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Abstract—This paper describes a bio-inspired architectural
approach to design highly adaptive systems in the context of
mobile robotics. The concerned robots evolve in an indoor
unknown environment and then exhibit several behaviours such
as landscape learning, obstacle avoidance, path planning, sensori-
motor control. We aim at designing the intelligent embedded
controller of those robots. The controller will be able to self-
organize its elements in order to adapt its architecture to the
robot behaviour. We focus in this paper on the description of the
neural network which was developed to self-organize the system.
We present the simulation results of our method.

I. INTRODUCTION

The aim of this work is to design an intelligent embedded
controller that will be able to self-organize its elements in
order to adapt its architecture to the robot behavior.

Inspired from the feature integration theory [1], the robot
will use three saliency maps. These three maps provide the
robot with a sensorimotor cognitive capability in order to react
and to adapt its behavior to the environment.

The controller will be able to adapt the size of the different
maps according to the states of its actuators and to the saliency
of the information from the external environment. As a result
of the Kohonen auto-organizing map model [2], the three
saliency maps are constantly competing for the resources of
the controller.

In section II we describe the hardware reconfigurable archi-
tecture of the controller. After that, in section III we present
the self-organizing properties of this system and its behaviour
in the context of robotic applications. Then in section IV we
present the simulation’s results that characterize the behavior
of the controller as conclusion.

II. CONTROLLER ARCHITECTURE

The controller is implemented as a single system-on-chip
embedded into the robot body. During its life time, the robot
exhibits several behaviours that are considered as concurrent
processing tasks for the controller.
The main goal is then to adapt the number of processing
elements of a regular architecture to the current urgency of
a task, where urgency is a function of the input-data activity
(saliency) as described in section III.
The adaptation mechanism is entirely distributed, thus the
tasks placement onto the architecture resources is computed

on-line by the system itself and does not require any external
decision making (local or deported operating system).

The idea is to implement cells as reusable elements which
behave as competing neurons in their basic configuration, but
can be used by a task as part of its processing. So, each task is
implemented as a set of cells. The set of unused cells can be
colonized as additional resources to implement bigger tasks.
The growing cell sets are thus restricted by the competition
between their border cells (see Fig. 1). Since competition is
computed from the activity of neighbour neurons (and from
input saliency), the geometry of a task in the architecture is
not limited to a 2D-rectangle as for standard reconfiguration,
but by the number of competing tasks.

As depicted in Fig. 1, the architecture of a cell is thus
composed of: direct wiring with its neighbours, a local pro-
grammable data-path, a local memory storing program and
data, and a configuration port controlled by the local neuron.
Four types of information are exchanged in the architecture:
the input sensors data on which are computed the different
tasks, the results of each processing broadcasted to the neigh-
bours, the program of a replicating cell, and the activities
of neurons. The role of these information flows in the self-
organizing process is described in the next section.
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Fig. 1. Architecture of the self-organizing maps.



III. SELF-ORGANIZING MAPS

The concept of self-organization is intrinsically bound to
the definition of the Kohonen’s maps (p 119 [2] ).

This is particularly interesting for an artificial vision appli-
cation. The self-organizing map (SOM) is able to order it’s
elements according to the entry set. This behavior is used to
allocate special areas of a computing substrata to the most
suitable tasks. As a result of this behavior, we get a data driven
allocation process that can be applied to any application fitting
this model.

Intrinsically, it is the case of this robotic application where
the vision processing is one of the main cognitive action of
the robot. For instance, the artificial vision system of our robot
stands on a spatiotemporal visual saliency model [3]. In this
model [4], the information contained in the input frames are
divided in two types: static and dynamic. The first step of
the vision process consists in the extraction of the quantity
of each of this type of information in order to balance the
allocation through the SOM (c.f. Fig. 2). This can be done
thanks to a retina-like neural network where a first ON-OFF
layer computes the magnitudes of the spatial gradient and a
second layer computes the temporal gradient. The robot is
also aware of its actuators states. It takes this information into
account through another neural network which feeds the third
entry of the system shown on Fig. 2.

As the developed SOM converges to an organization that
fits the needs of the application, three main areas (in this case
study) emerge from the SOM. Each of them are specialized in
relation to the different inputs of the system. For instance, the
first and the second areas are allocated to compute the static
and the dynamic saliency map. The result of the vision maps
is to extract the interest points in the image in relation with the
shapes and motions in the scene. Finally, a third area is used
as a sensorimotor map. This area will merge the informations
from the first two areas and from the actuators of the robot in
order to learn and to adapt it’s behavior relatively to its actions
and its environment.
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Fig. 2. Binding from the entries of the neural network to the self-organizing
map

The learning process of our SOM can be computed as a
cost function minimization problem of the average similarity
distance between the input vector and the weight vector. The
Manhattan distance in the network topology space between the

elected neuron and the learning neuron is used as a criteria
of weightiness. A classical “Mexican hat” distribution is then
used as a degree of lateral modulation to activate the neurons
in a fixed neighborhood and inhibit farther neurons. This
choices improve the reactivity of the system and ensure the
topological coherency of the network during the adaptation
step as illustrated in the following simulations.

IV. RESULTS AND PERSPECTIVES

We developed a simulator of the architecture presented
in the previous sections. This simulator can work either
with real-time sensors informations from the robot or with
recorded data. We presented to the controller architecture the
data corresponding to a 3-stages robot indoor mission: A)
stationary initialization, B) moving for room exploration and
C) stationary landscape learning.
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Fig. 3. Binding from the entries of the neural network to the self-organizing
map

As we can see in Fig. 3, the maps compete for the resources
(cells) available into the controller according to their inputs.
The three stages of the robot mission are clearly visible. From
the first to the 200th frame (stage A), the robot remains static
and a few objects are moving in front of it. From frames 200 to
490, the robot is moving (stage B). The motion estimation map
takes space to the static map. This ensure enough computing
power to the motion estimation tasks. Finally (stage C) the
robot remains stationary moreover there is no motion in front
of it. Therefore the stationary map is gaining space from the
dynamic one.

The profiling of the application behavior resulting from
simulation is very promising for the next stages of design.
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