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The container-loading problem aims to determine the arrangement of items in a

container. Researchers approach this 3D, NP-hard problem1 using heuristic meth-

ods. Usually, the CLP aims to maximize loading efficiency—that is, the container space

use. Here, the problem we address involves only one container with known dimensions,

and the cargo varies from weakly to strongly het-
erogeneous, independent of the total number of
boxes. We consider three requirements related to the
load’s physical arrangement and to the transporta-
tion requirements: box orientation (for example, “this
side up”), cargo stability, and container volume.
Although considering both volume use and cargo
stability could lead to a bi-objective CLP, we tackle
cargo stability as a constraint in the constructive
phase of the algorithm, and we explicitly consider
volume use as the only objective in the constructive
and local-search phases.

In this article, we present GRMODGRASP, a new
algorithm for the CLP based on the GRASP (greedy
randomized adaptive search procedure) paradigm.2

We evaluate GRMODGRASP’s performance in terms
of volume use and load stability and by comparing
it with nine well-known algorithms. Our approach
produces solutions that surpass other approaches’
solutions in terms of volume use and cargo stability.

The Modified George and Robinson
heuristic

We based GRMODGRASP on GRMOD, an improved
version of the George and Robinson heuristic.3 This
wall-building heuristic packs boxes in a container,
with an opening in the front, from the back to the front
along its length.

One modification to the George and Robinson
heuristic relates to the container length.4 The original
heuristic considers an infinite-length container (the
3D strip-packing problem), but it doesn’t guarantee

that the resulting packing will have a length equal to
or less than the container’s length; GRMOD deals with
a finite-length container. With this modification, we
can eliminate the George and Robinson algorithm’s
“unsuccessful packing” and “automatic repacking”
procedures, which basically compare the final pack-
ing length with the container’s length and reapply the
heuristic with different parameters. Successively exe-
cuting the George and Robinson heuristic might obtain
a feasible solution if the cargo’s total volume is equal
to or less than the container’s volume.

Another modification addresses packing the con-
tainer’s final layers.4 The George and Robinson
heuristic uses a minimal-length parameter that in-
hibits constructing new layers at the end of the pack-
ing process. This causes layers with low volume use.
In GRMOD (see figure 1), the layer depth dimension
depends on the unpacked boxes’volume. So, the con-
tainer’s final layers have a smaller depth but better
volume use. GRMOD incorporates the two modifi-
cations just described plus two improvements that
we introduced to improve cargo stability. The first
deals with new-space generation, and the other
relates to the flexible-width value.

Constructive heuristic
Like the George and Robinson heuristic, the

GRMOD constructive heuristic builds on the concept
of empty space—a parallelepipedic region without a
box packed inside. GRMOD deals with empty spaces
in two different ways. When the empty space’s height
and width equals the container’s height and width,
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the heuristic treats this space as a new layer.
In this case, the layer’s depth dimension is
defined by the depth dimension of the type of
box chosen to start the layer. Otherwise,
GRMOD considers the space a free space.

When the heuristic starts a new layer, it
places boxes in vertical columns along the con-
tainer’s width. In other cases—that is, empty
spaces where the height and width differ from
the container’s height and width—GRMOD

tries to pack the boxes in spaces not occupied
by boxes in the current and previous layers.

When none of the unpacked boxes fit a
given free space, that space is temporarily
marked as “rejected.” However, if a new adja-
cent layer is built, GRMOD can amalgamate
this space with another to make it useful.

Building a layer
Because GRMod is based on a wall-build-

ing procedure, it fills the container with trans-
versal walls and the first box placed in a layer
determines the container’s depth. In the
George and Robinson heuristic, a layer’s
depth depends on a K parameter, which lim-
its the new layer’s depth and ranks and
chooses the box that starts the new layer. To
eliminate this dependency on box-ranking
schemes, GRMOD generates and evaluates all
box types and box-orientation combinations
and selects the best one to open a new layer.

Starting a new layer. When starting a new
layer, the first consideration is which box to
use to open the layer. Once GRMod chooses
a box type and orientation, it sets the layer

depth equal to the box’s dimension placed
along that direction. The container’s dimen-
sions and that box type’s availability limit the
height and number of boxes placed along the
width. The algorithm fills the height as much
as possible with an integer number of boxes
and then replicates these columns along the
width. Incomplete columns are allowed.

New-space generation. New-space genera-
tion (see figure 2) follows a fixed order. The
first space GRMod creates is the depth space
that corresponds to the free space in front.
This space is always created unless the algo-
rithm has already reached the front. The next

spaces generated are the width and then the
height. If the arrangement of boxes perfectly
fits the container along one of these dimen-
sions, these new spaces will have null dimen-
sions—that is, they won’t exist. When the
George and Robinson heuristic creates a
width space, if one dimension is smaller than
the minimum unpacked box dimension, it
doesn’t insert a new width space in the space
list. In this case, the height space assumes the
original space’s width (see figure 3a). This
usually results in no fully supported boxes—
that is, box bases that aren’t fully in contact
with others boxes or the container’s floor. To
improve cargo stability, GRMod marks as
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Figure 1. The GRMOD heuristic.
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rejected a new space in which one of the
dimensions is smaller then the smallest di-
mension of the boxes not yet packed and
doesn’t increase the height space’s size (see
figure 3b). This guarantees full support for
all boxes and increases cargo stability.

GRMOD inserts all spaces in a list in the
order in which they were generated. Later,
during packing, the algorithm uses free
spaces following a first-in, last-out strategy. 

Amalgamation. When GRMod marks a new
space as rejected, it tries to increase the space’s
size by amalgamating the space with contigu-
ous spaces belonging to the previous layer that
have also been marked rejected (in blue) to gen-
erate a new useful space (see figure 4). If the
algorithm can’t amalgamate any spaces of the
previous layer, the rejected space stays on the
list with the hopes that it will be amalgamated
with a new rejected space in the next layer.

This process favors more efficient, dense
packing. Consequently, the algorithm can
pack boxes with a depth dimension larger
than the current layer’s depth, which gen-
erates interlocking walls. Interlocking is a
common strategy for increasing cargo sta-
bility that human operators also use when
loading containers. However, this process
makes any kind of search process based on
the interchange of layers much harder and
leads to important changes among neigh-
bor solutions. Despite these disadvantages,
we decided to use space amalgamation in
this implementation, but we based our

search process on box interchanges instead
of layer interchanges.

Flexible width. GRMod can reject very small
spaces that haven’t been amalgamated with
contiguous spaces and that can’t be used to
pack any box. To avoid this space fragmenta-
tion, the original George and Robinson heuris-
tic proposed the concept of flexible width. The
heuristic uses this parameter to bind the num-
ber of columns that it can place along the
width in a new layer. Its value propagates from
the previous layer and equals the width of the
boxes that started the previous layer. For
instance, if layer n started with a column of
boxes with a width of 30 cm and four columns
were placed along the container’s width, the
flexible width for layer n + 1 would be 120 cm
(see figure 5a).

The George and Robinson heuristic would
place an additional column in the new layer.
However, in GRMOD, the largest integer
smaller than the flexible width binds the num-
ber of columns in the new layer (see figure 5b).
This new way of determining a new layer’s
number of columns leads to a larger empty
space on the right side (see figure 4), increas-
ing its later probability of use. Moreover, with
this new strategy, the new layer’s last column
layer is always fully in contact with the previ-
ous layer, increasing cargo stability.

Filling a free space
A layer’s construction ends by filling the

free spaces generated in the first phase of this

layer’s construction. The algorithm first fills
the height space, considering only boxes that
have smaller dimensions than the space di-
mensions. For each box type, it computes all
possible arrangements (number of columns
for depth and width and number of boxes per
column, considering all feasible box orienta-
tions) and selects the one that yields the best
volume use. If more than one arrangement
leads to the best volume use, it randomly
chooses one. The algorithm fills the free space
with the chosen box type and box orientation.
If it can’t find a feasible arrangement of
boxes, it marks the space as rejected and tries
to amalgamate this space with any other space
previously marked as rejected. 

After filling a space’s new depth, the algo-
rithm generates width and height spaces and
inserts them in the space list. It applies this
space-filling procedure recursively until no
more free spaces, other than the container
front space, are available. Then, it repeats the
new layer procedure, applying it to the con-
tainer front space. 

A GRASP approach
GRMODGRASP has two steps. The algo-

rithm builds a solution, and then it improves
the solution with a local-search algorithm. In
the construction phase, it loads the container
until it meets one of the following three con-
ditions: the container has no more free space,
there are no more boxes to be packed, or the
dimensions of the remaining free spaces are
smaller than the dimensions of the available
boxes for packing. 

Afterwards, GRMODGRASP runs a local-
search phase to improve this solution. GRMOD-
GRASP uses GRMOD as the basis for the GRASP

algorithm’s constructive phase. However, fol-
lowing the GRASP strategy, this constructive
heuristic is randomized. After choosing an
empty space, the algorithm chooses the next
type of box to pack from a candidate list that
contains the several box types available,
ordered by the volume use that that box type
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achieves in that concrete space. A totally
greedy strategy would lead to the choice of
the best box type (the first element of the can-
didate list), and a completely random strategy
would draw from the entire list. The GRASP

approach builds a restricted candidate list,
containing the best candidates, and randomly
chooses from this list. For the ranking crite-
rion, we adopted volume use to measure the
benefit of selecting each box type for a new
layer or for filling free space. 

To define which candidates will belong to
the RCL, our new algorithm uses a parame-
ter �, which will control the algorithm’s
greediness. This parameter can vary between
0 and 1. After computing the volume use for
all candidates (box types), GRMODGRASP

fills the RCL according to the following
threshold: T = MVU + � * (mVU � MVU),
where T stands for the volume use threshold,
MVU for the maximum volume use com-
puted for all feasible box types, and mVU for
the minimum volume use computed for all
feasible box types. If the volume use for one
box type is greater or equal to the T parame-
ter, it’s added to the RCL. It’s easy to see that
when � = 1, T is the minimum and the basic
heuristic is random; if � = 0, T is the maxi-
mum and the basic heuristic is greedy.

In the GRASP local-search phase, the algo-
rithm starts with the solution built in the con-
struction phase. It defines, builds, and searches
a neighborhood. If it finds a better solution,
this new solution replaces the old and a new
neighborhood is built around it. The algorithm
uses a first better strategy when more than one
better solution exists. The local-search proce-
dure stops when it can’t find a better solution
in the neighborhood.

To build a neighborhood, we must modify
the solutions. In this approach, sequences of
boxes represent the solutions. These se-
quences are the order the boxes should be
placed in the container. Then, GRMODGRASP

randomly selects a position in the sequence
and removes all boxes from that position until
the end of the sequence from the list of packed
boxes and inserts them in the unpacked boxes
list. The box type that corresponds to the ran-
dom position becomes “forbidden” and is

temporarily removed from both lists. Then,
for all boxes belonging to the unpacked boxes
list, the heuristic applies GRMOD, but now
without any randomness (� = 0). After pack-
ing the first box type, GRMOD reinserts the
forbidden-box type in the unpacked-boxes list.
This mechanism guarantees that the box type
that previously occupied the modified posi-
tion in the sequence will not retake that place.
GRMOD, in its greedy flavor, continues until
it can’t pack any more boxes and therefore
obtains a new solution. 

Computational experiments
We used test problems taken from the lit-

erature for benchmarking. Han Tong Loh and
Andrew Nee generated 15 test problems,
named LN problems.5 Each test problem
uses a different container’s size. The con-
tainer volume is large enough to pack all the
items in 13 of the 15 test problems.

E.E. Bischoff and M.S.W. Ratcliff also
presented 15 classes of test problems (called
BR1 to BR15), each class with 100 prob-
lems.6 With respect to the boxes’dimensions
and assortment, the classes vary from weakly
to strongly heterogeneous.

For each test problem, we ran 200 GRASP

iterations (on a Pentium IV at 2.4 GHz with 480
Mbytes of RAM). We considered 10 different
values of � , ranging from 0 to 1 with a step of
0.1, and for each � value, we ran the GRASP

algorithm 20 times. The GRASP local search
stops when it can’t find a better neighbor.

For our benchmarking, we compared
GRMODGRASP’s performance with nine
approaches:

• H_B_al, a heuristic approach;7

• H_BR, a heuristic approach;6

• GA_GB, a genetic algorithm;8

• TS_BG, a tabu search approach;9

• HGA_BG, a hybrid genetic algorithm;10

• PGA_GB, a parallel genetic algorithm;11

• H_E, a heuristic approach;12

• PTS_B_al, a parallel tabu search algorithm;1

• H_B, a heuristic approach.13

Most of these approaches specifically deal
with the CLP’s loading arrangement’s effi-

ciency. Heuristic procedures such as H_BR,
which build loading plans from a series of
horizontal layers, are common. A different
family of heuristics also builds packing ar-
rangements iteratively but doesn’t restrict
configurations to walls or layers. Often a sin-
gle box is placed in each iteration (as in H_E
and H_B). More sophisticated approaches
such as metaheuristics and tabu search and
genetic algorithms attempt to solve the CLP,
both in its weak and strongly heterogeneous
versions. Parallel versions of these algo-
rithms (such as PGA_GB and PTS_B_al)
were developed to address the CLP. 

Volume use is a container-loading algo-
rithm’s first performance evaluation criterion.
Table 1 shows the results for the 15 LN test
problems (an algorithm that achieves the best-
known volume use for a problem is labeled a
best value (in blue)). When an algorithm man-
ages to pack all of a problem’s boxes in the
container, it’s achieved a global optima solu-
tion. To the best of our knowledge, only seven
of the nine algorithms compared here have
published results for these problems (we did-
n’t find any for PGA_GB or H_B). For the
average value of volume use, TS_BG and
PTS_B_al achieved the best results. Those
approaches achieved 15 best values—two
more than the other approaches. GRMOD-
GRASP outperforms the remaining five ap-
proaches by producing a higher mean value for
volume use.

Table 2 presents the results for the 15 BR
problem classes. Some approaches (for exam-
ple, H_E, H_B, and PTS_B_al) report results
for only weakly heterogeneous problems
(from BR1 to BR7). The average volume use
for all approaches decreases as cargo hetero-
geneity increases. By comparing the volume
use for all BR problems, we can state that
GRMODGRASP offers a competitive approach.

To simplify the results comparison, we
divided the 15 BR problem sets into two
groups: the weakly heterogeneous (from BR1
to BR7) and the strongly heterogeneous (from
BR8 to BR15):

• Within the weakly heterogeneous prob-
lem results, only two approaches always
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Table 1. LN (Loh and Nee) test problem results.*

H_B_al H_BR GA_GB TS_BG HGA_BG H_E PTS_B_al GRMODGRASP

Mean of volume use (%) 69.5 68.6 70.0 70.9 70.1 69.9 70.9 70.3

Best value 10 11 12 15 13 13 15 13

Global optima solution 10 11 12 13 13 13 13 13

*The best values appear in blue.



achieved better results than GRMOD-
GRASP for all problem classes: PTS_B_al
and TS_BG. However, for the strongly
heterogeneous problems, GRMODGRASP

outperforms TS_BG for the last five BR
problem classes, and there are no pub-
lished results for PTS_B_al for strongly
heterogeneous problems.

• For the first three weakly heterogeneous
problem classes, H_B and GRMODGRASP

achieved very similar results. For other
problem classes, H_B outperformed
GRMODGRASP. 

• GRMODGRASP outperforms H_E, H_B_al
and H_BR for all problem classes.

• For the first three BR problem classes,
PGA_GB and HGA_BG had worse vol-
ume use than GRMODGRASP. With the
increase of cargo heterogeneity, their
results became better than GRMODGRASP’s
results. In these kind of (strongly hetero-
geneous) problems, the genetic algorithms
PGA_GB and HGA_BG always achieved
better results.

• GRMODGRASP outperforms GA_GB for
the weakly heterogeneous problem classes
and for the last two strongly heteroge-
neous problem classes.

So, when considering the results pub-
lished in the literature, no algorithm out-
performs GRMODGRASP for all BR classes
of problems, and for each problem class,

there’s always an algorithm that’s better
than GRMODGRASP in terms of mean vol-
ume use.

Cargo stability analysis
Stability, which helps prevent cargo from

being damaged during transportation, is one
of the most important aspects to consider in
the CLP. A cargo is considered stable if 

• all boxes are fully supported,
• several other boxes support each box, or
• all boxes have at least three sides supported.

Bischoff and Ratcliff presented two mea-
surements for evaluating cargo stability.6 The
first (Measurement1) gives the average num-
ber of boxes (higher is better) supporting
each box that isn’t on the container floor. The
second (Measurement2) gives the average
percentage of boxes (smaller is better) that
aren’t surrounded by other boxes on at least
three sides.

In our new approach, we can guarantee
the full support of the boxes because we
especially designed GRMOD to meet this
objective. 

No results concerning Measurement1 and
Measurement2 have been published for
BR8–BR15. Table 3 shows the BR1–BR7
classes’ results compared with the GRMOD-
GRASP results. Because we took the H_E
results12 from a graphical representation,

they might not be totally accurate. Eberhard
Bischoff, H_B’s author, directly provided its
results. H_B_al holds the best results for
Measurement1 in all problems. For Mea-
surement2, the best results are spread out
among all the compared approaches. GR-
MODGRASP’s low performance on Measure-
ment2 stems directly from the wall-building
nature of its basic constructive heuristic.
Unfortunately, no results exist for GA_GB,
TS_BG, and H_E for Measurement1, but
GRMODGRASP generally performs quite well
when compared with the best published
approaches.

Comparison with other
metaheuristics

We tested other nonpopulational meta-
heuristics that use GRMOD, such as simu-
lated annealing (GRMODSA), tabu search
(GRMODTS), and iterated local search
(GRMODILS). We used the same neighbor-
hood structure as that used in the GRASP local-
search phase. Tables 4 and 5 show the results
achieved with these three approaches for LN
and BR problem tests. The numbers in paren-
theses stand for the number of unpacked
boxes (some approaches weren’t able to pack
all the cargo). When comparing these three
approaches, GRMODGRASP outperforms the
other metaheuristics. For the BR test prob-
lems and for weakly heterogeneous problems,
GRMODGRASP’s results are clearly better than
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Table 2. BR (Bischoff and Ratcliff) test problem results.*

Volume use

Problem H_B_al H_BR GA_GB TS_BG HGA_BG PGA_GB PTS_B_al H_B H_E GRMOD GRASP

BR1 81.76 83.37 86.77 92.63 87.81 88.10 93.52 89.39 88.00 89.07

BR2 81.70 83.57 88.12 92.70 89.40 89.56 93.77 90.26 88.50 90.43

BR3 82.98 83.59 88.87 92.31 90.48 90.77 93.58 91.08 89.50 90.86

BR4 82.60 84.16 88.68 91.62 90.63 91.03 93.05 90.90 89.30 90.42

BR5 82.76 83.89 88.78 90.86 90.73 91.23 92.34 91.05 89.00 89.57

BR6 81.50 82.92 88.53 90.04 90.72 91.28 91.72 90.70 89.20 89.71

BR7 80.51 82.14 88.36 88.63 90.65 91.04 90.55 90.44 88.00 88.05

BR8 79.65 80.10 87.52 87.11 89.73 90.26 — — — 86.13

BR9 80.19 78.03 86.46 85.76 89.06 89.50 — — — 85.08

BR10 79.74 76.53 85.53 84.73 88.40 88.73 — — — 84.21

BR11 79.23 75.08 84.82 83.55 87.53 87.87 — — — 83.98

BR12 79.16 74.37 84.25 82.79 86.94 87.18 — — — 83.64

BR13 78.23 73.56 83.67 82.29 86.25 86.70 — — — 83.54

BR14 77.40 73.37 82.99 81.33 85.55 85.81 — — — 83.25

BR15 75.15 73.38 82.47 80.85 85.23 85.48 — — — 83.21

Mean 80.17 79.20 86.39 87.15 88.61 88.97 — — — 86.74

*The best values appear in blue.



the other metaheuristics’results. For strongly
heterogeneous problems, GRMODSA almost
matches GRMODGRASP’s results.

The running times for all approaches are
almost insignificant for the weakly hetero-
geneous problems. When the number of dif-
ferent box types increases, GRMODGRASP

outperforms the other approaches. For the
BR problems, the computing time is less than
200 seconds (on a Pentium IV at 2.4 GHz
with 480 Mbytes of RAM), even for 100 dif-
ferent types of boxes.

We also studied the cargo stability of the
packing solutions obtained with the four

metaheuristics, for LN and BR problems
(see tables 6 and 7). For LN problems,
GRMODSA achieved the best values (Mea-
surement1 indicator). For BR problems,
GRMODGRASP and GRMODILS achieved
the best results for Measurement1 and Mea-
surement2, respectively. 
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Table 3. BR problem stability results.*

H_B_al H_BR GA_GB TS_BG H_E H_B GRMODGRASP

Problem M1 M2 M1 M2 M2 M2 M2 M1 M2 M1 M2

BR1 2.02 8.50 1.13 10.36 11.00 13.00 9.80 1.17 12.37 1.07 11.53

BR2 2.22 11.21 1.10 14.60 16.00 19.00 13.50 1.14 15.30 1.10 12.67

BR3 2.20 15.93 1.08 19.67 18.50 24.50 18.00 1.09 17.05 1.09 17.75

BR4 2.10 17.51 1.07 23.53 21.50 29.90 20.50 1.07 18.65 1.10 20.03

BR5 2.09 21.60 1.06 26.03 22.50 34.00 21.50 1.06 20.79 1.10 22.75

BR6 2.04 22.13 1.06 31.04 25.00 33.50 22.90 1.05 23.31 1.10 26.50

BR7 1.92 27.07 1.04 35.99 28.50 46.10 26.00 1.03 24.25 1.11 28.86

BR8 — — — — — — — — — 1.12 32.77

BR9 — — — — — — — — — 1.10 37.49

BR10 — — — — — — — — — 1.10 39.21

BR11 — — — — — — — — — 1.14 40.63

BR12 — — — — — — — — — 1.15 41.44

BR13 — — — — — — — — — 1.16 41.67

BR14 — — — — — — — — — 1.16 43.14

BR15 — — — — — — — — — 1.17 44.12

*The best values appear in blue.

Table 4. LN test problem results for different metaheuristics.*

GRMOD GRMODGRASP GRMODSA GRMODTS GRMODILS

Problem Vol. use Computing Vol. use Computing Vol. use Computing Vol. use Computing Vol. use Computing 
(%) time (sec.) (%) time (sec.) (%) time (sec.) (%) time (sec.) (%) time (sec.)

LN01 62.5 < 1 62.5 28 62.5 97 62.5 74 62.5 10

LN02 89.2 (34) < 1 92.6 (19) 45 91.3 (25) 103 90.4 (27) 86 91.7 (24) 7

LN03 53.4 < 1 53.4 105 53.4 56 53.4 102 53.4 9

LN04 55.0 < 1 55.0 54 55.0 140 55.0 93 55.0 13

LN05 75.9 (3) < 1 77.2 16 77.2 68 77.2 54 77.2 4

LN06 84.6 (49) < 1 91.7 (28) 34 86.9 (34) 87 91.7 (31) 64 91.7 (31) 6

LN07 79.3 (22) < 1 84.7 56 82.3 (4) 73 82.6 (3) 25 82.6 (4) 8

LN08 59.4 < 1 59.4 20 59.4 129 59.4 16 59.4 5

LN09 61.9 < 1 61.9 78 61.9 144 61.9 91 61.9 16

LN10 67.3 < 1 67.3 54 67.3 67 67.3 103 67.3 5

LN11 62.2 < 1 62.2 34 62.2 112 62.2 12 62.2 8

LN12 75.4 (6) < 1 78.5 57 78.5 128 78.5 27 78.5 9

LN13 81.8 (7) < 1 85.6 68 85.6 101 81.8 (7) 36 85.6 11

LN14 62.8 < 1 62.8 54 62.8 98 62.8 17 62.8 7

LN15 59.5 < 1 59.5 42 59.5 119 59.5 48 59.5 12

Mean 68.7 < 1 70.3 49.7 69.7 101.5 69.7 56.5 70.1 8.7

*The best values appear in blue.



In terms of volume use, some approaches
perform better than GRMODGRASP for

weakly heterogeneous problems, while oth-
ers perform better than GRMODGRASP for
strongly heterogeneous problems. No ap-
proach outperforms our algorithm for all 15

problem classes. For cargo stability and vol-
ume use, we made similar conclusions. For
cargo stability, some approaches perform bet-
ter than GRMODGRASP, while for volume use,
other approaches perform better.

However, most important, approaches that
outperform GRMODGRASP in cargo stability

don’t outperform it for volume use, with the
exception of H_B, which behaves much like
GRMODGRASP, without either approach clearly
dominating. 

Finally, all metaheuristics obtained solu-
tions in a very small amount of time, even for
problems with many different box types. 

T r a n s p o r t a t i o n  a n d  L o g i s t i c s

56 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Table 6. Metaheuristics stability results for LN test problems.*

GRMOD GRMODGRASP GRMODSA GRMODTS GRMODILS

Problem M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

LN01 1.00 14.00 1.07 17.00 1.00 14.00 1.00 3.30 1.00 15.00

LN02 1.01 5.42 1.00 2.89 1.00 3.01 1.00 2.89 1.07 5.88

LN03 1.08 8.00 1.03 16.05 1.03 6.50 1.01 7.07 1.03 9.50

LN04 1.00 18.00 1.00 17.00 1.01 3.00 1.00 16.00 1.00 16.00

LN05 1.10 5.13 1.36 12.50 1.16 3.42 1.15 6.67 1.36 12.50

LN06 1.01 13.91 1.08 4.73 1.00 9.93 1.08 4.73 1.08 4.73

LN07 1.05 10.11 1.05 2.03 1.04 3.93 1.05 2.03 1.08 6.63

LN08 1.01 12.31 1.04 13.85 1.01 16.15 1.01 13.08 1.02 6.92

LN09 1.06 20.50 1.07 15.00 1.07 9.00 1.07 19.00 1.06 24.50

LN10 1.00 14.80 1.00 12.00 1.01 8.40 1.00 11.60 1.00 6.80

LN11 1.00 13.00 1.00 12.00 1.00 14.00 1.00 14.00 1.00 14.00

LN12 1.00 12.17 1.03 12.50 1.01 3.51 1.04 12.50 1.00 8.33

LN13 1.02 8.84 1.02 11.54 1.02 11.54 1.02 8.94 1.02 11.54

LN14 1.14 14.17 1.02 8.33 1.10 2.50 1.10 3.33 1.10 8.33

LN15 1.11 9.60 1.11 9.60 1.12 8.80 1.11 15.60 1.10 16.00

Mean 1.04 12.00 1.06 11.13 1.04 7.85 1.04 9.38 1.06 11.11 

*The best values appear in blue.

Table 5. BR test problem results for metaheuristics.*

GRMOD GRMODGRASP GRMODSA GRMODTS GRMODILS

Vol. use Computing Vol. use Computing Vol. use Computing Vol. use Computing Vol. use Computing 
Problem (%) time (sec.) (%) time (sec.) (%) time (sec.) (%) time (sec.) (%) time (sec.)

BR1 86.67 < 1 89.07 8 88.14 33 88.21 7 88.05 2

BR2 87.77 < 1 90.43 12 89.19 50 89.50 11 89.05 3

BR3 87.19 < 1 90.86 25 89.47 89 89.52 15 89.22 5

BR4 86.21 < 1 90.42 28 89.14 106 89.06 18 88.89 9

BR5 85.54 < 1 89.67 40 88.92 127 88.88 19 88.62 10

BR6 84.20 < 1 89.71 59 88.55 212 88.47 85 88.12 19

BR7 82.37 < 1 88.05 64 87.57 274 87.63 102 86.88 37

BR8 79.24 < 1 86.13 71 85.97 304 85.60 327 85.49 78

BR9 76.81 < 1 85.08 85 85.08 329 84.37 498 84.10 120

BR10 73.76 < 1 84.21 89 84.20 371 83.82 589 83.37 219

BR11 71.11 < 1 83.98 94 84.08 405 83.14 601 82.50 416

BR12 67.59 < 1 83.64 98 83.54 418 82.94 793 82.49 684

BR13 65.32 < 1 83.54 110 83.40 522 82.65 935 82.13 1,011

BR14 60.62 < 1 83.25 121 83.17 511 82.21 1228 81.42 1,235

BR15 59.81 < 1 83.21 128 83.41 627 82.04 1864 81.08 1,601

Mean 76.95 < 1 86.75 68.80 86.26 291.80 85.87 472.79 85.43 363.21

*The best values appear in blue.
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Table 7. Metaheuristics stability results for BR test problems.*

GRMOD GRMODGRASP GRMODSA GRMODTS GRMODILS

Problem M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

BR1 1.09 12.00 1.07 11.53 1.07 8.22 1.06 7.10 1.06 6.54

BR2 1.14 13.59 1.10 12.67 1.04 17.41 1.04 13.80 1.05 15.58

BR3 1.09 17.82 1.09 17.75 1.09 12.50 1.08 11.06 1.05 14.80

BR4 1.11 20.60 1.10 20.03 1.07 21.69 1.09 20.43 1.14 18.46

BR5 1.08 24.74 1.10 22.75 1.13 23.70 1.07 20.95 1.09 21.53

BR6 1.12 27.86 1.10 26.50 1.11 27.56 1.11 23.67 1.11 19.76

BR7 1.11 32.00 1.11 28.86 1.10 31.08 1.11 30.53 1.10 33.31

BR8 1.16 38.86 1.12 32.77 1.11 33.67 1.15 35.25 1.15 37.34

BR9 1.19 41.87 1.10 37.49 1.11 35.30 1.15 38.24 1.12 39.86

BR10 1.25 48.69 1.10 39.21 1.15 36.39 1.15 41.29 1.15 48.42

BR11 1.25 53.22 1.14 40.63 1.22 43.29 1.18 46.63 1.23 48.84

BR12 1.32 54.96 1.15 41.44 1.23 50.21 1.21 49.98 1.29 49.22

BR13 1.34 57.62 1.16 41.67 1.22 51.79 1.23 53.21 1.29 54.51

BR14 1.33 58.75 1.16 43.14 1.25 56.51 1.25 53.98 1.33 51.40

BR15 1.34 60.27 1.17 44.12 1.27 58.51 1.27 56.33 1.39 55.50

Mean value 1.19 37.52 1.12 30.70 1.14 33.85 1.14 33.50 1.17 34.34 

*The best values appear in blue.
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