was worn at all times. As with extractions, we included blank
solutions for each set of amplifications in order to detect contamination.

Amplifications were performed in 25 ml volumes with 1-1.25 units
AmpliTaq Gold®, 1x AmpliTaq Gold® PCR buffer (Applied Biosystems),
0.2 mM each dNTP, 1.5 mM MgCl,, 0.1 mg/ml bovine serum albumin,
0.2 mM each primer, and 3-5 ml of purified DNA template. The
following thermal cycling parameters were used: initial incubation at
95 °C for 5-13 min, followed by 40-48 cycles of 95 °C for 30-45 s, 54—
58 °C for 30-90 s, and 72 °C for 45-120 s, ending with a final 3-5 m
extension period at 72 °C. Two products required reamplification for
an additional 30-33 cycles. Products were visualized by electrophor-
esis on 2% agarose gels stained with ethidium bromide or SYBR® Green
under UV light.

4.3. DNA sequencing

We purified successful amplifications using the QIAquick PCR
Purification Kit (Qiagen). The Health Sciences Center Core Research
Facilities at the University of Utah provided sequences using
ABI3170 and ABI3100 sequencing platforms. We visually examined
the experimental chromatographs using the Sequencher™ v.4.5
alignment software and corrected misreads where discrepancies
between chromatographic peaks and automated calls were evident.
We then compared the consensus QagnaX sequence to all available
definitive mammoth sequences (Yang et al., 1996; Ozawa et al.,
1997; Noro et al.,, 1998; Greenwood et al., 1999; Debruyne et al.,
2003; Krause et al., 2006; Rogaev et al., 2006; Barnes et al., 2007;
Gilbert et al.,, 2007) in order to identify notable polymorphisms
(Table 3).

4.4. Phylogenetic analysis

Phylogenetic analysis was restricted to the last 714 bases of
the sequence obtained here, for which Krause et al. (2006),
Rogaev et al. (2006), Barnes et al. (2007) and Gilbert et al. (2007)
provide a combined total of 53 comparable woolly mammoth
DNA sequences. Originally, we included all of these sequences in
both our Bayesian and maximum likelihood phylogenetic analyses
to provide the most thorough analysis possible. However, the
results from these initial analyses indicated that all of the
Siberian mammoths sequenced by Gilbert et al. (2007) fall within
“clade 1" as defined by Barnes et al. (2007) (see Fig. 2a). Because
our final analysis was not concerned with the shallower topology
within this clade, and in order to expedite computation during
the full-heuristic ML bootstrap, we opted to reduce the dataset by
randomly selecting and eliminating 20 mammoth sequences from
this clade, but conserving the basal Alaskan sequences, resulting
in a final representative sample of 22 comparative sequences
(indicated in Table 3). Both the initial, full-set and the final,
truncated-set analyses (discussed below) resulted in identical
topological features, and so we report only the latter.

For topological assay of the truncated set of sequences, maximum
likelihood analysis was performed using PAUP v4.0 (Swofford, 2002).
We used an Asian elephant (Elephas maximus) sequence obtained by
Rogaev et al. (2006) as an outgroup. ML analysis began with the
generation of a neighbor-joining tree, followed by a heuristic search
conforming to the Hasegawa-Kishino-Yano (HKY) model of sequence
evolution, with 4 gamma rate categories (+G) and an assumed
proportion of invariant sites (+1I). The estimated parameters from this
first run were then implemented in another heuristic search. A 1000-
replicate full heuristic bootstrap on the subsequent ML tree was
performed as well. Bayesian phylogeny was calculated using the
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Table 3

Reference Mammuthus primigenius mtDNA sequences used in this study for alignment, identification of segregating sites, and phylogenetic analyses

Reference Location® C'* age Length Nucleotide Positions® For Phyl?¢ Tree ID
(yr BP)° (bases)©

This study St. Paul Is. 5725 1652 14106-15757 Y Qagnax

Yang et al. (1996) Lyakhov Is. >46,000 228 14242-14469 N -

Yang et al. (1996) Fairbanks ~20,000 228 14242-14469 N -

Ozawa et al. (1997) Magadan 40,000 1005 14151-15155 N -

Noro et al. (1998) Taimyr Pen. >25,000 1137 14151-15287 N -

Greenwood et al. (1999) Engineer Crk. 13,775 307 14246-14552 N -

Greenwood et al. (2001) Chekurovka 26,000 139 14414-14552 N -

Greenwood et al. (2001) Wrangel Is. 4590 139 14414-14552 N -

Debruyne et al. (2003) Lyakhov Is. >49,000 561 14246-15086 N -

Krause et al. (2006) Berelekh 12,170 1652 14106-15757 Y Clade 1

Rogaev et al. (2006) Chukotka 32,850 1652 14106-15757 N -

Barnes et al. (2007) Buor-Khaya >40,800 714 15044-15757 Y WB>40800

Barnes et al. (2007) Buor-Khaya >41,100 714 15044-15757 Y WB>41100

Barnes et al. (2007) Gold Crk. >41,027 714 15044-15757 Y AK>41027

Barnes et al. (2007) Ban Crk. 15,540 714 15044-15757 Y AK 15540

Barnes et al. (2007) Ester Crk. 16,789 714 15044-15757 N -

Barnes et al. (2007) Koosa (Estonia) 40,900 714 15044-15757 Y Eu 40900

Barnes et al. (2007) Bykovsky Pen. 14,600 714 15044-15757 N -

Barnes et al. (2007) Bykovsky Pen. 19,200 714 15044-15757 N -

Barnes et al. (2007) Bykovsky Pen. 20,200 714 15044-15757 Y Clade 1

Barnes et al. (2007) Bykovsky Pen. >44,000 714 15044-15757 N -

Barnes et al. (2007) Bykovsky Pen. 13,100 714 15044-15757 N -

Barnes et al. (2007) Bykovsky Pen. >44,300 714 15044-15757 N -

Barnes et al. (2007) Bykovsky Pen. 30,300 714 15044-15757 N -

Barnes et al. (2007) Bykovsky Pen. 29,400 714 15044-15757 N -

Barnes et al. (2007) Bykovsky Pen. 28,900 714 15044-15757 Y Clade 1

Barnes et al. (2007) Bykovsky Pen. 34,000 714 15044-15757 Y Clade 1

Barnes et al. (2007) Bykovsky Pen. 33,800 714 15044-15757 N -

Barnes et al. (2007) Bykovsky Pen. 24,300 714 15044-15757 Y Clade 1

Barnes et al. (2007) Bykovsky Pen. 32,800 714 15044-15757 N -

Barnes et al. (2007) Lyakhov Is. 32,500 714 15044-15757 N -

Barnes et al. (2007) Lyakhov Is. 37,800 714 15044-15757 N -

Barnes et al. (2007) Lyakhov Is. >35,600 714 15044-15757 Y Clade 1

Barnes et al. (2007) Lyakhov Is. >42,400 714 15044-15757 N -

Barnes et al. (2007) Lyakhov Is. >33,000 714 15044-15757 Y WB>33000

Barnes et al. (2007) Lyakhov Is. 40,200 714 15044-15757 Y Clade 1

Barnes et al. (2007) Lyakhov Is. >47,700 714 15044-15757 Y WB>47700

Barnes et al. (2007) Lyakhov Is. 25,900 714 15044-15757 Y Clade 1

Barnes et al. (2007) Lyakhov Is. 48,000 714 15044-15757 Y WB 48000

Barnes et al. (2007) Lyakhov Is. >51,000 714 15044-15757 Y WB>51000

Barnes et al. (2007) Lyakhov Is. >44,000 714 15044-15757 Y WB>44000

Barnes et al. (2007) Lyakhov Is. >47,000 714 15044-15757 N -

Barnes et al. (2007) Lyakhov Is. 12,030 714 15044-15757 Y Clade 1

Barnes et al. (2007) Lyakhov Is. 12,500 714 15044-15757 Y Clade 1

Barnes et al. (2007) Lyakhov Is. 43,600 714 15044-15757 Y WB 43600

Barnes et al. (2007) Lena Delta 30,200 714 15044-15757 N -

Barnes et al. (2007) Kamchatka 45,200 714 15044-15757 Y Clade 1

Barnes et al. (2007) Lyakhov Is. 36,610 714 15044-15757 Y Clade 1

Barnes et al. (2007) Khatanga 46,600 714 15044-15757 Y Clade 1

Barnes et al. (2007) Wrangel Is. 25,890 714 15044-15757 Y Clade 1

Barnes et al. (2007) Lugovskoe 13,455 714 15044-15757 N -

Barnes et al. (2007) Kochegur 25,300 714 15044-15757 N -

Gilbert et al. (2007) (Siberia) ND 1652 14106-15757 Y Clade 1

Gilbert et al. (2007) Taimyr Pen. 20,380 1652 14106-15757 N -

Gilbert et al. (2007) Taimyr Pen. 20,620 1652 14106-15757 Y Clade 1

Gilbert et al. (2007) (Siberia) 18,545 1652 14106-15757 Y Clade 1

Gilbert et al. (2007) (Siberia) ND 1652 14106-15757 Y Clade 1

Gilbert et al. (2007) Magadan 46,900 1652 14106-15757 Y Clade 1

Gilbert et al. (2007) Lena Delta 35,800 1652 14106-15757 Y Clade 1

Gilbert et al. (2007) Gydan 17,125 1652 14106-15757 Y Clade 1

Gilbert et al. (2007) Novosibirsk 50,200 1652 14106-15757 N -

Gilbert et al. (2007) Indigirka 24,740 1652 14106-15757 Y Clade 1

@ Locations in parentheses have only general regional provenance.

b 0zawa et al. (1997) and Gilbert et al. (2007) both sequenced the Magadan mammoth specimen known as “Dima”, but report different radiocarbon dates. ND = no date available.

¢ Includes only the sequence regions used for comparison to the QagnaX sequence. Krause et al. (2006), Rogaev et al. (2006) and Gilbert et al. (2007) obtained whole mitochondrial
genome sequences, while others sequenced other sections of the mitochondrial and nuclear genomes not examined in this study.

4 Nucleotide positions used in this study coincide with the mtDNA map used in GenBank to designate gene regions. Debruyne et al. (2003) sequenced only certain sections of the
region listed, hence the short total sequence length reported here.

¢ The sequences used in phylogenetic analysis. Only the last 714 bases of the QagnaX sequence were used for phylogenetic analysis, and reference sequence selection reflects this
constraint. Furthermore, a random sample of 21/41 of the mammoths that fell into “clade1” defined by Barnes et al. (2007) were selected for use phylogenetic analysis.

program Mr Bayes v.3.1.2 (Huelsenbeck and Ronquist, 2001), which with samples drawn every 100 generations. The final standard error of
included a Monte Carlo Markov Chain search conforming to the HKY + the split frequencies was 0.003. Posterior probabilities and consensus
G+I model parameters. This program involved 10 million generations tree topology were assayed after a 10% burn-in.
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