
Towards a Proximal Resource-based Architecture to
Support Augmented Reality Applications

Cynthia Taylor and Joe Pasquale
Computer Science and Engineering
University of California, San Diego

La Jolla, CA
Email: {cbtaylor,pasquale}@cs.ucsd.edu

Abstract—We are developing a new enhanced cloud-based
computing architecture, called the Proximal Workspace architec-
ture to allow access and interaction between lightweight devices,
e.g., video glasses, earphones, wrist displays, body sensors, etc.,
and applications that represent a new generation of computation-
and-data-intensive programs in areas such as augmented reality.
While lightweight devices offer an easy way for these applications
to collect user data and offer feedback, the applications cannot
be run natively and completely on these devices because of
high resource demands. Making these applications available via
a cloud, while promoting ubiquitous access and providing the
necessary resources to execute the applications, induces large
delays due to network latency.

To solve these problems, we are developing a new system
architecture based on supporting workspaces which provide
nearby computing power to the users devices and thus mediate
between them and the clouds computing resources. Specifically,
a workspace provides a set of middleware utilities designed to
exploit local resources, and provide specific functions such as
rendering of graphics, pre-fetching of data, and combining data
from different servers. More generally, the workspace is designed
to run any subset of activities that cannot be run on a user’s
device due to computation speed or storage size, and cannot be
run on a cloud server due to network latency. Ultimately, the goal
is to produce a set of middleware utilities that when run in the
workspace with highly-interactive, computation/data intensive
applications will result in better user-perceived performance.

We are exploring this system architecture constructively, by
adapting applications that benefit from this architecture and
discovering how best to suit their needs. We have already adapted
VNC (Virtual Network Computing, which allows local interaction
with remote computations) to run under a similar architecture,
and as a result increased video performance in high network
latency conditions by an order of magnitude. We are currently
working on adapting Google Earth to run under this system
architecture, with the goal of the user being able to intuitively
navigate through renderings of Ancient Rome in video glasses,
without being hampered by any bulky equipment.

I. INTRODUCTION

In this work, our goal is to make a new generation of
programs in augmented reality (and other areas) accessible
to lightweight devices. Our work is inspired by three parallel
trends in modern computing: the ubiquity of lightweight
devices such as cellphones and PDAs, the rise of computation-
and-data-intensive programs in areas of ubiquitous computing,
augmented/virtual reality, machine learning, and graphics, and
the rise of cloud computing. While augmented reality (AR)
applications offer a unique and exciting way to integrate

Fig. 1. The workspace stores data that is too large to hold on the lightweight
device.

computer programs with real life, users are often hampered
by bulky equipment [1], [2]. Lightweight devices make it easy
for a user to move around while using the device, without
being hampered by bulky equipment. And the rise of cloud
computing is making it easy to access powerful computational
resources from anywhere, while at the same time creating
challenging new models of how devices access both data and
resources [3].

We look at AR applications as presenting a new model for
how data is sent between a client and server, and investigate
the challenges presented by this new model. In the traditional
client-server model, the client will usually request a specific
piece of data from the server (e.g. a webpage, image, or
multimedia file), and the server will send the client that specific
item. In the new model presented by AR applications, the
client will send the server a location that the user is interested
in, and the server will send back a large amount of information
about the area surrounding that location. The user can then
interactively explore this data once it is stored on the client,
and the client will periodically send the user’s new location
to the server.

Previously, the idea of sending surrounding data has been
used as a optimization for slow data transfers, i.e., pre-fetching
surrounding rows in a database. In the AR model, we see two
things which make this new, and present new challenges. The
first is the nature of the data: a typical AR application may
send vast amounts of very detailed multimedia data to the
client. The second is the nature of the user’s exploration: users
physically explore a three-dimensional environment in a non-



linear fashion. These two factors mean that the client has to
deal with the data it is receiving in a very different way than
it did in the past. The amount of data transferred requires
significant storage capacity on the device. The combination
of non-linear data retrieval by the user and the nature of
the applications means that the client device must also do
a significant amount of on-demand rendering of the three-
dimensional map data, putting high demands on both its video
card and CPU.

Moving applications to a server within the cloud in a thin-
client fashion induces large delays due to network latency.
To solve this problem, we propose a new system architecture
whose key feature is the addition of a “workspace” as a low-
latency (relative to the client) intermediary between a client
and server(s). Figure 1 illustrates how the workspace fits in to
this new data model.

The rest of this paper is organized as follows. In Section
II, we review related work. In Section III, we present our
workspace-based architecture. In Section IV, we present some
experimental results, and finally, in Section V, we present
conclusions.

II. RELATED WORK

Many AR games incorporate handheld devices, including
AR-Soccer and AR-Tennis [4], [5]. The Epidemic Menace
AR game, uses both mobile AR units (consisting of a head-
mounted display and a notebook computer worn on the user’s
back), and mobile phones, but the mobile phones have limited
functionality compared to the AR unit [6], [7]. The rendering is
much more detailed on the AR units, and they are designed to
allow players to play by themselves, while the mobile phones
require players to play as a team with a stationary player using
more powerful equipment. The MORGAN AR system offers
a separate version, MORGAN Light, specifically for use with
handheld devices [8]. This version uses less detailed rendering.
The Studierstube AR framework also features a stripped down
version especially for mobile devices [9], [10].

The Mobile AR4ALL system and the BatPortal system both
use thin clients with mobile devices for AR, but they continue
to have limited rendering on the mobile devices, as well as less
frequent updates [11], [12]. The AR-PDA Project combines a
mobile device with a server that a does image recognition and
returns a processed video stream [13]. None of these systems
focus on the issue of network latency.

In their work on Cloudlets, Satyanarayanan et al also argue,
as we do, for a proximity-focused architecture; their focus is
on using virtual machines to support remote processing [14].

III. THE PROXIMAL WORKSPACE ARCHITECTURE

A Proximal Workspace Architecture is comprised of three
parts, illustrated in Figure 2: (1) terminals, the sensors and
devices that the user actually interacts with and that provide
data about the users location; (2) the world, consisting of the
users home and/or work computers, web servers, game servers,
and anything else the user interacts with through the internet;
and (3) the workspace, a temporary computing session running

Fig. 2. The system introduces a workspace between the client and servers.

on computational resources very close to the terminals, capable
of extending functionality of both terminals and the world. We
now describe these classes of components in more detail.

Terminals consist of everything worn or carried by the user
of an AR application.They are used for input and output. Input
can be specific user actions, equivalent to mouse movements
and key presses, or it can be information from sensors such as
video cameras, accelerometers, GPS units, thermometers, etc.
The terminals may include a hub for local communication and
coordination. A set of terminals could consist of a PDA with
an integrated GPS and camera, with a set of display glasses
worn by the user plugged into it. Terminals form a component
similar to the client in traditional thin client systems. Terminals
are not required to be capable of anything more than capturing
input, displaying output and communicating with the rest of
the system. Terminals are expected to be in the system for long
periods of time and persist over different workspace sessions.

The world is the set of servers that communicate with the
rest of the system through the internet. These will be the game
and resource servers for the AR application. These can include
a reference website the user is visiting for the first time, or
a system server with which they are in semi-constant contact.
All persistent state is stored within the world. We make no
assumptions about the latency between the terminals and any
given server within the world. Some parts of the world may
be provided by others and contain large numbers of factors
we cannot control. How the world interacts with the rest of
the system can have a large impact on system performance
and user experience. How long a part of the world remains in
the system can very from seconds to decades, and parts can
remain consist over different workspace sessions.

Within the workspace there exists a set of middleware
utilities that are designed to exploit local resources. These
utilities are designed for specific functions, such as rendering
of graphics, pre-fetching of data, and combining data from
different servers. These utilities could include components
of existing AR frameworks, making it easy for designers
of AR games to create and distribute their applications [8],
[15]. More generally, the workspace is designed to run any
subset of activities that cannot be run on the client due to
computation speed or storage size, and cannot be run on a



server due to network latency. We aim for as much reuse
between different applications as possible from these utilities.
We define a workspace server as the machine the workspaces
run on, and a workspace session as an individual instance of
a workspace interacting with a single set of terminals on a
specific workspace server.

Given these distinctions, we define the workspace more
precisely as a set of resources given to the user by the
workspace server, a machine very close to the user in the
network designed to provide systems with these resources.
The workspace is used to aid in applications that depend
on the users locality, and applications which must quickly
communicate with the terminals. The workspace provides
local power for computing, memory, and storage, creating the
illusion that the terminals have much more power than they
do in actuality. It understands its physical location and may
be optimized for tasks that are frequently performed at its
location. A set of terminals interacts with only one workspace
at a time, but may include several different workspace sessions
over a given time period.

All workspace sessions are temporary, and how long they
last is governed by how long the user is in a set physical
location. Depending on their location patterns, users may
acquire a workspace session from a workspace server only
once, or may frequently obtain workspace sessions from the
same set of workspace servers. The workspace can be expected
to take in information from many different parts of the world,
form them into a consistent whole to present to the terminals,
and then intelligently forward input from the terminals back
to the world. It is also expected to be able to save persistent
state back to the world. The workspace is not expected to be
able to run arbitrary code, but will offer a set of gadgets that
have been developed to handle common tasks.

While different AR applications differ in design and imple-
mentation details, they also have many common components,
such as rendering, processing sensor input, and object tracking.
For this project, we will develop utilities that fit the common
needs of these applications, and discover what utilities can
support all systems, and what needs to be more specialized.
We will also explore the best system model to support different
types of applications, i.e., whether all workspaces should
support all application types, or if they should specialize in one
application. We plan to leverage existing work in supporting
AR applications, including existing AR frameworks.

The workspace has two characteristics that allow it to
improve application performance. It is very close to the client
in the network, which lets it communicate quickly. It stays
in the same geographic location, which it allows it to cache
information about its surrounding area. Utilities running on
the workspace exploit these two characteristics for better user
perceived performance. For example, rendering of games ele-
ments or geographic models can be done in the workspace and
screen updates can be forwarded to the terminals using VNC,
taking advantage of the fast network communication between
the workspace server and the terminals. The workspace can
cache information that relates to its physical location, e.g.

Fig. 3. Google Earth Ancient Rome 3D.

map data, location dependent game elements, etc, and either
forward it to the client or access it with internal utilities,
creating performance improvements based on its constant
geographic location. This option is especially compelling when
used for AR applications, which frequently rely on location-
related information.

IV. EXPERIMENTAL RESULTS WITH GOOGLE
EARTH/ANCIENT ROME 3D

One of our goals for this project is to have utilities that
work in conjunction with unmodified applications, rather than
rewriting applications to work within our system architecture.
Building things to work with unmodified applications offers
many advantages to developers and users, including ease
of installation and avoiding parallel code maintenance. We
will take various approaches to making our system work
with unmodified applications, including virtualization-based
approaches such as remote display applications and running
applications in virtual machines, and intercepting messages
sent between client and server applications. An example of the
second approach can be seen in our previous work, Improving
VNC Performance, in which we add a Message Accelerator
which sits between the VNC client and server [16]. No
modifications were required to either than client or server to
add the Message Accelerator the client behaves as though the
Accelerator were the server, and the server behaves as if it
were the client.

We are currently working on adapting Google Earth Ancient
Rome 3D (pictured in Figure 3) to run under this system
architecture, with the goal of the user being able to intuitively
navigate through renderings of Ancient Rome in video glasses,
without being hampered by any bulky equipment. Google
Earth is a perfect example of an application which fits our
new data model. The user interactively explores a rendering
of ancient Rome, either with a keyboard and mouse or with
a more sophisticated input device, and while they explore
the Google Server periodically sends a very large amount of
multimedia data describing the area they are exploring to the
client, which then renders it on a frame-by-frame basis. This
puts two burdens on the client: it must be able to store the



Fig. 4. Google Earth Ancient Rome 3D adapted for the Proximal Workspace
Architecture

vast amounts of data being sent, and it must be able to quickly
render a complex scene. Google’s suggested minimum specs
for computers to be able to display Ancient Rome 3d include
512 MB RAM, 2 GB of free disk space, Network speed of
768 Kbits/sec or better, and a 3D-capable video card with 32
MB of VRAM or greater. This is beyond the capabilities of a
lightweight device such as a netbook or PDA, but by adapting
Google Earth Ancient Rome 3D to our system model, we can
allow a user to use it on such a device.

In adapting Ancient Rome 3D to our system architecture,
we must consider both where parts of the application should
be distributed, and what utilities must be created to aid the
distribution. The hardware for our test system consists of a
Dell Optiplex 755 with a Radeon X1300 video card with
256MB of RAM running Windows XP as the workspace
server, with a Lenovo Ideapad S10e Netbook running Ubuntu
connected to a 3d Connexion Space Navigator and Video
Glasses as the terminals. The Space Navigator is a joystick
like device that records both rotation and pressure around
the x, y and z axes [17]. Since the Google Earth application
cannot meet real time performance demands while running
on the netbook, we move it to the workspace. Once Google
Earth is running on the work space, we must create utilities
to forward input from the netbook to Google Earth, and
forward the display updates from the workspace server to the
netbook. This is illustrated in Figure 4. In order to forward
the display, we use TightVNC [18]. In order to forward input
from the Space Navigator, we run a program on the netbook
which forwards the raw input from the Space Navigator to the
workspace server, where it is then aggregated, translated into
units appropriate for Google Earth, and sent to the Google
Earth application via API calls.

For our initial results, we measured the frame rate of
Google Earth Ancient Rome 3D running natively on the
Lenovo ideapad using the Fraps video benchmarking tool [19].
Running natively, Google Earth displayed 0.16 frames per
second, resulting in a virtually unusable application. We then
ran the adapted Google Earth Ancient Rome 3D on our system,
with a link between the server and netbook that had an average
round trip time of 0.42 ms, measuring our frame rate by using
an instrumented version of Thin VNC. Our version achieved
an average frame rate of 7.08 frames per second, resulting in
an easily usable application and pleasant user experience.

By adapting Google Earth Ancient Rome to the Proximal

Workspace architecture, we allow users to use the application
on a lightweight netbook, something that it would be impos-
sible to do running the application natively. Because of the
low latency connection between the workspace server and the
terminals, the performance of the application is quite good,
with no lag between the display of frames. To the user, the
effect is as though they were running the application on a
much more powerful system, but without being tethered to a
desktop machine. We are currently working on adding Motion
Node Tilt Sensor to the system, to allow the user to navigate
simply by moving their body.

V. CONCLUSIONS

We have presented a new architecture to support AR (and
other) applications that are highly computationally intensive
and that are accessed via lightweight devices, but that are
too lightweight to support their actual execution. As these
applications are highly interactive, it is imperative that they
still execute “near” the user. Consequently, a dynamically
allocated workspace that provides computational and memory
resources, that is proximal to the user, and that offers a library
of utilities that are pertinent to the “AR data model,” is the
novelty of our design.

In addition to building individual utilities for this architec-
ture, our current work is to also explore how to best design the
system as a whole. Moving computation from the client to the
workspace adds new issues that must be solved. For example,
the workspace must be able to correctly save persistent data at
the end of a session with the client, which means it must have
a mechanism for figuring out which data should be saved,
and which server in the world to save it to. There must be
a mechanism for the client to discover and be assigned to a
workspace server which is capable of handling its applications.
Multiple client sessions within the same workspace machine
raises issues of security, privacy, and QoS scheduling. We will
leverage existing work when possible when exploring these
issues.

Based on our existing work with Google Earth, we feel
that the Proximal Workspace system architecture offers unique
performance advantages for AR applications and systems,
especially those that use the cloud. By adding a workspace,
systems can allow users to carry only lightweight equipment,
but avoid the costly performance lag of using a pure thin client
system with the cloud. In addition, the location-based nature of
the workspace system is an ideal match for location-aware AR
applications, allowing workspaces to cache information about
their own locations and serve it quickly to visiting terminals.

REFERENCES

[1] W. Broll, I. Lindt, I. Herbst, J. Ohlenburg, A. Braun, and R. Wetzel,
“Toward next-gen mobile AR games,” IEEE Computer Graphics and
Applications, pp. 40–48, 2008.

[2] A. Cheok, K. Goh, W. Liu, F. Farbiz, S. Fong, S. Teo, Y. Li, and X. Yang,
“Human Pacman: a mobile, wide-area entertainment system based on
physical, social, and ubiquitous computing,” Personal and Ubiquitous
Computing, vol. 8, no. 2, pp. 71–81, 2004.

[3] M. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud
Computing: Distributed Internet Computing for IT and Scientific Re-
search,” IEEE Internet Computing, vol. 13, no. 5, pp. 10–13, 2009.



[4] V. Paelke, C. Reimann, and D. Stichling, “Foot-based mobile interaction
with games,” in Proceedings of the 2004 ACM SIGCHI International
Conference on Advances in computer entertainment technology. ACM,
2004, p. 324.

[5] A. Henrysson, M. Billinghurst, and M. Ollila, “Face to face collaborative
AR on mobile phones,” in Proceedings of the 4th IEEE/ACM Interna-
tional Symposium on Mixed and Augmented Reality. IEEE Computer
Society, 2005, pp. 80–89.

[6] I. Lindt, J. Ohlenburg, U. Pankoke-Babatz, and S. Ghellal, “A report on
the crossmedia game epidemic menace,” Computers in Entertainment
(CIE), vol. 5, no. 1, p. 8, 2007.

[7] I. Lindt, J. Ohlenburg, U. Pankoke-Babatz, W. Prinz, and S. Ghellal,
“Combining multiple gaming interfaces in epidemic menace,” in CHI’06
extended abstracts on Human factors in computing systems. ACM,
2006, p. 218.

[8] J. Ohlenburg, W. Broll, and A. Braun, “MORGAN: A Framework for
Realizing Interactive Real-Time AR and VR Applications,” Proceedings
of IEEE VR 2008Workshop on Software Engineering and Architecture
for Realtime Interacitve Systems, pp. 27–30, 2008.

[9] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavári, L. Encarnaçao,
M. Gervautz, and W. Purgathofer, “The studierstube augmented reality
project,” Presence: Teleoperators & Virtual Environments, vol. 11, no. 1,
pp. 33–54, 2002.

[10] D. Wagner, T. Pintaric, F. Ledermann, and D. Schmalstieg, “Towards
massively multi-user augmented reality on handheld devices,” in Third
International Conference on Pervasive Computing. Springer, 2005, pp.
208–219.

[11] C. Geiger, B. Kleinjohann, C. Reimann, and D. Stichling, “Mobile
ar4all,” in Proc. The Second IEEE and ACM International Symposium
on Augmented Reality (ISAR01), 2001.

[12] J. Newman, D. Ingram, and A. Hopper, “Augmented reality in a wide
area sentient environment,” in Proc. of IEEE and ACM Int. Symp. on
Augmented Reality (ISAR 2001), 2001, pp. 77–86.

[13] J. Gausemeier, J. Fruend, C. Matysczok, B. Bruederlin, and D. Beier,
“Development of a real time image based object recognition method for
mobile AR-devices,” in Proceedings of the 2nd international conference
on Computer graphics, Virtual Reality, visualisation and interaction in
Africa. ACM New York, NY, USA, 2003, pp. 133–139.

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-based Cloudlets in Mobile Computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[15] R. Wetzel, I. Lindt, A. Waern, and S. Johnson, “The magic lens box:
simplifying the development of mixed reality games,” in Proceedings
of the 3rd international conference on Digital Interactive Media in
Entertainment and Arts. ACM, 2008, pp. 479–486.

[16] C. Taylor and J. Pasquale, “Improving VNC Performance,” University
of California, San Diego, Computer Science and Engineering Depart-
ment, Computing Science Technical Report CS2009-0943, May 2009,
Submitted for publication.

[17] “3d Connexion Space Navigator.” [Online]. Available: http://www.
3dconnexion.com/

[18] “Tight VNC.” [Online]. Available: http://www.tightvnc.com/
[19] “Fraps.” [Online]. Available: http://www.fraps.com/


