
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Yang, Qianqian, Turner, Ian, Moroney, Timothy J., & Liu, Fawang
(2014)
A finite volume scheme with preconditioned Lanczos method for two-
dimensional space-fractional reaction–diffusion equations.
Applied Mathematical Modelling, 38(15-16), pp. 3755-3762.

This file was downloaded from: https://eprints.qut.edu.au/72905/

c© Copyright 2014 Elsevier

This is the author’s version of a work that was accepted for publication in Applied Math-
ematical Modelling. Changes resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality control mechanisms may not
be reflected in this document. Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently published in Applied Math-
ematical Modelling, [in press] DOI: 10.1016/j.apm.2014.02.005

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1016/j.apm.2014.02.005

https://eprints.qut.edu.au/view/person/Yang,_Qianqian.html
https://eprints.qut.edu.au/view/person/Turner,_Ian.html
https://eprints.qut.edu.au/view/person/Moroney,_Timothy.html
https://eprints.qut.edu.au/view/person/Liu,_Fawang.html
https://eprints.qut.edu.au/72905/
https://doi.org/10.1016/j.apm.2014.02.005


A finite volume scheme with preconditioned Lanczos

method for two-dimensional space-fractional

reaction-diffusion equations

Q. Yang1,∗, I. Turner, T. Moroney, F. Liu

School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434,
Brisbane, QLD 4001, Australia.

Abstract

Fractional differential equations have been increasingly used as a powerful
tool to model the non-locality and spatial heterogeneity inherent in many
real-world problems. However, a constant challenge faced by researchers in
this area is the high computational expense of obtaining numerical solu-
tions of these fractional models, owing to the non-local nature of fractional
derivatives. In this paper, we introduce a finite volume scheme with precon-
ditioned Lanczos method as an attractive and high-efficiency approach for
solving two-dimensional space-fractional reaction-diffusion equations. The
computational heart of this approach is the efficient computation of a matrix-
function-vector product f(A)b, where A is the matrix representation of the
Laplacian obtained from the finite volume method and is non-symmetric. A
key aspect of our proposed approach is that the popular Lanczos method for
symmetric matrices is applied to this non-symmetric problem, after a suit-
able transformation. Furthermore, the convergence of the Lanczos method is
greatly improved by incorporating a preconditioner. Our approach is show-
cased by solving the fractional Fisher equation including a validation of the
solution and an analysis of the behaviour of the model.
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1. Introduction

Fractional differential equations have been increasingly used as a power-
ful tool to model the non-locality and spatial heterogeneity inherent in many
real-world problems. As an illustration of this fact, the following books on
fractional calculus, anomalous diffusion and its applications have all been
published within the last five years: Baleanu et al. [1, 2], Klages et al.
[3], Meerschaert and Sikorskii [4], Klafter et al. [5], Mainardi [6], Tarasov
[7], Sabatier et al. [8], Ortigueira [9]. For the most recent and up-to-date
developments on fractional models across a wide range of disciplines, the in-
terested reader is strongly recommended to consult these excellent works, all
by eminent experts in the field.

The booming popularity of fractional models has stimulated demand for
efficient solution techniques which can provide rapid insight and visualisation
into solution behaviours. It is well-known that analytical solutions are avail-
able only for some special, simple (usually linear) fractional models. To solve
more general fractional models (either linear or nonlinear), numerical solu-
tion techniques are preferred. During the last decade, a large amount of work
has been undertaken in this area by many authors, including finite difference
methods (e.g. [10, 11, 12, 13]), finite element methods (e.g. [14, 15, 16]),
finite volume methods (e.g.[17, 18, 19]), spectral methods (e.g. [20, 21]) and
mesh-free methods (e.g. [22, 23]).

A constant challenge faced by researchers in this area is the high com-
putational expense of obtaining numerical solutions to fractional differen-
tial equations, owing to the non-local nature of fractional derivatives. The
search for high-efficiency numerical methods that can significantly reduce the
amount of computational time has become a new trend in the literature.

Preconditioning and Krylov subspace techniques have been a common
theme in this context, with authors seeking to reduce the cost of solving
the (typically dense) linear systems or matrix function equations that arise
from spatial discretisations of fractional differential equations. Yang et al.
[15, 18, 24] have developed preconditioners based on eigenvalue deflation.
Burrage et al. [16] considered both algebraic multigrid and incomplete LU
preconditioning. For the two-sided space-fractional diffusion equation, Mo-
roney and Yang have proposed fast Poisson preconditioner [25] and banded
preconditioner [26].
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In this paper, we will showcase the high-efficiency of our preconditioned
Lanczos method by solving the space-fractional reaction-diffusion equation

∂u

∂t
= −Kα(−∇2)α/2u+ g(u), (x, y) ∈ Ω, t > 0, (1)

with homogeneous Neumann boundary conditions on two-dimensional un-
structured meshes. The fractional Laplacian operator −(−∇2)α/2 of order
1 < α ≤ 2 is defined on the finite domain Ω through its eigenfunction expan-
sion [27].

The spatial discretisation of (1) is obtained using the matrix transfer
technique [27]. With this approach, any standard method such as finite
differences, finite elements, finite volumes, etc. may be used to discretise
the non-fractional operator −∇2, yielding a matrix representation A of the
operator. The discrete representation of the fractional Laplacian −(−∇2)α/2

is then simply −Aα/2. Under the matrix transfer technique, the semidiscrete
form of (1) is thus

du

dt
= −KαA

α/2u + g(u), (2)

where u(t) is a vector-valued function approximating u(xi, yi, t) at each mesh
node (xi, yi).

Though the standard spatial discretisations of the Laplacian give rise to
a sparse matrix A, the fractional power Aα/2 is dense. Hence, methods
for solving (2) that avoid forming Aα/2 explicitly are preferred. Previously,
Yang et al. [15] showed how to use Krylov subspace methods to solve (2)
without forming Aα/2 when A is generated using finite differences or finite
elements under homogeneous Dirichlet boundary conditions. In the former
case, A is symmetric positive definite, and the standard Lanczos method
was used. In the latter case, A becomes non-symmetric due to the influence
of the mass matrix, and the authors used the M-Lanczos method. In both
cases, preconditioning was applied to the Krylov subspace method in order
to speed convergence, however, this was more challenging in the case of the
finite element / M-Lanczos method. In Yang et al. [18], the finite volume
method was used to generate A, and it was shown that although the matrix is
non-symmetric, a simple transformation allows the standard Lanczos method
to be used in this case.
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In the present work, we further improve the method by extending the
preconditioner first developed by Yang et al. [15] for finite differences to the
present method using finite volumes. This new method represents the most
versatile numerical scheme of its type for solving (2), being applicable on
completely unstructured meshes, while retaining the simplicity and efficiency
of the original finite difference-based method.

The outline of the paper is as follows. In Section 2, we propose the nu-
merical scheme for approximating (1) using a finite volume method. With
the help of the matrix transfer technique, the solution is written in terms
of a matrix-function-vector product f(A)b, where A is non-symmetric. In
Section 3, we investigate the matrix-function approximation techniques for
computing f(A)b. In particular, we review the technique for applying the
standard Lanczos method to the non-symmetric matrix. In the aspect of ac-
celerating the convergence of the Lanczos method, we highlight the extension
of adapting the preconditioner which was previously used for homogeneous
Dirichlet conditions to homogeneous Neumann conditions, which gives rise
to numerical issues different than Dirichlet conditions as the discrete Lapla-
cian matrix A is now singular. Section 4 gives detailed numerical results and
analysis of the fractional Fisher equation. Section 5 gives some conclusions
from this work.

2. A finite volume numerical scheme

In this section, we outline the numerical scheme for solving the space-fractional
reaction-diffusion equation (1) under homogeneous Neumann boundary con-
ditions. We discretise in space using the vertex-centred finite volume method,
which begins with a triangulation of the domain Ω. Let the number of the
nodes in the triangulation be denoted N . Around each node, we construct
a control volume (CV) by connecting element centroids to face midpoints,
as described in Ewing et al. [28]. This generates a dual mesh of control
volumes, and we denote by Vi the ith CV, which has area ∆Vi. These CVs
form a partition of the domain Ω, so that Ω =

⋃N
i=1 Vi.

According to the matrix transfer technique [27], to derive the finite volume
discretisation of (1), one first begins by considering the non-fractional equa-
tion

∂u

∂t
= −Kα(−∇2)u+ g(u). (3)
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Integrating (3) over a control volume Vi, we obtain

d

dt

∫
Vi

u dV = −Kα

∫
Γi

(−∇u · n) dσ +

∫
Vi

g(u) dV (4)

where the order of differentiation and integration has been interchanged on
the left, and the divergence theorem has been applied to the first term on
the right in order to write it as an integral over the CV boundary Γi. Letting
ui denote the numerical solution at the ith node, we make the standard ap-
proximations

∫
Vi
u dV = ∆Viui and

∫
Vi
g(u) dV = ∆Vig(ui) and approximate

the surface integral by the sum of midpoint rule approximations over each
face, to obtain

∆Vi
dui
dt

= −Kα

∑
j∈Fi

(−∇u · n)mpj
∆Aj + ∆Vig(ui), (5)

where Fi denotes the set of CV faces comprising Γi, ∆Aj is the length of the
jth CV face and mpj denotes the midpoint of the jth CV face. Interpolation
is required to approximate the flux at each CV face midpoint. The underly-
ing triangular mesh provides the means for this, with standard linear shape
functions used to compute a constant gradient for each triangle. In this way
the total flux across the CV boundary is computed as a linear function of
the nodal value ui and the values uj for any node j sharing an element with
node i.

By imposing equation (5) at each mesh node, a system of differential equa-
tions is obtained

M
du

dt
= −KαKu + Mg(u) (6)

where u = [u1, u2, ..., uN ]T is the numerical solution approximating u(xi, yi, t)
at each mesh node (xi, yi). The matrix M = diag(∆Vi) is diagonal and repre-
sents the contributions from the CV areas. The matrix K is sparse, symmet-
ric, positive semi-definite, and represents the contributions from each node
towards the total flux through each CV. We note that K possesses a single
zero eigenvalue owing to the Neumann boundary conditions imposed on the
problem.

By writing (6) as
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du

dt
= −KαAu + g(u) (7)

and comparing with (3), we identify

A = M−1K (8)

as the finite volume representation of the negative Laplacian (−∇2).

Having obtained the matrix representation of this operator under the fi-
nite volume discretisation, the representation of the fractional Laplacian
−(−∇2)α/2 is simply −Aα/2 using the matrix transfer technique [27]. Hence
we derive the spatial discretisation (2) for the space-fractional diffusion equa-
tion (1).

We now discretise in time using a mixed implicit-explicit scheme. Let tn = nτ
for n = 0, 1, ..., where τ is the timestep. Integrating (2) from time tn to time
tn+1, we obtain

u(tn+1)− u(tn) = −
∫ tn+1

tn

KαA
α/2u dt+

∫ tn+1

tn

g(u) dt. (9)

Treating the flux term implicitly, and the source term explicitly, both to first
order in time, we derive the fully discrete equation

un+1 = (I + τKαA
α/2)−1(un + τg(un)) (10)

where un denotes the numerical solution vector at time tn. We note that the
stability of this first-order temporal scheme is determined by the stability of
the explicit Euler method applied to the nonlinear source term g [29].

To advance the solution in time, we write the solution (10) in terms of
the matrix-function-vector product

un+1 = f(A)bn (11)

where f(A) = (I+τKαA
α/2)−1 and bn = un+τg(un). In the next section we

discuss how to use a preconditioned Lanczos method to obtain this matrix-
function-vector product (11) without ever forming the dense matrix Aα/2.
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3. Preconditioned Lanczos method

The standard Lanczos approximation to the matrix-function-vector product
f(A)b, for symmetric A is (see, for example, van der Vorst [30]):

f(A)b ≈ ||b||Vmf(Tm)e1, b = ||b||Vme1 (12)

where

AVm = VmTm + βmvm+1e
T
m (13)

is the Lanczos decomposition of A, Tm is symmetric and tridiagonal, and
the columns of Vm form an orthonormal basis for the Krylov subspace
Km(A,b) = span{b,Ab, ...,Am−1b} with m � n. The matrix-function-
vector product f(A)b can therefore be approximated by computing the much
smaller tridiagonal matrix function f(Tm) via (12) and (13).

There are several difficulties in applying this method to the finite volume rep-
resentation of the Laplacian. First, the matrix A = M−1K from equation (8)
is not symmetric, despite the fact that the Laplacian itself is a self-adjoint
operator. Second, without some form of preconditioning, the rate at which
the Lanczos approximation converges can be unacceptably slow.

In our previous work [18], we addressed the first issue, by introducing the ma-
trix Ã = M−1/2KM−1/2, which is symmetric and similar to A, and showing
that

f(A) = M−1/2f(Ã)M1/2. (14)

Using this relationship, the matrix-function-vector product (11) can be com-
puted by applying the Lanczos method (12) to the symmetric matrix Ã as
follows

un+1 = f(A)bn = M−1/2f(Ã)b̃, b̃ = M1/2bn. (15)

Importantly, Ã itself need never be formed, since only matrix-vector products
are required for the Lanczos method, and these can be computed by observ-
ing that Ãv = M−1/2(K(M−1/2v)) for any vector v. Furthermore, since M is
diagonal, the products M±1/2v are simply row scalings and attract little cost.
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We now address the second issue, of slow convergence, by adapting a precon-
ditioner that has previously been used for finite difference Laplacian matrices
[15]. The purpose of this preconditioner is to deflate the smallest k eigenval-
ues of Ã by shifting them to the middle of the spectrum, so that convergence
of the Lanczos method proceeds according to the more favourable, modified
spectrum.

We suppose that the smallest k eigenvalues {λi}ki=1 and corresponding eigen-
vectors {qi}ki=1 of Ã have been computed. Then setting Qk = [q1,q2, ...,qk]
and Λk = diag{λ1, ..., λk}, Baglama et al. [31] and Erhel et al. [32] have
both proposed the preconditioner Z−1 taking the form

Z−1 = λ∗QkΛ
−1
k QT

k + I−QkQ
T
k (16)

where λ∗ = (λmin + λmax)/2 is the value to which the smallest k eigenvalues
will be mapped. The key observation is the following relationship between
f(Ã) and f(ÃZ−1) [33]:

f(Ã)b̃ = Qkf(Λk)Q
T
k b̃ + f(ÃZ−1)b̂ (17)

where b̂ = (I −QkQ
T
k )b̃. Furthermore, ÃZ

−1
is symmetric whenever Ã is

symmetric [33]. Hence, we can apply the Lanczos method to ÃZ
−1

rather
than Ã.

The goal of preconditioning is to reduce the number of iterations required
for the accuracy of the approximation (12) to fall below a given tolerance.
Yang et al. [15] have derived the error bound

||f(Ã)b̃− ||b̃||Vmf(Tm)e1|| ≤ f(λ̃1)||rm|| (18)

for the unpreconditioned problem, where rm = −||b̃||βm(eTmT−1
m e1)vm+1 is

the residual for the Full Orthogonalisation Method (FOM) applied to the
linear system Ãx = b̃ and λ̃1 is the smallest eigenvalue of Tm. Since by (17)
the preconditioner introduces no additional error into the approximation, an
identical bound holds for the preconditioned problem, with Ã replaced by
ÃZ−1 and b̃ replaced by b̂ in (18). In our numerical experiments, we will
demonstrate the effectiveness of the preconditioner at reducing the number
of iterations m required to achieve a given tolerance level.
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At this point, we notice that the preconditioner Z−1 originally derived by
Baglama et al. [31] and Erhel at al. [32] is under the assumption that Ã
is nonsingular. Indeed, the very notation Z−1 suggests this. However, in
practice Z−1 itself is never formed, since only the matrix-vector products
with ÃZ−1 are required for the Lanczos method. Yang et al. [24] showed
that for any vector v, the product ÃZ−1v can be computed using the simpler
formula

ÃZ−1v = Ãv + QkΩkQ
T
k v (19)

where Ωk = λ∗I − Λk. This formula involves no division by eigenvalues,
and hence is applicable even in the case where Ã is singular, such as when
Neumann boundary conditions are imposed.

One final question is how to efficiently compute the smallest k eigenvalues
and eigenvectors of Ã required in the preconditioner. A natural approach
is to apply the Lanczos method itself [34]. In other words, perform a single
initial cycle of unpreconditioned Lanczos iteration, before commencing the
time-stepping proper, in order to determine spectral information that will
accelerate every subsequent Lanczos iteration. We also note that for the
problem with Neumann boundary conditions, the zero eigenvalue and asso-
ciated eigenvector of ones is known, and can be deflated as part of the initial
cycle.

The entire procedure for computing (11) is now summarised.

1. Perform an initial cycle of unpreconditioned Lanczos iteration to deter-
mine the k smallest eigenvalues {λi}ki=1 and corresponding eigenvalues
{qi}ki=1 of Ã.

2. Form the matrices Qk = [q1,q2, ...,qk], Λk = diag{λ1, ..., λk} and Ωk =
λ∗I−Λk.

3. For each timestep n = 0, 1, ...

(a) Form the vectors bn = un + τg(un), b̃ = M1/2bn and b̂ = b̃ −
Qk(Q

T
k b̃).

(b) Perform the preconditioned Lanczos iteration on the vector b̂
to obtain the decomposition ÃZ−1Vm = VmTm + βmvm+1e

T
m,

b̂ = ||b̂||Vme1, stopping the first time that the error bound
f(λ̃1)||rm|| falls below the prescribed tolerance. The Krylov sub-
space Km(ÃZ−1, b̂) = span{b̂, ÃZ−1b̂, ..., (ÃZ−1)m−1b̂} is formed
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by computing matrix-vector products ÃZ−1v = M−1/2(K(M−1/2v))+
Qk(Ωk(Q

T
k v)) according to (19).

(c) Compute w1 = ||b̂||Vmf(Tm)e1 which approximates f(ÃZ−1)b̂
according to (12).

(d) Compute w2 = Qk(f(Λk)(Q
T
k b̃))+w1 which approximates f(Ã)b̃

according to (17).
(e) Compute un+1 = M−1/2w2 which approximates f(A)bn according

to (15).

4. Numerical Results

4.1. Validation

We consider equation (1) on the domain Ω = {(x, y)|x2 + y2 ≤ 1} with
source term g(u) = u(1 − u), so that we have Fisher’s equation on the unit
disk. Homogeneous Neumann conditions are imposed on ∂Ω. The initial
condition is u(x, y, 0) = e−10(x2+y2), the diffusion coefficient is Kα = 0.05 and
the fractional order is α = 1.8.

This problem is radially symmetric, so we may validate our finite volume
solution, which is computed on a two-dimensional unstructured triangular
mesh in (x, y) coordinates, against a finite difference solution computed on
a one-dimensional uniform mesh using polar coordinates (r, θ). In polar
coordinates, the finite difference matrix representation of the Laplacian with
homogeneous Neumann conditions is [35]:

A =


4 −4
−1

2
2 −3

2

· · ·
−2N−5

2N−4
2 −2N−3

2N−4

−2 2


where the ith row corresponds to the node ri = (i− 1)∆r for i = 1, 2, . . . N .
We first compute the benchmark solution at time T = 1 by applying the
iteration (11) with a mesh spacing of ∆r = 2−13 and timestep of τ = 2−14.
The matrix function f(A) is computed by diagonalising the 8192 × 8192
tridiagonal matrix A.

We then compute the finite volume solution at the same time T = 1 using
the method described in Sections 2 and 3 on two different triangular meshes
with timestep τ = 2−14. The results are exhibited in Table 1. Each row
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Table 1: Validation of the finite volume solution against the benchmark finite
difference solution. The error reduces at a rate consistent with second order
spatial accuracy.

Nodes Diameter (D) Error (E) D-ratio E-ratio
6810 0.0356 4.024E-4
26993 0.0185 1.078E-4 1.924 3.733 ≈ 1.9242

lists the number of nodes in the mesh, the maximum element diameter, the
maximum difference (error) between the benchmark finite difference solution
(interpolated onto the triangular mesh) and the finite volume solution, and
finally the ratios of the element diameters and errors. We observe that the
error reduces from the first mesh to the second in a manner consistent with
second order accuracy in space, which is the spatial accuracy of the finite
volume discretisation of the Laplacian [28].

The small timestep size τ = 2−14 was chosen in order to emphasise the
spatial error in this example. However, as we show in our next example, the
first order implicit/explicit temporal scheme used for this problem can still
deliver acceptable solutions with moderate stepsizes.

4.2. Comparison and efficiency

We now consider a problem without radial symmetry, for which a one-
dimensional finite difference solution is unavailable. The problem is again
Fisher’s equation on the unit disk with homogeneous Neumann conditions.
We use a triangulation consisting of 1513 nodes and 2900 elements, and
place a small initial concentration of 0.01 at the node closest to (0.1,−0.1).
We consider two cases: standard diffusion with α = 2 and Kα = 16 ×
10−4 and fractional diffusion with α = 1.5 and Kα = 5 × 10−4. We note
that whatever the values of Kα, the fractional diffusion problem will always
reach its carrying capacity “sooner” than the standard diffusion problem,
as discussed in [36, 18, 16]. The interest in this example is to compare
the manner in which the two solutions evolve, and hence the values of the
diffusion coefficients Kα have been chosen so that both solutions reach 80
percent of their carrying capacity at approximately the same time. The
simulation is run to time t = 25, with a stepsize of τ = 0.1. The mesh
and stepsize resolutions lead to numerical solutions for this problem that,
while not fully grid-independent, are sufficiently accurate to illustrate the
behaviour under discussion, and also to make useful runtime comparisons.
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We also note that τ = 0.1 satisfies the stability requirement for the explicit
Euler method applied to the Fisher source term g(u) = u(1−u), which linear
stability analysis about the steady-state solution u = 1 easily shows to be
τ ≤ 2.
Figures 1 and 2 illustrate the difference in the progressions of the two so-
lutions towards their common steady state u = 1. Figure 1 shows that the
fractional-order solution (α = 1.5) exhibits slower growth at first, but eventu-
ally overtakes the integer-order solution (α = 2) to reach its carrying capacity
sooner. Figure 2 illustrates spatially why this is the case. At early times,
as in the top row of the figure, standard diffusion promotes faster growth
near the centre, whereas fractional diffusion implies a sharper profile with
less spreading of concentration and hence less overall promotion of growth.
However, as time proceeds, the heavier tails for the fractional diffusion result
in more significant concentrations reaching the extremities of the domain ear-
lier than for standard diffusion. The subsequent promotion of growth in and
around the extremities allows the fractional solution to eventually overtake
the standard solution. At the point in the simulation illustrated in the bot-
tom row of Figure 2, the fractional solution is exhibiting significant growth
throughout the entire domain, while the standard solution still exhibits very
little growth at the points furthest from (0.1,−0.1) (that is, at points fur-
thest from the location for the initial seed of concentration).

Figure 1: Percentage of carrying capacity versus time for the solution of the
(fractional) Fisher’s equation on the unit disk. Blue: α = 2, Kα = 16×10−4;
Red: α = 1.5, Kα = 5× 10−4
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Figure 2: Solutions for the (fractional) Fisher’s equation on the unit disk
at two points in time. Cases shown are for (α = 2, Kα = 16 × 10−4) and
(α = 1.5,Kα = 5× 10−4)

We now consider how the preconditioner affects the efficiency with which the
results of this simulation can be obtained. We consider the fractional-order
case (α = 1.5) and plot the number of Lanczos iterations m required for
the error bound (18) to drop below 10−5 at each timestep. Figure 3 plots
the values of m against t, for various values of k (the number of eigenvalues
deflated) given by k = 1, 2, 5, 10, 20, 50, 100. Note that there is no reason to
consider k = 0 , since the smallest eigenvalue is known to be zero a priori,
and hence can be deflated with no additional work required to estimate its
value.
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Figure 3: Number of Lanczos iterations required versus time for the fractional
Fisher’s equation on the unit disk with a 1513 node mesh, α = 1.5, Kα =
5×10−4 , τ = 0.1 and tolerance of 10−5. Each curve corresponds to a different
value of k, the number of eigenvalues deflated by preconditioning.

We begin by discussing the general trend of the curves in Figure 3. We see
that, whatever the value of k, the most Lanczos iterations are required dur-
ing the middle times of the simulation (around t = 10 to t = 15). Referring
back to Figure 1, we see that this corresponds to the times when the total
concentration is changing most rapidly. Hence, it is natural that the largest
number of iterations would be required during these times. Towards the end
of the simulation, as the solution approaches its steady state, the number of
iterations required falls to just one. Again this is consistent with expecta-
tions, since the solution is hardly changing at this point. We conclude that
using the error bound (18) to determine convergence of the Lanczos iteration
performs consistently with expectations for this problem.

Examining the curves in Figure 3 for small k (k = 1, k = 2), we see that
more than 100 Lanczos iterations are required to compute an acceptable
matrix-function-vector product during the middle times of the simulation.
With k = 5, this number is reduced to fewer than 80 and with k = 10 it is
fewer than 60. With k = 50, the maximum number of iterations required at
any time is just 23, and with k = 100, it is just 15. Hence, we observe the
considerable improvement in efficiency that is provided by the preconditioner.

Figure 4 plots the total runtime for this problem, using MATLAB on a
standard desktop PC, against k. The figure again confirms the efficiency
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gained by preconditioning. With k = 1 the runtime is 17.3 seconds, while
for k = 50 it is only 1.1 seconds, and for k = 100 only 0.89 seconds. In
fact, from the figure it is clear that even small values of k offer considerable
runtime improvement, and that the increase in improvement diminishes as k
gets larger. For this problem, values k ≥ 20 give excellent speed-up.

Figure 4: Runtime versus k for the fractional Fisher’s equation on the unit
disk with a 1513 node mesh, α = 1.5, Kα = 5× 10−4 , τ = 0.1 and tolerance
of 10−5.

5. Conclusions

In this paper we have presented a preconditioned Lanczos method for space-
fractional reaction-diffusion equations. The method uses a finite volume
spatial discretisation, meaning it is applicable on unstructured meshes. The
solution at each timestep is written in terms of a matrix-function-vector
product, which is computed iteratively, avoiding the need to form any large,
dense matrices. The use of preconditioning is shown to significantly increase
the efficiency of the method; an order of magnitude speedup was observed
for the particular test problem of the fractional Fisher’s equation on a unit
disk.
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