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Abstract

We present work towards a parameter-free method for turbulent flow simulation
based on adaptive finite element approximation of the Navier-Stokes equations
at high Reynolds numbers. In this model, viscous dissipation is assumed to be
dominated by turbulent dissipation proportional to the residual of the equations,
and skin friction at solid walls is assumed to be negligible compared to inertial
effects. The result is a computational model without empirical data, where the
only parameter is the local size of the finite element mesh. Under adaptive
refinement of the mesh based on a posteriori error estimation, output quantities
of interest in the form of functionals of the finite element solution converge to
become independent of the mesh resolution, and thus the resulting method has
no adjustable parameters. No ad hoc design of the mesh is needed, instead the
mesh is optimised based on solution features, in particular no bounder layer
mesh is needed. We connect the computational method to the mathematical
concept of a dissipative weak solution of the Euler equations, as a model of
high Reynolds number turbulent flow, and we highlight a number of benchmark
problems for which the method is validated.
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1. Introduction

Turbulence is central for our understanding of the world, including the geo-
physical flow of the ocean-atmosphere system, and the aerodynamics of vehicles,
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aircraft and wind turbines, for example. Simulation of turbulent flow is an out-
standing problem that cuts through mathematics, numerical analysis, scientific5

computing and fluid mechanics. This interdisciplinary nature of the problem
makes it particularly challenging.

In this paper we present our work towards a general framework for simulation
of unsteady high Reynolds number turbulent flow using adaptive finite element
methods based on adjoint analysis. We recall the theoretical foundation and10

show how this framework offers solutions to the main challenges of turbulence
simulation: how to assess the accuracy in a simulation, how to minimise the
dependency on application specific model parameters, and how to optimise the
use of computational resources. To our best knowledge, application of adjoint
based adaptive methods to simulate unsteady turbulent flow in 3D is still rare15

[1, 2]. The purpose of this paper is to give a coherent presentation of our com-
putational framework, to report on recent progress, and to highlight challenges
and open problems.

1.1. Turbulence simulation

The fundamental mathematical model of fluid flow is the nonlinear Navier-20

Stokes equations in 3 space dimensions, for which a proof of existence of classical
(smooth) solutions in the general case is missing. To compute approximate
solutions of the Navier-Stokes equations in the case of turbulent flow is extremely
expensive; an heuristic argument estimates the number of degrees of freedom
needed to resolve all turbulent scales in a Direct Numerical Simulation (DNS) to25

be of the order Re9/4, with Re the Reynolds number, which for many decades to
come will make DNS impossible e.g. for geophysical flow or flight aerodynamics
where Re >> 106.

A reduction in the number of degrees of freedom is possible by instead con-
sidering models for averaged quantities, such as statistical mean fields in RANS30

(Reynolds averaged Navier-Stokes equations) or spatially filtered fields in LES
(Large eddy simulation), at the cost of introducing turbulence/subgrid models
to model unresolved statistical fluctuations/subgrid scales [3]. This closure prob-
lem of turbulence modelling has proven to be an outstanding problem, where
model parameters often have to be tuned to a particular application. Similarly,35

subgrid models introduce parameters that need to be chosen by the user, in par-
ticular near solid walls it is a challenge to select proper parameters to accurately
capture phenomena such as flow separation [4].

In RANS/LES simulations, the relation between model errors and numerical
errors is delicate, since the effect of the numerical method often is similar to the40

effect of turbulence/subgrid models, e.g. in the form of dissipation of kinetic
energy. For example, the widely used Smagorinsky subgrid model [5] is closely
connected to methods of artificial viscosity used to stabilise numerical methods
[6]. To tackle this issue, different approaches have been attempted, from using
high order numerical methods with minimal dissipation, to interpreting the45

numerical stabilisation as the subgrid model [7, 8, 9, 10], or alternatively trying
to balance the two sources of errors [11, 12]. The relationship between the
local resolution of the computational mesh and the turbulent length scales of
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RANS and LES also poses challenges, in particular near solid walls where small
turbulent scales dictate a very fine mesh resolution which dominates the total50

computational cost [4].
In the context of finite element methods, Variational Multiscale Stabilized

methods (VMS) [9] have been developed where the variational form of the
Navier-Stokes equations is split into resolved scales and subgrid scales, by de-
composing the underlying Hilbert space into a direct sum of a coarse space and55

a fine space, where a subgrid model is used to model the fine scale contribution.

1.2. Dissipative weak solutions

In the framework presented in this paper we follow a different path, where
we avoid the process of averaging and scale separation altogether, and thus also
the closure problem. For incompressible flow the mathematician Jean Leray in60

1934 [13] proved the existence of a weak solution, or turbulent solution (solution
turbulente) in the terminology of Leray, that is a function that satisfies a weak
form of the Navier-Stokes equations (in the sense of distributions). The work of
Leray laid the foundation for the modern mathematical theory of the Navier-
Stokes equations, and the regularised form of the equations used by Leray later65

inspired a specific class of LES methods [14]. The question of uniqueness of a
weak solution is still an open problem, and whether a weak solution is also a
smooth (strong) solution is formulated as a $1 million Clay Prize problem [15].
A weak solution does not satisfy the standard energy balance valid for a smooth
solution of the Navier-Stokes equations, instead only an energy inequality can70

be shown to hold. Partial regularity of a weak solution was proven under the
assumption that a generalised energy inequality holds [16, 17], in which case
the weak solution is referred to as a suitable weak solution. It can be shown
that many discrete approximations, including finite element approximations,
converge to suitable solutions [18].75

For a weak solution, dissipation without viscosity is possible. In particular,
Duchon and Robert in 2000 introduced the notion of a dissipative weak solution
as a model for high Reynolds number turbulent flow, where an explicit expres-
sion for the source of inviscid dissipation was derived, which took the form of
a local lack of regularity in the velocity field [19]. Already in 1949, Onsager80

suggested that weak solutions of the inviscid Euler equations (assuming such
exist) could be used to model high Reynolds number turbulent flow [20]:

”It is of some interest to note that in principle, turbulent dissipation as
described could take place just as readily without the final assistance by viscosity.
In the absence of viscosity, the standard proof of the conservation of energy does85

not apply, because the velocity field does not remain differentiable!”

A consequence of the idea that turbulent dissipation is independent of vis-
cosity, is that it should be possible to model turbulence without any empirical
parameters. Onsager also conjectured that in such ”ideal” turbulence, the regu-
larity of the velocity field could at most satisfy a Hölder condition with exponent90

1/3, otherwise the energy would be conserved. Several proofs of Onsager’s con-
jecture have since then been presented, and in their 2006 review of the work of
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Onsager, Eyink and Sreenivasan end with a conclusion on the future of Onsagers
ideas [21]:

”We believe that Onsagers theoretical vision of an ideal turbulence described95

by inviscid fluid equations is a proper idealization for understanding high Reynolds
number flows. Needless to say, in real physical turbulence there is viscosity,
which is always positive. [...] In the same way, the zero-viscosity limit, which
supposes an infinite number of cascade steps, should be a good idealization for
turbulence with a large but finite number of cascade steps, that is, a Reynolds100

number which is large but finite. The vindication of this belief, if it is true,
must come from a set of calculational tools for the zero-viscosity limit, which
will make it, in the end, a truly predictive device.”

1.3. Direct finite element simulation

In [8, 22, 23] we show that approximate dissipative weak solutions can be105

computed to simulate turbulent flow using a stabilised finite element method
that satisfies certain conditions on stability and consistency, which we refer to as
a General Galerkin (G2) method. We also refer to the computational method-
ology as Direct Finite Element Simulation (DFS), as an extension to turbulent
flow of the general framework of a posteriori error estimation developed in the110

early 1990s [24, 25]. In particular, for high Reynolds numbers we can set the
viscosity to zero, thus realising a computational model of turbulent flow free
from empirical parameters.

We argue that the proper mathematical objects for assessing well-posedness
in DFS are functionals of the computed weak solutions [26]. To represent the115

error in a functional of a dissipative weak solution we introduce a dual (ad-
joint) linearised problem, which opens for a posteriori estimation of the error
in outputs of interest, such as the drag and lift of an airplane. The a posteri-
ori error representation can be used to construct efficient adaptive algorithms,
where the computational mesh and the finite element space are optimised for120

the computation of a particular output of interest (goal functional) to a certain
accuracy using minimal computational resources. Thus also the local resolution
of turbulent scales is determined as part of the computation (a posteriori) based
on what functional is the goal of the simulation. For example, approximation of
the aeroacoustic sources in a turbulent flow past a landing gear may demand a125

different mesh resolution than approximation of the aerodynamic forces on the
same landing gear [27, 28].

A classical problem of great significance is the prediction of aerodynamic
forces acting on a body in a high Reynolds number flow. The choice of boundary
conditions in the simulation is here central. As already noted, for realistic130

applications e.g. in flight aerodynamics, full resolution of a turbulent boundary
layer in DNS is impossible due to the computational cost. In LES, typical
models of the near wall turbulent flow are wall shear stress models [4] or local
RANS models near the wall [29], where both approaches demand high resolution
boundary layer meshes and calibration of model parameters.135
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In [30] we investigate a simple wall shear stress model parametrised by the
skin friction stress generated by the turbulent boundary layer. We find that for
very high Reynolds numbers, corresponding to small skin friction, the macro-
scopic flow is largely independent of the wall shear stress model. In particular,
the skin friction parameter can be set to zero, corresponding to a free slip140

boundary condition, and no boundary layer mesh is needed. For high Reynolds
number flow, DFS with a free slip boundary condition has been shown to be
an efficient and accurate model for approximation of aerodynamic forces and
aeroacoustic sources [27, 28, 31, 32].

In this paper we describe the DFS framework for incompressible turbulent145

flow, and we report on recent work to validate the method. The G2/DFS
framework is presented in Section 2, and we give a brief description of a de-
tailed implementation of the method in Section 3. In Section 4 we report on
validation studies for the computational model, in Section 5 we discuss stability
and computability of turbulent flow, and in Section 6 we give a short summary.150

2. The G2/DFS computational framework

Low Mach number flow can be approximated by incompressible flow, and
the focus of this paper is the model of incompressible high Reynolds number
turbulent flow around bluff or streamlined bodies, where the Reynolds number
is defined as Re = UL

ν , with U a characteristic velocity, L a characteristic length155

and ν is the kinematic viscosity.

2.1. Mathematical model

The Navier-Stokes equations for incompressible flow of (small positive) con-
stant kinematic viscosity ν in a (bounded) volume Ω in R3 around a fixed rigid
body with smooth boundary Γ over a time interval I = [0, T ], take the form:
Find the velocity u = (u1, u2, u3) and pressure p depending on (x, t) ∈ Ω∪Γ×I,
such that

u̇+ (u · ∇)u+∇p−∇ · τ = 0 in Ω× I,
∇ · u = 0 in Ω× I,
un = 0 on Γ× I,
τsk = βutk on Γ× I,

u(·, 0) = u0 in Ω,

(1)

with k = 1, 2, u̇ = ∂u
∂t , un = u · n the fluid velocity normal to Γ with n a

unit outward normal vector, τ = τ(u) = 2νε(u) the viscous stress with ε(u)
the standard velocity strain, τsk the tangential stresses and utk = u · tk the160

tangential velocities with tk orthogonal tangent vectors, and u0 a given initial
condition.

We assume suitable far-field inflow/outflow boundary conditions, and we
note the Dirichlet-Neumann boundary condition in the normal and tangential
directions, respectively, with the effect of turbulent boundary layers modeled by165
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a (skin) friction parameter β. With zero viscosity ν and boundary friction β,
the model (1) reduces to the inviscid Euler equations.

In [19] it is shown that for any weak solution (u, p) of the Euler equations
(assumed to exist), a local energy equation is satisfied

d

dt
(
1

2
|u|2) +∇ · (u(

1

2
|u|2 + p)) +D(u) = 0, (2)

with D(u) defined in terms of the local smoothness of u. If D(u) ≥ 0, then
(u, p) is referred to as a dissipative weak solution.

2.2. Finite element method170

In G2/DFS we compute approximate solutions of the Navier-Stokes equa-
tions (1) by a weighted residual stabilized finite element method, of the form:
Find Û = (U,P ) ∈ Vh such that for all v̂ = (v, q) ∈ Vh

[R(U ; Û), v̂] + [hR(U ; Û), R(U ; v̂)] = 0, (3)

where Vh is a space-time finite element space with velocities v satisfying v ·n = 0
on Γ, [·, ·] is an L2(Ω× I) inner product, R(U ; v̂) = (v̇ + U · ∇v +∇q,∇ · v) is
the residual, and h is the local mesh size. The first term in (3) establishes Û as
a weak solution of (1) and the second term introduces kinetic energy dissipation
Dh(Û) = [hR(U ; Û), R(U ; Û)] = ‖h0.5R(U ; Û)‖2L2

bounded by data with ‖ · ‖L2
175

an L2(Ω× I) norm [22].
Notice that here ν and β are set to zero with instead the weighted residual

stabilization introducing a dissipative effect as an automatic turbulence model.
This is analogous to the dissipative weak solutions introduced by Duchon and
Robert [19], with dissipation caused by a lack of smoothness in the velocity180

field, unrelated to viscous dissipation. For a smooth solution Û , corresponding
to a small residual in L2(Ω × I), the dissipative effect of the weighted residual
stabilization vanishes. In Section 4 we report on validation results showing that
DFS based on the Euler equations is a good approximation of high Reynolds
number turbulent flow. We also find that with sufficient mesh resolution, Dh(Û)185

is independent of the local mesh size h [23].
In Section 3 we give a precise definition of a particular implementation of

G2/DFS, but many choices are possible as long as certain conditions for stability
and consistency are satisfied [22, 23].

2.3. Boundary conditions190

It is well known that for viscous flow, thin boundary layers develop near
solid walls over which the velocity changes from the velocity of the wall to the
free stream velocity. The thickness of these boundary layers scale with the
Reynolds number, and at high Reynolds numbers the boundary layers are so
thin that computational resolution is impractical or impossible. At sufficiently195

high Reynolds numbers the boundary layers undergo transition to turbulence,
where computational resolution of turbulent boundary layers is even less realistic
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in any application of significance [4]. For example, full computational resolution
in DNS of the turbulent flow around a car or an airplane, including boundary
layers, is impossible for many years to come [33].200

Ever since the introduction of the boundary layer concept by Prandtl [34],
models of the flow decoupling the boundary layer from the interior flow have
been pursued, in which the effect of the boundary layer is modelled as a bound-
ary condition for the interior flow [4]. In (1) we model the effect of turbulent
boundary layers as a small skin friction stress at the solid boundary, which dis-205

sipates kinetic energy proportional to β. The sensitivity of the solution with re-
spect to perturbations in the skin friction parameter β is investigated in [35, 30],
where it is found that for small β (corresponding to high Reynolds numbers) the
sensitivity is low. In particular, for external flow at Reynolds numbers higher
than Re > 106 we typically approximate the small skin friction by zero, which210

makes DFS into a parameter-free model of high Reynolds number external flow.
We have presented evidence in the form of analysis and computational stud-

ies, that for high Reynolds numbers the macroscopic flow, including 3D flow
separation, is mainly determined by large scale stability aspects, rather than
boundary layer effects [36, 27, 28, 31, 32].215

2.4. A posteriori error estimation

The goal of a simulation can often be formulated as computing a number
of output quantities, for example the lift and drag of an airplane. To estimate
the error in an output functional of interest we follow the general framework
for a posteriori error analysis based on sensitivity information from the solution220

of a dual (adjoint) problem, developed in the 1990s [24, 25, 37]. In [38, 12, 8,
39] we extended this framework to a posteriori error estimation of turbulent
flow, validated for basic model problems as well as for challenging benchmark
problems in complex geometry.

We define a target functional M(û) = [û, ψ̂] + [pn, ψΓ]Γ, where ψ̂ = (ψ, χ) is225

a given weight function acting as data for the dual problem, and ψΓ is boundary
data for the dual velocity, with [·, ·]Γ a L2(Γ×I) inner product. To choose the lift

and drag of an airplane as the target functional we set ψ̂ = 0 and ψΓ = vD+vL,
with vD and vL unit vectors in directions opposite and normal to the flight
direction, respectively.230

The difference in output M(û)−M(Û) = [û, ψ̂]+[pn, ψΓ]Γ−[Û , ψ̂]−[Pn, ψΓ]Γ
of two DFS solutions û and Û on different meshes with maximal mesh size h,
can be represented as

M(û)−M(Û) = [R(u; û)−R(U ; Û), ϕ̂] (4)

where ϕ̂ = (ϕ, θ) is a solution of the dual linearized problem

−ϕ̇− (u · ∇)ϕ+∇UTϕ+∇θ = ψ in Ω× I,
∇ · ϕ = χ in Ω× I,

ϕ = ψΓ on Γ× I,
ϕ(·, T ) = 0 in Ω,

(5)
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where (∇UTϕ)j =
∑3
i=1 ∂Ui/∂xjϕi.

If we assume that the time step is bounded by h, we can bound the output
error using basic analysis [22]:

|M(û)−M(Û)| ≤ C‖h0.5ϕ̂‖H1 , (6)

with a constant C depending on data and bounds on the magnitude of the
discrete velocities u and U . We thus have stability in output if ‖h0.5ϕ̂‖H1 is
small, where H1 = H1(Ω × I) is the standard Hilbert space with associated
norm.235

2.5. Adaptive algorithm

A posteriori error estimation provides a powerful tool for the development of
robust and efficient adaptive algorithms. The basic idea of adaptive algorithms
is to optimize the computational method with respect to the goal (output of
interest) of the computation. Typical parameters of an adaptive finite element240

method include the local mesh size (h-adaptivity), local degree of the finite
element approximation (p-adaptivity), local shape of the cells (r-adaptivity), or
combinations thereof.

We here focus on h-adaptivity. To construct an adaptive algorithm we com-
pute a DFS solution Û for which we use the error representation (4) to estimate245

the output error |M(û)−M(Û)|, with û any DFS solution computed on a finer
mesh than Û . We can either choose û and Û to be two DFS solutions computed
on different meshes in the mesh hierarchy generated by the adaptive algorithm,
or alternatively to consider û to be an ideal solution computed on a finest mesh
possible in which case we use the approximation u ≈ U in the dual problem (5).250

An adaptive algorithm is based on an estimate of the local contribution to
the global error, which is obtained by splitting the error representation (4) into
a sum of error indicators En,K over the cells K in the discrete space mesh T h,
and the time intervals In = (tn−1, tn), n = 1, ..., N , that is

M(û)−M(Û) =

N∑
n=1

∑
K∈T h

En,K =

N∑
n=1

∑
K∈T h

[R(u; û)−R(U ; Û), ϕ̂]n,K (7)

with [·, ·]n,K an L2(K × In) inner product.
One basic adaptive algorithm is to keep the mesh constant in time and then

iteratively refine an initial mesh based on (7) until convergence in M(Û) is
observed.

Adaptive algorithm: given initial coarse mesh T h0 , k = 0,255

(1) compute solution to primal problem using T hk
(2) compute solution to dual problem using T hk
(3) if convergence in M(Û) is observed, or if the estimated error

based on (4) is less than the tolerance, then STOP, else

(4) refine a fixed fraction of cells in T hk with largest contribution260

to the error based on (7)

(5) set k = k + 1, then goto (1)
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2.6. Approximation of the dual solution

There are several technical aspects with respect to how to apply the error
representation formula (7), in particular with regards to the approximation of265

ϕ̂, the solution to the dual problem.
The dual problem is linear, but runs backward in time which is a challenge

since the DFS velocities u and U act as coefficients in the dual problem and thus
have to be stored as data. In practise, the dual problem is solved using a similar
finite element method as used for the primal DFS problem, and the coefficients270

u and U can be interpolated in time to minimize data storage, with possibly
a restart scheme to increase accuracy. Also, several different approaches are
possible for how to apply the error representation formula (4) in practise [40],
to retain sharpness and achieve maximal robustness.

When we use the approximation u ≈ U in the dual problem we introduce a275

linearization error which is hard to estimate a priori, since worst case estimates
based on Gröwall’s inequality grossly overestimate the effect [22]. In practice,
computations on a sequence of meshes with different associated approximations
U provide an estimate of the asymptotic effect of this linearization error on the
resulting a posteriori error estimates.280

More specifically, the accuracy in the a posteriori error estimates depends
on the accuracy in the approximation of the dual problem, which is affected
by (i) perturbations in data and (ii) computational approximation. As part
of the adaptive algorithm, approximations of the dual problem are computed
on a hierarchy of computational meshes, which provides a robustness test with285

respect to (i)-(ii), improving the reliability of the a posteriori error estimates.

3. DFS implementation

We now give a detailed presentation of an implementation of DFS, in the
form of the cG(1)cG(1) method with piecewise linear approximation in space
and time over tetrahedral meshes. In Section 4 we report on validation studies290

of this method.

3.1. The cG(1)cG(1) method

The cG(1)cG(1) method is based on the continuous Galerkin method cG(1)
in space and time. With cG(1) in time the trial functions are continuous piece-
wise linear and the test functions piecewise constant. cG(1) in space corresponds295

to both test functions and trial functions being continuous piecewise linear. Let
0 = t0 < t1 < ... < tN = T be a sequence of discrete time steps with associated
time intervals In = (tn−1, tn) of length kn = tn − tn−1 and space-time slabs
Sn = Ω× In, and let W ⊂ H1(Ω) be a finite element space consisting of contin-
uous piecewise linear functions on a tetrahedral mesh T h of mesh size h(x) with300

W0 the functions v ∈W satisfying the Dirichlet boundary condition v ·n|Γ = 0.
We seek Û = (U,P ), continuous piecewise linear in space and time: For n =

1, ..., N , find (Un, Pn) ≡ (U(tn), P (tn)) with Un ∈ V n0 ≡ [W0]3 and Pn ∈ W ,
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such that

((Un − Un−1)k−1
n + Ūn · ∇Ūn, v)− (Pn,∇ · v) + (∇ · Ūn, q)

+ SDn
δ (Ūn, Pn; v, q) = 0 ∀v̂ = (v, q) ∈ V n0 ×Wn,

(8)

where Ūn = 1
2 (Un +Un−1) and Pn are piecewise constant in time over In, with

the stabilizing term

SDn
δ (Ūn, Pn; v, q) ≡ (9)

(δ1(Ūn · ∇Ūn +∇Pn), Ūn · ∇v +∇q) + (δ2∇ · Ūn,∇ · v),

and

(v, w) =
∑
K∈T h

∫
K

v · w dx,

with the stabilization parameters δ1 = κ1(k−2
n + |Un−1|2h−2)−1/2 and δ2 =

κ2h|Un−1|, where κ1 and κ2 are positive constants of unit size. We choose a305

time step size kn = CCFL minx∈Ω h/|Un−1|, with CCFL a constant of unit size.

Remark 1. The cG(1) discretisation in time does not allow for a fully consis-
tent stabilisation of the method, since the velocity test functions are constant
in time. To make the method fully consistent while keeping a least squares sta-
bilisation of the residual, we would need to use test functions that are linear310

discontinuous in time, corresponding to a cG(1)dG(1) method. The main rea-
son for using cG(1)cG(1) is the reduction of the number of degrees of freedom
by a factor 2.

3.2. cG(1)cG(1) energy equation
We now recall that a cG(1)cG(1) solution satisfies a local energy equation,

with dissipation directly proportional to the local residual. The proof is given
in [23], so here the result is just stated. We define a family of smooth positive
test functions φn(x) for n = 1, ..., N , with local compact support supp φn ⊂ Ω,
and we define a piecewise constant function in time defined by φ(x, t) = φn(x)
for t ∈ In, normalized such that

N∑
n=1

∫
Ω

φn(x) dx kn = 1.

Theorem 2. Noting that δi ≤ Ch, for i = 1, 2, we have the following local315

energy estimate for cG(1)cG(1):

|
N∑
n=1

[

∫
Ω

(
1

2
(|Un|2 − |Un−1|2)k−1

n +∇ · (Ūn(
1

2
|Ūn|2 + Pn)))φn dx ] kn

+

N∑
n=1

[

∫
Ω

(δ1|R̄1(Ūn, Pn)|2 + δ2|R̄2(Ūn)|2)φn dx ] kn |

≤ Ch1/2
max,φ,n
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with hmax,φ,n ≡ max
n:supp φn 6=∅

( max
x∈supp φn

h(x)), and with the residuals R̄1(Ūn, Pn)

and R̄2(Ūn) defined by

R̄1(v, q) = v̇ + Ūn · ∇v +∇q, (10)

R̄2(v, q) = ∇ · v, (11)

for t ∈ In.

If we choose a test function φ with a suitable local support, and with φj = 0
for all j 6= n, Theorem 2 states that for t ∈ In, a cG(1)cG(1) solution up to

the factor Ch
1/2
max,φ,n weakly satisfies (integrated against of smooth positive test

function with local support) a local energy equation of the form:

d

dt
(
1

2
|Un|2) +∇ · (Ūn(

1

2
|Ūn|2 + Pn)) = −Dn

h(Û), (12)

with Dn
h(Û) ≡ δ1|R̄1(Ūn, Pn)|2 + δ2|R̄2(Ūn)|2 ≥ 0, a residual based numerical320

dissipation.
This local energy equation connects to a dissipative weak Euler solution

[19], with inertial energy dissipation coming from local non-smoothness of the
solution, and not from any viscosity. The dissipative term Dn

h(Û) in (12) reflects
local non-smoothness in the solution identified by the residuals, and is observed325

to be independent of h under sufficient mesh resolution [39, 23]

3.3. A posteriori error analysis and adaptive mesh refinement

Using standard techniques of a posteriori error analysis, see e.g. [22], we can
derive an a posteriori error estimate for cG(1)cG(1).

Theorem 3. If Û = (U,P ) solves (8), û = (u, p) is a weak solution to (1), and
ϕ̂ = (ϕ, θ) solves (5), then we have the following a posteriori error estimate for

the output M(Û) = [Û , ψ̂] with respect to the reference output M(û) = [û, ψ̂]:

|M(û)−M(Û)| ≤
N∑
n=1

[

∫
In

∑
K∈T h

|R1(Û)|K · ω1 dt

+

∫
In

∑
K∈T h

|R2(U)|K ω2 dt+

∫
In

∑
K∈T h

|SDn
δ (Û ; ϕ̂)K | dt ]

with330

R1(Û) = U̇ + (U · ∇)U +∇P,
R2(U) = ∇ · U,

where SDn
δ (·; ·)K is a local version of the stabilizing form (9), and the stability

weights are given by

ω1 = Ckn,Kkn|ϕ̇|K,∞ + Chn,KhK |∇ϕ|K ,

ω2 = Ckn,Kkn|θ̇|K,∞ + Chn,KhK |∇θ|K ,

11



where hK is the diameter of element K in the mesh T h, Chn,K , C
k
n,K represent in-

terpolation constants, |w|K ≡ (‖w1‖K , ‖w2‖K , ‖w3‖K) with ‖w‖K = (w,w)
1/2
K ,

and the dot denotes the scalar product in R3.335

3.4. Software implementation

The adaptive algorithm and the cG(1)cG(1) solver is implemented in the uni-
fied continuum mechanics solver Unicorn [41] and the high performance (HPC)
branch of the finite element problem solving environment DOLFIN, part of the
FEniCS project [42]. The HPC branch of DOLFIN [43, 44] is optimized for340

distributed memory architectures using a hybrid MPI+OpenMP approach with
efficient parallel I/O (MPI I/O), and ParMETIS [45] is used for mesh partition-
ing. DOLFIN supports several parallel linear algebra packages, but mostly rely
on PETSc [46].

4. Validation and application of DFS345

DFS is based on the computation of finite element approximations on adap-
tively refined computational meshes. In particular, no ad hoc mesh design is
needed, since solutions features such as flow separation and turbulent wakes
are automatically detected by the adaptive method through a posteriori error
estimation with sensitivity information from the solution of a dual problem. A350

hierarchy of adaptively refined meshes is generated for which convergence can be
observed with respect to an output of interest. We now report on the validation
of DFS in the form of the cG(1)cG(1) method.

4.1. Medium Reynolds number flow

At medium Reynolds numbers, less than Re = 105, boundary layers are355

laminar and can be resolved by the computational mesh. For this case, viscous
effects are not negligible so that the viscosity is kept in the model (1), and no
slip boundary conditions are chosen where the velocity is set to zero on the solid
boundary Γ.

DFS in the form of the cG(1)cG(1) method has been validated for a number360

of model problems of simple geometry bluff bodies, including a surface mounted
cube and a rectangular cylinder [39, 8], a sphere [47] and a circular cylinder [48].
In each case, convergence is observed for output quantities such as drag, lift and
pressure coefficients, and Strouhal numbers, and the adaptive algorithm leads
to an efficient method often using orders of magnitude fewer number of degrees365

of freedom compared to LES methods based on ad hoc design of the mesh.

4.2. High Reynolds number flow

In high Reynolds number flow, with Re > 106, boundary layers are turbulent
and are in most cases too expensive to resolve, and must instead be modeled. To
accurately predict e.g. aerodynamic forces it is critical to capture the correct370

flow separation, which can be connected to the boundary layer, in case flow
separation is not triggered by sharp features in the geometry [23]. Drag crisis
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for a circular cylinder is an illustrative example, where flow separation moves
downstream the cylinder wall as a consequence of transition to turbulence in
the boundary layer [49]. In [30] we model drag crisis by decreasing the skin375

friction parameter β in the model (1), where we find that the DFS simulations
reproduce the observed drag crisis scenario from experiments [50, 51, 52, 53].

In particular, we find that for small β the solution is insensitive to the
particular value of β, so that we reach an ultimate regime where the turbulent
boundary layer is modeled by a zero friction free slip boundary condition. This380

free slip model has the benefit of being a parameter-free model of turbulent
boundary layers, which requires no boundary layer mesh since no boundary layer
is resolved. For a high Reynolds number, the free slip boundary condition has
been shown to be a good model in the sense that flow separation and thereby the
surface pressure distribution is well approximated. For high Reynolds numbers,385

the main contribution to the aerodynamic forces on a body comes from the
surface pressure distribution, and thus the free slip model has a high potential
in aerodynamics applications.

DFS with a free slip boundary condition has been validated for the stan-
dard benchmarks of a NACA 0012 wing [54] and a 30P30N high lift device [55],390

where close agreement with experimental measurement was found in aerody-
namic forces and surface pressure distribution.

4.3. Complex geometry

To assess the capability of DFS for more challenging high Reynolds num-
ber flow problems in complex geometry, we have participated in a number of395

benchmark workshops with detailed experimental data available for validation,
including the first and second workshops on Benchmark problems for Airframe
Noise Computations (BANC-I and BANC-II) [28, 31], and the 2nd AIAA CFD
High Lift Prediction Workshop (HiLiftPW-2) [32].

Good agreement was found between DFS simulations and experimental mea-400

surements in all workshops, and two features distinguished DFS from all other
methodologies: (i) DFS was the only method using adaptive mesh optimisation,
and (ii) DFS was the only method leaving boundary layers unresolved (free slip
boundary conditions were used for all problems). Both (i) and (ii) contributed
to the fact that the number of degrees of freedom used in DFS was significantly405

lower than in other methods, often several magnitudes less.
In HiLiftPW-2 the task was to simulate flow at high Reynolds number around

a full aircraft, where DFS was the only method based on Navier-Stokes equa-
tions that simulated the unsteady flow [32]; aside from 2 contributions based
on Lattice Boltzmann Methods all other contributions used stationary RANS.410

Good agreement of DFS simulations and experimental data was found in aero-
dynamic forces and surface pressure distributions on the wings, see Fig. 1-4,
and the transient simulation data provided additional data on the flow at high
angles of attack modelling take-off and landing.

We note that the only input data to the DFS model is the geometry of the415

airplane, in the form of an initial coarse mesh, since viscosity and skin friction
are assumed to be negligible.
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Figure 1: From [32]: Lift and drag coefficient for angles of attack 12◦ and 22.4◦, under adap-
tive mesh refinement with the computational approximations approaching the experimental
reference values.

Figure 2: From [32]: Snapshot of the magnitude of dual velocity (left), and an adaptively
refined computational mesh optimised for lift and drag approximation (right).
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Figure 3: From [32]: Mean velocity contours and measurement plane locations (upper),
and pressure coefficient, CP , vs. normalized local chord, x/c, (lower) for the angle of attack
α = 12o, for a complete wing-body configuration.
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Figure 4: From [32]: Mean velocity contours and measurement plane locations (upper),
and pressure coefficient, CP , vs. normalized local chord, x/c, (lower) for the angle of attack
α = 22.4o, for a complete wing-body configuration.
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5. Stability and computability of turbulent flow

Characteristic for turbulent flow are chaotic particle paths which make pre-
diction of point values hard or impossible, popularly referred to as the butterfly420

effect. But turbulence is also a dissipative mechanism, similar to a shock in high
Mach number flow, with many stable features in the sense of averages, which
is what makes turbulence simulation possible. For example, although the par-
ticular set of particle paths around an airplane is impossible to predict, the net
effect in terms of the time average of aerodynamic forces is a stable quantity.425

5.1. Stability of the dual problem

Particle paths in a turbulence simulation are chaotic, but mean value output
can be stable. The difference between two computed solutions û and Û with
respect to an output functional M(·) can be expressed as the duality pairing of
local residual errors with the solution of a dual (adjoint) problem linearised at430

the two computed solutions, which is the posteriori error representation (4) that
is the foundation of the DFS adaptive method. In particular, the computational
approximation of the dual solution is at the heart of the methodology, and thus
the well-posedness of the dual problem is critical: is the dual problem solvable,
and what is the sensitivity in the dual solution with respect to its data (the435

linearisation error)?
A worst case case analytical estimate using Grönwall’s inequality bounds

the dual solution in terms of rapid exponential growth in time [22], although
in practise approximations of the dual solution for turbulent flow is routinely
computed as part of the DFS method. Practical computation also shows that the440

dual solution is stable with respect to different data in the form of approximate
primal solutions. That is, when the computational mesh is sufficiently refined
so that the output functional of interest M(Û) (e.g. drag) has converged, little
difference is seen in dual solutions ϕ̂ linearised at different approximate solutions
Û from this class of approximate solutions, which is observed as part of the445

adaptive algorithm [22].
The dual equations is a system of convection-reaction equations that take

the gradient ∇U as reaction coefficient. Given the sharp gradients in turbulent
flow, how is well-posedness of the dual problem possible? In [22] we argue
that the key is cancellation, since in a turbulent flow the gradient is oscillating450

rapidly, so that exponential growth is alternating with exponential decay. In
particular, a turbulent wake is dominated by vortices on a range of scales, see
Fig. 5, where each individual vortex tube is a stable flow structure in the sense
that a linearised stability analysis show no exponential perturbation growth [22].

5.2. Blowup of the dual solution455

On the other hand, there are unstable flows which are highly sensitive to
perturbations, for which blowup in the dual solution has been observed. An
illustrative example is flow around a circular cylinder, where as the Reynolds
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Figure 5: Vorticity visualised by a Q-criterion: snapshot of a DFS solution of the flow around
of a wing-body configuration (left) [32], and flow around a Gulfstream G550 nose landing gear
(right) [31].

number increases, the flow undergoes bifurcations connected to the first devel-
opment of 3D flow features, then transition to turbulence in shear layers, wakes460

and boundary layers [49].
In particular, observations of blowup in the dual solution have been reported

for increasing Reynolds numbers in the case of 2D flow around a circular cylinder
[56, 57], with strong vorticity production resulting from a sharpening of the
boundary layers and without any mechanism for dissipation in 2D. In physical465

flow, 3D features and turbulens develop that dissipate vorticity through vortex
stretching, which can be observed in corresponding 3D simulations [48].

6. Summary

We have presented a computational framework for turbulence simulation
based on adaptive finite element approximation, which we refer to as Direct470

Finite Element Simulation (DFS). For high Reynolds numbers, viscosity and
wall shear stress are assumed to be negligible compared to inertial effects, and
thus the DFS model has no empirical parameters. We interpret a DFS approxi-
mation as a dissipative weak solution, for which we can estimate the error with
respect to output functionals using duality analysis.475

Validation of the method has been carried out for a number of benchmark
problems, where it is found that DFS simulations compare well with experimen-
tal data, while at the same time being a very efficient methodology in terms of
the number of degrees of freedom needed to compute output data such as aero-
dynamics forces and surface pressure distributions. The main distinguishing480

features of the parameter-free version of DFS are: (i) the computational mesh
is optimised based on a goal functional using a posteriori error estimation, and
(ii) turbulent boundary layers are left unresolved.
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