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Abstract. In this paper we describe the design and implementation of cloud-
based assured information sharing systems. In particular, we will describe our 
current implementation of a centralized cloud-based assured information shar-
ing system and the design of a decentralized hybrid cloud-based assured infor-
mation sharing system of the future. Our goal is for coalition organizations to 
share information stored in multiple clouds and enforce appropriate policies.  

1 Introduction 

The advent of cloud computing and the continuing movement toward software as a 
service (SaaS) paradigms has posed an increasing need for assured information shar-
ing (AIS) as a service in the cloud. The urgency of this need has been voiced as recent-
ly as April 2011 by NSA CIO Lonny Anderson in describing the agency’s focus on a 
“cloud-centric” approach to information sharing with other agencies [1]. Likewise, the 
DoD has been embracing cloud computing paradigms to more efficiently, economical-
ly, flexibly, and scalably meet its vision of “delivering the power of information to 
ensure mission success through an agile enterprise with freedom of maneuverability 
across the information environment” [2-5]. Both agencies therefore have a tremendous 
need for effective AIS technologies and tools for cloud environments. 

Although a number of AIS tools have been developed over the past five years for 
policy-based information sharing [5-8], to our knowledge none of these tools operate 
in the cloud and hence do not provide the scalability needed to support large numbers 
of users utilizing massive amounts of data. Recent prototype systems for supporting 
cloud-based AIS have applied cloud-centric engines that query large amounts of data 
in relational databases via non-cloud policy engines that enforce policies expressed in 
XACML [9-10]. While this is a significant improvement over prior efforts (and has 
given us insights into implementing cloud-based solutions), it nevertheless has at least 
three significant limitations. First, XACML-based policy specifications are not ex-
pressive enough to support many of the complex policies needed for AIS missions 
like those of the NSA and DoD. Second, to meet the scalability and efficiency re-
quirements of mission-critical tasks, the policy engine needs to operate in the cloud 
rather than externally. Third, secure query processing based on relational technology 
has limitations in representing and processing unstructured data needed for command 
and control applications.  
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To share the large amounts of data securely and efficiently, there clearly needs to be 
a seamless integration of the policy and data managers in the cloud. Therefore, in order 
to satisfy the cloud-centric AIS needs of the DoD and NSA, we need (i) a cloud-
resident policy manager that enforces information sharing policies expressed in a se-
mantically rich language, and (ii) a cloud-resident data manager that securely stores 
and retrieves data and seamlessly integrates with the policy manager.  To our know-
ledge, no such system currently exists. Therefore, our project is designing and develop-
ing such cloud-based assured information sharing system is proceeding in two phases.  

During phase 1, we are developing a proof of concept prototype of a Cloud-centric 
Assured Information Sharing System (CAISS) that is utilizes the technology compo-
nents we have designed in-house as well as open source tools.  CAISS consists of 
two components: a cloud-centric policy manager that enforces policies specified in 
RDF (resource description framework), and a cloud-centric data manager that will 
store and manage data also specified in RDF. This RDF data manager is essentially a 
query engine for SPARQL (SPARQL Protocol and RDF Query Language), a lan-
guage widely used by the semantic web community to query RDF data. RDF is a 
semantic web language that is considerably more expressive than XACML for speci-
fying and reasoning about policies. Furthermore, our policy manager and data manag-
er will have seamless integration since they both manage RDF data. We have chosen 
this RDF-based approach for cloud-centric AIS during Phase 1 because it satisfies the 
two necessary conditions stated in the previous paragraph, and we have already de-
veloped an RDF-based non-cloud centric policy manager [11] and an RDF-based 
cloud-centric data manager for AFOSR [12]. Having parts of the two critical compo-
nents needed to build a useful cloud-centric AIS system puts us in an excellent posi-
tion to build a useful proof of concept demonstration system CAISS. Specifically, we 
are enhancing our RDF-based policy engine to operate on a cloud, extend our cloud-
centric RDF data manager to integrate with the policy manager, and build an inte-
grated framework for CAISS.  

While our initial CAISS design and implementation will be the first system sup-
porting cloud-centric AIS, it will operate only on a single trusted cloud and will there-
fore not support information sharing across multiple clouds. Furthermore, while 
CAISS’s RDF-based, formal semantics approach to policy specification will be sig-
nificantly more expressive than XACML-based approaches, it will not support an 
enhanced machine interpretability of content since RDF does not provide a sufficient-
ly rich vocabulary (e.g., support for classes and properties). Phase 2 will therefore 
develop a fully functional and robust AIS system called CAISS++ that addresses 
these deficiencies. The preliminary design for CAISS++ is completed and will be 
discussed later in this paper.  CAISS is an important stepping-stone towards 
CAISS++ because CAISS can be used as a baseline framework against which 
CAISS++ can be compared along several performance dimensions, such as storage 
model efficiency and OWL-based policy expressiveness. Furthermore, since CAISS 
and CAISS++ share the same core components (policy engine and query processor), 
the lessons learned from the implementation and integration of these components in 
CAISS will be invaluable during the development of CAISS++. Finally, the evalua-
tion and testing of CAISS will provide us with important insights into the shortcom-
ings of CAISS, which can then be systematically addressed in the implementation of 
CAISS++.    
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We will also conduct a formal analysis of policy specifications and the software-
level protection mechanisms that enforce them to provide exceptionally high-
assurance security guarantees for the resulting system. We envisage CAISS++ to be 
used in highly mission-critical applications. Therefore, it becomes imperative to pro-
vide guarantees that the policies are enforced in a provably correct manner. We have 
extensive expertise in formal policy analysis [13-14] and their enforcement via ma-
chine-certified, in-line reference monitors [15-17]. Such analyses will be leveraged to 
model and certify security properties enforced by core software components in the 
trusted computing base of CAISS++. 

CAISS++ will be a breakthrough technology for information sharing due to the fact 
that it uses a novel combination of cloud-centric policy specification and enforcement 
along with a cloud-centric data storage and efficient query evaluation. CAISS++ will 
make use of ontologies, a sublanguage of the Web Ontology Language (OWL), to 
build policies. A mixture of such ontologies with a Semantic Web based rule language 
(e.g. SWRL) facilitates distributed reasoning on the policies to enforce security. Addi-
tionally, CAISS++ will include a RDF processing engine that provides cost-based 
optimization for evaluating SPARQL queries based on information sharing policies.  

We will discuss the design and implementation of CAISS in Section 2.1 and the 
design of CAISS++ in Section 2.2. Formal policy analysis and the implementation 
approach for CAISS++ will be provided in Sections 2.3 and 2.4, respectively. Related 
efforts are discussed in Section 3. The paper is concluded in Section 4.  

 

Fig. 1. CAISS Prototype Overview 

2 System Design and Implementation 

2.1 Proof of Concept Prototype of CAISS  

We are enhancing our tools developed for AFOSR on (i) secure cloud query 
processing with semantic web data, and (ii) semantic web-based policy engine, to de-
velop CAISS. Details of our tools are given in Section 4 (under related work). 1 In this 
section we will discuss the enhancements to be made to our tools to develop CAISS. 
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First, our RDF-based policy engine enforces access control, redaction and infe-
rence control policies on data represented as RDF graphs. Second, our cloud 
SPARQL query engine for RDF data uses the Hadoop/Mapreduce framework. Note 
that Hadoop is the Apache distributed file system and MapReduce sits on top of Ha-
doop and carries out job scheduling. As in the case of our cloud-based relational 
query processor prototype [9], our SPARQL query engine also handles policies are 
specified in XACML and the policy engine implements the XACML protocol. The 
use of XACML as a policy language requires extensive knowledge about the general 
concepts used in the design of XACML. Thus, policy authoring in XACML requires a 
steep learning curve, and is therefore a task that is left to an experienced administra-
tor. A second disadvantage of using XACML is related with performance. Current 
implementations of XACML require an access request to be evaluated against every 
policy in the system until a policy applies to the incoming request. This strategy is 
sufficient for systems with a relatively few users and policies. However, for systems 
with a large number of users and a substantial number of access requests, the afore-
mentioned strategy becomes a performance bottleneck. Finally, XACML is not suffi-
ciently expressive to capture the semantics of information sharing policies. Prior  
research has shown that semantic web-based policies are far more expressive. This is 
because semantic web technologies are based on description logic and have the power 
to represent knowledge as well as reason about knowledge. Therefore our first step is 
to replace the XACML-based policy engine with a semantic web-based policy engine. 
Since we already have our RDF-based policy engine, for the Phase 1 prototype we 
will enhance this engine and integrate it with our SPARQL query processor. Since our 
policy engine is based on RDF and our query processor also manages large RDF 
graphs there will be no impedance mismatch between the data and the policies.   

Enhanced Policy Engine. Our current policy engine has a limitation in that it does 
not operate in a cloud. Therefore, we will port our RDF policy engine to the cloud 
environment and integrate it with the SPARQL query engine for federated query 
processing in the cloud. Our policy engine will benefit from the scalability and the 
distributed platform offered by Hadoop's MapReduce framework to answer SPARQL 
queries over large distributed RDF triple stores (billions of RDF triples). The reasons 
for using RDF as our data model are as follows: (1) RDF allows us to achieve data 
interoperability between the seemingly disparate sources of information that are cata-
logued by each agency/organization separately. (2) The use of RDF allows participat-
ing agencies to create data-centric applications that make use of the integrated data 
that is now available to them. (3) Since RDF does not require the use of an explicit 
schema for data generation, it can be easily adapted to ever-changing user require-
ments. The policy engine's flexibility is based on its accepting high-level policies and 
executing them as query rules over a directed RDF graph representation of the data. 
While our prior work focuses on provenance data and access control policies, our 
CAISS prototype will be flexible enough to handle data represented in RDF and will 
include information sharing policies. The strength of our policy engine is that it can 
handle any type of policy that could be represented using RDF and horn logic rules.   

The second limitation of our policy engine is that it currently addresses certain types 
of policies such as confidentiality, privacy and redaction policies. We need to incorpo-
rate information sharing policies into our policy engine. We have however conducted 
simulation studies for incentive-based AIS as well as AIS prototypes in the cloud.  
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We have defined a number of information sharing policies such as “US gives informa-
tion to UK provided UK does not share it with India”.  We propose to specify such 
policies in RDF and incorporate them to be processed by our enhanced policy engine.  

 

Fig. 2. Operation of CAISS 

Enhanced SPARQL Query Processor. While we have  a  tool  that  will  execute 
SPARQL queries over large RDF graphs on Hadoop, there is still the need for sup-
porting path queries (that is,  SPARQL queries that provide answers to a request 
for  paths in a RDF graph).  A RDF triple can be viewed as an arc from the Subject to 
Object with the Predicate used to label the arc. The answers to the SPARQL query are 
based on reachability (that is, the paths between a source node and a target node). The 
concatenation of the labels on  the arcs along a path can be thought of as a word be-
longing to the answer set of the  path query.  Each term of a word is contributed by 
some predicate label of a triple in the RDF graph.  We propose an algorithm to de-
termine the candidate triples as an answer set  in a distributed RDF graph.  First, the 
RDF document is converted to a N-triple file that is split based on predicate la-
bels.  A  term in a word could correspond to some predicate file.  Second, we form 
the word by tracing an appropriate path in the distributed RDF graph. We use Ma-
pReduce jobs to build the word and to get the candidate RDF triples as an order set. 
Finally we return all of the set of ordered RDF triples as the answers to the corres-
ponding SPARQL query.                                                    

Integration Framework.  Figure 1 provides an overview of the CAISS architecture.  
The integration of the cloud-centric RDF policy engine with the enhanced SPARQL 
query processor must address the following. First, we need to make sure that RDF-
based policies can be stored in the existing storage schema used by the query proces-
sor. Second, we need to ensure that the enhanced query processor is able to efficiently 
evaluate policies (i.e., path queries) over the underlying RDF storage. Finally, we 
need to conduct a performance evaluation of CAISS to verify that it meets the  
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performance requirements of various participating agencies. Figure 2 illustrates the 
concept of operation of CAISS. Here, multiple agencies will share data in a single 
cloud. The enhanced policy engine and the cloud-centric SPARQL query processor 
will enforce the information sharing policies. This proof of concept system will drive 
the detailed design and implementation of CAISS++.   

 

Fig. 3. CAISS++ Scenario 

There are several benefits in developing a proof of concept prototype such as 
CAISS before we embark on CAISS++.  First CAISS itself is useful to share data 
within a single cloud. Second, we will have a baseline system that we can compare 
against with respect to efficiency and ease-of-use when we implement CAISS++. 
Third, this will give us valuable lessons with respect to the integration of the different 
pieces required for AIS in the cloud. Finally, by running different scenarios on 
CAISS, we can identify potential performance bottlenecks that need to be addressed 
in CAISS++.  

2.2 Design of CAISS++  

We have examined alternatives and  carried out a preliminary design of CAISS++. 
Based on the lessons learned from the CAISS prototype and the preliminary design of 
CAISS++, we will carry out a detailed design of CAISS++ and subsequently imple-
ment an operational prototype of CAISS++ during Phase 2. In this section we will 
first discuss the limitations of CAISS and then discuss the design alternatives for 
CAISS++.       

Limitations of CAISS. 1. Policy Engine: CAISS uses an RDF-based policy engine 
which has limited expressivity. The purpose of RDF is to provide a structure (or 
framework) for describing resources. OWL is built on top of RDF and it is designed 
for use by applications that need to process the content of information instead of just 
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presenting information to human users. OWL facilitates greater machine interpretabil-
ity of content than that supported by RDF by providing additional vocabulary for 
describing properties and classes along with a formal semantics. OWL has three in-
creasingly-expressive sublanguages: OWL Lite, OWL DL and OWL Full and one has 
the freedom to choose a suitable sublanguage based on application requirements. In 
CAISS++, we plan to make use of OWL which is much more expressive than RDF to 
model security policies through organization-specific domain ontologies as well as a 
system-wide upper ontology (note that CAISS++ will reuse an organization’s existing 
domain ontology or facilitate the creation of a new domain ontology if it does not 
exist. Additionally, engineer the upper ontology that will be used by the centralized 
component of CAISS++). Additionally, CAISS++ will make use of a distributed rea-
soning algorithm which will leverage ontologies to enforce security policies.  

2. Hadoop Storage Architecture: CAISS uses a static storage model wherein a user 
provides the system with RDF data only once during the initialization step. Thereaf-
ter, a user is not allowed to update the existing data. On the other hand, CAISS++ 
attempts to provide a flexible storage model to users. In CAISS++, a user is allowed 
to append new data to the existing RDF data stored in HDFS. Note that, only allowing 
a user to append new data rather than deleting/modifying existing data comes from 
the append-only restriction for files that is enforced by HDFS.   

3. SPARQL Query Processor: CAISS only supports simple SPARQL queries that 
make use of basic graph patterns (BGP). In CAISS++, support for other SPARQL 
query operators such as FILTER, GROUP BY, ORDER BY etc will be added. Addi-
tionally, CAISS uses a heuristic query optimizer that aims to minimize the number of 
MapReduce jobs required to answer a query. CAISS++ will incorporate a cost-based 
query optimizer that will minimize the number of triples that are accessed during the 
process of query execution.  

Design of CAISS++. CAISS++ overcomes the limitations of CAISS.  The detailed 
design of CAISS++ and its implementation will be carried out during Phase 2. The 
lessons learned from CAISS will also drive the detailed design of CAISS++. We as-
sume that the data is encrypted with appropriate DoD encryption technologies and 
therefore will not conduct research on encryption in this project. The concept of oper-
ation for CAISS++ is shown in interaction with several participating agencies in Fig-
ure 3 where multiple organizations share data in a single cloud.  
The design of CAISS++ is based on a novel combination of an OWL-based policy 
engine with a RDF processing engine. Therefore, this design is composed of several 
tasks each of which is solved separately after which all tasks are integrated into a 
single framework. (1) OWL-based policy engine: The policy engine uses a set of 
agency-specific domain ontologies as well as an upper ontology to construct policies 
for the task of AIS. The task of enforcing policies may require the use of a distributed 
reasoner, therefore, we will evaluate existing distributed reasoners. (2) RDF 
processing engine: The processing engine requires the construction of sophisticated 
storage architectures as well as an efficient query processor. (3) Integration Frame-
work: The final task is to combine the policy engine with the processing engine into 
an integrated framework. The initial design of CAISS++ will be based on a trade-off 
between simplicity of design vs. its scalability and efficiency. The first design alterna-
tive is known as Centralized CAISS++ and it chooses simplicity as the trade-off  
whereas the second design alternative known as Decentralized CAISS++ chooses 
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scalability and efficiency as the trade-off. Finally, we also provide a Hybrid CAISS++ 
architecture that tries to combine the benefits of both, Centralized and Decentralized 
CAISS++. Since CAISS++ follows a requirements-driven design, the division of tasks 
that we outlined above to achieve AIS are present in each of the approaches that we 
present next. 

 

Fig. 4. Centralized CAISS++ 

Centralized CAISS++. Figure 4 illustrates two agencies interacting hrough Centra-
lized CAISS++. Centralized CAISS++ consists of a shared cloud storage to store the 
shared data. All the participating agencies store their respective knowledge bases 
consisting of domain ontology with corresponding instance data.  Centralized 
CAISS++ also consists of an upper ontology, a query engine (QE) and a distributed 
reasoner (DR). The upper ontology is used to capture the domain knowledge that is 
common across the domains of participating agencies whereas, domain ontology cap-
tures the knowledge specific to a given agency or a domain. Note that the domain 
ontology for a given agency will be protected from the domain ontologies of other 
participating agencies. Policies can either be captured in the upper ontology or in any 
of the domain ontologies depending on their scope of applicability. Note that the do-
main ontology for a given agency will be protected from domain ontologies of other 
participating agencies.The design of an upper ontology as well as domain ontologies 
that capture the requirements of the participating agencies is a significant research 
area and is the focus of the ontology engineering problem. Ontologies will be created 
using suitable dialects of OWL which are based on Description Logics. Description 
Logics are usually decidable fragments of First Order Logic and will be the basis for 
providing sound formal semantics. Having represented knowledge in terms of ontolo-
gies, reasoning will be done using existing optimized reasoning algorithms. Query 
answering will leverage reasoning algorithms to formulate and answer intelligent 
queries. The encoding of policies in OWL will ensure that they are enforced in a 
provably correct manner. In Section 3.1 we present an on-going research project at 
UTD that focuses on providing a general framework for enforcing policies in a prova-
bly correct manner using the same underlying technologies. This work can be leve-
raged towards modeling and enforcement of security policies in CAISS++.  
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The instance data can choose between several available data storage formats (dis-
cussed later on). The QE receives queries from the participating agencies, parses the 
query and determines whether or not the computation requires the use of a DR. If the 
query is simple and does not require the use of a reasoner, the query engine executes 
the query directly over the shared knowledge base.  Once the query result has been 
computed the result is returned to the querying agency.  If however, the query is 
complex and requires inferences over the given data the query engine uses the distri-
buted reasoner to compute the inferences and then returns the result to the querying 
agency. A distributed DL reasoner differs from a traditional DL reasoner in its ability 
to perform reasoning over cloud data storage using the MapReduce framework. Dur-
ing the preliminary design of CAISS++ in Phase 1, we will conduct a thorough inves-
tigation of the available distributed reasoners using existing benchmarks such as 
LUBM [17]. The goal of this investigation is to determine if we can use one of the 
existing reasoners or whether we need to build our own distributed reasoner. In Figure 
4, an agency is illustrated as a stack consisting of a web browser, an applet and 
HTML. An agency uses the web browser to send the queries to CAISS++ which are 
handled by the query processor. 

 

Fig. 5. Decentralized CAISS++ 

The main differences between Centralized CAISS++ and CAISS (described in Sec-
tion 2.1) are as follows: (1) CAISS will use RDF to encode security policies whereas 
Centralized CAISS++ will use a suitable sublanguage of OWL which is more expres-
sive than RDF and can therefore capture the security policies better. (2) The SPARQL 
query processor in CAISS will support a limited subset of SPARQL expressivity i.e. it 
will provide support only for Basic Graph Patterns (BGP), whereas the SPARQL query 
processor in Centralized CAISS++ will be designed to support maximum expressivity 
of SPARQL. (3) The Hadoop storage architecture used in CAISS only supports data 
insertion during an initialization step. However, when data needs to be updated, the 
entire RDF graph is deleted and a new dataset is inserted in its place. On the other 
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hand, Centralized CAISS++, in addition to supporting the previous feature, also opens 
up Hadoop HDFS’s append-only feature to users. This feature allows users to append 
new information to the data that they have previously uploaded to the system.  

Decentralized CAISS++. Figure 5 illustrates two agencies in interaction with Decen-
tralized CAISS++. Decentralized CAISS++ consists of two parts namely Global 
CAISS++ and Local CAISS++. Global CAISS++ consists of a shared cloud storage 
which is used by the participating agencies to store only their respective domain ontol-
ogies and not the instance data unlike centralized CAISS++. Note that domain ontolo-
gies for various organizations will be sensitive, therefore, CAISS++ will make use of 
its own domain ontology to protect a participating agency from accessing other domain 
ontologies. When a user from an agency queries the CAISS++ data store, Global 
CAISS++ processes the query in two steps. In the first step, it performs a check to 
verify whether the user is authorized to perform the action specified in the query. If the 
result of step 1 verifies the user as an authorized user, then it proceeds to step 2 of 
query processing. In the second step, Global CAISS++ federates the actual query to the 
participating agencies. The query is then processed by the Local CAISS++ of a partici-
pating agency. The result of computation is then returned to the Global CAISS++ 
which aggregates the final result and returns it to the user. The step 2 of query 
processing may involve query splitting if the data required to answer a query spans 
multiple domains.  In this case the results of sub-queries from several agencies (their 
Local CAISS++) will need to be combined for further query processing. Once the re-
sults are merged and the final result is computed the result is returned to the user of the 
querying agency.  The figure illustrates agencies with a set of two stacks, one of 
which corresponds to the Local CAISS++ and the other consisting of a web browser, 
an applet and HTML, which is used by an agency to query Global CAISS++.  Table 1 
shows the pros and cons of the Centralized CAISS++ approach while Table 2 shows 
the pros and cons of the Decentralized CAISS++ approach. 

Hybrid CAISS++. Figure 6 illustrates an overview of Hybrid CAISS++ which leve-
rages the benefits of Centralized CAISS++ as well as Decentralized CAISS++. Hybr-
id CAISS++ architecture is illustrated in Figure 7. It is a flexible design alternative as 
the users of the participating agencies have the freedom to choose between Centra-
lized CAISS++ or Decentralized CAISS++. Hybrid CAISS++ is made up of Global 
CAISS++ and a set of Local CAISS++’s located at each of the participating agencies. 
Global CAISS++ consists of a shared cloud storage which is used by the participating 
agencies to store the data they would like to share with other agencies. 

Table 1. The pros and cons of Centralized CAISS++ 

PROS CONS 
Simple approach Difficult to update data. Expensive ap-

proach as data needs to be migrated to 
central storage on each update or a set of 
updates. 

Ease of implementation Leads to data duplication  
 
Easier to query  

If data is available in different formats it 
needs to be homogenized by translating 
it to RDF   
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Table 2. The pros and cons of Decentralized CAISS++ 

Advantages Disadvantages 
No duplication of data  Complex query processing. 
Scalable and Flexible Difficult to implement 
Efficient May require query rewriting and query 

splitting 

 

Fig. 6. Hybrid CAISS++ Overview 

A Local CAISS++ of an agency is used to receive and process a federated query on 
the instance data located at the agency. A participating group is a group comprising of 
users from several agencies who want to share information with each other. The 
members of a group arrive on a mutual agreement on whether they opt for centralized 
or decentralized approach. Additional users can join a group at a later point in time if 
the need arises. Hybrid CAISS++ will be designed to simultaneously support a set of 
participating groups. Additionally, a user can belong to several participating groups at 
the same time. We describe few use-case scenarios which illustrate the utility of Hy-
brid CAISS+.    

1) This case corresponds to the scenario where a set of users who want to securely 
share information with each other opt for a centralized approach.  Suppose users 
from Agency 1 want to share information with users of Agency 2 and vice versa, then 
both the agencies store their knowledge bases comprising of domain ontology and 
instance data on the shared cloud storage located at Global CAISS++. The centralized 
CAISS++ approach works by having the participating agencies arrive at mutual trust 
on using the central cloud storage. Subsequently, information sharing proceeds as in  
Centralized CAISS++. 
2) This case corresponds to the scenario where a set of users opt for a decentralized 
approach. For example, Agencies 3, 4 and 5 wish to share information with each other  
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Fig. 7. Hybrid CAISS++ Architecture 

and mutually opt for the decentralized approach. All the three agencies store their  
respective domain ontologies at the central cloud storage and this information is only 
accessible to members of this group. The subsequent information sharing process 
proceeds in the manner described earlier for the Decentralized CAISS++ approach. 
3) This case corresponds to the scenario where a user of an agency belongs to mul-
tiple participating groups, some of which opt for  the centralized approach and others 
for  the decentralized approach. Since the user is a part of a group using the centra-
lized approach to sharing, he/she needs to make his/her data available to the group by 
shipping his/her data to the central cloud storage. Additionally, since the user is also a 
part of a group using the decentralized approach for sharing he/she needs to respond 
to the federated query with the help of the Local CAISS++ located at his/her agency.  

Table 3 shows the trade-offs between the different approaches and this will enable 
users to choose a suitable approach of AIS based on their application requirements. 
Next we describe details of the cloud storage mechanism that makes use of Hadoop to 
store the knowledge bases from various agencies and then discuss the details of distri-
buted SPARQL query processing over the cloud storage. 

Table 3. A comparison of the three approaches based on functionality 

Functionality Centralized 
CAISS++ 

Decentralized 
CAISS++ 

Hybrid 
CAISS++ 

No Data Duplication X √ Maybe 
Flexibility X X √ 
Scalablility X √ √ 
Efficiency √ √ √ 
Simplicity - No query rewriting √ X X 
Trusted Centralized Cloud Data 
Storage 

√ X X 
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Fig. 8. Hadoop Storage Architecture used by CAISS++ 

Hadoop Storage Architecture. In Figure 8, we present an architectural overview of 
our Hadoop-based RDF storage and retrieval framework. We use the concept of a 
“Store” to provide data loading and querying capabilities on RDF graphs that are 
stored in the underlying HDFS. A store represents a single RDF dataset and can there-
fore contain several RDF graphs, each with its own separate layout. All operations on 
a RDF graph are then implicitly converted into operations on the underlying layout 
including the following:  
• Layout Formatter: This block performs the function of formatting a layout, which 
is the process of deleting all triples in a RDF graph while preserving the directory 
structure used to store that graph. 
• Loader: This block performs loading of triples into a layout. 
• Query Engine: This block allows a user to query a layout using a SPARQL 
query. Since our framework operates on the underlying HDFS, the querying mechan-
ism on a layout involves translating a SPARQL query into a possible pipeline of Ma-
pReduce jobs and then executing this pipeline on a layout.  
• Connection: This block maintains the necessary connections and configurations 
with the underlying HDFS. 
• Config: This block maintains configuration information such as graph names for 
each of the RDF graphs that make up a store.   
Since RDF data will be stored under different HDFS folders in separate files as a part 
of our storage schema, we need to adopt certain naming conventions for such folders 
and files.  

Naming Conventions: A Hadoop Store can be composed of several distinct RDF 
graphs in our framework. Therefore, a separate folder will be created in HDFS for each 
such Hadoop Store. The name of this folder will correspond to the name that has been 
selected for the given store. Furthermore, a RDF graph is divided into several files in 
our framework depending on the storage layout that is selected. Therefore, a separate 
folder will be created in HDFS for each distinct RDF graph. The name of this folder is 
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defined to be “default” for the default RDF graph while for a named RDF graph; the 
URI of the graph is used as the folder name. We use the abstraction of a store in our 
framework for the reason that this will simplify the management of data belonging to 
various agencies. Two of the layouts to be supported by our framework are given be-
low. These layouts use a varying number of HDFS files to store RDF data.  

 

Fig. 9. Vertically Partitioned Layout 

Vertically Partitioned Layout: Figure 9 presents the storage schema for the vertical-
ly partitioned layout. For every unique predicate contained in a RDF graph, this 
layout creates a separate file using the name of the predicate as the file name, in the 
underlying HDFS. Note that only the local name part of a predicate URI is used in a 
file name and a separate mapping exists between a file name and the predicate URI. A 
file for a given predicate contains a separate line for every triple that contains that 
predicate. This line stores the subject and object values that make up the triple. This 
schema will lead to significant storage space savings since moving the predicate name 
to the name of a file completely eliminates the storage of this predicate value. How-
ever, multiple occurrences of the same resource URI or literal value will be stored 
multiple times across all files as well as within a file. Additionally, a SPARQL query 
may need to lookup multiple files to ensure that a complete result is returned to a user, 
for example, a query to find all triples that belong to a specific subject or object. 

 

Fig. 10. Hybrid Layout 
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Hybrid Layout: Figure 10 presents the storage schema for the hybrid layout. This 
layout is an extension of the vertically partitioned layout, since in addition to the sepa-
rate files that are created for every unique predicate in a RDF graph, it also creates a 
separate triples file containing all the triples in the SPO (Subject, Predicate, Object) 
format. The advantage of having such a file is that it directly gives us all triples be-
longing to a certain subject or object. Recall that such a search operation required 
scanning through multiple files in the vertically partitioned layout. The storage space 
efficiency of this layout is not as good as the vertically partitioned layout due to the 
addition of the triples file. However, a SPARQL query to find all triples belonging to 
a certain subject or object could be performed more efficiently using this layout.  

 

Fig. 11. Distributed processing of SPARQL in CAISS++ 

Distributed Processing of SPARQL. Query processing in CAISS++ comprises of 
several steps (Figure 11). The first step is query parsing and translation where a given 
SPARQL query is first parsed to verify syntactic correctness and then a parse tree cor-
responding to the input query is built. The parse tree is then translated into a SPARQL 
algebra expression. Since a given SPARQL query can have multiple equivalent 
SPARQL algebra expressions, we annotate each such expression with instructions on 
how to evaluate each operation in this expression. Such annotated SPARQL algebra 
expressions correspond to query-evaluation plans which serve as the input to the opti-
mizer. The optimizer selects a query plan that minimizes the cost of query evaluation. 
In order to optimize a query, an optimizer must know the cost of each operation. To 
compute the cost of each operation, the optimizer uses a Metastore that stores statistics 
associated with the RDF data. The cost of a given query-evaluation plan is alternative-
ly measured in terms of the number of MapReduce jobs or the number of triples that 
will be accessed as a part of query execution. Once the query plan is chosen, the query 
is evaluated with that plan and the result of the query is output. Since we use a cloud-
centric framework to store RDF data, an evaluation engine needs to convert SPARQL 
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algebra operators into equivalent MapReduce jobs on the underlying storage layouts 
(described earlier). Therefore, in CAISS++ we will implement a MapReduce job for 
each of the SPARQL algebra operators. Additionally, the evaluation engine uses a 
distributed reasoner to compute inferences required for query evaluation.   

Framework Integration: The components that we have outlined that are a part of 
CAISS++ need to be integrated to work with another. Furthermore, this process of 
integration depends on a user’s selection of one of the three possible design choices 
provided with CAISS++, namely, Centralized CAISS++, Decentralized CAISS++ or 
Hybrid CAISS++. The integration of the various pieces of CAISS++ that have been 
presented so far needs to take into account several issues. First, we need to make sure 
that our ontology engineering process has been successful in capturing an agency’s 
requirements and additionally, the ontologies can be stored in the storage schema used 
by the Hadoop Storage Architecture. Secondly, we need to ensure that the distributed 
SPARQL query processor is able to efficiently evaluate queries (i.e., user-generated 
SPARQL queries as well as SPARQL queries that evaluate policies) over the underly-
ing RDF storage. Finally, we need to conduct a performance evaluation of CAISS++ 
to verify that it meets the performance requirements of various participating agencies 
as well as leads to significant performance advantages when compared with CAISS. 

Policy Specification and Enforcement: The users of CAISS++ can use a language 
of their choice (e.g., XACML, RDF, Rei, etc) to specify their information sharing 
policies. These policies will be translated into a suitable sub-language of OWL using 
existing or custom-built translators. We will extend our policy engine for CAISS to 
handle policies specified in OWL. In addition to RDF policies, our current policy 
engine can handle policies in OWL for implementing role-based access control, infe-
rence control, and social network analysis (please see Section 4).  

2.3 Formal Policy Analysis 

Our proposed framework is applicable to a variety of mission-critical, high-assurance 
applications that span multiple possibly mutually-distrusting organizations. In order to 
provide maximal security assurance in such settings, it is important to establish strong 
formal guarantees regarding the correctness of the system and the policies it enforces. 
To that end, we propose to examine the development of an infrastructure for con-
structing formal, machine-checkable proofs of important system properties and policy 
analyses for our system. While machine-checkable proofs can be very difficult and 
time-consuming to construct for many large software systems, our choice of 
SPARQL, RDF, and OWL as query, ontology, and policy languages, opens unique 
opportunities to elegantly formulate such proofs in a logic programming environment. 
We will encode policies, policy-rewriting algorithms, and security properties as a rule 
based, logical derivation system in Prolog, and will apply model-checking and theo-
rem-proving systems such as ACL2 to produce machine-checkable proofs that these 
properties are obeyed by the system. Properties that we intend to consider in our mod-
el include soundness, transparency, consistency and completeness. The results of our 
formal policy analysis will drive our detailed design and implementation of 
CAISS++. To our knowledge, none of the prior work has focused on such formal 
policy analysis for SPARQL, RDF and OWL. Our extensive research on formal poli-
cy analysis with in-line reference monitors is discussed under related work.  
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2.4 Implementation Approach  

The implementation of CAISS is being carried out in Java and is based on a flexible 
design where we can plug and play multiple components. A service provide and/or 
user will have the  flexibility to use the SPARQL query processor as well as the 
RDF-based policy engine as separate components or combine them. The open source 
component used for CAISS will include the Pellet reasoned as well as our in-house 
tools such as the SPARQL query processor on the Hadoop/MapReduce framework as 
well as the Cloud-centric RDF policy engine. CAISS will allow us to demonstrate 
basic AIS scenarios on our cloud based framework. 

In the implementation of CAISS++, we will again use Java as the programming 
language. We will use Protégé as our ontology editor during the process of ontology 
engineering which includes designing domain ontologies as well as the upper ontolo-
gy. We will also evaluate several existing distributed reasoning algorithms such as 
WebPIE and QueryPIE to determine the best algorithm that matches an agency’s 
requirements. The selected algorithm will then be used to perform reasoning over 
OWL-based security policies. Additionally, the design of the Hadoop Storage Archi-
tecture is based on Jena’s SPARQL Database (SDB) architecture and will feature 
some of the functionalities that are available with Jena SDB. The SPARQL query 
engine will also feature code written in Java. This code will consist of several mod-
ules including query parsing and translation, query optimization and query execution. 
The query execution module will consist of MapReduce jobs for the various operators 
of the SPARQL language. Finally, our Web-based user interface will make use of 
several components such as JBoss, EJB, JSF, among others. 

3 Related Work 

We will first provide an overview of our research directly relevant to our project and 
then discuss overall related work. We will also discuss product/technology competition. 

 

Fig. 12. HIVE-based Assured Cloud Query Processing 
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3.1 Our Related Research 

Secure Data Storage and Retrieval in the Cloud. We have built a web-based appli-
cation that combines existing cloud computing technologies such as Hadoop an open 
source distributed file system and Hive data warehouse infrastructure built on top of 
Hadoop with a XACML policy based security mechanism to allow collaborating or-
ganizations to securely store and retrieve large amounts of data [9, 12, 19]. Figure 12 
presents the architecture of our system. We use the services provided by the HIVE 
layer and Hadoop including the Hadoop Distributed File System (HDFS) layer that 
makes up the storage layer of Hadoop and allows the storage of data blocks across a 
cluster of nodes. The layers we have implemented include the web application layer, 
the ZQL parser layer, the XACML policy layer, and the query rewriting layer. The 
Web Application layer is the only interface provided by our system to the user to 
access the cloud infrastructure. The ZQL Parser [20] layer takes as input any query 
submitted by a user and either proceeds to the XACML policy evaluator if the query 
is successfully parsed or returns an error message to the user.  

The XACML Policy Layer is used to build (XACML Policy Builder) and evaluate 
(XACML Policy Evaluation) XACML policies. The Basic Query Rewriting Layer 
rewrites SQL queries entered by the user. The Hive layer is used to manage relational 
data that is stored in the underlying Hadoop HDFS [21].  In addition, we have also 
designed and implemented secure storage and query processing in a hybrid cloud [22]. 

 

Fig. 13. SPARQL-based Assured Cloud Query Processing 

Secure SPARQL Query Processing on the Cloud. We have developed a framework 
to query RDF data stored over Hadoop as shown in Figure 13. We used the Pellet 
reasoner to reason at various stages. We carried out real-time query reasoning using 
the pellet libraries coupled with Hadoop’s MapReduce functionalities. Our RDFquery 
processing is composed of two main steps: 1) the preprocessing and 2) the query op-
timization and execution.  
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Pre-processing: In order to execute a SPARQL query on RDF data, we carried out 
data pre-processing steps and stored the pre-processed data into HDFS. A separate 
MapReduce task was written to perform the conversion of RDF/XML data into N- 

Triples as well as for prefix generation. Our storage strategy is based on predicate 
splits [12]. 

Query Execution and Optimization: We have developed a SPARQL query execu-
tion and optimization module for Hadoop. As our storage strategy is based on predi-
cate splits, first, we examine the predicates present in the query. Second, we examine 
a subset of the input files that are matched with predicates. Third, SPARQL queries 
generally have many joins in them and all of these joins may not be possible to per-
form in a single map-reduce job. Therefore, we have developed an algorithm that 
decides the number of jobs required for each kind of query. As part of optimization, 
we applied a greedy strategy and cost-based optimization to reduce query processing 
time. We have also developed a XACML-based centralized policy engine that will 
carry out federated RDF query processing on the cloud. Details of the enforcement 
strategy are given in [12, 23, 24].  

RDF Policy Engine. In our prior work [11], we have developed a policy engine to 
processes RDF-based access control policies for RDF data. The policy engine is de-
signed with the following features in mind: scalability, efficiency and interoperability. 
This framework (Figure 14) can be used to execute various policies, including access 
control policies and redaction policies. It can also be used as a testbed for evaluating 
different policy sets over RDF data and to view the outcomes graphically.   Our 
framework presents an interface that accepts a high level policy, which is then trans-
lated into the required format. It takes a user’s input query and returns a response 
which has been pruned using a set of user-defined policy constraints. The architecture 
is built using a modular approach, therefore it is very flexible in that most of the  

 

 

Fig. 14. RDF Policy Engine 
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modules can be extended or replaced by another application module. For example, a 
policy module implementing a discretionary access control (DAC) could be replaced 
entirely by a RBAC module or we may decide to enforce all our constraints based on 
a generalized redaction model. It should be noted that our policy engine also handles 
role-based access control policies specified in OWL and SWRL [25]. In addition, it 
handles certain policies specified in OWL for inference control such as association 
based policies where access to collections of entities is denied and logical policies 
where A implies B and if access to B is denied then access to A should also be denied 
[25-27]. This capability of our policy engine will be useful in our design and imple-
mentation of CAISS++ where information is shared across multiple clouds.  

Assured Information Sharing Prototypes. We have developed multiple systems for 
AIS at UTD. Under an AFOSR funded project (between 2005-2008) we developed an 
XACML based policy engine to function on top of relational databases and demon-
strated the sharing of (simulated) medical data [6]. In this implementation, we speci-
fied the policies in XACML and stored the data in multiple Oracle database. When one 
organization request data from another organization, the policies are examined and 
authorized data is released. In addition, we also conducted simulation studies on the 
amount of data that would be lost by enforcing the policies while information sharing. 
Under our current MURI project, also funded by AFOSR, we have conducted simula-
tion studies for incentive based information sharing [28].  We have also examined risk 
based access control in an information sharing scenario [29]. In addition to access con-
trol policies, we have specified different types of policies including need to share poli-
cies and trust policies (e.g., A shared data with B provided B does not share the data 
with C). Note that the 9/11 commission report calls for the migration from the more 
restrictive need-to-know to the less restrictive need-to-share policies. These policies 
are key to support the specification of directive concerning AIS obligations.  

Formal Policy Analysis: UTD PI Hamlen is an expert in the emerging field of lan-
guage-based security, which leverages techniques from programming language theory 
and compilers to enforce software security and policy analysis. By reducing high-
level security policy specifications and system models to the level of the denotational 
and operational semantics of their binary-level implementations, our past work has 
developed formally machine-certifiable security enforcement mechanisms of a variety 
of complex software systems, including those implemented in .NET [16], Action-
Script [19], Java [13], and native code [31]. Working at the binary level provides 
extremely high formal guarantees because it permits the tool chain that produces mis-
sion-critical software components to remain untrusted; the binary code produced by 
the chain can be certified directly. This strategy is an excellent match for CAISS++ 
because data security specification languages such as XACML and OWL can be ele-
gantly reflected down to the binary level of bytecode languages with XML-aware 
system APIs, such as Java bytecode.  Our past work has applied binary-
instrumentation (e.g., in-lined reference monitoring) and a combination of binary 
type-checking [30], model-checking [18], and automated theorem proving (e.g., via 
ACL2) to achieve fully automated machine certification of binary software in such 
domains. 
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3.2 Overall Related Research  

While there are some related efforts none of the efforts have provided a solution to 
AIS in the cloud, nor have they conducted such a formal policy analysis.  

Secure Data Storage and Retrieval in the Cloud. Security for cloud has received 
recent attention [31]. Some efforts on implementing at the infrastructure level have 
been reported [32]. Such development efforts are an important step towards securing 
cloud infrastructures but are only in their inception stages. The goal of our system is 
to add another layer of security above the security offered by Hadoop [19]. Once the 
security offered by Hadoop becomes robust it will only strengthen the effectiveness of 
our system. Similar efforts have been undertaken by Amazon and Microsoft for their 
cloud computing offerings [33-34]. However, this work falls in the public domain 
whereas our system is designed for a private cloud infrastructure. This distinguishing 
factor makes our infrastructure “trusted” over public infrastructures where the data 
must be stored in an encrypted format. 

SPARQL Query Processor. Only a handful of efforts have been reported on 
SPARQL query processing. These include BioMANTA [35] and SHARD [36]. Bio-
MANTA proposes extensions to RDF Molecules [37] and implements a MapReduce 
based Molecule store [38]. They use MapReduce to answer the queries. They have 
queried a maximum of 4 million triples. Our work differs in the following ways: first, 
we have queried 1 billion triples. Second, we have devised a storage schema which is 
tailored to improve query execution performance for RDF data. To our knowledge, 
we are the first to come up with a storage schema for RDF data using flat files in 
HDFS, and a MapReduce job determination algorithm to answer a SPARQL query. 
SHARD (Scalable, High-Performance, Robust and Distributed) is a RDF triple store 
using the Hadoop Cloudera distribution. This project shows initial results demonstrat-
ing Hadoop’s ability to improve scalability for RDF datasets. However, SHARD 
stores its data only in a triple store schema. It does no query planning or reordering, 
and its query processor will not minimize the number of Hadoop jobs. None of the 
efforts have incorporated security policies. 

RDF-Based Policy Engine. There exists prior research devoted to the study of en-
forcing policies over RDF stores. These include the work in [39], which uses RDF for 
policy specification and enforcement.  In addition, the policies are generally written 
in RDF. In [40], the authors propose an access control model for RDF. Their model is 
based on RDF data semantics and incorporates RDF and RDF Schema (RDFS) en-
tailments.  Here protection is provided at the resource level, which adds granularity to 
their framework. Other frameworks enforcing policies over RDF\OWL include [41-
42]. [41] describes KAoS, a policy and domain services framework that uses OWL 
both, to represent policies and domains. [42] introduces Rei, a policy framework that 
is flexible and allows different kinds of policies to be stated. Extensions to Rei have 
been proposed recently [43]. The policy specification language allows users to devel-
op declarative policies over domain specific ontologies in RDF, DAML+OIL and 
OWL. The authors in [44] also introduced a prototype, RAP, for implementation of an 
RDF store with integrated maintenance capabilities and access control. These frame-
works, however do not address cases where the RDF store can become very large or 
the case where the policies do not scale with the data. Under an IARPA funded 
project, we have developed techniques for very large RDF graph processing [45].  
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Hadoop Storage Architecture. There has been significant interest in large-scale 
distributed storage and retrieval techniques for RDF data. The theoretical designs of a 
parallel processing framework for RDF data are presented in the work done by Cas-
tagna et al. [46]. This work advocates the use of a data distribution model with vary-
ing levels of granularity such as triple level, graph level and dataset level. A query 
over such a distributed model is then divided into a set of sub-queries over machines 
containing the distributed data. The results of all sub-queries will then be merged to 
return a complete result to a user application. Several implementations of this theoret-
ical concept exist in the research community. These efforts include the work done by 
Choi et al. [47] and Abraham et al. [48]. A separate technique that has been used to 
store and retrieve RDF data makes use of peer-to-peer systems [49-52]. However, 
there are some drawbacks with such systems as peer-to-peer systems need to have 
super peers that store information about the distribution of RDF data among the peers. 
Another disadvantage is a need to federate a SPARQL query to every peer in the  
network. 

Distributed Reasoning. InteGrail system uses distributed reasoning, whose vision is 
to shape the European railway organization of the future [53]. In [54] authors have 
shown a scalable implementation of RDFS reasoning based on MapReduce which can 
infer 30 billion triples from a real-world dataset in less than two hours, yielding an 
input and output throughput of 123.000 triples/second and 3.27 million triples/second 
respectively.  They have presented some non-trivial optimizations for encoding the 
RDFS ruleset in MapReduce and have evaluated the scalability of their implementa-
tion on a cluster of 64 compute nodes using several real-world datasets. 

Access Control and Policy Ontology Modeling. There have been some attempts to 
model access control and policy models using semantic web technologies. In [55], 
authors have shown how OWL and Description Logic can be used to build an access 
control system. They have developed a high level OWL-DL ontology that expresses 
the elements of a role based access control system and have built a domain-specific 
ontology that captures the features of a sample scenario. Finally, they have joined 
these two artifacts to take into account attributes in the dentition of the policies and in 
the access control decision. In [56], authors first presented a security policy ontology 
based on the DOGMA which is a formal ontology engineering framework. This on-
tology covers the core elements of security policies (i.e. Condition, Action, Resource) 
and can easily be extended to represent specific security policies, such as access con-
trol policies. In [57], authors present an ontologically-motivated approach to multi-
level access control and provenance for information systems.  

3.3 Commercial Developments 

RDF Processing Engines: Research and commercial RDF processing engines in-
clude Jena by HP labs, BigOWLIM and RDF-3X. Although the storage schemas and 
query processing mechanisms for some of these tools are proprietary, they are all 
based on some type of indexing strategy for RDF data. However, only a few tools 
exist that use a cloud-centric architecture for processing RDF data and moreover, 
these tools are not salable to a very large number of triples. In contrast, our proposed 
query processor in CAISS++, will be built as a planet-scale RDF processing engine 



 Cloud-Centric Assured Information Sharing 23 

that supports all SPARQL operators and will provide optimized execution strategies 
for SPARQL queries and can scale to billions of triples. Semantic Web based Secu-
rity Policy engines: As stated in Section 3.2, the current work on semantic web-based 
policy specification and enforcement does not address the issues of policy generation 
and enforcement for massive amounts of data and support large number of users. 
Cloud: To the best of our knowledge there is no significant commercial competition 
for cloud-centric AIS. Since we have taken a modular approach to the creation of our 
tools, we can  iteratively refine each component (policy engine, storage architecture 
and query processor) separately. Due to the component-based approach we have tak-
en, we will be able to adapt to changes in the platforms we use (e.g., Hadoop, RDF, 
OWL and SPARQL) without having to depend on the particular features of a given 
platform.      

4 Summary and Directions 

This paper has described our design and implementation of a cloud-based information 
sharing system that called CAISS. CAISS utilizes several of the technologies we have 
developed for AFOS as well as open source tools. We also described the design of an 
ideal cloud-based assured information sharing system called CAISS++. Based on the 
lessons learned from the implementation of CAISS we will then carry out a detailed 
design of CAISS++ and subsequently implement the system that will be the first of its 
kind for cloud-based assured information sharing.  
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