
Appears in the Proceedings of the
39th International Symposium on Computer Architecture (ISCA-39), June 2012.

Euripus: A Flexible Unified Hardware Memory Checkpointing
Accelerator for Bidirectional-Debugging and Reliability

Ioannis Doudalis
Intel Corporation

ioannis.doudalis@intel.com

Milos Prvulovic
Georgia Institute of Technology

milos@cc.gatech.edu

Abstract

Bidirectional debugging and error recovery have differ-
ent goals (programmer productivity and system reliability,
respectively), yet they both require the ability to roll-back
the program or the system to a past state. This rollback
functionality is typically implemented using checkpoints
that can restore the system/application to a specific point
in time. There are several types of checkpoints, and bidi-
rectional debugging and error-recovery use them in differ-
ent ways. This paper presents Euripus1, a flexible hardware
accelerator for memory checkpointing which can create dif-
ferent combinations of checkpoints needed for bidirectional
debugging, error recovery, or both. In particular, Euripus
is the first hardware technique to provide consolidation-
friendly undo-logs (for bidirectional debugging), to allow
simultaneous construction of both undo and redo logs, and
to support multi-level checkpointing for the needs of error-
recovery. Euripus incurs low performance overheads (<5%
on average), improves roll-back latency for bidirectional
debugging by >30%, and supports rapid multi-level error
recovery that allows >95% system efficiency even with very
high error rates.

1 Introduction

The ability to restore the program or the system to a
prior state (roll-back) is needed for both bidirectional de-
bugging [3] and error recovery. Roll-back is typically im-
plemented using checkpointing, which records sufficient in-
formation to bring the system to a state that it had at the
time that the checkpoint was taken. Design of a checkpoint-
ing mechanism is usually based on a trade-off analysis be-
tween rollback functionality (how far back and how fast can
we roll back), implementation cost, memory space over-
head, and performance overhead during normal (rollback-

1At the Euripus strait in Greece the direction of the water flow changes
with the tide.

free) execution. Frequent checkpointing typically provides
better functionality in exchange for more performance over-
head, and hardware support [6, 16, 23] has been proposed
as a way of dramatically reducing this overhead in exchange
for increased hardware cost. To keep this cost low, most
prior hardware support mechanisms provide a very narrow
range of functionality, so they tend to be applicable for only
a limited set of checkpointing uses – some schemes tar-
get efficient rollback for bidirectional debugging [3] with-
out considering the needs of error recovery, some pro-
vide for error recovery in the short term (for errors that
are detected quickly and have not corrupted much mem-
ory state) [16, 23], and long-term recovery (from errors that
took a while to detect or that corrupted or destroyed a lot
of memory content) is usually relegated to a separate (usu-
ally software-based) checkpointing mechanism [13]. Un-
fortunately, if all these mechanisms are implemented in a
system, their combined cost, memory space overhead, and
performance overhead would be prohibitively high, whereas
implementating only one of these mechanisms is hard to
justify given the limited functionality that it provides.

This paper presents Euripus, a hardware accelerator for a
wide range of checkpointing functionality that can be used
for bidirectional debugging and/or error recovery. Euripus
exploits the overlap and synergies among different check-
pointing needs to reduce the overall hardware cost, mem-
ory use, and performance overheads, compared to using a
combination of prior mechanisms to achieve similar func-
tionality. Our experimental results indicate that 1) when
supporting only reverse execution, Euripus provides lower
reverse execution latency than prior (reverse-execution-
specific) checkpointing schemes, with similar memory and
performance overheads, 2) when supporting error recov-
ery, Euripus provides both long-term and short-term roll-
back recovery, with performance overheads similar to the
most performance-efficient prior schemes (that only sup-
ported short-term recovery), and with memory overheads
similar to the most memory-efficient prior schemes (soft-
ware schemes that efficiently support only long-term recov-

1

CP 1 CP 2 CP 3

X=1

Crash

X=2

Figure 1. Bidirectional debugging example.

ery). Moreover, Euripus can be configured to support both
reverse execution and error recovery, with memory and per-
formance overheads only marginally higher than when sup-
porting only one of these uses. Finally, our cost analysis
shows that Euripus has a low hardware cost, which is simi-
lar to that of prior reverse-execution-only mechanisms.

The rest of this paper is organized as follows: Section 2
reviews the checkpointing needs of bidirectional debugging
and error recovery and outlines the contributions of this pa-
per, Section 3 is an overview of Euripus, Section 4 presents
the implementation of Euripus in more detail, Section 5
presents a quantitative evaluation of Euripus, and Section 6
presents our conclusions.

2 Background and Contributions

Bidirectional Debugging [3] is a promising technique
for helping programmers with the daunting and time-
consuming task of finding and fixing software bugs, which
has been estimated to cause 80% of all software project
overruns [11]. Bidirectional debugging lets the programmer
examine past states of the program without re-executing the
program from the beginning, i.e. it lets the programmer
freely move backwards and forward in the execution time-
line of the program. The programmer is able, for example,
to perform operations like “reverse-step”, or set a watch-
point on a variable X (Figure 1) and then “reverse-continue”
to find the last time X was modified. This functionality
allows the programmer to iteratively, intuitively, and rela-
tively quickly back-track from the effects (e.g. crash) to
the cause of the bug, without having to re-execute the pro-
gram at every back-tracking step. Bidirectional debugging
typically provides reverse-execution functionality through a
combination of checkpoints and deterministic replay. To il-
lustrate this, Figure 1 shows an execution which ends in a
crash N instructions after the most recent checkpoint (CP3).
A “reverse-step” of k instructions from the point of crash
would be implemented by restoring the program to CP3,
and then deterministically re-executing N-k instructions. A
“reverse-continue” operation with a watch-point set at vari-
able X would be implemented by re-executing past inter-
vals in reverse order (CP3→Crash, then CP2→CP3, then
CP1→CP2, etc.) until we find an interval that contains a
write to X. To verify that this write is the last one to X, we
execute until the end of this interval, remembering the posi-
tion of the last write to X, and finally re-execute this interval
until the correct point (X=2 in our example).

CP 1 CP 2 CP 3

Fault

Error

Figure 2. Error recovery example.

For bidirectional debugging to be useful, it needs to be
interactive, e.g. “reverse-step” of a single instruction should
appear (almost) instantaneous to the user, and a “reverse
continue” over some number of instructions should take
time that is similar to how long these instructions take to
forward-execute. To reduce reverse-execution latency, both
of its components must be targeted: 1) deterministic-replay
time, which can be reduced through frequent checkpoint-
ing [6], and 2) checkpoint restoration time, which can be
reduced by reducing the amount of work needed to restore
a checkpoint. Unfortunately, frequent checkpointing re-
sults in lots of state being copied to checkpoints. Mem-
ory requirements of frequent checkpointing can be reduced
by “dropping” old checkpoints, but that results in losing
the ability to reverse-execute to those past program states.
An alternative approach is checkpoint consolidation [3, 6],
where checkpoints are progressively merged as they age.
Consolidation merges two checkpoints by creating a single
checkpoint that contains the union of the addresses saved
in the two checkpoints, eliminating (freeing) the duplicates
that exist between the two checkpoints. A typical consolida-
tion policy is exponential consolidation, where checkpoints
which are result of a consolidation are merged again each
time their age doubles, resulting in total memory use that is
only logarithmically proportional to execution time (with-
out consolidation, memory use grows linearly), while still
retaining the ability to roll back to any prior program state
with a latency that is proportional to how long ago that state
was encountered.

Error Recovery and system reliability are increas-
ingly important, because future systems are expected to be
more susceptible to transient [4] and to wear-out-related
faults [24]. Worse, processor errors (which can usually
benefit from short-term recovery mechanisms) are respon-
sible for only about half of hardware outages (42% [20]),
with the rest being attributable to memory errors (orders of
magnitude higher than previously estimated [21]), network,
software, or the environment (e.g. power failures), etc. To
recover from an error (Figure 2), the system should be re-
stored to the last error-free state. When checkpointing is
frequent, by the time an error is detected using a low-cost
hardware or software error detection technique [8, 19], the
latest checkpoint (CP3) may contain a post-error state. Sim-
ilarly, if the checkpoint is in memory, it may be corrupted
by the error (e.g. a memory malfunction or a power failure),
and the system must be restored using a checkpoint saved in
non-volatile memory [9], e.g disk or NV-RAM. However,

non-volatile memory (e.g. disk) has limited write band-
width, so such checkpoints cannot be created often enough
(many times per second) to enable rapid recovery from pro-
cessor errors.

Addr Val

A 1

B 2

C 3

D 4

E 5

Undo Log

Addr Val

E 5

A 1

C 3

B 2

Redo Log

Addr Val

A 4000

B 40

C 20

E 10

WR E 10

WR A 1000

WR C 20

WR A 4000

WR B 40

Program
T

T+1

Memory

In
t
e

r
v

a
l
N

Figure 3. Undo and redo-log checkpoint examples.

Types of Checkpoints Full checkpoints store the en-
tire system/application state and are typically large and ex-
pensive to create, while incremental checkpoints keep only
the modifications during a checkpoint interval. Incremen-
tal checkpoints can be either undo logs or redo logs. Undo
logs keep the pre-modification values of modified memory
locations (Figure 3), and can be used to roll back the sys-
tem from a more recent to a less recent state, while redo
logs keep the latest values of modified memory locations
(Figure 3) and can be used to “fast-forward” the system’s
state from a less recent to a more recent state. In a hardware
implementation, undo logs tend to create less performance
overhead because pre-modification values can be saved to
the log as modifications are being made, i.e. the writes to
the log are spread throughout the checkpoint interval. In
contrast, redo logs are constructed after the entire check-
point interval is executed, because that is when the actual set
of modified blocks and their latest values are known. How-
ever, consolidation is easier to support in redo logs. In undo
logs, data is inserted in order of modification, while con-
solidation needs to process logs in order of data addresses
(to form a union and remove duplicates). Redo logs, on the
other hand, are created once the entire set of addresses is
known, they are typically created in order of addresses so
they are a natural match for efficient consolidation.

Both types of checkpoints (undo and redo log) can be
useful. For interactive bidirectional debugging [18], undo
logs can provide quick roll-back to past states and redo
logs can then provide fast-forwarding to more recent states.
Interestingly, undo and redo-log checkpoints can be con-
verted from one type to the other [6], so bidirectional de-
bugging can be supported with only one type of checkpoints
– preferably undo logs, because roll-forward functionality
can be implemented through re-execution. For error recov-
ery, undo logs can provide quick roll-back from the current
to a past state when the error is known to not have corrupted
the current state, whereas redo logs can be used to roll for-
ward from a full checkpoint (taken a long time ago) to a
more recent state after e.g. a power loss. Redo logs for error
recovery are typically created by software, and are stored in
non-volatile memory [9] (e.g. disks). Since existing storage

Undo Log Redo Log

Conso-
lidatable

Non-Conso-
lidatable

HARE

ReVive
SafetyNet

Euripus

Low
High

High

Recovery Latency

M
em

o
ry

 O
ve

rh
ea

d

Low

Figure 4. Bidirectional debugging design space.

media can only provide limited write bandwidth, this limits
how often (Figure 5) redo-log checkpoints can be created.
This limitation is expected to constrain the scaling of appli-
cation performance [15], and can be alleviated with the cre-
ation of multiple-levels of checkpoints constructed at differ-
ent frequencies in memory and disk [13] (Figure 5), or with
the assistance of novel non-volatile memory technologies,
such as PCM [5].

10-100 ms

Undo
Log

hours

Full
Checkpoint

Disk

hour/mins

Full CP
Redo Log
Memory

sec

Redo
Log

Revive
SafetyNet

EuripusSW Techniques

Euripus

Figure 5. Error recovery design space.

Existing hardware checkpointing techniques provide ei-
ther non-consolidatable undo logs [16, 23] (Figure 4) for
fast recovery from “light” errors, or consolidatable redo
logs [6] for bidirectional debugging (with redo to undo log
conversion). In future systems, however, several types of
checkpoints will be needed, e.g. to efficiently recover from
both “light” and “heavy” errors (Figure 5), while possi-
bly also providing reverse execution support for debugging
or on-the-fly analysis of malware. Unfortunately, a sim-
ple combination of two or more prior techniques would in-
cur unnecessary replication of checkpointing mechanisms,
overhead from redundant checkpointing activity, and in-
creased memory requirements.

Contributions Euripus is a new hardware checkpointing
accelerator that can provide undo logs, redo logs, or both,
constructed with the same or with different checkpointing
frequencies, to meet the needs of bidirectional debugging,
error recovery, or even both. In particular, the main contri-
butions of this paper are:

• Unlike prior schemes that each populate one particular
point in the checkpoint design space (in terms of undo/redo
logging, checkpoint frequency, etc.), Euripus can be config-
ured to operate at different points in this design space. Euri-
pus is also the first hardware accelerator that can frequently
construct consolidatable undo logs (Figure 4), which allows

T T+1 T+2 T+3

CP Interval (A)

T T+1 T+2 T+3

(C)

T T+1 T+2 T+3

(D)

T T+1 T+2 T+3

(B)

Undo Log Redo Log

Figure 6. Euripus’s modes of operation.

it to e.g. speed up memory recovery in bidirectional debug-
ging by 30% on average compared to prior techniques [6].

• Euripus is also the first hardware technique which can
simultaneously construct both undo and redo-log check-
points, and to exploit synergies between undo and redo
logs to avoid unnecessary duplication of hardware, mem-
ory space overheads, and performance overheads.

• Euripus is also the first hardware technique that can syn-
ergistically create different types of checkpoints at different
intervals, e.g. undo logs every Xms and redo logs every
Yms, which is important e.g. for enabling both short-term
and long-term error recovery.

• Euripus incurs low performance overheads, <5% on av-
erage, by exploiting checkpoint synergies, which enable ac-
tive memory bandwidth management mechanisms.

3 Euripus Checkpointing Accelerator

Euripus is a flexible unified hardware checkpointing
mechanism that aims to provide support for current and fu-
ture checkpointing requirements of error recovery and bidi-
rectional debugging. Euripus is the first hardware mech-
anism that can construct consolidatable undo-log check-
points, which allows it to simultaneously minimize both the
memory overhead and reverse execution latency of bidirec-
tional debugging (Figure 4). It is also the first mechanism to
provide support for concurrent undo and redo-log construc-
tion, either synchronously or asynchronously. Synchronous
creation of both undo and redo logs, where both an undo
and a redo log is created for the same checkpoint interval,
can be used to support both rollback and fast-forwarding
in bidirectional debugging. Asynchronous creation of undo
and redo logs, where undo logs are created more frequently
than redo logs, can be used to support efficient error recov-
ery from both frequent “light” errors (quick recovery us-
ing undo logs) and “heavy” errors (long-term recovery us-
ing redo logs stored in non-volatile memory). Furthermore,
checkpoints created by Euripus are consolidatable, so addi-
tional levels of redo-log checkpoints (for long-term recov-
ery) are constructed with little additional cost, which allows

Time
RL

1s
UL

10ms
UL

20msCRL
s

RL
1m

RL
1h

10ms20ms1s1m1h

L1L2L3L4L5

Figure 7. Multi-level checkpointing error-recovery.

Euripus to provide efficient recovery over a wide range of
error detection latencies (Figure 5).

It should be noted here that Euripus is designed to ef-
ficiently support checkpointing, and that full bidirectional
debugging and error recovery support also requires a mech-
anism for deterministic replay and a mechanism for error
detection, respectively. Checkpointing in Euripus is orthog-
onal to these additional mechanisms, and Euripus can be
combined with existing thread race-recording techniques
(for deterministic replay) and with existing error detection
techniques (for error recovery). Because of its multi-level
checkpointing support, Euripus is especially well suited for
use with a combination of low-cost error detectors (each for
a specific class of errors) that may have widely varying error
detection latencies.

Our proof-of-concept Euripus accelerator can provide
four specific modes of operation (Figure 6):
• Undo Logs Only (Figure 6(A)), which can be used e.g.
to support interactive reverse execution.

• Redo Logs Only (Figure 6(B)), which can be used
e.g. to support less efficient reverse execution, similar to
HARE [6], less efficient error recovery (no fast recovery
from “light” errors), or both at the same time.

• Synchronous Undo/Redo Logs (Figure 6(C)), which
can be used in bidirectional debugging for both reverse ex-
ecution and fast-forwarding, but at a somewhat increased
memory space and performance overhead.

• Asynchronous Undo/Redo Logs (Figure 6(D)), where
undo logs are created very frequently (e.g. every 10ms, for
fast recovery from frequent “light” errors) and redo logs are
created less frequently (e.g. every 1s, for recovery from
“heavy” errors) and then consolidated to provide multi-
level checkpointing for error recovery (Figure 7). Undo-
log checkpoint consolidation is not desirable in this mode,
because frequent consolidations would increase the per-
formance cost, and consolidated undo logs cannot recover
“heavy” errors. Reverse execution in this mode can also be
supported: use undo logs to reverse-execute only within the
supported undo-log window (e.g. 30ms) and use redo log
for back-tracking further in the past, which is more efficient
compared to the Redo Logs Only mode.

Please note that Euripus has no inherent constrains
in terms of implementing other checkpointing strategies
(e.g. with different checkpointing frequencies, different
Undo/Redo log combinations, which type of checkpoint is
stored in which type of memory, etc.) but, given the length

limitation for this paper, we limit the discussion mostly to
strategies suitable for bidirectional debugging and error re-
covery, i.e. we will mostly focus on checkpointing frequen-
cies and checkpoint type combinations that are suitable for
bidirectional debugging and error recovery. It should also
be noted that Euripus is agnostic to the type of memory be-
ing used, DRAM or PCM, but because use of non-volatile
memory for redo-log checkpoints is important for error re-
covery, our evaluation provides results on how well Euripus
tolerates increased write latencies that are typical among
non-volatile memory technologies.

Addr Val

A 1

B 2

C 3

D 4

E 5

Addr Val

A 4000

B 40

C 20

D 4

E 10

Undo Log

Addr Val

E 5

A 1

C 3

B 2

Addr Val

D 4

B 40

A 4000

E 10

Redo Log

Addr Val

A 4000

B 40

C 20

E 10

Addr Val

A 20

B 3

D 40

E 4

WR E 10

WR A 1000

WR C 20

WR A 4000

WR B 40

WR D 40

WR B 3

WR A 20

WR E 1

WR E 4

Program

T

T+1

T+2

Memory

In
te

r
v

a
l
N

In
te

r
v

a
l
N

+
1

Figure 8. Undo and redo-log checkpoint synergies.

When both undo and redo-log checkpoints are being
constructed, either synchronously or asynchronously, Eu-
ripus exploits the synergies that develop (Figure 8). In par-
ticular, the undo log and the redo log for a given interval
contain different data for the same set of modified mem-
ory locations: undo logs contain data values from before
the first modification (i.e. the value as it was at the start of
the interval), while redo logs contain data values from after
the last modification in the interval (i.e. the value as it was
at the end of the interval). This means that 1) if we have
a mechanism that creates a set of addresses to copy to one
type of checkpoint (e.g. undo log), a separate modification-
tracking mechanism for the other (redo log) is not needed,
and 2) if the same address appears in both the redo log for
interval N and the undo-log checkpoint for interval N+1,
the data value that should be copied into these two logs is
exactly the same, so one copy will suffice for both.

Euripus takes advantage of these synergies. First, it uses
its undo-log meta-data as a modification-tracking mecha-
nism for the redo log. At the end of the interval, the undo
log contains exactly the set of addresses that should be
copied to the redo log. This approach eliminates the hard-
ware and performance cost of a separate redo-log memory
tracking mechanism, such as a bit-array used in HARE [6]
for this purpose. Second, because an undo and a redo log
in neighboring intervals store the save values for any block
they have in common, Euripus constructs redo logs in a
“lazy” fashion: instead of copying all the values to the redo
log at the end of a checkpoint interval, Euripus waits for
undo logging activity from the next interval(s) to copy those
values to checkpoint memory. In particular, when a block is

to be copied to the undo log for the current interval, Euri-
pus also checks if the block is needed in the redo log of the
previous interval and, if this is true, inserts a pointer to the
copied data to the redo log. This dramatically reduces the
memory bandwidth needed for checkpointing, and reduces
the bursty memory access pattern that usually plagues redo
logging (when all of the copying is done right at the end of a
checkpoint interval). Because some locations are modified
in one interval but not in subsequent one(s), Euripus even-
tually goes through each redo log to find addresses which
still have no data copied (meaning that the memory loca-
tion has not been modified since that checkpoint interval),
and copies those data values to the redo log.

4 Implementation Details

Euripus is implemented as a hardware accelerator (Fig-
ure 11) which is responsible for both copying data to check-
points and managing the checkpoint meta-data. This ac-
celerator is designed to be implemented at the processor-
memory interface (e.g. the on-chip memory controller), to
require few modifications to the rest of the processor, and
to need few software interventions. This Section describes
the structure of our checkpoint meta-data, the undo-log and
redo-log construction mechanisms, and the internal struc-
ture of the Euripus accelerator.

Virtual Address
Bits

L1
47−39

index

Trie Root
Address

…

L2
38−30

…

L4 (Page)
20−12

L5 (Block)
11−6 Checkpointed

Data

Header

Pointer

…

Pointer

…

Figure 9. Checkpoint Trie meta-data.

4.1 Checkpoint Meta-Data

The Euripus accelerator can select between two types of
meta-data: a contiguous array of checkpointed blocks, or an
address-indexed trie (Figure 9) (an extension of hierarchical
page tables [10]). In both structures, entries are added as
modifications are encountered (i.e. when we find out that
a block will be a part of the checkpoint). The contiguous
array structure has better locality and is more compact, so

it results in less performance overhead than when using the
trie structure. However, the trie can be searched by address,
which allows efficient consolidation. In principle, any other
address-searchable meta-data structure can be used, e.g. a
hash table. We decided to use a trie simply because efficient
hardware mechanisms already exist for looking up, travers-
ing, and caching such structures.

Like prior hardware checkpointing schemes [6, 16, 23],
Euripus checkpoints memory at the granularity of cache
blocks. Therefore, the trie structure extends the page-table
hierarchy with an additional level that, for a given page,
stores the pointers and meta-data bits for each checkpointed
block. The meta-data bits specify the type of checkpoint
a block belongs to (undo and/or redo log) and if it has or
needs to be copied. Figure 9 shows such a trie, where page
table levels L1-L4 are similar to an existing page table, and
L5 nodes keep Euripus meta-data. The meta-data block bits
are accessed much more frequently than the pointers, and
are all stored together in a “header” to improve the locality
in the accelerator’s caches (Figure 12).

T T+1 T+2

Interval N Interval N+1

Redo
Log

Undo
Log

Redo
Log

Undo
Log

L5 Nodes L5 Nodes

T T+1

Interval N

Redo
Log

Undo
Log

L5 Nodes

Undo-log Blocks

Redo-log Blocks

(A) (B)

Figure 10. Extended trie meta-data.

Figure 10(A) shows the trie structure when operating in
the Synchronous Undo/Redo Logs mode: the undo and redo
logs in a checkpoint interval share trie nodes up to the page
level (L1-L4), but have separate L5 nodes (shown as gray
for undo log and black for redo log) because the data blocks
they must point to are different. However, L5 nodes are
shared between tries from consecutive intervals, i.e. the
redo-log L5 node for interval N is also the undo-log L5 node
for interval N+1 (Figure 10(B)). This organization facili-
tates lazy copying of redo-log blocks: a block that is copied
into the undo log for interval N+1 also ends up in the redo
log of interval N if the meta-data bits for the block in that
L5 node indicate that the block is needed in that redo log.

Euripus consolidates two checkpoints N and N+1 by
walking the two tries in address order. If a trie node is
present in only one of the tries, it is simply linked into the
consolidated trie. When both tries contain nodes for the
same address range, one of the nodes is freed after its con-
tents are merged into the other. For undo logs, we keep the

node from checkpoint N and add to it pointers from N+1
that were not present in N. This results in a consolidated
undo-log checkpoint, i.e. one that keeps, for each block
modified in the consolidated checkpoint interval, the value
it had at the start of that interval. Conversely, consolida-
tion of redo logs retains the nodes from checkpoint N+1
and merges pointers from N that were not present in N+1.
Note that consolidation does not move saved data block val-
ues – they stay in place and only the pointers in the trie are
updated. To consolidate synchronous undo/redo logs, we
consolidate the (unified undo/redo) L1-L4 nodes, then sep-
arately consolidate the L5 undo-log nodes and the L5 redo-
log nodes.

Consolidation frees blocks in a non-contiguous fashion,
so Euripus maintains a free-list of such blocks and reuses
them to save data for new checkpoints. When non-volatile
memory (e.g. PCM) is used for checkpoints, the free list is
a FIFO to help spread writes among the blocks.

4.2 Undo-Log Checkpointing

When a processor core writes to a data block, it sends
the block’s address to the Euripus accelerator. To avoid
overloading the accelerator with such requests, caches are
extended with an extra per-block checkpoint bit, which is
set when the block is sent to Euripus to indicate that the
block has already been checkpointed in the current interval
and need not be sent to the accelerator again. These bits
are bulk-cleared when a new checkpoint interval begins, are
only implemented in on-chip caches, and are initialized to
zero when a block is fetched from memory. This initial fil-
tering in Euripus is similar to how prior hardware check-
pointing techniques, e.g. ReVive [16], filter writes to their
checkpoint logs.

While prior schemes only had this primary filtering, Eu-
ripus uses its trie meta-data structure as a secondary filter
– when the L5 meta-data indicates that the block has al-
ready been checkpointed, it is not checkpointed again. This
secondary filtering is precise, so a Euripus checkpoint never
contains redundant entries for a block. Unlike the Undo Log
Only or Synchronous mode, where an undo-log trie is con-
structed, in the Asynchronous mode the undo logs are stored
in a list. Still, in the Asynchronous mode a trie is updated
for tracking the blocks to be checkpointed by the redo log,
which allows us to check if an undo-block has been check-
pointed in the current interval2.

For error-recovery, memory must contain the latest state
of the system at the end of the undo-log interval, so dirty
contents of caches have to be written back to complete the
undo-log checkpoint. Euripus follows a delayed cache flush

2In Asynchronous mode, a redo-log interval contains multiple undo-log
ones, so L5 trie nodes keep, for each block, the number of the undo-log
interval the block was last checkpointed.

approach (similar to Rebound [1]) and writes back only
dirty blocks that have not been checkpointed already during
the latest undo-log interval; already-checkpointed blocks
need not be written back because they will be over-written
at recovery time. Delayed flush allows the system to con-
tinue executing while dirty blocks are written back, espe-
cially from large shared on-chip caches.

4.3 Redo-Log Checkpointing

To construct redo logs, Euripus exploits the synergies be-
tween undo and redo logs (see Section 3). In Synchronous
Undo/Redo Logs mode, the trie constructed for undo log-
ging already contains the L1-L4 nodes for redo logging.
At the end of the checkpoint interval, a software handler
finds all (undo log) L5 nodes in this trie and creates the
corresponding L5 redo log nodes. It then constructs L1-L4
nodes for the next interval, and inserts these new redo log
L5 nodes as undo-log nodes of the new trie. This creates
the shared tree structure described in Section 4.1. The ac-
tual memory blocks are then copied into the redo log lazily
– copying into the new undo log also populates the old redo
log (as the two share the same L5 nodes).

In Redo Log Only and Asynchronous Undo/Redo Logs
modes, the redo log creation process is nearly identical to
this, except that no undo log L5 nodes are created and no
undo-log-only copying is performed – writes from proces-
sor cores only result in 1) creating placeholder redo-log en-
tries for the current interval, and 2) copying into the redo
log for the previous interval, if the meta-data indicates that
the block was modified in that interval.

It is possible (and highly likely) that the sets of modi-
fied address of two consecutive checkpoint intervals, N and
N+1, are not exactly the same. This means that lazy copy-
ing into redo logs will likely leave some redo-log entries
without actual saved data. Therefore, at some point Euri-
pus must traverse the redo-log trie and copy data for still-
unsaved blocks. To avoid complex searches through many
checkpoint tries, Euripus starts this active copying for inter-
val N in time for it to complete by the end of interval N+1.
The question of when to start this copying is an interest-
ing one – starting active copying too early creates a burst of
copying activity that might have been avoided if we waited
a bit longer for lazy copying to do more work, but starting
active copying too late might result in having to stop at the
end of the checkpoint interval and wait for active copying
to complete. In light of this dilemma, Euripus uses an adap-
tive approach to throttle active copying, taking into account
the current rate of lazy copying, the current (throttled) rate
of active copying, and the maximum available (unthrottled)
rate of active copying. The current rates of lazy and active
copying are obtained by counting how many blocks have
been copied to the redo log over a given period of time (e.g.

Euripus
Accelerator

Probe

PCM

L2 Memory
Controller

DRAM

B
lo

ck
s

to

C
h

ec
kp

o
in

t

L1 L1

Interconnect

CPU CPU

M
em

o
ry

C

o
p

yi
n

g

Figure 11. The Euripus hardware architecture

1000 cycles). The maximum rate of active copying is de-
termined by periodically creating a checkpoint using active
copying at full (unthrottled) speed. Armed with this infor-
mation, Euripus estimates when redo-log construction will
be done if the current copying rate (sum of current lazy and
active rate) is maintained. It then adjusts the rate of active
copying if the estimated completion is too early (more than
10% of the interval will be left) or too late (won’t complete
by the end of the interval).

4.4 Accelerator Implementation

The Euripus accelerator (Figures 11 and 12) is posi-
tioned close to (or inside) the on-chip memory controller. A
single chip can have multiple Euripus accelerators, e.g. one
per memory channel or one per N cores, depending on the
available memory bandwidth and/or the checkpointing traf-
fic generated by each core. In our initial implementation, we
model only one accelerator for the entire multi-core chip.
The accelerator receives the blocks to be checkpointed from
L1 caches of the cores3. Depending on whether checkpoint-
ing is done for an application or the entire system, check-
pointing can use virtual or physical addresses, both of which
are available at the L1 cache level (which are typically vir-
tually indexed but physically tagged).

The Euripus accelerator can support checkpointing of:
1) individual threads/processes, e.g. to support creation of
coordinated checkpoints, 2) multi-threaded processes, if we
want to checkpoint a specific application, and 3) the entire
system. Each of these can be provided by appropriately con-
figuring the accelerator’s registers which map the cores, us-
ing their core-id, to checkpoint meta-data structures (root
pointers of checkpoint tries or current-position pointers for
list of addresses). When a block’s address is sent to the ac-
celerator, it is accompanied by the core’s ID, so the block

3In a directory-based protocol, this responsibility can be shifted from
the writer’s L1 cache to the block’s home node, as in ReVive [16].

Tree
Construction

Engine

TLB
Trie

Cache

Pending
Block
Queue

Memory Interface

Euripus Accelerator

B
lo

ck
s

to
C

h
ec

kp
o

in
t

M
em

o
ry

C
o

n
tr

o
lle

r

Figure 12. The Euripus accelerator.

can be inserted into the correct trie. When checkpointing
each core/thread separately, each core ID has a different
meta-data root/current pointer. For process checkpointing,
cores that run threads in a process would be mapped to the
same meta-data, and whole-system checkpointing is accom-
plished by mapping all core IDs to the same meta-data.

Once a core sends the block to the Euripus accelerator, it
is inserted in the accelerator’s pending queue. If the queue
is full, which happens rarely, the write on the core has to
be delayed. Blocks in the pending queue are first processed
by the Tree Construction Engine (TCE), which updates the
trie to add the corresponding nodes (if needed) and checks
meta-data bits to prevent redundant copying (if the block’s
data is already present in the trie). Blocks that still need
copying then go to the memory interface, which saves the
block to either DRAM or PCM (depending on which ad-
dress range is given to Euripus as the checkpoint location),
by issuing requests to the memory interface.

The accelerator also monitors how many redo-log blocks
still need to be checkpointed for the previous interval, walks
the meta-data, and actively copies such blocks. The data to
be checkpointed can still reside in the on-chip caches, so
the Euripus accelerator behaves like a core when requesting
data for copying – it issues cache-coherent requests to get
the most recent data from either on-chip caches or (if the
data is not in on-chip caches) from memory.

Because Euripus looks up and updates trie meta-data fre-
quently, it uses a TLB to quickly map addresses to L5 trie
nodes (i.e. the TLB caches L1-L4 trie look-ups), and a small
Trie Cache for keeping the headers (meta-data bits) of the
last level (L5 in our examples) nodes of the trie.

4.5 OS, I/O and Multiprocessor Issues

System interactions and I/O are treated differently for
bidirectional debugging and for reliability. In bidirectional
debugging, each system interaction must be recorded into a
system log to enable deterministic replay. Euripus can as-
sist the creation of this system log by tracking which mem-
ory blocks are modified during a system call: when a core
sends a block to the accelerator for copying, it can also for-
ward a system/user mode flag. The accelerator processes
user-mode accesses normally, but simply marks (without

copying) system-mode accesses as system modified, using
an additional meta-data bit. At the end of the system call,
a (software) search of the checkpoint meta-data can find
these system modified blocks and save them to a separate
system log. Note that system logs must be kept separate
from checkpoint data – each individual system call must
be replayed deterministically, so a separate copy of system
modified data is needed for each system call. In contrast,
a checkpoint only needs one copy of modified data for an
entire checkpoint interval (which can contain many system
calls, especially after several consolidations).

For error-recovery, I/O introduces the output-commit
problem [7], i.e. how to “undo” externally observable ac-
tions that occurred between the checkpoint and the point
where rollback was initiated. Euripus can be used with ex-
isting solutions and workarounds for I/O commit, e.g. Re-
ViveI/O [14] which delays I/O until the end of each check-
pointing interval. Frequent checkpointing helps such ap-
proaches by reducing the I/O delay time. Another issue
related to error recovery with system-level checkpoints is
correct handling of DMA and other memory writes initi-
ated outside the processor chip. Like prior schemes, we
assume these writes create coherence invalidations, which
would trigger normal checkpointing activity in Euripus.

5 Evaluation

To evaluate Euripus, we use SESC [17], an open source
cycle-accurate simulator, to model a 4-core processor chip
with a DDR3-800 on-chip memory controller (and a de-
tailed DRAM model for the off-chip memory). The cores
are 4-issue, out-of-order, with Core2-like parameters, and
clocked at 2.93GHz. Each core has a private dual-ported
32KB 8-way set-associative L1 data cache, and all cores
share a 4MB, 16-way associative, single-ported L2 cache.
Block size is 64 bytes in all caches. In error recovery exper-
iments, we also model an additional memory channel with
PCM memory, with an average read latency of 150ns and
write latency of 450ns [22]. The Euripus accelerator we
model has a 64-entry pending block queue, a 256-entry fully
associative TLB, and a 16KB 16-way associative single-
ported Trie Cache. Its memory interface has a 32 entry
read queue, a 128 entry write queue, and is connected to the
on-chip memory controller. In total, the simulated Euripus
accelerator is implemented using only ∼34KB of on-chip
state. Because this state is kept in area-optimized, single
ported arrays, its area is approximately 30% the area of a
single core’s L1 cache (estimated using CACTI 5.3 [26])

Our evaluation uses reference inputs in 27 of the 29
SPEC 2006 [25] benchmarks, shown in Figure 13 4. We

4We only omit tonto and perl because of incompatibilities with our sim-
ulation infrastructure.

CINT CFP PARSEC

0.00%

2.00%

4.00%

6.00%

8.00%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
t…

m
cf

om
ne

tp
p

sj
en

g
xa

la
nc

b…
A

vg

G
em

sF
…

bw
av

es
ca

ct
us

…
ca

lc
ul

ix
de

al
II

ga
m

es
s

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
w

rf
ze

us
m

p
A

vg

bl
ac

ks
c…

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

i…
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
…

sw
ap

tio
ns

vi
ps

x2
64

A
vg

O
ve

rh
ea

d
Undo Log Merge

Figure 13. Performance overhead breakdown when constructing consolidatable undo logs.

fast-forward SPEC applications through 5% (up to a max-
imum of 20 billion instructions) of the execution in order
to skip the program’s initialization, then simulating 10 bil-
lion instructions. We also use all 13 multi-threaded bench-
marks from PARSEC 2.1 [2], using native inputs and four
threads. The only exception is dedup, where we use the sim-
large input – the native input exceeds the simulated 32-bit
addresses-space in SESC. We fast-forward PARSEC appli-
cations to the beginning of the parallel execution, warm up
the checkpointing mechanisms while fast-forwarding over
the next 21 billion instructions, and then simulate 20 billion
instructions in detail. This number of simulated instructions
corresponds to a few seconds (2-5, depending on the appli-
cation’s IPC) of the program’s execution.

5.1 Bidirectional Debugging

Figure 13 shows the performance overhead with Euri-
pus, when creating only undo logs every 0.5 seconds, a
frequency suitable for interactive reverse-execution. The
accelerator consolidates the undo-log checkpoints using an
exponential reduction policy [6]. The overall overheads are
very low, less than 1% on average and less than 7% worst-
case (in lbm). The consolidation overhead is minimal. Euri-
pus performs consolidation in the background without stop-
ping the application, and updates only the meta-data (which
is much smaller than the checkpoint’s data), so very little
contention for memory bandwidth is created. In nearly all
applications, most of the overheads are due to the additional
memory bandwidth created by data-copying activity dur-
ing undo-log construction. The only exception is freqmine
from PARSEC, where the extra memory bandwidth demand
mostly comes from misses in the accelerator’s Trie Cache.

Figure 14 compares performance overheads of Euripus,
when it constructs only undo logs (Euripus UL) or only redo
logs (Euripus RL), with HARE. In all these cases, check-
points are constructed every 0.5sec and exponentially con-
solidated. Overall, both Euripus UL and RL have lower
performance overheads than HARE, except in freqmine
where Euripus suffers from relatively high miss rates in
its small Trie Cache. The performance advantage of Eu-
ripus on all other applications is due to: 1) Less use of
off-chip bandwidth: HARE has to read/write the blocks to

Highest Overheads Avg

0%

5%

10%

15%

20%

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Euripus UL HARE Euripus RL

Figure 14. Comparison of Euripus with HARE.

be checkpointed from/to memory to construct the check-
point, whereas Euripus has zero read memory traffic when
constructing undo logs, because it gets the block’s values it
needs on-chip, 2) HARE suffers from bursty memory access
patterns as it creates redo logs (especially in GemsFDTD,
lbm, and mcf), while Euripus reduces such behavior – undo
logs (Euripus UL) inherently avoid this, while for redo logs
(Euripus RL) the memory access pattern is not bursty due to
lazy copying and adaptive throttling of the remaining redo-
log activity, and 3) Euripus does not need frequent software
intervention, which is needed in HARE to generate lists of
modified pages or sort its collision lists.

0%

20%

40%

60%

80%

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Euripus Sync 0.5 Hare+ReVive 0.5 Euripus Sync 1 Hare+ReVive 1

Highest Overheads Avg

235

Figure 15. Synchronous checkpoint overhead.

Figure 15 compares Euripus, operating in the Syn-
chronous Undo/Redo Logs mode (Euripus Sync), with a
combination of HARE and ReVive that achieves similar
(both undo and redo logs) functionality (HARE+ReVive).
Euripus incurs performance overheads of <5% on average
across all applications. For HARE+Revive, when checkpoi-
nting every 0.5s, the cost of constructing the undo and redo
logs is similar to Euripus’s, and the additional overhead in
HARE+ReVive comes mainly from sorting ReVive’s undo

Highest Memory Avg

0
5,000

10,000
15,000
20,000
25,000

M
em

o
ry

 S
iz

e
(M

B
)

Euripus UL Hare Euripus Sync

Figure 16. Checkpoint memory requirements.

logs for consolidation (ReVive’s efficiency comes at the cost
of creating unsorted undo logs, which must be sorted prior
to consolidation). At lower checkpointing frequencies (e.g.
1s), Euripus gains additional advantages from 1) synergies
between undo and redo logging, and 2) precise filtering
that eliminates redundant copying that is present in ReVive
(which lacks such a mechanism, resulting in even bigger
undo logs e.g. lbm).

To estimate memory requirements of Euripus, we pro-
filed applications using PIN [12] and executed them to com-
pletion. We find that memory requirements of Euripus (Fig-
ure 16), when constructing only undo logs (Euripus UL)
every 0.5sec, are similar to HARE’s. In applications that
have the highest memory requirements Euripus’s memory
cost tends to be lower (by up to 1GB) because Euripus’s trie
meta-data is more space-efficient when representing many
blocks than HARE’s list-of-addresses meta-data structure.
When making both undo and redo logs (Euripus Sync),
memory requirements (Figure 16) do not double: Euripus
shares checkpointed data blocks between undo and redo
logs when a block is modified in consecutive checkpoint in-
tervals. Such blocks are numerous, especially in large con-
solidated checkpoints that contain most of the application’s
working set, so construction of both undo and redo logs
increases memory requirements only slightly compared to
constructing only undo or only redo logs.

0%
20%
40%
60%
80%

100%
120%

Max Avg Max Avg Max Avg

CINT CFP PARSEC

S
p

ee
d

 U
p

0.1 0.5 1

Figure 17. Memory recovery latency speed up.

Finally, Figure 17 shows the maximum and average
speed-up of memory recovery latency of Euripus relative to
HARE, when back-tracking within the first 2 seconds, for
checkpointing intervals of 0.1, 0.5 and 1 second. Euripus
can reduce the memory recovery time up to two times on av-
erage, when we checkpoint at high frequencies (0.1 sec). At

355 216

Highest Overheads Avg

0%
20%
40%
60%
80%

100%

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Euripus ASync Hare+Revive

Figure 18. Error-recovery checkpointing overhead.

high checkpointing frequencies the checkpoint conversion
cost in HARE is higher, because of lower overlap between
consecutive checkpoints which results in more checkpoints
being searched. Conversely, at low frequencies we observed
that fewer checkpoints are being searched.

5.2 Error Recovery

For the purposes of error-recovery we are compar-
ing the asynchronous operating mode of Euripus (Euripus
ASync), with a combination of HARE [6] and ReVive [16]
(HARE+Revive) that creates checkpoints at the same fre-
quencies: undo logs every 10ms and redo logs every 1s
(Figure 18). In this experiment undo logs are not consol-
idated. Euripus incurs low overheads, less than 2% on av-
erage across all applications, while HARE+ReVive’s over-
heads are more than 18% on average, with some cases
(GemsFDTD, lbm) having orders of magnitude higher over-
heads. The primary weakness of HARE+ReVive is that
HARE is not designed for a memory subsystem whose com-
ponents (DRAM, PCM) have different access latencies, and
cannot tolerate the high write-latency of PCM. As a result,
HARE cannot construct the redo-log checkpoints within
a given checkpointing interval, especially for the applica-
tions which typically create big checkpoints (e.g. mcf,
GemsFDTD, lbm), and often the application’s execution has
to be paused. Euripus does not suffer from this problem,
because the majority of redo-log blocks are lazily copied
using undo-log blocks coming from a core and not mem-
ory, and the write queue of the accelerator has an increased
size, compared to the read queue, in order to support more
outstanding writes to PCM.

We also compared the Euripus’s adjustive redo-log
mechanism to a static one, which starts checking for non-
copied redo-log blocks halfway through the interval (e.g at
0.5sec if we checkpoint every 1sec), and copies the redo-log
blocks at full speed without performing any throttling. The
static policy suffered from additional performance over-
heads, e.g. 2-3% in applications like GemsFDTD and lbm,
because of the reduced number of lazy-copies, and 9%
in freqmine caused by the delayed redo-log construction
which resulted in pausing the applications execution.

To better understand how Euripus exploits the

80%

100%

120%

140%

160%

180%

200%

220%

240%

E
ur

i S

E
ur

i 0
.0

1

E
ur

i 0
.1

H
R

 0
.0

1

H
R

 0
.1

E
ur

i S

E
ur

i 0
.0

1

E
ur

i 0
.1

H
R

 0
.0

1

H
R

 0
.1

E
ur

i S

E
ur

i 0
.0

1

E
ur

i 0
.1

H
R

 0
.0

1

H
R

 0
.1

E
ur

i S

E
ur

i 0
.0

1

E
ur

i 0
.1

H
R

 0
.0

1

H
R

 0
.1

mcf Gems lbm Freqmine

Accel

RL

UL
Unnec

UL

App

Figure 19. Memory access breakdown.

undo/redo-log synergies and the benefits of the adap-
tive redo-log policy, Figure 19 presents the memory access
breakdown of the 4 applications with the highest overheads.
We are comparing Euripus’s asynchronous mode using a
static policy (Euri S), with one using an adaptive one (Euri).
We also compare Euripus with HARE+Revive (HR), when
they create undo logs every 10ms (Euri 0.01 and HR 0.01)
and every 100ms (Euri 0.1 , and HR 0.1). The memory
accesses are broken down to the ones by the application
(App), the undo log (UL), the unnecessary undo-log writes
(Unnec UL), the redo-log reads and writes (RL), and the
ones from the accelerator (Accel). The adaptive redo-log
policy eliminates 14% for GemsFDTD and 5% for lbm
of additional memory accesses that the static one creates.
Euripus requires only 21% for GemsFDTD and 1% for lbm,
additional memory (read or write) access for constructing
the redo log, while HARE requires 65% and 25% more
accesses respectively. On average Euripus needs ∼50% for
CINT and PARSEC, and 5 times for CFP less reads and
writes to construct a redo log than HARE. Euripus can also
adapt the undo-log checkpointing frequency and not waste
memory bandwidth for duplicate undo-log blocks when
we increase the undo-log frequency (e.g. from 10ms to
100ms). The lack of accurate filtering of undo-log blocks
causes ReVive to generate for the case of lbm 18% more
undo-log writes when the undo-log interval is 10ms, and
26% when it is 100ms. The problem becomes more severe
as the undo-log interval increases, and explains the lack
of frequency scalability when HARE+ReVive where used
for reverse-debugging (Section 5.1). Moreover, Euripus’s
hardware accelerator consumes less off-chip bandwidth
than HARE+ReVive, because Euripus trie checkpoint
meta-data are amenable to caching, unlike HARE’s list of
addresses. Finally, Euripus’s bandwidth savings compared
to HARE+ReVive not only improve performance, but
also translate directly to memory power savings, which is
the majority of power consumed in hardware accelerated
memory checkpointing.

To estimate the efficiency/availability of a system that
uses multi-level checkpointing, we extend the model from
Moodyet al. [13] to support Euripus-like behavior. We then
compare the efficiency of Euripus to three systems: 1) one

that creates undo-log checkpoints every 10ms but redo logs
every every 1 hour (UndoLog+RL1h), 2) another that cre-
ates only Euripus’s redo-log checkpoints (RedoLog), and
3) one that only creates redo logs every 1 hour (RedoLog
1h). We assume that all redo logs and a full checkpoint are
stored in PCM, and obtain checkpoint-restore times from
PCM through simulation (1s for a full checkpoint, 1.5 sec-
onds for minutes-level, and 1.75s for seconds-level check-
point5). The base error rate of the system was estimated
to be 10−8 from field data [13, 20]. This corresponds to
about 3 errors per year, and we assume that errors are ex-
ponentially distributed through the checkpoint levels6. For
checkpointing configurations with fewer levels, the errors
that correspond to missing checkpoint levels are recovered
by the closest checkpoint: e.g. for the UndoLog+RL1h the
error rates of the undo-log levels are the same as Euripus’s,
and the redo-log level’s error rate is the sum of the error
rates of the redo-log levels of Euripus.

70%

75%

80%

85%

90%

95%

100%

x1 x100 x1,000 x10,000 x100,000

E
ff

ic
ie

n
cy

Error Rate Increase

Euripus UndoLog+RL1h RedoLog RedoLog 1h

0%

Figure 20. System efficiency for different error rates.

Figure 20 presents the efficiency of the system for Euri-
pus and the other checkpointing configurations for increas-
ing error rates, and can can also be interpreted as the ef-
ficiency of an “x” processors system that can create check-
points and recover at the same latencies as Euripus. Euripus
delivers the highest efficiency across all other checkpoint
configurations, providing 99.99% efficiency up to 100x er-
ror rates, while it can still assist the system achieve avail-
ability higher than 95% even when the error-rates increase
by 100,000 times. Such high error rates correspond to an
error every approximately 15 minutes, which is close to the
expected error rate in future exascale systems [20]. The
UndoLog+RL1h and RedoLog configurations can support
similar availability as Euripus at low error rates, but for the
case of extreme error rates their availability would be only
∼77%. This decrease in efficiency of both configurations is
due to the lack a number of checkpoints that Euripus cre-
ates, and does not allow quick recovery when error rates at
a specific level increase. Creating checkpoints infrequently,
e.g. every 1 hour, has the worst efficiency, because the er-
ror frequency is higher than the checkpointing one, and the

5Note that rollback to a incremental redo log starts by restoring the
previous full checkpoint.

6The error rate ri at level i be ri = α · ri−1, where α ≤ 1 and
rtotal =

Pl
i=0 ri =

Pl
i=0 rα

i

system cannot effectively recover from an error. Finally we
performed experiments where we increase the memory re-
covery latency by 100x, and Euripus can still deliver effi-
ciency at 99%, due the to multiple checkpoint levels which
reduce the re-execution time.

6 Conclusion

Bidirectional debugging and error recovery address two
separate problems, programmer productivity and system re-
liability respectively, but both require the same basic func-
tionality: to roll-back the application or the system to a
past-state. This functionality is typically provided with the
assistance of memory checkpoints, which need to be cre-
ated frequently in order to achieve interactive bidirectional
debugging and high system efficiency.

This paper presented Euripus, a flexible hardware accel-
erator for checkpointing, which can efficiently support both
debugging or error recovery. Euripus can create both undo
and redo-log checkpoints, independently or at the same
time, consolidate them, and create multiple levels of check-
points. Euripus exploits the undo/redo-log synergies to re-
duce performance overhead, memory bandwidth consump-
tion, and memory space requirements of checkpointing, and
results in < 5% average performance overheads, improves
the average rollback latency for bidirectional debugging by
30%, and provides error recovery with ∼95% system effi-
ciency even at high error rates.

7 Acknowledgments

We thank Nak Hee Seong for helping us understand
and model PCM, and Kathryn Morhon, Adam Moody and
Greg Bronevetsky for feedback for their analytical multi-
level checkpointing reliability model [13]. This work was
supported, in part, by National Science Foundation (NSF)
grants 0964647, 0916464, and 0903470, and by Semi-
conductor Research Corporation (SRC) contract 2009-HJ-
1977. Any opinions, findings, and conclusions or recom-
mendations in this paper are ours alone and do not neces-
sarily reflect the views of NSF and/or SRC.

References

[1] R. Agarwal et al. Rebound: Scalable Checkpointing for Co-
herent Shared Memory. In ISCA-38, 2011.

[2] C. Bienia et al. The PARSEC Benchmark Suite: Character-
ization and Architectural Implications. In PACT-17,2008.

[3] B. Boothe. Efficient Algorithms for Bidirectional Debug-
ging. In PLDI, 2000.

[4] S. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
Degradation. IEEE Micro, 2005.

[5] X. Dong et al. Leveraging 3D PCRAM Technologies to Re-
duce Checkpoint Overhead for Future Exascale Systems. In
SC, 2009.

[6] I. Doudalis and M. Prvulovic. HARE: Hardware Assisted
Reverse Execution. In HPCA-16, 2010.

[7] E. Elnozahy and W. Zwaenepoel. Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback,
and Fast output Commit. IEEE Transactions on Computers,
1992.

[8] S. Feng et al. Shoestring: Probabilistic Soft Error Reliability
on the Cheap. In ASPLOS-15, 2010.

[9] C. S. Gary L. Mullen-Schultz. IBM System Blue Gene Solu-
tion: Application Development. 2007.

[10] Intel. Intel 64 and IA-32 Architectures Application Note
TLBs, Paging-Structure Caches, and Their Invalidation.
http://www.intel.com/design/processor/applnots/317080.pdf,
2008.

[11] A. Kolawa. The Evolution of Software Debugging. In
http://www.parasoft.com/jsp/products/article.jsp?articleId=490,
1996.

[12] C.-K. Luk et al. Pin: Building Customized Program Analy-
sis Tools with Dynamic Instrumentation. In PLDI, 2005.

[13] A. T. Moody et al. Detailed Modeling , Design , and Evalua-
tion of a Scalable Multi-level Checkpointing System. Tech-
nical Report, 2010.

[14] J. Nakano et al. ReViveI/O: Efficient Handling of I/O in
Highly-Available Rollback-Recovery Servers. In HPCA-12,
2006.

[15] R. Oldfield et al. Modeling the Impact of Checkpoints on
Next-Generation Systems. In MSST-24, 2007.

[16] M. Prvulovic and J. Torrellas. ReVive: Cost-Effective
Architectural Support for Rollback Recovery in Shared-
Memory Multiprocessors. In ISCA-29, 2002.

[17] J. Renau et al. SESC. http://sesc.sourceforge.net, 2006.
[18] Samuel T. King et al. Debugging Operating Systems with

Time-Traveling Virtual Machines. In USENIX, 2005.
[19] S. K. Sastry Hari et al. mSWAT: Low-Cost Hardware Fault

Detection and Diagnosis for Multicore Systems. In MICRO-
42, 2009.

[20] B. Schroeder and G. Gibson. A Large Scale Study of
Failures in High-Performance-Computing Systems. IEEE
Transactions On Dependable And Secure Computing,
(November), 2009.

[21] B. Schroeder et al. DRAM Errors in theWild: A Large-Scale
Field Study. In SIGMETRICS-11, 2009.

[22] N. H. Seong et al. Security Refresh: Prevent MaliciousWear-
out and Increase Durability for Phase-Change Memory with
Dynamically Randomized Address Mapping. In ISCA-37,
2010.

[23] D. J. Sorin et al. SafetyNet: Improving the Availabil-
ity of Shared Memory Multiprocessors with Global Check-
point/Recovery. In ISCA-29, 2002.

[24] J. Srinivasan et al. The Impact of Technology Scaling on
Lifetime Reliability. In DSN, 2004.

[25] Standard Performance Evaluation Corporation. SPEC
Benchmarks. http://www.spec.org, 2006.

[26] S. Thoziyoor et al. Cacti 5.3.
http://quid.hpl.hp.com:9081/cacti/, 2008.

