Static Provenance Verification
for Message Passing Programs

Rupak Majumdar!, Roland Meyer?, and Zilong Wang?

! MPI-SWS, Germany
2 University of Kaiserslautern, Germany

Abstract. Provenance information records the source and ownership
history of an object. We study the problem of provenance tracking in
concurrent programs, in which several principals execute concurrent pro-
cesses and exchange messages over unbounded but unordered channels.
The provenance of a message, roughly, is a function of the sequence of
principals that have transmitted the message in the past. The provenance
verification problem is to statically decide, given a message passing pro-
gram and a set of allowed provenances, whether the provenance of all
messages in all possible program executions, belongs to the allowed set.
We formalize the provenance verification problem abstractly in terms
of well-structured provenance domains, and show a general decidability
result for it. In particular, we show that if the provenance of a message
is a sequence of principals who have sent the message, and a provenance
query asks if the provenance lies in a regular set, the problem is decidable
and EXPSPACE-complete.

While the theoretical complexity is high, we show an implementation of
our technique that performs efficiently on a set of Javascript examples
tracking provenances in Firefox extensions. Our experiments show that
many browser extensions store and transmit user information although
the user sets the browser to the private mode.

1 Introduction

Controlled access and dissemination of data is a key ingredient of system secu-
rity: we do not want secret information to reach untrusted principals and we
do not want to receive bad information (indirectly) from untrusted principals.
Many organizations receive private information from users and this information
is passed around within the organization to carry out business-critical activities.
These organizations must ensure that the data is not accidentally disclosed to
unauthorized users, as the potential cost of disclosure can be high. Moreover, in
many domains, such as healthcare and finance, the control of data is required
by regulatory agencies through legislation such as HIPAA and GLBA.

We present an abstract model of information dissemination in message pass-
ing systems, and a static analyzer to verify correct dissemination. We model
systems as concurrent message passing processes, one process for each principal
in the system. Processes communicate by sending and receiving messages via
a shared set of channels. Channels are unbounded, but can reorder messages.
Sends are non-blocking, but receive actions block until a message is available.

To track information about the origin and access history of a message, we
augment messages with provenance annotations. Roughly, the provenance of a
message is a function of the sequence of principles that have transmitted the
message in the past. Depending on the function, we get different provenance
annotations. For example, the annotation can simply be the sequence of princi-
pals. Whenever a principal sends a message, we append the name of the principal
to the current provenance of the message. The provenance verification problem
asks, given a message passing program, a variable in the program, and a set
of allowed provenance annotations, whether the provenance of every message
stored in the variable, on every run of the program, belongs to the set of allowed
provenances.

Consider a healthcare system in which a patient sends health questions
to a secretary or a nurse, who in turn, forwards the question to doctors. An
information-dissemination policy may require that every health answer received
by the patient has been seen by at least one doctor. That is, the provenance
of every message received by the patient must belong to the regular language
Patient(Secretary 4+ Nurse) Doctor™.

We consider provenance verification for general provenance domains satisfy-
ing an algebraic requirement. Static provenance verification is hard because of
two sources of unboundedness in the model. First, the provenance information
associated with a single message can be unbounded. For example there is no
bound on the number of doctors who see a health question before an answer
is sent back. Second, the number of pending messages in the system can be
unbounded. We tackle these two sources of unboundedness as follows.

We give a reduction from provenance verification problem to coverability in
labeled Petri nets, where tokens carry (potentially unbounded) provenance data.
As a result, we obtain a general decidability result for provenance verification
problem, when the domain of provenance annotations is well-structured [IIg].
Specifically, we show verification is EXPSPACE-complete for the set provenance
domain, that tracks the set of principals that have seen a message, as well as for
the language provenance domain, in which provenance information is stored as
ordered sequences of principals that have seen the message and policies are regu-
lar languages. Our proofs combine well-structuredness arguments with symbolic
representations; we analyze coverability in a product of a Petri net modeling the
system and a symbolic domain encoding the set of allowed provenances.

While our decision procedures reduce the verification problems to problems
on Petri nets, our experiences with a direct implementation of provenance verifi-
cation based on existing Petri net coverability tools have been somewhat disap-
pointing. Mostly, this is because after the reduction to Petri nets, the coverability
tools fail to utilize the structure of message passing programs, in particular po-
tential state-space reductions arising from partial order reduction (POR) [II].

We implemented a coverability checker that is tuned for message passing
programs on top of the Spin model checker [I4]. Our implementation uses the
expand-enlarge-check (EEC) pradigm [I0]. The EEC algorithm explores a se-
quence of finite-state approximations of the message passing program. Intu-

itively, the approximation is obtained by replacing the counters in the Petri
net with “abstract” counters that count precisely up to a given parameter k,
and then set the count to co. Since the induced state space is finite for each
approximation, we can use a finite-state reachability engine (such as Spin) to
explore its state space. Additionally, we use partial order reduction, already im-
plemented in Spin, to reduce the explored state space, allowing local actions of
different processes to commute.

Our choice of a message passing programming model with unbounded but
unordered buffers was inspired by the communication model in browser exten-
sions, where several components communicate asynchronously. Specifically, we
checked the following property of extensions. Most browsers have a “private
mode” that allow users to browse the internet without saving information about
pages visited. Browser extensions should respect the private mode and not save
user information (or worse, upload user information to remote servers) while the
user is browsing in the private mode. We checked this property and found that
several widely-used Firefox extensions, including some extensions whose pur-
pose is to improve user privacy, do not properly handle “private mode” settings.
Among nine browser extensions using message passing, local storage, and some-
times remote database accesses, we found five extensions store user data even in
the private mode. Thus, our experiments demonstrate that a precise static tool
can be useful in detecting privacy violations in this domain.

One can view our result as a general compilation procedure from a provenance
verification problem for a program P to a safety verification problem for an
instrumented program P’. The instrumentation P’ adds some counters to P
but keeps the other features (e.g., complex control flow and data structures)
the same: program P’ is safe iff P satisfies the provenance properties. After the
reduction, we can harness any verification technique that has been developed
for the underlying class of programs (e.g., abstract interpretation or software
model checking). Our experiments use a simple dataflow abstraction, but other
abstract domains could be used for more precision. We chose message passing
programs for our presentation as they capture the essence of provenance tracking:
concurrency, unbounded provenance information, and unbounded channels. This
focus allows us to settle the complexity of provenance verification without mixing
it with the complexity of features in the programming model.

Related Work Provenance annotation on data has been studied extensively in
the database community [6J3J12], both for annotating query results and for track-
ing information through workflows. Provenance information is usually tracked
for a fixed database and a fixed query in a declarative query language. Seen as a
program, the query has exactly one “execution path.” The connection between
provenance tracking and dependency analysis in (sequential) programs was made
in [5]. A provenance-tracking semantics for asynchronous rw-calculus was given
in [27], but the static analysis problem was not considered. Most previous work
focused on dynamic tracking and enforcement along one execution path, and the
static meet-over-all-paths solution was not considered. In contrast, we provide
algorithms to track provenances in concurrent message passing programs, and

patient { secretary {

var pl, p2, p3; var sl, s2;
while (true) { while (true) {
choose S1: recv(chO, s1);

P1: []1 p1l = HQ; send(chO, pl); S2: if (s1 == HQ)
P2: [] pl = AR; send(chO, pl); S3: send(ch2, s1);
P3: [] recv(chil, p2); S4: else {
P4: if (p2 == HA) p3 = p2; S56: 52 = AA(s1);

} S6: send(chl, s2);
} }

}
}

dOCtOI’{ Patient Secretary Doctor

var di, d2; | | |

while(true) { T~ cho -
D1: recv(ch2, d1); —_—
D2: d2 = HA(d1); ch2 —
D3: choose —
D4: [] send(chil, d2); «— ch2
D5: [] send(ch2, d2); —]

} }"" chl |
}

Fig. 1. Medical system example

give algorithms to check provenance queries over all execution paths of programs.
We were inspired by the algebraic framework of provenance semirings [12] to give
a similar algebraic description of provenance domains.

Our algorithm for provenance verification generalizes algorithms for explicit
information flow studied in the context of sequential programs [25], e.g., through
taint analysis. Taint analysis problems [I5I19] classify methods as sources, sinks,
and sanitizers, and require that any data flow from sources to sinks must go
through one or more sanitizers. In our model, this property can be formulated by
requiring that the provenance of every message received by a sink must conform
to the regular specification (source™ sanitizer™)*. We are able to verify such
properties for message passing programs, where the source, sanitizer, and sink
can be concurrently executing processes sharing unbounded channels, and with
other intermediary processes as well. Previous work, too numerous to enumerate
here, either dealt with dynamic enforcement or provided imprecise static checks
for these domains. We show precise static analysis remains decidable!

2 Example

We motivate our results by modeling a simple online health system described
in [2], which allows patients to interact with their doctors and other healthcare
professionals using a web-based message passing system. In the system, users
have different roles, such as Patient, Secretary, and Doctor. Patients can ask
health questions and receive answers by exchanging messages with their doctors.

For simplicity of exposition, we describe a subset of the functionality of the
system as a message passing program. (In Section [5] we modeled the entire sys-
tem as a case study.) Intuitively, a message passing program is a collection of
imperative processes running concurrently, one for each principal in the system.
In our example, each role (Patient, Doctor, etc.) is modeled as a different prin-
cipal. The processes run by the principals have local variables, and in addition,
communicate with each other by sending to and receiving from shared chan-
nels. We assume shared channels are potentially unbounded, but may reorder
messages. Message sends are non-blocking, the execution continues at the con-
trol point following the send. Receives are blocking: a process blocks until some
message from the channel is received.

Figure [I] shows a simple implementation of the system, written in a sim-
ple imperative language. We have three principals: Patient (modeling the set of
patients using the system), Secretary (modeling secretaries who receive and for-
ward messages), and Doctor (modeling the set of doctors using the system). The
choose construct nondeterministically chooses and executes one of its branches.
A send action sends a message to a channel, and a recv receives a message from
a channel into a local variable.

There are four kinds of messages in the system. The patient can send a health
question (HQ) or an appointment request (AR). The healthcare providers can
send back a health answer (HA) or an appointment confirmation (AA). The
principals communicate through shared channels chO, chil, and ch2.

The patient process runs in a loop. In each step, it nondeterministically
decides to either send an HQ or an AR to chO, or to receive an answer on channel
chl. The secretary process runs a loop. In each step, it receives a message from
channel chO. If it is an HQ, the message is forwarded to doctors on channel ch2.
If it is an AR, the secretary answers the patient directly on channel chl. The
doctor process receives health questions on channel ch2. It computes a health
answer based on the received message (the assignment on line D2). It can either
reply directly to the patient (on channel chl), or put the answer back to channel
ch2 for further processing.

Figure[l] also shows a possible message sequence for a health question, where
the patient sends a health question to the secretary, the secretary forwards it
to the doctor, and the doctor looks at the message several times before replying
with a health answer. We capture the flow of messages through the principals
using provenance annotations with each message; the provenance captures the
history of all the principals that have forwarded the message. While in Section
we give a general algebraic definition of a provenance domain, for the moment,
think of a provenance as a string over the principals. When a message is initially
assigned, e.g., on line P1, the provenance is the empty string €. After the patient
sends the message, the channel chO contains an HQ message with provenance
Patient. When the message is forwarded to channel ch2, its provenance becomes
Patient Secretary. Finally, when the message is sent back on chi, its provenance
is a string in the regular language Patient Secretary Doctor™, indicating that it

Patient m Secretary 7~ ™\ Doctor
—(Qo w w a3 Doctor
Fig. 2. Complemented finite automaton for provenance property. We omit an accepting
sink to which all unspecified edges go.

has been sent originally by the patient, seen by the secretary next, and then seen
by the doctor one or more times.

The provenance verification problem asks, given the message passing pro-
gram, a variable v, and a regular language R of provenances, whether the con-
tent of v has a provenance in R along all program executions. In the example,
we can ask if the provenance of variable p3 is in the set

¢ + Patient Secretary Doctor™, (1)

capturing the requirement that any health answer must be initiated by a health
question from the patient, and must be seen by a doctor at least once, after it
has been seen by a secretary.

Notice that the example is unbounded in two dimensions. First, the channels
can contain unboundedly many messages. For example, the patient process can
send unboundedly many messages on channel chO before the secretary process
receives them. Second, the provenance annotations can be unbounded: a message
in channel ch2 can have an unbounded number of Doctor annotations.

We show the provenance verification problem is decidable. The first observa-
tion is that, if we ignore provenances, we can keep a counter for each channel ch
and each message type m, that counts the number of messages with value m that
are currently in ch. A send action increases the counter, a receive decrements it.
We can then show that the transition system of a message passing program is
well-structured [T8]: an action that could be taken in a state can also be taken if
there are more messages in the channels. Formally, we give a reduction to Petri
nets, an infinite-state well-structured system with good decidability properties.

In the presence of provenances, we have to be more careful. Unlike a normal
Petri net, now the “tokens” (the messages in the channels) will carry potentially
unbounded provenance annotations. However, given the regular set R, we only
need to distinguish two provenance annotations that behave differently with re-
spect to a deterministic finite automaton A for R. So, we keep more counters
that are now of the form (ch, m, ¢): one counter for each combination of channel
ch, message type m, and state ¢ of A. The state of the automaton A remembers
where the automaton would go to, starting with its initial state, on seeing the
provenance annotation. Similarly, for each variable in the program, we distin-
guish the contents of the variable based on the message type m as well as the
state ¢ of the automaton.

Figure [2] shows a deterministic automaton accepting the complement of the
language in . Using this automaton, we describe the reduction to a well-
structured system as follows. Let Q = {qo, 1,42, q3,q4} be the set of states of
the automaton (g4 is the omitted sink state). We have a set of integer-valued
counters (chi,m,q), for i=0,1,2, m € {HQ, HA, AA, AR}, and ¢ € Q). For example,

patient {
var pl, p2, p3;
while (true) {
choose
Pl [] pl = (HQ,q0); (
P2" [1 pil = (AR,qo); (chO, AR,qi)++;
P3; [1 if (ch1l,HQ,q) >0 (for each ¢ € Q)
)
)

ch0, HQ,q1)++;

p2 = (HQ, ¢ ch1,HQ, ¢)--;

P3; [1 if (chl,HA,q) >0 (for each ¢ € Q)
p2 = (HA,q); (chi,HA, g)--;

pa’ if (p2 == (HA,)) p3 = p2;

P33 [1 if (chl,AA,q) >0 (for each ¢ € Q)
p2 = (AA,q); (chi,AA q)--;

P34 [] if (ch1l,AR,q) >0 (for each g € Q)
p2 = (AR,q); (chi, AR, q)--;

Fig. 3. Translation of patient. We have simplified some statements for readability:
the actual translation performs a case split over p1 in lines P1’ and P2’, and performs
the check on line P4’ after each statement P3;.

the counter (ch0,HQ, g1) stores the number of HQs in chO for which the automa-
ton is in state ¢;. Figure [3] shows the translation of the patient process. The
send actions are replaced by incrementing the appropriate counter. For example,
the action send(chO,p1) in line P1 is replaced with incrementing the counter
(chO,HQ, q1), the state of the automaton is g; because the principal Patient takes
the automaton from its initial state go to the state ¢;. The receive action non-
deterministically selects a non-zero counter and decrements it, while storing the
message and the state into the local variable.

After the translation, we are left with a well-structured system. Verifying the
provenance specification reduces to checking if there is a reachable configuration
of the system in which v contains a message whose provenance automaton is in
a final state. This reachability question can be solved as a coverability problem
on the well-structured system, which is decidable. In fact, we show a symbolic
encoding that gives an optimal algorithm.

3 Message Passing Programs

Preliminaries A multiset m over a set X is a function) — N with finite
support (i.e., m(o) # 0 for finitely many o € X). By M[X] we denote the set
of all multisets over ¥. As an example, we write m = [0%, 03] for the multiset
m € M[{o1,02,03}] with m(cy) = 2,m(o3) = 0, and m(o3) = 1. We write 0
for the empty multiset, mapping each ¢ € X' to 0. Two multisets are ordered
by my1 < mg if for all o € X, we have mq(0) < ma(c). Let my @ mo (resp.
m1 © mgy) be the multiset that maps every element ¢ € X to my(o) + ma(o)
(resp. max {0, mq(c) — ma(0)}).

For a set X, a relation < C X x X is a well-quasi-order (wqo) if it is reflexive,
transitive, and such that for every infinite sequence xg,x1, ... of elements from

X, there exists ¢ < j such that z; < z;. Given a wqo =<, we define its induced
equivalence = C X x X byx=yifx <y and y < x.

A subset X’ of X is upward closed if for each x € X, if there is a 2’ € X’
with ' < x then z € X’. A subset X’ of X is downward closed if for each x € X,
if there is a 2’ € X’ with z < 2’/ then z € X’. A function f : X — X is called
=<-monotonic if for each z, 2’ € X, if < 2’ then f(z) < f(z').

A transition system TS = (C, cg, —) consists of a set C of configurations, an
initial configuration ¢y € C, and a transition relation — C C x C. We write —*
for the reflexive transitive closure of —. A configuration ¢ € C is reachable if
co —* ¢. A well-structured transition system is a T'S = (C, ¢g, —) equipped with
a well-quasi order < C C x C such that for all ¢1,co,c3 € C with ¢; < ¢3 and
c1 — c3, there exists ¢4 € C with c3 < ¢4 and co — ¢4.

3.1 Programming Model

Syntax We work in the setting of asynchronous message passing programs.
For simplicity, we assume that the programming language has a single finitely-
valued datatype M of messages. A channel is a (potentially unbounded) multiset
of messages supporting two actions: a send action (written ch!z) that takes a
message stored in variable x and puts it into the channel, and a receive action
(written ch?z) that takes a message m from the channel and copies it to the
variable z. Let C be a finite set of channels.

A control flow graph (CFG) G = (X, V, E,v°) consists of a set X of message
variables, a set V of control locations including a unique start location v° € V,
and a set E of labeled directed edges between the control locations in V. Every
edge in F is labeled with one of the following actions:

— an assignment y := ®(z), where 2,y € X and ® is an uninterpreted unary
operation on messages;

— an assume action assume(x = m), where z € X and m € M;

— a send action chlx, or a receive action ch?x, where x € X and ch € C.

A message passing program P = (Prin,C, {GP}pEPrin) consists of a finite set
Prin of principals, a set C' of channels, and for each p € Prin, a control flow
graph G,,.

Intuitively, a message passing program consists of a finite set of processes.
Each process is owned by a named entity or a principal. The processes have local
variables which can be updated using unary operators, and communicate with
other processes by asynchronously sending to and receiving messages from the
set of channels C.

We shall use the notation v =25 v’ to denote that the CFG G, of principal p
has an edge (v,v’) € E,, labeled with the action a. Given the set {Gp} p,,;, of
CFGs, we define X* = w{X,, | p € Prin}, V¥ = w{V, | p € Prin}, and E* =
W{E, | p € Prin} as the disjoint unions of local variables, control locations, and
control flow edges, respectively.

Semantics We now give a provenance-carrying semantics to message passing
programs. Let U be a (not necessarily finite) set of provenances. We shall asso-
ciate with each message in a message passing program a provenance from U.

Let P = (Prin, C, {Gp}per'n)
domain U = (U, =,1) for P consists of a set U of provenances, a well-quasi
ordering < on U, and for each principal p € Prin and for each operation op €
® U {!,?}, a <-monotonic function ¥ (p, op) : U — U. A provenance domain is
decidable if < is a decidable relation and v is a computable function. We assume
all provenance domains below are decidable.

Since channels are unordered, we represent contents of a channel as a multi-
set of pairs of messages and provenances. A configuration (¢,c,) consists of a
location function £ : Prin — V* mapping each principal to a control location;
a channel function ¢ : € — M[M x U] mapping each channel to a multiset
of pairs of messages from M and provenances from U; and a store function
7 : X* — M x U mapping each variable to a message and its provenance.

Define £ : Prin — V' as the function mapping p € Prin to the start location
vg €V, and ¢g : C — M[M x U] as the function mapping each ch € C to the
empty multiset (). Let mp: X*— M x U be a mapping from variables in X* to
a default initial value mg from M and a default initial provenance ¢ from U.

The provenance-carrying semantics of a message passing program P with
respect to the provenance domain (U, <X,) is defined as the transition system
TS(P) = (C,co, —) where C is the set of configurations, the initial configuration
co = (bo, co,), and the transition relation — C C x C is defined as follows.

For a function f : A — B,a € A, and b € B, let f[a — b] denote the function
that maps a to b and all o’ # a to f(a’). We define (¢,c,7) — (¢, c',7') if
there exists p € Prin and (¢(p),a, ¢ (p)) € E* such that for all p’ # p, we have
Lp") =20 (p); and

be a message passing program. A provenance

1.if a = y := &) and (m,u) = =w(z) then ¢’ = ¢ and @’ = 7y —
(@(m), ¥(p, ®)(u))];

2. if a = assume(x = m) then ¢’ = ¢, #’ = 7, and 7(z) = (m, -);

3.if a = chlx then 7 = 7 and if (m,u) = w(x), then ¢/ = c[ch —

c(ch)@[(m, ¥ (p, 1) (w)]l;
4. if a = ch?x and there is (m,u) such that c(ch)(m,u) > 0 then ¢’ = c[ch —
c(ch)s[(m,uw)]] and ©" = [z — (m, ¥ (p, ?)(u))].

Intuitively, in each step, one of the principals executes a local action. An assign-
ment action y := ®(x) transforms the message contained in x by applying the
operation ® and transforms the provenance of x by applying v, storing the new
message and its provenance in y. An assume checks that a variable has a specific
message. Sends and receives model asynchronous communication to shared chan-
nels. Send actions are non-blocking, receive actions are blocking, and a channel
can reorder messages.

Let P be a message passing program and U = (U, <,1) a provenance do-
main. We consider provenance specifications given by downward closed sets over
U. Downward closed sets capture the “monotonicity” property that holds in
many domains. For example, a security policy that holds when a given set of
trusted principals looks at a message, is also met when fewer principals look at
it. Conversely, bad behaviors are captured by upward closed sets.

The provenance verification problem asks, given a variable z of P and a
downward closed set D C U, if the provenance of the content of variable z is
always in D along all runs of the program. Dually, the specification is violated
if there exists a reachable configuration where the provenance of variable z is in
the upward closed set I = U\D. Such a configuration indicates a violation of
security policies. We shall use the dual formulation in our algorithms.

3.2 Examples

We now give illustrative examples of provenance domains.

Ezample 1. [The Language Provenance Domain] Consider U = Prin*, the
set of finite sequences over principals. Let (Q, Prin, go,0) be a deterministic finite
automaton, and let < be defined as u < v iff §(qp,u) = 6(go,v). Let ¢ be the
function defined as ¥ (p,!)(u) = u - p, and (-, -)(u) = u for all other operations.
Intuitively, the language provenance domain associates a list of principals with
each message: the sequence of principals who have sent this message along the
current computation.

A downward closed set D in the language provenance domain is a regular
language that prescribes a set F' C @ of final states for the finite automaton
A. The corresponding upward closed set [is a regular language that prescribes
a set Q \ F of final states for the complement automaton A. The provenance
verification problem asks, for example, if the provenance of the message in p3
always belongs to the regular language Patient Secretary Doctor™ along all runs
of the program.

Example 2. [The Set Provenance Domain] Let U = 277 the set of sets of
principals. Let < be set inclusion. Since the set of principals is finite, this is a
wqo. Let ¢ be the function defined as 1 (p,!)(u) = uU{p}, and ¢(:,-)(u) = u for
all other operations. The set provenance domain associates a set of principals
with each message: the set contains all the principals who have sent this message
(potentially multiple times). An upward closed set I corresponds to a set of sets
of principals, such that if a set of principals is in I, each of its supersets is also
in I. As an example, suppose the set of principals Prin is divided into “trusted”
and “untrusted” principals. A downward closed set D specifies the sets all of
whose elements are “trusted”. As a result, the corresponding upward closed set
I captures all sets containing at least one “untrusted” principal. The provenance
verification problem asks, given a variable x, if there is a message stored in x
along a run that has a provenance which is one of the sets in I.

4 Model Checking

We now give a model checking algorithm for provenance verification by reduction
to labeled Petri nets.

4.1 Labeled Petri Nets

A Petri net (PN) is a tuple N = (S, T, (I,0)) where S is a finite set of places,
T is a finite set of transitions, and functions I : T — S — {0,1} and O: T —
S — {0, 1} encodes pre- and post-conditions of transitions.

A marking is a multiset over S. A transition ¢t € T is enabled at a marking
u, denoted by u[t), if g > I(t). An enabled transition ¢ at g may fire to produce
a new marking p’, denoted by p[t)p’, where p/ = p© I(t) @ O(t). We naturally
lift the enabledness and firing notions from one transition to a sequence o € T*
of transitions. A PN N and a marking po define a transition system T'S(N) =
(MIS], 1o, —), where p — 1 if there is a transition ¢ such that p[t)u'.

The encoding of a PN N is given by a list of pairs of lists. Each transition
t € T is encoded by two lists corresponding to I(¢) and O(t). Each list I(¢) or
O(t) is encoded as a bitvector of size |S|. The size of N, written | N||, is the sum
of the representations of all the lists.

Let N be a Petri net and po and p markings. The coverability problem asks
if there is p/ > p that is reachable from pg, so pg —* ' > p. In this case, we
say p is coverable from .

Theorem 1. [18]Z]] The coverability problem for Petri nets is EXPSPACE-
complete.

In the usual definition of Petri nets, tokens are simply uninterpreted “dots”
and markings count the number of dots in each place. We now extend the Petri
net model with tokens labeled with elements from a decidable provenance domain
U. A U-labeled Petri net N = (S, T, (I,0), A) is a Petri net (S,T,(I,0)) that
is equipped with a labeling function A specifying how provenance markings are
updated when a transition is fired. Consider a transition ¢t € T'. Let p1, ..., px be
an ordering of all the places in S for which I(¢)(p) = 1. For each place p’ € S with
O(t)(p') = 1, the labeling function A(t,p’) is a <-monotonic function U* — U.
We assume the labeling function A is computable.

A labeled marking p is a mapping from places S to multisets over U, i.e.,
it labels each token in a marking with an element of U. A labeled marking p
induces a marking erase(u) that maps each p € S to >, ., u(p)(u) obtained by
erasing all provenance information carried by tokens. Fix a transition ¢, and let
D1,---,Pk be an ordering of the places such that I(¢)(p) = 1. The transition ¢
is enabled at a labeled marking p if for each p € S with I(¢)(p) = 1, we have
erase(p)(p) > 1. An enabled transition ¢t at p can fire to produce a new labeled
marking 1/, denoted (by abuse of notation) u[t)y’, defined as follows. To compute
u' from p, first pick and remove arbitrarily tokens from p; to p; with labels wu;
to ug, respectively. Then, for each p’ with O(¢)(p’) = 1, add a token whose label
is A(t,p")(u1,...,ur) to p'. All other places remain unchanged. We extend the
firing notion to sequences of transitions, as well as notions of transition system,
size, reachability, and coverability to labeled Petri nets in the obvious way.

To prove the coverability problem is decidable for U-labeled Petri nets, we
argue that their transition systems (M[U]°, uo, <) are well-structured in that
the labeled markings can be equipped with an order that allows larger labeled
markings to mimic the behaviour of smaller ones, i.e. there is a wqo < C
M[U]S X M[U]S that is compatible with the transitions: for all p;<—p) and
p1 <<z there is g < ph so that p) << ph.

To define a suitable wqo on labeled markings, we first compare the multisets
on a place. Intuitively, u(p) < p/(p) with u, p’ € M[U]S and p € S if for every

uw in p(p) there is an element u’ in u/(p) such that v < v’ in the wqo < of
the provenance domain. Hence, p < p’ if for each p € S there is an injective
function f,, : u(p) — 1/(p) so that for each u € p(p), we have u < f,(u). The
result is a wqo by Higman’s lemma [I3] and the fact that wqos are stable under
Cartesian products. The ordering is also compatible with the transitions by the
monotonicity requirement on labelings. The following theorem follows using
standard results on well-structured transition systems [IIg].

Theorem 2. The coverability problem for U-labeled Petri nets is decidable and
EXPSPACE-hard for decidable provenance domains U.

The coverability problem for labeled Petri nets need not be in EXPSPACE, even
when the operations on U are provided by an oracle. For example, nested Petri
nets [20] can encode reset nets, for which a non-primitive recursive lower bound
is known for coverability [26].

4.2 From Message Passing Programs to Labeled Petri Nets

Let P = (Prin, C, {Gp}pepm.n) be a message passing program and U = (U, <,)
a provenance domain. We now give a labeled Petri net semantics to the program.

Define the labeled Petri net N(P,U) = (S, T, (I,0), A) as follows. There is a
place for each program location, for each local variable and message value, and
each channel and message value: S = V¥ U (X* xM) U (CxM).

In the definition of labels, we use variable prov(p) for the token (which is a
provenance) in place p € S that is used for firing. The set T is the smallest set
that satisfies the following conditions.

1. For each e = vw)v’ in E*, and for each m, m’éM, there is a tran-
sition ¢ with I(t)=[v, (x,m), (y,m’)] and Ot)=[v’, (xz,m), (y,®m)]. Also,

A(t, (x, m))=prov(z,m), A(t, (y, @m))=1(p, ®)(prov(xz, m)), and A(t,v")=e.

assume(x=m),p

2. For each ¢ = v————""5¢' in E*, there is a transition ¢ with
I(t)=[v, (z,m)] and O(t)=[v', (x,m)]. Also, A(t,v") = ¢, and A(¢, (z,m)) =
prov(z,m).

3. For each e = ’UM}’UI in E*, and for each meM, there is a tran-

sition ¢ with I(¢)=[v,(z,m)], Ot)=[v",(z,m),(ch,m)]. Also, A(t,v")=e,
A(t, (z,m))=prov(z,m), and A(t, (ch, m))=1(p,!)(prov(z, m)).

ch?x, . . o
4. For each e = v—=L/ in E*, for each m, m'eM, there is a transition ¢

with I(¢) = [v, (x,m), (ch,m’)] and O(t) = [v', (x,m’)]. Also, A(t,v') = ¢
and A(t, (x,m")) = ¥ (p, ?)(prov(ch,m’)).

To relate P with its Petri nets semantics N (P, U), we define a bijection ¢ between
configurations and labeled markings: ¢(¢, ¢,) = p iff all of the three conditions
hold: (1) u(v) = [e] iff there is p € Prin with £(p) = v; (2) for all x € X*, for all
m € M, and for all u € U, p(z,m) = [u] iff n(z) = (m,w); (3) for all ch € C,
for all m € M, and for all u € U, u(ch,m)(v) = k iff c(ch)(m,u) = k. Define
the initial labeled marking pg = ¢(¢g, co, 7). The following observation follows
from the definition of ¢.

Lemma 1. T'S(P) and TS(N(P,U)) are isomorphic.

Complexity-wise, the problem inherits the hardness of coverability in (unlabeled)
Petri nets for any non-trivial provenance domain.

Theorem 3. Given a message passing program P and a decidable provenance
domain U = (U,=,v), the provenance verification problem is decidable. It is
EXPSPACE-hard for any provenance domain with at least two elements.

Proof. From the construction of the labeled Petri net, Lemmall} the provenance
verification problem is reducible in polynomial time to coverability for labeled
Petri nets. Thus, by Theorem [2], provenance verification problem is decidable.

For EXPSPACE-hardness, we reduce Petri net coverability to provenance
verification. To simulate a Petri net with a message passing program, we intro-
duce a channel for every place and then serialize the reading of tokens. Consider
N =(S,T,(I,0)). We construct a message passing program with one principal,
one message, and a channel for each place in S. The control flow graph of the only
principal has a central node from which loops simulate the Petri net transitions.
At each step, the central node picks a transition ¢ € T non-deterministically and
simulates first the consumption and then the production of tokens — one by
one. To consume a token from place p with I(t)(p) = 1, the principal receives a
message from channel p. For the production, it sends a message to the channel p’
with O(t)(p’) = 1. Additionally, the principal non-deterministically checks if the
current configuration of channels covers the target marking. If so, it writes a mes-
sage into a special variable x. The provenance verification problem asks whether
x ever contains a message with non-trivial provenance. EXPSPACE-hardness
follows from Theorem [®

4.3 EXPSPACE Upper Bounds

For set and language provenance domains, we can in fact show a matching upper
bound on the complexity. It relies on a fairly general product construction and
reduction to Petri nets. We say that a provenance domain U is of finite index if
the equivalence induced by = has finitely many classes. We denote this equiva-
lence by =. Clearly, any finite provenance domain (thus, the set domain) is of
finite index. The language domain is also of finite index: take the equivalence
relation induced by the Myhill-Nerode classes of the language. The following
lemma characterizes the structural properties of provenance domains of finite
index.

Lemma 2. Consider a Petri net N = (S,T,(I,0),A) that is labelled by U
of finite index. (1) The equivalence classes are closed under A: for any tuple
€1,...,ex of =-equivalence classes, the image A(eq, ..., ex) is fully contained in
another equivalence class e. (2) The upward-closure of any u € U is a finite
union of =-classes.

Let N = (S,T,(1,0), A) be a U-labeled Petri net, and suppose U is of finite
index. We now define a product construction that reduces N to an ordinary
Petri net N’ = (S, T',(I',0’)). Intuitively, for each place p € S and each

equivalence class e, there is a place (p,e) in S’ that keeps track of all tokens
in N at place p and having their label in the equivalence class e. We define
S" = S x{[u]z | v € U}. Each transition in N is simulated by a family of transi-
tions in T”, one for each combination of equivalence classes for the source tokens.
More precisely, T” is the smallest set that contains the following family of tran-
sitions for each t € T. Let p1,...,pr be the places in S with I(t)(p;) = 1. For
each sequence p = (ey,...,e) of k-tuples of =-equivalence classes, we have a
transition tz € T" such that I'(t5)((pi,e;)) = Lfor i =1,...,k and I'(t5)(p) =0
for all other places. Moreover, for each p € S with O(t)(p) = 1 labeled with A,
we have that O'(t7)((p,e)) = 1 with A(eq, ..., ex) C e. Note that this inclusion is
well-defined by Lemma[2)(1). This product construction reduces a labelled cover-
ability query in N to several unlabelled queries in N’. What are the unlabelled
queries we need? Consider a token u in a labelled marking 1 € M[U]®. We use
the equivalence classes that, with Lemma (2), characterize the upward closure
of u. In the following proposition, we assume that these classes are effectively
computable. This is the case for set and language domains.

Proposition 1. If U is of finite index, coverability for U-labeled Petri nets is
reducible to coverability for Petri nets.

Proposition [I] provides a 2EXPSPACE upper bound for the set and language
domains, which is not optimal. Consider the set domain. Each subset of princi-
pals yields an equivalence class of provenances. Hence, there is an exponential
number of classes and the above product net is exponential. A similar prob-
lem occurs for the language domain if the provenance specification is given by
a non-deterministic finite automaton. There are regular languages where this
non-deterministic representation is exponentially more succinct than any deter-
ministic one. The deterministic one, however, is needed in the product. To derive
an optimal upper bound, we give compact representations of these exponentially
many classes.

Theorem 4. Provenance verification problem is in EXPSPACE for set and lan-
guage domains.

Proof. To establish membership in EXPSPACE, we implement the above reduc-
tion from labeled to unlabeled coverability in a compact way, so that the size of
the resulting Petri net is polynomial in the size of the input. The challenge is to
avoid the multiplication between places and equivalence classes, which may be
exponential. Instead, we first encode the classes into polynomially many addi-
tional places, and maintain the relationship between a place and a class in the
marking of the new net. Second, we only keep the provenance information for
tokens in the goal marking, and omit the provenance of the remaining tokens.
Let E be the set of equivalence classes of a provenance domain of finite index.
Let x = [log|E|]. The symbolic representation of E uses 2k places. Let the
places be by, dg, ..., bx_1,d,—1. We maintain the invariant that in any reachable
marking, exactly one of b;,d; contains a single token, for ¢« = 0,...,(k — 1).
Intuitively, a token in b; specifies the bit i is one, and a token in d; specifies

the bit ¢ is zero. Using constructions on (1-safe) Petri nets, one can “copy” a
bitvector, remove all tokens from a bitvector, or update a bitvector to a value.
For example, to empty out a bitvector, we introduce x + 1 places py, ..., D«,
with an initial token in py. Each p;, i € {0,...,x — 1}, has two transitions: they
take a token from p; and from b; (resp. d;), and put a token in p;;1. When p, is
marked, all the bits have been cleared. Similarly, to copy the configuration from

places bo,do,...,bs—1,d,—1 to empty places b(,dj,...,b.._;,d._;, we use the
following gadget. We add additional x+ 1 places po, .. ., px, With an initial token
on pg. For each p;, i € {0,...,x — 1} there are two transitions: one takes a token

from p; and one token from b; and puts a token in p;41, one in b;, and one in b};
the other takes a token from p; and one from d; and puts a token in p;41, one in
d;, and one in d;. When the place p,; is marked, the bits in by, do, ..., bx—1,dx—1
have been copied to bj, dj), ..., bl._1,d._;.

Now, in the translation of the Petri net, instead of a place (x,m,e) for each
variable z, message m, and equivalence class e € E, we keep 2k places for each
place (z,m), encoding the equivalence class e for x and m. If all 2« places for
(x,m) are empty in a marking, it implies that the current content of z is not
m; otherwise, the provenance equivalence class e € E of (z,m) is encoded by
the 2k bits. The transitions of the net are updated with the gadgets to copy the
provenance bitvectors in case of assignments.

Moreover, for each channel ch, we maintain the provenance information of
one message, and drop the provenance of every other message in the channel.
That is, each channel ch is modeled using places (ch,m) for each m € M,
and in addition, 2k M| places that encode the provenance equivalence class of
one message for each value in M stored in the channel. Intuitively, tokens in
(ch,m) denote messages with value m in the channel ch whose provenance has
been “forgotten” and tokens in the bitvectors encode one message (per message
type) in the channel whose provenance is encoded using 2x places. We use non-
determinism to guess which messages contribute to the message with provenance
in the target. When a message is sent to a channel, we non-deterministically
decide to keep its provenance (thus using the bitvectors, moving any tokens
already there) or to drop its provenance.

Similarly, when we receive from a channel, we non-deterministically decide
to either read from the “special” places for the encoding of an equivalence class,
or from the “normal” place.

Now, for the set domain, we use 2|Prin| places to encode sets of principals.
For the language domain, where the specification is given by a non-deterministic
automaton with states @, we use 2|Q)| places to encode the subsets of states. The
encoding allows us to perform the subset construction on the fly. Each action
of the program requires at most a polynomial number of additional places to
encode the gadgets. Thus, we get a Petri net that is polynomial in the size of
the message passing program and the specification. Thus, using Theorem [T}, we
get the EXPSPACE upper bound. i

5 Implementation and Experiments

We have implemented a tool for the provenance verification problem for language
provenance domains. Our tool takes as input a message passing program encoded
in an extended Promela syntax in which channels are marked asynchronous and
have the semantics described in Section [3] It reduces the provenance verifica-
tion problem to Petri net coverability using the algorithm from Section {4l We
first used state-of-the-art tools for Petri net coverability [9I2I]. Unfortunately,
the times taken to verify the provenance properties were high. This is because
Petri net coverability tools are optimized for nets with many places that can be
unbounded and for high concurrency. Instead, message passing programs only
have few places that are unbounded (the channels). Our second observation is
that message passing programs have a lot of scope for partial-order reduction, by
allowing a process to continue executing until it hits a blocking receive action.
To take advantage of these features, we implemented a coverability checker that
combines expand-enlarge-check (EEC) [I0] with partial order reduction [IT].

5.1 Expand-Enlarge-Check and Partial Order Reduction

The EEC procedure [I0] performs counter abstraction over a Petri net. We ob-
serve that only the places representing shared channels can have more than one
token in our Petri nets. Instead of counting the exact number of messages in a
channel, we fix a parameter £ > 0 and count precisely up to k. If at any point,
the number of messages in a channel exceeds k, we replace the number by co.
Once the count goes to 0o, we do not decrease the count even when messages are
removed from the channel. For example, if £ = 0, the abstraction of a channel
distinguishes two cases: either the channel has no messages or it has an arbitrary
number of messages.

The abstraction is sound, in that if a marking is coverable in the original net,
it is also covered in the abstraction. However, the abstraction can add spurious
counterexamples, in that a marking can be considered coverable in the abstrac-
tion, even though it is not coverable in the original net. By concretely simulating
a specific counterexample path, we can decide if the counterexample is genuine
or spurious. In case the counterexample is spurious, we increase the parameter
k and continue. This abstraction-refinement process is guaranteed to terminate,
by either finding a genuine path that covers a given marking, or by proving that
the target marking is not coverable for some parameter k in the abstraction [10].
We have found that & = 1 is usually sufficient to soundly abstract the state
space and to prove a provenance property; this is consistent with other uses of
counter abstractions in verification [2317].

Additionally, we note that once the parameter k is fixed, the state space
of the system is finite, since each channel can have at most k + 2 messages
({0, ..., k}U{oo}). Thus, for each k, we can perform reachability analysis using
a finite-state reachability engine. In our implementation, we choose the Spin
model checker [14] to perform reachability analysis in every iteration where k is
fixed. In Spin models, for each channel, each message type, and each state of the

provenance automaton, we have a variable that takes k4 2 values, implementing
the k-abstraction.

Additionally, message passing programs have the potential for partial order
reduction. For example, each process in the program can be executed until it
reaches a blocking receive action, and the local actions of different processes
commute. Since Spin already implements partial order reduction, we get the
benefits of partial order reduction for free.

5.2 Case Studies: Message Passing Benchmarks

We first describe our evaluation on a set of three message passing systems (see
Table [I). The example MyHealth Portal is described in [2]. We checked if the
provenance of a variable is always in the regular language Patient (Secretary +
) Nurse Doctor™ + e. The bug tracking system [16] manages software bug
reports. It has five principals and eight types of messages (bug report, closed,
fix-again, fix, must-fix, more-information, pending, and verified). The provenance
specification, given as an automaton with nine states, encodes the flow of events
leading from a bug report to a bug fix. We found that the original system violated
the specification because a message was sent to an incorrect channel. After fixing
the bug, we were able to prove the property for the new system. The Service In-
cident Exchange Standard (SIS) specifies a system to share service incident data
and facilitate resolutions. The standard envisages interactions between service
requesters and providers. We took the system model from [4], which consists of
16 principals, 18 channels, and 9 message types. The property to check is once
a service request is terminated, it is never reopened.

Results Table |2| lists the analysis results. All experiments were performed on
a 2 core Intel Xeon X5650 CPU machine with 64GB memory and 64bit Linux
(Debian/Lenny). We compare state-of-the-art Petri net coverability tools (Mist2
[9] and Petruchio [21I]) with our Spin-based coverability checker. We run Petru-
chio and three different options of Mist2 and report the best times. A timeout
indicates that all the tools timed out. The “Markings” row indicates the number
of coverability checks required to prove correctness. The time denotes the sum
of the times for all the coverability checks to finish, where for each check, we
take the best time by any tool.

For our Spin-based checker, we report the parameter k for which either a
genuine counterexample was found, or the system was proved correct. We com-
pare the results with and without partial order reduction. For each run, we give
three numbers: the number of states and transitions explored by our checker and
the time taken. There is a significant reduction when partial order reduction is
turned on. Moreover, our Spin-based implementation is orders of magnitude
faster than the Petri net coverability tools.

5.3 Private Mode and Firefox Extensions

We performed a larger case study on provenance in browser extensions. Modern
browsers provide a “private mode” that deletes cookies, forms, and browsing
history at the end of each browsing session. Browsers also provide an exten-
sion mechanism, through which third-party developers can add functionality to

Example Principals| Messages|Channels| Automaton
Health Care 4 4 5 6
Bug Tracking 5 8 5 9
SIS 16 9 18 2

Table 1. Message passing benchmarks. “Principals” is the number of principals, “Mes-
sages” the possible values of messages, “Channels” is the number of shared channels,
and “Automaton” is the number of states in the provenance automaton.

PN tools Health Care|Bug Tracking (1)|Bug Tracking (2)| SIS
Markings 12 1 40 127
Time 125.6s 2308.940s timeout 1152.07s
Our Checker Health Care|Bug Tracking (1)|Bug Tracking (2)| SIS

k 0 1 0 1
States (No POR) 6351 39 4905516 3738754
States (POR) 2490 39 995468 893786
Trans (No POR) 23357 39 24850365 17274836
Trans (POR) 4249 39 1707682 1736062
Time (No POR) 0.04s 0.01s 38.6s 58.7s
Time (POR) 0.01s 0.01s 3.37s 6.10s

Table 2. Results of the message passing benchmarks. Bug Tracking (1) is the buggy
version.

browsers. Extensions can communicate between their front- and back-ends by
asynchronous messages passing, and between each other via temporary files.
Moreover, Firefox lets extension developers manage SQLite databases in user
machines by invoking a service called mozIStorageService. It provides a set of
asynchronous APIs for extensions to communicate with databases through SQL
queries. If extension developers do not properly handle the private mode, user
data may be stored in the database while the user is browsing in private mode.

It is expected that browser extensions should respect the private mode. Un-
fortunately, browsers do not restrict an extension’s capability in private mode,
and it is the responsibility of developers not to record user data in private mode.
In the second set of case studies, we check if extension developers for Firefox
obey the privacy concerns when the user is browsing in private mode.

Our goal is to check if extensions using mozlStorageService can store user
data while in private mode. We formulate the problem of tracking informa-
tion flow in private mode as a provenance verification problem. Consider a set
of browser extensions cooperating with each other, and a principal Db mod-
elling a database. For each extension A, we introduce two principals NormA
and PrivA that represent two instances of A running in the normal and in
the private mode, respectively. For each extension A that saves data to the
database, there are two channels chpy, chpy,, for NormA and PrivA to interact
with Db. Moreover, for each pair of extensions (A, B) where A sends data
to B, for instance, by writing and reading files, there are four combinations:
(NormA, NormB), (PrivA, NormB), (NormA, PrivB), and (PrivA, PrivB). For each
case, we introduce a channel ch to model the message flow from A to B. The prop-

erty we check is whether some PrivA directly or indirectly updates the database.
Note that it is not sufficient to ensure every write to the database is guarded
by a check that the browser is not in private mode. There can be indirect flows
where data is stored in a temporary file in private mode, or communicated to a
different extension, and later stored in the database.

We use Firefox 13.0.1 in our experiments. We selected nine popular exten-
sions from Firefox’s extension repository, by filtering them based on the keywords
form, history, and shopping, and then filtering based on their use of mozIStor-
ageService. The extensions we chose have about 50000 users on average.

Our tool works as follows. We first use JSure [7], a Javascript parser and
static analyzer, to obtain the control flow from the extension source code, and
to produce a message passing program in Promela syntax. As the access to a
database is either via calling the mozIStorageService APIs directly or via helper
extensions, we capture along the control flow the information about when an
extension calls these APIs to update the database, and the information about
when extensions communicate with each other by writing and reading temporary
files. Our front end abstracts away complex data structures in the program. In
particular, we do not track the contents inserted into the database. This may
lead to false positives in the analysis. We then run our Spin-based back-end to
verify the message passing program.

Table |3] lists the results. Five out of the nine examples are found to store
user information even in private mode. All examples can be verified efficiently
(in a few milliseconds) because usually a small portion of code is related to
database accesses and extension communications, and complex data structures
are abstracted out. For all unsafe cases, we have successfully replayed executions
that violate the private mode in Firefox.

6 Extensions

We have described a general algebraic model of provenance in concurrent mes-
sage passing systems and an algorithm for statically verifying provenance prop-
erties. For these expressive programs, only dynamic checks or imprecise static
checks had been studied so far. While the complexity may seem high, reacha-
bility analysis in message passing programs is already EXPSPACE-complete, so
provenance verification does not incur an extra cost.

Our decidability results continue to hold under some extensions to the pro-
gramming model. For example, our decidability results also hold when programs
can test the provenance of a message against an upward closed set in a con-
ditional, or in the presence of a spawn instruction that dynamically generates
a new thread of execution. Informally, to decide provenance verification in the
presence of provenance-tests, we extend the product construction to track the
membership in each upward closed set appearing syntactically in some condi-
tional. To handle spawn, we modify the reduction to Petri nets to keep a place
for each spawned instance (that is, each tuple of control location and valuation
to local variables).

On the other hand, many other extensions are easily seen to be undecidable.
For example, if each principal executes a recursive program, or if messages come

Name LOC ||Leak Usage Leak Details Time
Provide comparative
Amazon Price pricing for searched Records shopping
History and 8124||Yes ||products. Inform pricing||history while in 57ms
More 4.1.4 drops for searched private mode.
products.
Records the person
Facebook Chat Help users organize to whom users talk,
History Manager|| 2798||Yes ||conversations by time the conversation con-|| 60ms
1.5 and names of persons. tent, and the time in
private mode.
Provide a dashboard Keeps counting how
FVD Speed Dial holding favorite websites||often users look at
with Online Sync||21278||Yes ||of users. Cross-platform ||the websites on their|| 57ms
4.0.3 bookmark synchroniza-||Speed Dial in private
tion. mode and lists them.
Uses differential privac Records user brows-
Privad 1.0 17593|| Yes privacy ing history while in 60ms
to prevent ad targeting. -
private mode.
Shobping Assist Provide comparative Records shopping
OPPIE ASSISL 115963 | Yes pricing for searched history while in 57ms
3.2.4.6 .
products. private mode.
F Hist Autosave text on forms,
orm BUStory 16560||No ||search bar history, for 63ms
Control 1.2.10.3
crash recovery.
. Utilities to delete history
History Deleter || 3097/INo automatically by user 90ms
24
defined rules.
Lazarus: Form Autosave text on forms,
: 10839||No ||search bar history, for 64ms
Recovery 2.3
crash recovery.
Session Manager 14010!/No A.utosave sessions by 104ms
0.7.9 time for crash recovery.
Table 3. Experimental results for Firefox extensions.

from an unbounded domain such as the natural numbers, or if channels preserve
the order of messages, the provenance verification problem becomes undecidable
by simple reductions from known undecidable problems [22].

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In LICS ’96, pages 313-321. IEEE, 1996.
2. A. Barth, J. Mitchell, A. Datta, and S. Sundaram. Privacy and utility in business
processes. In CSF, pages 279-294. IEEE, 2007.
3. P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A characterization of
data provenance. In ICDT, LNCS 1973, pages 316-330. Springer, 2001.

4. S. Chaki, S. Rajamani, and J. Rehof. Types as models: model checking message-
passing programs. In POPL, pages 45-57. ACM, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

. J. Cheney, A. Ahmed, and U. Acar. Provenance as dependency analysis. Math.
Struct. in Computer Science, 21:1301-1337, 2011.

Y. Cui, J. Widom, and J. Wiener. Tracing the lineage of view data in a warehousing
environment. ACM TODS, 25:179-227, 2000.

B. Durak. JSure. Available at https://github.com/berke/jsure.

A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63-92, 2001.

P. Ganty, J.-F. Raskin, and L. V. Begin. From many places to few: Automatic
abstraction refinement for Petri nets. Fund. Informaticae, 88(3):275-305, 2008.
G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, enlarge and check: new
algorithms for the coverability problem of WSTS. In FSTTCS ’04, LNCS 3328,
pages 287—298. Springer, 2004.

P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Ezxplosion Problem. LNCS 1032. Springer, 1996.

T. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS,
pages 31-40. ACM, 2007.

G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3), 2:326-336, 1952.

G. Holzmann. The Spin model checker. IEEFE Transactions on Software Engineer-
ing, 23(5):279-295, 1997.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing
web application code by static analysis and runtime protection. In WWW, pages
40-52, 2004.

J. Jandk. Issue tracking systems. Diplomova price, Masarykova univerzita, Fakulta
informatiky, 2009.

R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous programs.
In POPL 07, pages 339-350. ACM, 2007.

R. Lipton. The reachability problem is exponential-space hard. Technical Re-
port 62, Department of Computer Science, Yale University, 1976.

B. Livshits and M. Lam. Finding security errors in Java programs with static
analysis. In Useniz Security Symposium, pages 271-286, 2005.

I. Lomazova and P. Schnoebelen. Some decidability results for nested Petri nets.
In Ershov Memorial Conference, LNCS 1755, pages 208—220. Springer, 2000.

R. Meyer and T. Strazny. Petruchio: From dynamic networks to nets. In CAV,
LNCS 6174, pages 175-179. Springer, 2010.

M. Minsky. Finite and Infinite Machines. Prentice-Hall, 1967.

A. Pnueli, J. Xu, and L. Zuck. Liveness with (0, 1, oo)-counter abstraction. In
CAV, LNCS 2404, pages 107-122. Springer, 2002.

C. Rackoff. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6(2):223-231, 1978.

A. Sabelfeld and A. Myers. Language-based information-flow security. IEFE J.
Selected Areas in Communications, 21:5-19, 2003.

P. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. In MFCS, LNCS 6281, pages 616—628. Springer, 2010.

I. Souilah, A. Francalanza, and V. Sassone. A formal model of provenance in
distributed systems. In Workshop on the Theory and Practice of Provenance,
2009.

	Static Provenance Verification for Message Passing Programs

