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Fig. 2. r ] :  Top (left to 
right)-Original; blurred fullband. Bottom (left to rightwubband (LL); 
subband (LSI); subband (LSV). 

Cameraman image (BSNR = 40 dB) 

TABLE I 
TWO DIFFERENT INITIAL CONDITIONS 

type A B 
subband fullband subband fullband 

.3 x .3 x .6 x .6 x 
Qv 700 400 350 200 
QW 650 800 650 800 

AR Model -.09 .3 -.9 .3 -.36 .6 -.36 .6 

TABLE ll 
SNR IMPROVEMENT IN DIFFERENT CONDITIONS 

~ _ _  

subband fullband 
type 7 x 7  9 x 9  1 1 x 1 1  1 3 x 1 3  

A 8.2 dB 8.5 dB 6.4 dB -12.0 dB 
B 10.1 dB 8.6dB 7.9dB -12.5 dB 

TABLE III 
SNR IMPROVEMENT OF DIFFERENT QMF’S 

16A 24B 32C 48D 
4.2 dB 7.3 dB 9.0 dB 9.5 dB 

TABLE IV 
SNR IMPROVEMENT AT DIFFERENT BSNR’S 

BSNR Subband Full band 
LL Const. Adap. 

20 dB 2.2 dB 2.3 dB 
40 dB 3.9 dB 6.2 dB 7.3 dB 5.8 dB 
60 dB 3.9 dB 9.2 dB 11.1 dB 8.8 dB 

Table IV shows the numerical restoration results of a blurred image 
that has different noise levels. In the subband EM approach, all 
subbands (LL, HL, LH, HH) are restored and synthesized into one 
final image in 60 dB BSNR, three subbands (LL, HL, LH) are restored 
in 40 dB BSNR, and only one subband (U) in 20 dB BSNR. In this 
experiment, we used the better type B initial condition since the 
restoration is sensitive to this. For this good initial condition, the 
fullband EM gives a better result for psf estimation, but the subband 
EM still gives a better restored image due to the adaptation in image 
modeling. In the subband EM image estimate, horizontal and vertical 
edges are restored well, but 45 and 135” edges are not well restored. 
This is shown in Fig. 2. This is due to the fact that the image is 
divided in the vertical and horizontal directions, and the HH subband 
was assumed to be white. 
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VI. CONCLUSION 

The subband EM method is less sensitive to initial conditions 
than fullband EM and pennits a kind of parallel execution. In the 
upper frequency subbands, an inhomogeneous space-variant image 
model can be introduced to give better results. However, the subband 
analysidsynthesis filters must be quite good, i.e., near to ideal, to 
avoid distortion caused by transition band effects. Since many psf s 
are of the circular type, the application of a hexagonal subband 
method should be investigated. 
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Hidden Markov Models Applied to On-Line 
Handwritten Isolated Character Recognition 

Stephan R. Veltman and Ramjee Prasad, Senior Member, IEEE 

Abs-t-Hidden Markov models are used to model the generalion of 
handwritten, isolated characters. Models are trained on examples using 
the Baum-Welch oplimizalion routine. Then, given the models for the al- 
phabet, unknown characters cpll be clasitied using maxi”-likelihood 
cWication. Experiments have been condncted, and an average error 
rate of 6.9% was achieved over the alphabet eoasjsting of the lowercase 
Englisn alphabet. 

I. INTRODUCTION 

With the introduction of integrated systems digital network, mul- 
timedia applications are gaining importance. Due to the integration 
of several services into one single terminal, the user interface, or the 
man-machine part of the system, becomes a very important aspect of 
the system. An interesting step in the evolution of the user interface 
was the introduction of the pen and digitizing tablet. Since a pen 
enables the input of handwritten script, machine interpretation of 
handwritten text becomes an important field of research. If a machine 
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can reliably interpret handwritten script, applications lie in a wide 
variety of systems, mainly those who require a high interactivity or 
the use of direct pointing and manipulation [7]. 

This paper focuses on character recognition. The performance of 
a system based on hidden Markov models (HMM’s) is evaluated. 
HMM’s have been successfully applied to automatic speech recog- 
nition [4], [5], [13] and to some extent also to character recognition 
[ 13, [31. In [I] and [2], an HMM was used to model specific linguistic 
information, while [3] was a word-level approach. This paper focuses 
on recognition of isolated characters. Characters are input in a freely, 
unconstrained way using a tablet digitizer. HMM’s for each character 
are obtained by training on example characters using optimization 
routines. During classification unknown characters are “scored” on 
each model, after which the model that has the largest likelihood of 
having produced the unknown character is chosen (ML- or Maximum- 
Likelihood classification). The training procedure is computationally 
very intensive, but can be done off-line, while the classification 
procedure can be done in real-time. 

n. HIDDEN MARKOV MODELS APPLIED TO THE MA’TCHINC PROBLEM 

Basically, an HMM is defined as a doubly stochastic process 
with an underlying stochastic process that is not observable, i.e., 
hidden, but can only be observed through another set of stochastic 
processes that produces observable symbols [2]. Here we present a 
short overview of the theory of application of HMM’s to the matching 
problem according to [4] and [5]. At each time instant t, the HMM 
occupies a state sI and emits an observable symbol Ot . Then it moves 
to the next state on the basis of state transition probabilities, contained 
in the A matrix. The emission of symbols from each state occurs 
on the basis of symbol emission probabilities, contained in the B 
matrix. To set the whole process in motion, only one more parameter 
is needed: the initial state probability vector x. For each character, an 
HMM is formed by training on example characters, so two problems 
can be distinguish& the classification and the training problem. 

The classification problem is the easiest of the two. For each 
character, a model exists. An unknown observation sequence is 
“scored” on each model, and the character corresponding to the 
model that yields the highest probability of having emitted the 
sequence is selected. This type of classification requires computation 
of the probability that the sequence 0 was emitted by a given 
model M, Pr (OIM). Since the state sequence that has produced an 
observation sequence is “hidden,” i.e., not observable, we can either 
calculate Pr (OIM) over all possible state sequences or over the 
most likely state sequence having emitted the observation sequence. 
In the present study, we have used Pr (OIM)  over all possible state 
sequences, which can be efficiently calculated using the forward- 
backward algorithm. 

The training problem is typically a constrained optimization prob- 
lem. The likelihood that the example characters are generated by the 
given model is optimized. This can be done by classical optimization 
methods, like with Lagmnge multipliers, but here we have only 
considered the Baum-Welch algorithm. First, an initial estimate of the 
model is made. Next, the parameters of A, B, and x are reestimated 
using the Baum-Welch reestimation formulas. The model parameters 
are replaced by these reestimations, and this procedure is repeated 
until the increase in Pr (OIM) is arbitrarily small. The Baum-Welch 
algorithm is guaranteed to increase Pr (OIM) until a critical point, 
from which Pr (OIM) no longer changes. A proof of this property 
can be found in [4]. The optimum value for Pr (OIM)  is typically a 
local optimum. The optimum found depends on the initial estimates 
of the reestimation algorithm. It may be necessary to optimize 
Pr (OIM) multiple times under different initial estimates to obtain 
an optimum near the global optimum of the likelihood function. 
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Fig. 1. Illustration of the coding process. 

III. TABLET QUANTIZATION 
Since the character representation depends on the digitizing 

method, we first discuss the writing tablet. The writing tablet has a 
writable surface of 21 x 15 cm and a resolution of 2100 x 1536 grid 
lines on this surface. So, the resolution requirements according to 
[7] are sufficiently met. The sampling process involves the following 
steps (see Fig. 1): 

1. registration of pen-down, 
2. place a rectangular frame around the current pen position and 

wait for the pen to intersect this frame, 
3. make this intersection the new current point, and repeat steps 

2 and 3 until a pen-up is registrated. 
The frame size can be chosen in terms of gridlines as the first, 

second, or third frame around the current point. So, the tablet uses 
space sampling rather than time sampling. The result of the sampling 
process is an (I, y)-coordinate file. The temporal order of the strokes 
that compose the character is preserved in this manner, which, as we 
shall see, combines well with a special class of HMM’s. Finally, we 
notice that this type of coding is very similar to Freeman coding of 
line drawings [8]. 

IV. SYMBOL REQUIREMENTS 
The next issue of importance is what features to use to represent a 

character. The requirements put on the features (i.e., the observable 
symbols) are all inspired by the same thought: the interclass scatter, 
i.e., the discriminant power between different characters should be 
as large as possible. On the other hand, the interclass variation, 
the variation between specimens of the same character, should be 
minimized. This leads to the following requirements on the features 
[2]: A good set of features should 

1. be independent of translation, rotation, and linear scaling of 
the curve, 

2. be chosen so that they do not replicate each other, 
3. be easy computable, and 
4. preferably (but not necessarily) employ the dynamic informa- 

Since the writing tablet provides a time sequence of directional 
code vectors, we here use an angular curve description derived from 
the description used with the definition of generalized Fourier descrip- 
tors [9]-[12]. This description, discussed in Section VI, combines the 
following advantages: 

1. The 2-D (z,y)-versus distance format is reduced to 1-D; 
angular direction versus distance along the trajectory of the 
curve. In addition, the temporal information is incorporated in 
the description. 

2. By nature, angular information is independent of translation of 
the curve. 

3. The description involves a size normalization procedure, thus 
yielding size-independency. 

tion provided by the writing tablet. 
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Fig. 2. Intraclass-variability reduction through interpolation 

V. INTRACLASS-SCATTER REDUCING PREPROCESSING 
Since characters sometimes consist of multiple strokes separated 

by pen-ups, a method has to be found to treat within-character pen- 
ups before the symbol generation can take place. Keeping in mind the 
formulation about intraclass scatter from the previus section, a very 
effective way of dealing with within-character pen-ups is to linearly 
interpolate the pen-up point with the consecutive pen-down point, 
i.e., drawing a straight line between these points in spatial domain. 
This will reduce the intraclass scatter, since some people retrace the 
pen in order to avoid lifting it from the paper [7], while others write 
the same character without lifting the stylus. The “pen-up version” 
will be mapped into the version without penlift. Fig. 2 illustrates this 
process for the character “p.” Only characters “i” and ‘3’’ are treated 
differently: here, linear interpolation makes no sense, since the pen 
is not lifted to avoid retracing. Therefore, the length of the curve 
after the pen-down point is examined. When this length is very small 
compared to the total length of the curve, a dot is assumed, and a 
symbol “dot” is added to the feature vector. Now, the symbols that 
form the rest of the feature vector can be defined. 

VI. SYMBOLGENERATION 
Let 4(s) denote the absolute angular direction of the curve as a 

function of the distance s along the trajectory of the curve. Since 
the characters are captured by a tablet, we have iV nonequidistant 
samples of 4(s) (see also Fig. 1).  Let s, denote the length of an 
individual vector, then the total length of the curve is given by 

N 

L = C s ,  (1 )  
2 = 1  

A reasonable independence of rotation is achieved by subtraction of 
the starting angle d(0) combined with a dehooking algorithm. Hooks 
are due to inaccuracies in pen-down detection and to rapid or erratic 
motion in placing the stylus on or lifting it off the tablet [7]. In any 
case, when subtraction of starting angle is used to achieve rotation- 
independency, these hooks must be removed, since they show a very 
unstable behavior. The used dehooking algorithm is very simple, yet 
effective. When the absolute (mod 27r) difference between the angular 
directions of two consecutive vectors within a predefined distance 
Shook from the start of the curve exceeds a threshold E ,  all samples 
before this point are eliminated. Expressed in IP, this criterion can 
be written as 

where Shook is chosen small compared to the total length L of the 
curve. Typical values for Shook = 0.05 . L and = 1/27r yielded 
good results. 
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Fig. 3. Complete symbol generation procedure. 

After dehooking, the s-axis is divided into T equidistant steps 
(T - 1 if a dot was found during preprocessing), and @[t] is obtained 
from Q( s) by considering 4( s) a piecewise linear function, i.e., linear 
interpolating the ~ ( s , ) .  Assuming no dot was found this can be 
written as 

This normalization along the trajectory of the curve results in 
size-independency. Note that linear interpolation corresponds to a 
first-order reconstruction filter; in the spatial domain this means that 
the curve is reconstructed by circle segments. T must be chosen large 
enough to capture the highest spatial frequency of the characters. 
Since only the discrete HMM is considered, the &]-samples must 
be quantized in order to obtain discrete symbols. By straightforward 
uniform quantization q!~* [t] is obtained 

c$*[t] = Q { d [ t ] }  = Ot, t = 1,2,.. . ,T . (4) 

Resulting we have the desired observation sequence 0 containing 
T symbols. Fig. 3 shows the complete symbol-generation procedure. 
The next issue will be to determine the number of possible symbols 
per observation, i.e., the quantizer accuracy. 

VII. QUANTIZER ACCURACY 

To determine the required accuracy of the quantizer, it is useful 
to recall the concepts from Section VI: the intraclass and interclass 
variation. Using these concepts, we can formulate the following 
requirement on quantizer accuracy: The difference between the quan- 
tized representation and its original may not be larger than the average 
intraclass variability according to some distance criterion. 

TWO relative error measures are defined, Cquantization and Cintraclass 

Cquantization - A 

A 
cintraclass  - 

where @[t] denotes the nonquantized description and 4* [t] its quan- 
tized counterpart. ~1 [t] and 92 [t] are normalized descriptions of two 
different specimen of the same character. 

To obtain an indication of the magnitude of the required number 
of quantization levels, cintraclass and Cquantization were calculated. If 
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Fig. 4. Intraclass scatter and scatter due to quantization. 

TABLE I 
OFTIMUM MODEL PARAMETERS 

N = 6  LTR-1 structure 
M = 1 7  

T = 64 
li = 20 
50 optimizations per character 

16 quantization levels and symbol 
“dot” 
Observation sequence length 
20 examples per character 

there are N specimens per character, then 1 / 2 .  ((iV - 1)’ + N - 1) 
values for Eintraclass can be computed per character. Using N = 
10,cintraclass was computed for 26 . 35 = 1170 combinations. In 
addition, was calculated for the 10 specimens, again 
for the complete alphabet. Fig. 4 shows a plot of the average of 
EquantiZation as a function of the number of quantization levels. The 
average value for Eintraclass is also shown. 

VIII. EMPIRICAL DETERMINATION OPTIMUM PARAMETERS 
Extensive experimental work has been carried out in two stages: 

first, on a limited alphabet (typically characters “a”-“j”), an optimum 
set of parameters defining the HMM’s was determined. With these 
optimum parameters, the performance of the system applied to 
the complete English alphabet was evaluated. The scheme used 
was to vary one parameter, while keeping all other parameters 
the same. Although the underlying assumption that the parameters 
are independent of each other probably is not entirely correct, this 
approach does limit the number of experiments 

~ 

LTI7-2 

Fig. 5 .  Tested HMM structures. 

allowed (LTR-3). In general, structure LTR-1 performed about 2-3 
times better than structures LTR-2 and LTR-3 and about 4-5 times 
better than the structure without constraints. Clearly, the temporal 
order is an important aspect in the HMM structure. Since models 
LTR-2 and LTR-3 are subsets of model LTR-1, the obtained results 
are quite reasonable. 

B. Initial Estimates 

The main result of the first part of the experiments was that multiple 
optimizations per character, followed by selecting the model that 
yields the highest Pr (0 IM) is an absolute necessity for good system 
performance. Experiments showed that even when an observation 
sequence 0 is generated by a HMM using Monte Carlo simulation 
and the model is retrieved by the optimization procedure, for some 
initial estimates no correct model is found. One way to vary the initial 
estimates is by dividing the unit interval of each parameter into p 
sections, followed by optimizations for all possible combinations. For 
N states, M symbols, and p sections, the number of combinations 
is given by 

c = p(‘v~+lv)/2+w M (7) 

Only the LTR-1 structure is assumed here. Setting p = 3 , N  = 4, 
and M = 16 already yields 2 . combinations, which is not a 
very attractive prospect. An alternative method is to use a random 
generator to generate initial estimates [5] .  Experiments have shown 
that for aprpoximately 50 optimizations per model, sufficiently strong 
local optima are found, i.e., with 100 optimizations under different 
initial estimates the same Pr (OIM) is found as under the 50 initial 
estimates. 

A. Model Structure C. Number of Symbols and States 

The result from the previous sections is an observation sequence 
(feature vector) 0 that incorporates the temporal information pro- 
vided by the tablet. This temporal order can be imposed on a HMM 
by constraining the model structure to left-to-right (LTR) [4], [5] .  
Once an ut3 is set to 0, it remains 0 when using the Baum-Welch 
reestimation formulas. Therefore, by initially setting ut3  = 0 for 
a disallowed state transition, any model structure can be imposed. 
Left-to-right models must be trained on multiple sequences. Using 
one long observation sequence here makes no sense, since once the 
final absorbing state is reached, the further observations provide no 
information about earlier states. The performance of four different 
model structures was tested: an HMM with no constraints on state 
transitions, and 3 LTR HMM’s (see Fig. 5): skipping of all states 
allowed (LTR-l), single skips only (LTR-2), and no skipping of states 

The next issue under investigation was the number of symbols M, 
i.e., the quantizer accuracy. Based on the result from Section VII, 
M was varied from 8 to 24. The recognition error showed a descent 
from 12% ( M  = 8) to 6.8% at M = 16. Then the error increased 
until 10.2% at M = 24. Similar experiments were conducted on the 
other parameters. For instance, for model size N = 6, the optimum 
recognition rate was achieved. In theory, using more states should 
lead to a better recognition performance due to the increased ability 
to capture variability. In practice, however, using more states does not 
necessarily increase the performance, probably because more states 
also need more training data to satisfy the training procedure [3]. 
The parameters shown in Table I show the experimentally optimal in 
terms of recognition accuracy, amount of training data needed, and 
classification time (set at less than 1 s on an AT-type PC). 
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TABLE II 
&COGNITION ERROR RATES OF INDIVIDUAL. AND COMBINE0 SYSTEMS 

Writer 1 Writer2 Writer 3 Writer 4 Writer 5 Average error 
Individual system 6.66% 6.54% 6.15% 2.69% 32.6% 6.94% 
Combined system 34.2% 10.0% 17.7% 27.3% 26.5% 19.1% 

n n  writer I 

Fig. 6. Writing styles of five writers. 

Ix. SYSTEM PERFORMANCE EVALUATION 

With the optimum set of parameters, recognition experiments 
were conducted on the alphabet consisting of the complete lower- 
case English alphabet. Five writers (three male, two female) were 
each instructed to enter 30 samples for each character in a fully 
unconstrained way and completely according to their own writing 
style. First, for each person independently HMM’s were obtained by 
training on 20 samples per character, resulting in a system trained 
on its user (individual system). The other 10 samples were used 
as test characters, and the individual overall error rate, i.e., the 
average error rate over all characters was determined. Then, four 
training sequences from each of the five writers were used to obtain 
“combined” HMM’s, i.e., one system trained on five users. Table I1 
shows the recognition error rates that were obtained for both systems, 
and Fig. 6 shows the writing styles of the five writers. As can be seen, 
an average error rate of 6.9% was obtained for the systems trained 
specificly on its user (individual system). An error analysis showed 
that most confusions are between characters where the description 
differs only in a small durational way, like for instance the “a” and 
“d,” who only differ in the higher extension of the vertical stroke 
for the “d.” Apparently, the model is unable to capture these more 
subtle differences in durational information between two character 
descriptions. The confusion between two characters “a” and “ b  may 
be due to the course quantization. 

Due to the great difference in equipment, experimental protocols, 
data, etc., it is very difficult to compare results of experimental studies 
[6], [7]. Recognition rates varying from 71.98 to 100% have been 
reported [6], [7], depending on the alphabet, constraints, classification 
methods, the use of dictionaries, etc. Given the very unconstrained 
way in which the characters are allowed to be entered, the obtained 
results are quite good. Table II shows that the average performance 
of the system trained on five users (combined system) is about three 
times worse than the single-user system, so the main application 
lies in the individual system. Apparently the system is unable to 
effectively capture the enlarged variability introduced by multiple 
writers. 

X. CONCLUSIONS 
A system that classifies handwritten characters in an on-lie fashion 

has been presented. If the system is trained on its user, an average 
error rate of 6.9% is achieved with fully unconstrained input of 
the characters. System performance degrades as the writer becomes 
more sloppy, which is obvious by comparing the results of writer 5, 
who wrote in a very hasty, sloppy way, with the result of writer 4. 
Performance can be increased by requiring writers to write neatly, 
which is a much more natural way of constraining than, for instance, 
constraints on the order or direction of the strokes [6]. This may 
even have an educational application. 

Since MLclassification is used, the system can easily be ex- 
tended depending on the application. For instance., weighting each 
Pr (OIM) with Occurence probabilities for each character according 
to a language model can be used when the system is used mainly 
to enter text. A hypothesis generation scheme can easily be realized. 
In CAD applications, decision rules may be an alternative method to 
decide between ambiguous characters, although this method may put 
undesirable constraints on the handwriting. 

ACKNOWLEDGMENT 

valuable suggestions and to E. Ooms for preparing the manuscript. 

REFERENCES 

The authors would like to thank the anonymous reviewers for their 

[l] A. Kundu, Y. He, and P. Bahl, “Recognition of handwritten word: 
First and second order hidden Markov model based approach,” in Pan. 
Recogn, vol. 22, no. 3, pp. 283-297, 1989. 

[2] A. Kundu and P. Bahl, “Recognition of handwritten script A hidden 
Markov model based approach,” in P m .  ICASSP, 1988, pp. 92S931. 

[3] R. Nag, K. H. Wong, and F. Fallside, “Script recognition using hidden 
Markov models,” in P m .  ICASSP, 1986, pp. 2071-2074. 

[4] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduction 
to the application of the theory of probabilistic functions of a Markov 
process to automatic speech recognition,” Bell Syst. Tech. J., vol. 62, 
no. 4, pp. 1035-1074, 1983. 

[5] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “On the application of 
vector quantization and hidden Markov models to speaker-independent, 
isolated word recognition,” Bell Sysf. Tech. J.. vol. 62, no. 4, pp. 

[6] F. Nouboud and R. Plamondon, “On-line recognition of handprinted 
characters: survey and beta tests,” Panern Recognirion vol. 23, no. 9, 
pp. 1031-1044, 1990. 

[7] C. C. Tappert, C. Y. Suen, and T. Wakahara, ‘me state. of the art in 
on-line handwriting recognition,’’ IEEE Trans. Pattern Anal. Machine 
Infell., vol. 12, no. 8, pp. 787-808, Aug. 1990. 

[8] H. Freeman, “On the encoding of the arbitrary geometric configurations,” 
IRE Trans. Elecfmn. Compr., vol. EC-10, pp. m2f j8 ,  June 1961. 

[9] J. W. Vieveen and R. Prasad, “Generalised Fourier descriptors for use 
with line-drawings and other open curves,” in Proc. 6th Scandinavian 
ConJ Image AMI. (Oulu, Finland), June 1989, pp. 820-827. 

[lo] N. B. I. Weyland and R. prasad “Characterization of linedrawings 
using generalised Fourier descriptors,” Elecrmm Len., vol. 26, no. 21, 
pp. 1794-1795, Oct. 1990. 

[Il l  “Criterion for characterization of linedrawings using generalised 
Fourier descriptors,” in P m .  7th Scandinavian Con$ Image AMI. 
(Aalborg, Denmark), Aug. 1991, pp. 48-55. 

1121 L. Yang and R. prasad, “Recognition of linedrawings based on gener- 
alised Fourier descriptors,” in P m .  41h IEE Inf. Con5 Image Processing 
Applicaf. (Maastricht, Netherlands), Apr. 1992, pp. 286289. 

[13] R. Rosenfeld, X. Huang, and M. Furst, “Exploiting mmlations among 
competing models with application to large vocabulary speech recogni- 
tion,” in P m .  ICASSP, 1992, pp. 1-5-1-8, vol. I. 

1075-1 105, 1983. 


