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Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations
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A detailed analytical and numerical analysis of a recently introduced stochastic model for fluid dynamics
with continuous velocities and efficient multi-particle collisions is presented. It is shown how full Galilean
invariance can be achieved for arbitrary Mach numbers and how other low temperature anomalies can be
removed. The relaxation towards thermal equilibrium is investigated numerically, and the relaxation time is
measured. Equations of motions for the correlation functions of coarse-grained hydrodynamic variables are
derived using a discrete-time projection operator technique, and the Green-Kubo relations for all relevant
transport coefficients are given. In the following paper~Part 2!, analytic expressions for the transport coeffi-
cients are derived and compared with simulation results. Long-time tails in the velocity and stress autocorre-
lation functions are measured and shown to be in good agreement with previous mode-coupling theories for
continuous systems.
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I. INTRODUCTION

Particle-based simulation techniques have rece
emerged as an interesting alternative to more traditio
methods for studying such diverse behavior as rarefied
dynamics, flow and transport in complex geometries and
nometer devices, and the dynamics and rheology of com
liquids such as amphiphilic mixtures, polymer solutions, a
colloidal suspensions.

Phenomena involving rarefied gas dynamics and hyp
sonic flow often occur in regimes where the continuum
proximation breaks down and the traditional Navier-Stok
equations are not valid. This is the case, for example, w
flows in geometries in which the Knudsen number—defin
as the ratio of the mean free path of a gas to the local len
scale of the problem—is not negligibly small. If the Knuds
number is larger than'0.1, the Navier-Stokes equations a
no longer valid, and particle-based methods, such as the
rect simulation Monte Carlo~DSMC! @1,2#, have been used
extensively.

Complex fluids present a challenge for conventio
simulation techniques due to the importance of thermal fl
tuations and the presence of disparate time scales in
dynamics. On the microscale, molecular dynamics~MD!
techniques can be used to model the dynamics of small
mistic systems on time scales ranging from picosecond
microseconds. However, the slower millisecond dynamics
larger structures, such as the self-assembly of micelle
ordered surfactant phases, cannot be accessed by atom
methods now or in the foreseeable future. Similarly, althou
the accurate simulation of the atomic-scale properties of
factant assemblies and polymers requires atomistic
simulations, these methods are not suited for determin
larger structures such as micellar sizes and shapes, bicon
ous phases, or to predict the phase diagrams of surfactan

*Present address: Institut fu¨r Computeranwendungen 1, Unive
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oil or water. At the other extreme, approaches based on
numerical solution of continuum equations encounter di
culties for even such comparatively simple problems as c
loidal suspensions due to the cumbersome treatment of m
ing boundary conditions. In fact, flows with dynam
interfaces are among the most difficult computational pr
lems in continuum mechanics. The central challenges ar
develop numerical algorithms that accurately couple the fl
and solid domains and resolve the deforming interfaces,
geometric algorithms for evolving and managing the res
ing dynamic particle-mesh systems. The associated dyna
data structures are particularly troublesome on highly pa
lel computers. Even worse, there are many physicochem
effects which cannot be captured by continuum models
addition, while one is interested in understanding the p
nomena that give rise to the non-Newtonian rheological
havior of complex liquids, continuum approaches genera
rely on the use of phenomenological constitutive relations
model this behavior.

In all these cases, the correct modeling of the phenom
of interest requires the use of ‘‘coarse-grained’’ mesosco
approaches that mimic the behavior of atomistic systems
the length scales of interest. The goal is to reproduce
physics of fluid flow, primarily the conservation laws, whi
including the essential features of the underlying mic
scopic and mesoscopic physics. Two rather well kno
particle-based simulation techniques which have been de
oped with this goal in mind are Bird’s DSMC method@1,2#
and dissipative particle dynamics~DPD! @3,4#.

Dissipative particle dynamics is an isothermal off-latti
technique which is essentially a molecular dynamics simu
tion in which each particle—which represents a mesosco
element of the underlying molecular fluid—interacts with
the particles inside a sphere of radiusr 0 through a conserva
tive force, as well as dissipative forces which represent
coupling to a heat bath, and random forces which supply
energy lost by damping. In this coarse-grained descript
the dominant interactions are the dissipative and rand
forces; the conservative forces are weak and of relativ
©2003 The American Physical Society05-1
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long range. The soft nature of the DPD potentials allows
much longer time steps than in traditional MD simulation
Since DPD is an off-lattice technique, it is Galilean invaria

It has been shown@5#, using projection operator tech
niques, that DPD yields the correct macroscopic hydro
namic equations, and kinetic theory was used to relate
transport coefficients in the hydrodynamic equations with
DPD model parameters@6#. The effect of finite time steps on
the equilibrium state of the system has also been studied@7#.
DPD has been used to study a rather large range of prob
ranging from flow past complex objects@3#, concentrated
colloidal suspensions@4,8,9#, polymer suspensions@10,11#,
and phase separation@12–14#. More recently, the DPD
method has been generalized to include energy conserv
@15–17#, and the wave vector dependent transport proper
of the DPD fluid have been calculated analytically using
netic theory methods@18#.

The direct simulation Monte Carlo algorithm@1,2,19# is a
stochastic, particle-based approach for solving the nonlin
time-dependent Boltzmann equation. In this approach,
system is partitioned into cells, with'50 particles per cell.
Each particle in the simulation is taken to effectively rep
sent a large number of molecules in the physical system.
accurate calculations, the linear dimension of the cells m
be less than the mean free path of the particles, and
general rule of thumb is that in regions with large gradien
the cell dimension should be approximately one-third
mean free path@2#. The algorithm consists of two step
streaming and collision. In the streaming step, partic
propagate freely for a time steptd ; collisions are then per
formed stochastically, with scattering rates and postcollis
velocity distributions determined from dilute gas kine
theory. Since the Boltzmann equation provides an accu
description of dilute gases arbitrarily far from equilibrium
even when there are large gradients in the hydrodyna
fields, this approach can be used to study phenomena ou
the range of applicability of hydrodynamic equations. In fa
in 1989 the DSMC method was called@20,21# ‘‘the dominant
predictive tool in rarefied gas dynamics for the past decad

Comparisons of the results of the DSMC method and m
lecular dynamics simulations have shown that the DSM
method yields accurate results for shocks@22# and slip
lengths @23#, and many computational studies have sho
that the DSMC results are in good agreement with soluti
of the Navier-Stokes equation in the limit of very sma
Knudsen number@20#. For reviews of recent advances an
applications of the DSMC method, see Refs.@24–26#. Some
notable recent extensions of this approach include gene
zations to model the Enskog equation for a hard-sphere fl
@27–29# and fluids with a van der Waals equation of sta
@30#.

In this paper, we discuss an alternative particle-ba
simulation technique for modeling fluid dynamics@31–34#,
called stochastic rotation dynamics~SRD!. It shares many
features with the DSMC method and its variants, but diff
in the nature of the collision rules. Like the DSMC metho
the fluid is modeled by particles whose positions and velo
ties are continuous variables, and the system is co
grained into the cells of a regular lattice with no restricti
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on the number of particles in a cell. The evolution of t
system consists of two steps: streaming and collision. In
streaming step, the coordinate of each particle is increme
by its displacement during the time step. However, unlike
DSMC method, collisions are modeled by a simultaneo
stochastic rotation of the relative velocities ofeveryparticle
in each cell. The dynamics is explicitly constructed to co
serve mass, momentum, and energy, and the collision
cess is the simplest consistent with these conservation la
It has been shown that there is anH theorem for the dynam-
ics and that this procedure yields the correct hydrodyna
equations for an ideal gas@31#.

The essential features of the algorithm are the followin
Consider a set ofN point particles with~continuous! coordi-
natesr i(t) and velocitiesvi(t). In the following, the mass of
the particles is set equal to 1. In the streaming step, all p
ticles are propagated simultaneously a distancevit, wheret
is the value of the discretized time step. For the collisi
step, particles are sorted into cells, and they interact o
with members of their own cell. Typically, the simplest ce
construction consisting of a hypercubic grid with mesh siza
is used. The collision step consists of an independent ran
rotation of the relative velocities,vi2u of the particles in
each cell, where the macroscopic velocityu(j,t) is the mean
velocity of the particles in the cell with coordinatej. The
local temperatureT(j,t) is defined via the mean square d
viation of the particle velocities from the mean velocity in
cell. All particles in a cell are subject to the same rotatio
but the rotation angles of different cells are statistically
dependent. There is a great deal of freedom in how the r
tion step is implemented@31,33,35#, since, by construction
the local momentum and kinetic energy are invariant. T
dynamics is therefore summarized by

r i~ t1t!5r i~ t !1tvi~ t !, ~1!

vi~ t1t!5u@ji~ t1t!#1v@ji~ t1t!#•$vi~ t !2u@ji~ t1t!#%,

~2!

wherev(ji) denotes a stochastic rotation matrix, andji is
the coordinate of the cell occupied by particlei at the time of
the collision.u(j)[(1/M )(kPjvk is the mean velocity of the
particles in cellj. In two dimensions,v is typically taken to
be a rotation by an angle6a, with probability 1/2. How-
ever, any stochastic rotation matrix consistent with detai
balance can be used. Several choices in three dimension
discussed in Ref.@35#.

A. Galilean invariance and molecular chaos

In order to perform the collision operation, the system
coarse grained into the cells of a regular lattice. This bre
Galilean invariance, since the collision environment of a
given particle depends on the value of a superimposed c
stant velocity field. Consider the difference between a s
tionary medium and one that moves with a constant velo
U. Unless the displacement of the moving system in o
time step is exactly commensurate with the cell structure
particle in the moving system will find that its position rel
tive to the cell boundaries is different than in the stationa
5-2
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frame. Because of this, the particles participating in the c
lision process will be different in the stationary and movi
frames, thus breaking Galilean invariance. This breakdo
of Galilean invariance is negligible if the mean free pathl
5tAkBT of the particles is large compared to the cell sizea.
In this case,molecular chaosis a valid assumption becaus
most collisions involve particles that have just arrived fro
different cells, and are therefore not correlated. After a c
lision, particles immediately leave to other cells, and he
decorrelate quickly. There are no correlations which can
affected by a homogeneous flow field. The breakdown of
Galilean invariance can, however, become significant
small l/a. In the limit of small mean free path, essentia
the same set of particles ‘‘collide’’ several times before so
of the participating particles leave the cell or other partic
enter. The particles are therefore correlatedprior to the col-
lision step, and the degree of correlation depends on
value of the imposed flow field. The transport coefficien
depend on the value ofU, and Galilean invariance is broken
This behavior is confirmed by simulations. For examp
simulation results for the ratio of the self-diffusion consta
in x and y directions,R5Dx /Dy , measured in a homoge
neous flow field as a function ofl/a are presented in Fig. 1
While there are significant deviations fromR51 for small
l/a, for l.a/2, R deviates from 1 by less than 0.3%.

Consider now what happens if, before the collision st
all particles are shifted by thesameuniformly distributed
random translation vector with components in the inter
@2a/2,a/2# before the collision step. The shift randomiz
the position of particles in the cell, and any given particle h
an equal probability to be found atany position in a cell.
This is true inboth stationary and moving frames. There
therefore an equal probability that the outcome of the co
sion process is the same in both frames, so that Gali
invariance is exactly restored. This makes it possible to p
form simulations at arbitrary Mach number, even for lo
temperature, at little additional computational cost. In o
implementation of this procedure all particles are shifted

FIG. 1. Test of Galilean invariance. The ratio of the se
diffusion coefficientsDx andDy in x andy directions plotted as a
function of the ratio of the mean free pathl to the cell sizea. A
homogenous flow inx direction, u5(0.2,0), is imposed, and no
random shift has been applied. Parameters:kBT50.0625,M535,
andL532.
06670
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the same random vector with components in the interv
@2a/2,a/2# before the collision step. Particles are th
shifted back to their original positions after the collision.
we denote the cell coordinate of the shifted particlei by ji

s ,
the collision step is described by

vi~ t1t!5u@ji
s~ t1t!#1v@ji

s~ t1t!#•$vi~ t !2u@ji
s~ t1t!#%

~3!

instead of Eq.~2!.
The random shifts also rectify an unphysical property

the multiparticle interaction provided by the rotation. Th
partitioning of the particles into cells means that there is
possibility that there is no interaction between two partic
even if they are infinitesimally close, but separated by a c
boundary, while other particles in the same cell interact n
locally up to a distanceaA2. On average, the interactio
between two particles is a smooth function of the distan
~and the orientation of the connecting vector! between two
particles if random shifts are applied.

The random shift procedure is also essential for gener
zations of this model to nonideal gases@36# where a phase
boundary between fluid and gas phases can occur. With
the modification, a homogeneous flow would lead to a de
mation of a spherical droplet at small mean free path.

Finally, note that the random shift procedure does not
ter the anisotropy caused by the underlying cubic grid.
dimensiond52, the anisotropy can be reduced by using
hexagonal cell structure. More generally, additional rand
rotations of the grid should be applied in order to achieve
isotropy. We will assume that the anisotropy is small, at le
at moderate and large mean free path, and will not consid
here.

B. Detailed balance and theH theorem

It was shown in Ref.@31# that there is a BoltzmannH
theorem for the SRD algorithm if~a! the stochastic collision
rules satisfy semidetailed balance and~b! Boltzmann’s as-
sumption of molecular chaos is valid. The assumption
molecular chaos is required in order to be able to write
full N-particle probability distribution function as the produ
of identical single-particle distributions, and semidetail
balance is required to guarantee that theH functional

HB~ t !5E dvdr f ~v,r ,t !ln f ~v,r ,t !, ~4!

where f (v,r ,t) is the reduced single-particle distributio
function, decreases with time and attains a minimum for
equilibrium Maxwell distribution,

f 5 f eq[
N

V S 1

2pkBTD d/2

exp@~v2u!2/2kBT#. ~5!

TheH theorem guarantees that the dynamical system rela
to the correct Gibbs equilibrium state. Furthermore, it e
sures that there are no numerical instabilities associated
5-3
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a nonmonotonic decay of theH functional, as are often found
in interacting lattice-gas and lattice-Boltzmann mod
@37,38#.

As discussed in Sec. I A, the assumption of molecu
chaos is not valid for the SRD algorithm because of the
structure introduced to define the collision environment.
though theStosszahlansatzis not a bad approximation fo
large mean free paths,l.a, it breaks down completely
whenl is significantly smaller then the cell size, since co
relations build up over several collisions. It follows that anH
theorem of the type discussed in the last paragraph is
strictly valid. Nevertheless, there is a more general type oH
theorem which the SRD algorithm does satisfy. In gene
any Markov chain or process with an equilibrium distrib
tion will have anH theorem associated with it, in the sen
that there is a whole class of Lyapunov functions that
crease monotonically with time. Any convex function of th
N-particle distribution achieves this. In particular, He´non has
shown quite generally@39# that the assumption of semide
tailed balance in such a process is sufficient to prove aH
theorem of this type. More generally, theH theorem follows
directly from the master equation for theN-particle distribu-
tion function if the Markov process satisfies a detailed b
ance condition@38,40#. In the remainder of this section w
show that the collision dynamics of the SRD algorithm w
random cell shifts satisfies a detailed balance condition
discuss the resultingH theorem.

Malevanets and Kapral@31# have shown that the origina
SRD algorithm conserves the elementary measuredG
5) dr i dvi . For the streaming step, Eq.~1!, it is clear that
the Jacobian is 1. The collision step is a rotation of the re
tive momenta. Semidetailed balance and the fact that
choice of rotation does not depend on the relative mome
ensure that the Jacobian of this operation is also equal t
so that the phase space measure is invariant. Note tha
remains true even if the random shift operation discusse
the previous section is implemented. The evolution in ph
space is Markovian, and the Liouville equation for the ev
lution of theN-particle probability distribution in the origina
SRD algorithm is@31#

P~V(N),R(N)1tV(N),t1t!5Cb+P~V(N),R(N),t !, ~6!

where the action of the collision operatorCb is given by

Cb+P~V(N),R(N),t !

5
1

2Q (
$v%

E dR̆(N)P~V̆(N),R(N),t !

3)
i 51

N

d~vi2uj
i
b2v~ji

b!•@ v̆i2uj
i
b# !, ~7!

where Q is the number of simulation cells,V(N)

5(v1 , . . . ,vN), R(N)5(r1 , . . . ,rN), and V̆(N) denotes the
velocitiesbefore the rotation.jb is the cell coordinate~see
Sec. II A!, andb indexes a particular choice of origin for th
grid ~e.g., the position of a particular cell center!, which is
fixed but arbitrary in the original algorithm.
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In the following discussion, we consider random gr
shifts, while keeping the particle positions fixed. This
equivalent to the procedure described in the preceding
tion. The functional form of Eq.~6! is independent of the
choice of grid origin; the center of mass velocities of a ce
and the sets of collision partners will, of course, depend
the particular choice ofb. The grid shift before the collision
step entails a displacement of the grid by a random tran
tion vector with components uniformly distributed in the i
terval @2a/2,a/2#. Because the size of the random trans
tion does not depend on either the particle positions
velocities, and is uncorrelated in time, the Liouville opera
for the system with random shift is simply a superposition
the operator for a fixed grid. Equation~6! therefore becomes

P~V(N),R(N)1tV(N),t1t!

5
1

adE2a/2

a/2

•••E
a/2

a/2

db1•••dbd Cb+P~V(N),R(N),t !. ~8!

For any fixed grid, the Maxwell distribution is a fix point o
the Liouville equation@31#, and because of Eq.~8! it remains
a fix point with random shifts. Assuming molecular chao
this means that theH theorem proven in Ref.@31# remains
valid when random grid shifts are performed. This is su
ported by simulations, which showed convergence to
Maxwell distribution, both with and without random ce
shifts. There were no instabilities, and the final state is
ways spatially homogeneous; for large mean free path, b
the dynamics and transport coefficients are not changed

In general, however, molecular chaos is not a valid
sumption, and there is noH theorem for functional~4!. Nev-
ertheless, there is a more general type ofH theorem describ-
ing the relaxation of theN-particle distribution function. As
discussed above, the SRD collision rules must satisfy a
tailed balance condition in order for this to be true. In tw
dimension, where the stochastic rotation matrix is a rotat
by an angle6a, with probability 1/2, detailed balance i
clearly satisfied. More generally, detailed balance requ
that the inverse rotation can occur with equal probabil
Consider a system ofN particles, with a fixed grid consisting
of Q cells. The microscopic state of this system,$r i ,vi%, will
be denoted byA. Let B be the state after one streaming a
collision step. The transition probability fromA to B, w(A
→B), is proportional to 1/2Q, because we have two poss
bilities for the rotation in every cell. Now invert time
t→2t, and perform another collision and streaming st
The probability of obtaining stateA, w(B→A), is exactly
the same asw(A→B), so that detailed balance is realized

Consider now the effect of the grid shift. Starting fro
configurationA, the streaming step is performed and the g
is shifted by a particular vectorb. The velocities are rotated
by the anglea, and a new stateB is obtained. The grid is
now shifted back to its original position. Because of the sh
there are many more possibilities for obtaining configurat
B than without shifting. However, after time reversal, the o
stateA can be obtained again with the same probability, sin
one needs again a random shift by the same vectorb and a
rotation by angle2a to attain this state. The probability o
5-4
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choosing the sameb for the inverse operation is the same
for the forward time step time, since the selection ofb is
independent of time and state of the system. Detailed bala
is therefore not affected by the shift, so the conditions for
H theorem are fulfilled.

In principle, any convex function of theN-particle prob-
ability distribution can be used to defineH, but the standard
choice,

H~ t !5E dGP ln P, ~9!

where theN-particle distributionP5P(V(N),X(N),t), and
dG5dV(N)dX(N) ensures that the Maxwell distribution min
mizesH. To see this, note that sinceP ln P is a convex func-
tion of P,

H~ t !2Heq5E dG~P ln P2Peq ln Peq!>E dG~ ln Peq11!

3~P2Peq!, ~10!

where, for the moment,Peq is arbitrary. However, the Max
well distribution

Peq;expS 2(
i

N

~vi2u!2/2kBTD ~11!

provides a lower bound for theH-functional, Eq.~9!, be-
cause conservation of mass, momentum, and energy gu
tees that

E dGP ln Peq5E dGPeq ln Peq5Heq , ~12!

and

E dGP5E dGPeq . ~13!

The right hand side of Eq.~10! is therefore zero forPeq
given by Eq.~11!, proving theH theorem.

C. Outline

The remainder of the paper is organized as follows.
Sec. II, we introduce our choice of coarse-grained hydro
namic variables and derive the equations of motion for
correlation functions using a discrete-time projection ope
tor formalism similar to that utilized by Dufty and Ernst@41#
in their derivation of the Green-Kubo relations for lattice-g
cellular automata. The shifting procedure discussed abov
incorporated into the formalism, and it is shown that while
does not change the reversible Euler terms in the equat
of motion, it does lead to new contributions to the Gree
Kubo relations for the transport coefficients. In Sec. III, n
merical results for the rate of decay to thermal equilibriu
and the shear viscosity are presented. In particular, the
cosity is determined from both the rate of decay of vortic
correlations and the linear response of the system to an
posed k-dependent force. It is shown that there a
06670
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k-dependent anomalies in the viscosity and that the meas
values of the viscosity depend on the direction and mag
tude of an external homogeneous flow field if there are
random cell shifts before collisions. It is then shown that t
shifting procedure removes the anomalies.

In the following paper~referred to hereafter as Part 2!,
calculations of the leading terms of the stress correlat
functions are presented, which take explicit account of
cell structure. It is shown that finite cell size effects c
persist even in the large mean free path regime and that
are the cause of previous discrepancies between analytic
simulation results ind52 for a'90°. Explicit results for all
the transport coefficients ind52 are derived and shown t
be in excellent agreement with simulation results for alll/a.
Finally, long-time tails in the velocity, shear stress, and he
flux autocorrelations are measured and compared with
predictions of mode-coupling theory.

II. HYDRODYNAMICS

A. Definition of hydrodynamic variables

The density, momentum, and energy density operators

Ab~r !5(
i 51

N

ab,id~r2r i !, ~14!

where a1,i51 for the density,$ab,i%5$v i (b21)%, with b
52, . . . ,d11, are the components of the particle momen
andad12,i5v i

2/2 is the kinetic energy of particlei. Cell op-
erators$Ab

c (j)% can be defined as integrals over the cell v
ume of the density operators:

Ab
c ~j!5(

i 51

N E drab,id~r2r i ! )
g51

d

QS a

2
2ujg2r gu D

5(
i 51

N

ab,i )
g51

d

QS a

2
2ujg2r igu D , ~15!

with the discrete cell coordinatesj5am, with mb
51, . . . ,L, for each spatial component.

The Fourier transform of the densities is

Ab~k!5E
V
Ab~r !eik•rdr , ~16!

whereV is the volume of the system. The inverse transfo
is

Ab~r !5
1

V (
k

Ab~k!e2 ik•r. ~17!

For ad-dimensional system of volumeV5(aL)d with peri-
odic boundary conditions,k52pn/(aL), where nb50,
61, . . . for all spatial components.

The Fourier transforms of the cell variables are

Ab
c ~q!5(

j
Ab

c ~j!eiq•j5(
j

ab, je
iq•jj , ~18!
5-5
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wherejj is the coordinate of the cell occupied by particlej.
The inverse transforms are

Ab
c ~j!5

1

Ld (
q

Ab
c ~q!e2 iq•j, ~19!

where the wave vectorsq52pn/(aL), where nb50,
61, . . . ,6(L21),L for the spatial components. The Fo
rier transform~16! can also be applied to cell variables if w
define densities

Ab~r !5@Ab
c ~j!/ad# )

g51

d

QS a

2
2ujg2r gu D . ~20!

In this case, one has

Ab~k!5Ab
c ~k! f ~ak!, ~21!

where

f ~ak!5 )
g51

d
2sin~akg/2!

akg
~22!

is the form factor of a cell. The first term on the right ha
side of Eq.~21! is the cell transform~18!.

There is a certain amount of freedom when identifyi
coarse-grained densities in this model. For the momen
and energy densities, the cell densities are the obv
choices, since Eq.~2! has the collision invariants

(
j

eiq•jj (t1t)@ab, j~ t1t!2ab, j~ t !#50. ~23!

It would therefore be natural to also use the cell parti
density. If this is done, however, one finds that there i
small anomalous dissipative term~of order wave vector
squared! in the hydrodynamic equation for the density. T
reason for this is that for this choice of variables, the canc
lation of terms in the corresponding Green-Kubo relation
the particle density is incomplete. One way around this pr
lem is to use the particle density defined in Eq.~14! and the
corresponding Fourier transform~16!. For the momentum
and energy densities, the corresponding Fourier transfo
are given by Eq.~21!.

The choice of coarse-grained hydrodynamic variables
reflected in the detailed form of the Green-Kubo relations
the transport coefficients. Note, however, that the physic
the problem, i.e., the hydrodynamic modes, are not affec
by the particular choice of the density operator. Any ad
tional contributions to the continuity equation will be ca
celed by other spurious terms when calculating the hydro
namic modes.

B. Equations of motion for the correlation functions

The projection operator technique introduced by Zwan
@42–44# provides a convenient formalism for deriving th
linearized hydrodynamic equations from the microsco
equations of motion~1! and ~3!. With the help of this tech-
nique, explicit expressions for both the reversible~Euler! as
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well as dissipative terms of the long-time large-length-sc
hydrodynamics equations for the coarse-grained hydro
namic variables can be derived. In addition, Green-Kubo
lations are obtained which enable explicit calculations of
transport coefficients of the fluid.

In the following, we summarize results for the equatio
of motion for the equilibrium correlation functions of th
coarse-grained conserved variables. Since the correla
functions define the linear response of the average valu
the conserved quantities, the same approach could als
used to determine the equations of motion for the aver
values of the conserved variables. The equilibrium corre
tion functions for the conserved variables~denoted collec-
tively by Ab), are defined bŷ dAb(r ,t)dAg(r 8,t)&, where
^dA&5A2^A&, and the brackets denote an average over
equilibrium distribution. In a stationary, translationally in
variant system of the type considered here, the correla
function depends only on the differencesr2r 8 and t2t8,
and the Fourier transform of the correlation function, whi
we shall denote byGbg(k,t)[^Ab(k,0)uAg(k,t)&, is

Gbg~k,t !5V21^dAb* ~k,0!dAg~k,t !&, ~24!

where the asterisk denotes complex conjugation. To simp
notation, we omit the wave vector dependence in the co
lation function in the remainder of this section.

Including the shift operation, the dynamics described
Eqs.~1! and~3! consists of consecutive streaming and co
sion operations. Since particles are neither created or
stroyed, the number of particles is trivially conserved. T
collision invariants for the momentum and energy density

(
j

eik•jj
s(t1t)@ab, j~ t1t!2ab, j~ t !#50, ~25!

wherejj
s is the coordinate of the cell occupied by particlej in

theshiftedsystem. These conservation laws can be written

D tAb~ t !1 ik•Db~ t !50, ~26!

whereD tA(t)5@A(t1t)2A(t)#/t and the fluxDb is given
by

D1~ t !5
1

t (
j

Dr j~ t !eik•r j (t)

ik•Dr j~ t !
@12eik•Dr j (t)#, ~27!

whereDr j (t)5r j (t1t)2r j (t), for the particle density, and

Db~ t !5
1

t (
j

H ab, j~ t !Djj~ t !eik•jj (t)

ik•Djj~ t !
@12eik•Djj (t)#

1
Dab, j~ t !Djj

s~ t !eik•jj (t)

ik•Djj
s~ t !

@e2 ik•Djj
s(t)

21#eik•Djj (t)J f ~ak!, ~28!

where Djj (t)5jj (t1t)2jj (t), Djj
s(t)5jj (t1t)2jj

s(t
1t), andDab, j (t)5ab, j (t1t)2ab, j (t), for the momentum
5-6
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and energy densities. The conservation laws~26! imply the
following equations for correlation functions of the co
served variables and their fluxes:

D t^AuA~ t !&1 ik•^AuD~ t !&50, ~29!

D t^Di uA~ t !&1 ik•^Di uD~ t !&50, ~30!

whereA5A(0) and, similarly,Di5Di(0). Finally, station-
arity implies the relation

^AuD~ t !&5^DuA~ t1t!&, ~31!

or, using Eq.~29!,

D t^AuA~ t !&1 ik•^DuA~ t1t!&50. ~32!

Introducing the discrete Laplace transforms

uÃ~s!&5 (
n50

`

e2stnuA~~n11!t!&,

uD̃~s!&5 (
n50

`

e2stnuD~nt!&, ~33!

Eqs.~29!, ~30!, and~32! can be written as

~12e2st!^AuÃ~s!&1 i tk•^AuD̃~s!&5^AuA&, ~34!

~12e2st!^Di uÃ~s!&1 i tk•^Di uD̃~s!&5^Di uA&, ~35!

~12e2st!^AuÃ~s!&1 i tk•^DuÃ~s!&5^AuA&. ~36!

Note that with definitions~33!, the Laplace transform of Eq
~31! is

^AuD̃~s!&5^DuÃ~s!&. ~37!

In order to determine the linearized hydrodynamics eq
tions corresponding to the dynamics described by Eqs.~34!–
~36!, we follow Ref. @41# and introduce a formal linear hy
drodynamics for̂ AuÃ(s)& by the equation

@~12e2st!1tL~k,s!#^AuÃ~s!&5^AuA&. ~38!

The linear hydrodynamic equations describe the long-t
large-length-scale dynamics of the system, and they are v
in the limits of smallk ands. To evaluateL is this limit, first
note that a comparison of Eqs.~36! and ~38! shows that

L~k,s!^AuÃ~s!&5 ik•^DuÃ~s!&. ~39!

Multiplying this result by (12e2st) and using Eqs.~34! and
~35!, we have

L@^AuA&2 i tk•^AuD̃~s!&#5 ik i@^Di uA&2 i tkj^Di uD̃ j~s!&#,
~40!

which shows thatL is of order ofk. Solving Eq.~40! for L to
orderk2 yields
06670
-

e
lid

L5 ik i^Di uA&^AuA&0
211tk2^I u Ĩ ~s!&^AuA&0

21 , ~41!

where

k2^I u Ĩ ~s!&5kikj@^Di uD̃ j~s!&2^Di uA&^AuA&0
21^AuD̃ j~s!&#.

~42!

In Eq. ~41!, ^AuA&0 is the k→0 limit of the susceptibility
matrix. Since the form factorf (ak).12a2k2/24 for small
k, only the zero wave vector limit of the susceptibility matr
contributes toL to this order ink. The reduced flux

I b~ k̂!5 k̂•@Db2^DbuAg&~^AuA&0!g«
21A«# ~43!

is the component ofk̂•Db that is orthogonal to the conserve
variables.

The first term on the right side of Eq.~41! also contains
contributions of the order ofk2. In particular, Eq.~26! im-
plies

t^k•Dbuk•Dg&5 i ^k•DbuAg~t!&2 i ^k•DbuAg&, ~44!

so that stationarity, Eq.~31!, yields

t^k•Dbuk•Dg&5 i ^k•DbuAg&* 2 i ^k•DbuAg& ~45!

52Im@^k•DbuAg&#. ~46!

It follows that

ik i^Di uA&5 ikv2 1
2 tkikj^Di

0uD j
0&1O~k3!, ~47!

where

v[ k̂•^Di
0uA&uk50 , ~48!

and D0 is the smallk limit of D. The frequency matrixV
[v^AuA&21uk50 contains the reversible~Euler! terms of the
hydrodynamic equations.

In particular, for the particle density,

D1
052

1

t (
j

Dr je
ik•r j , ~49!

while for the momentum and energy densities,

Db
052

1

t (
j

$ab, jDjj1Dab, jDjj
s%eik•jj . ~50!

The hydrodynamic poles of Eq.~38! are proportional tok
ask→0. It follows that to orderk2, these poles are given b
the solution of the quadratic equation

ts222s22~ ikV1Gk2!50, ~51!

where

G5tF ^I u Ĩ ~s!&2
1

2
k̂i k̂ j^Di

0uD j
0&G^AuA&0

21 , ~52!

so that
5-7
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@~12e2st!1tL~k,s!#→2
t

2
~s1 ikV1Lk2!~st22

2 i tkV2tLk2!, ~53!

whereL is given by the smalls limit of

L~s!5G1
t

2
V25tF ^I u Ĩ ~s!&2

1

2
^I uI &G^AuA&0

21 . ~54!

Combining these results, the linearized hydrodynamic eq
tions of the system are therefore

@s1 ikV1k2L#^AuÃ~s!&5
1

t
^AuA&R~k!, ~55!

whereR(k)5@11t( ikV1k2L)#21 is the residue of the hy
drodynamic pole.

L is the matrix of transport coefficients. Expression~55!
is the discrete analog of the usual Green-Kubo express
for transport coefficients. Explicitly,

L~s!5tV21(
t50

`

8e2st^I uI ~ t !&^AuA&0
21 , ~56!

where the prime indicates that thet50 term has a relative
weight of 1/2. Aside from the sum over discrete times, this
the primary difference in the form of the Green-Kubo re
tion from that for continuum dynamics@45#.

C. Explicit expressions

For the current model, the hydrodynamic variables are
densitydA1(k)5dr(k), the components of the momentu
densitydAb5dvb21, with b52, . . . ,d11, and the energy
densityde(k). However, in the following, it is more conve
nient to work with the variable

dAd12~k!5
1

2 (
j

@v j
22^v j

2&#eik•jj f ~ak!, ~57!

which we will call reduced energy density, instead of the c
energy. If we now assume, as in an ideal gas, that the par
coordinates and velocities are uncorrelated, the susceptib
matrix for this set of variables is diagonal

^AbuAg&5rS 1 0 0

0 kBTI f 2~ak! 0

0 0
d

2
~kBT!2f 2~ak!

D ,

~58!

where I is the d-dimensional identity matrix, andr is the
particle density.

The reduced frequency matrixv is defined in Eq.~48!.
By symmetry, the only nonzero elements ofv are those cou-
pling the momentum density with either the density or t
06670
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reduced energy density. Fork•^D1uA2&uk50, the correlation
of the particle density flux with the momentum density, o
finds

k•^D1uA2&uk5052
1

tV (
j ,l

k•^Dr jv lxeik•(jl2r j )&uk50

52rkBTkx , ~59!

since Dr j5tvj . Although we know from symmetry tha
k•^D1uA2&uk505k•^D2uA1&uk50, it is instructive to calculate
k•^D2uA1&uk50 explicitly. In particular,

k•^D2uA1&uk5052
1

tV (
j ,l

k•^$v jxDjj

1Dv jxDjj
s%eik•(r l2jj )&uk50 . ~60!

It can be shown using the techniques described in Sec.
of Part 2 that the ensemble average on the second term
the right hand side of Eq.~60! is zero. It is also shown in
Sec. II B 1 of Part 2 thatDjj can be replaced bytvj in
expectation values of quantities which are linear inDjj , so
that, in agreement with Eq.~59!,

k•^D2uA1&uk5052
1

tV (
j ,l

k•^v jxDjje
ik•(r l2jj )&uk50

52
kBT

V
kx(

j ,l
^eik• i (r l2jj )&uk50

52rkBTkx , ~61!

where the last equality follows from( l^e
ik•(r l2jj )&uk50

5Nd l j . The other terms in the frequency matrix can
evaluated in a similar fashion. The final result is

v52rkBTS 0 k̂ 0

k̂ 0 kBTk̂

0 kBTk̂ 0
D . ~62!

The reduced fluxesI b( k̂,t) defined in Eq.~43! are

I 1~ k̂,t !5
1

t (
j

k̂•@2Dr j~ t !1tvj~ t !#, ~63!

I 11b~ k̂,t !5
1

t (
j

S 2@v j b~ t !k̂•Djj~ t !1Dv j b~ t !k̂•Djj
s~ t !#

1
t k̂b

d
v j

2~ t ! D , ~64!

for b51, . . . ,d, and
5-8
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I d12~ k̂,t !5
1

t (
j

„2@$v j
2~ t !/22cvT%k̂•Djj~ t !

1 1
2 Dv j

2~ t !k̂•Djj
s~ t !#1tkBTk̂•vj~ t !…,

~65!

wherecv5dkB/2 is the specific heat per particle at consta
volume of an ideal gas andDv j

2(t)5v j
2(t1t)2v j

2(t). Since

Dr i(t)5tvj (t), I 1( k̂,t)50 to this order ink.
The hydrodynamic transport coefficients for a simple l

uid are the kinematic shear and bulk viscositiesn andg and
the thermal transport coefficientlT . Using Eq.~64! in Eq.
~56!, the asymptotic~long-time limit! shear and bulk viscosi
ties are found to be

nS db«1
d22

d

kbk«

k2 D1g
kbk«

k2

5
t

NkBT (
t50

`

8^I 11b~ k̂,0!uI 11«~ k̂,t !&. ~66!

Similarly, the thermal transport coefficient is

lT5
t

cvNkBT2 (
t50

`

8^I d12~ k̂,0!uI d12~ k̂,t !&. ~67!

lT is related to the thermal diffusivityDT by DT
5lTcv /cp , wherecp5cv1kB is the specific heat per par
ticle at constant pressure. The thermal conductivity,kT is
kT5rcpDT .

III. NUMERICS

A. Relaxation towards equilibrium

A series of simulations were performed on systems w
periodic boundary conditions consisting ofL2 cells, with L
ranging from 16 to 64. The average number of particles
cell, M, was between 5 and 70. The simulations were in
ated with a random distribution of particles, with rando
velocities with components uniformly distributed in the i
terval@2vmax,vmax#. The velocity distribution was found to
quickly relax to a Maxwell-Boltzmann distribution. In orde
to characterize this relaxation in more detail, we measu
the fourth moment of the velocity distribution,M4

5( j 51
N (v jx

4 1v jx
4 ), which is a nonconserved quantity, as

function of time. It was found thatM4 relaxes exponentially
to the equilibrium value given by the Maxwell-Boltzman
distribution with a relaxation timetR which is essentially
temperature independent, see Fig. 2. As can be seen,tR is
proportional to the average number of particles in a cell,M,
and depends strongly on the value of the rotation anglea. It
diverges approximately astR;a22 for a→0; in this limit,
there are no collisions and thermal equilibrium cannot
achieved.
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B. Measuring the shear viscosity

We present here results for the shear viscosity at nonz
wave vector measured for both short and long times us
two different approaches. First, the kinematic viscosityn is
determined from the temporal decay of the vorticity. Sin
the decay is quite rapid, this allows us to measure the sh
time viscosity in equilibrium. The viscosity is also dete
mined at long times by measuring the linear response of
fluid to a spatially modulated force. As will be seen, bo
measurements agree, validating the fluctuation-dissipa
theorem for this model. In Part 2, we determine the transp
coefficients using Green-Kubo relations for the microsco
stress tensor. This allows us to determine the time-depen
viscosity from an equilibrium measurement, and enabled
to observe long-time tails in two dimensions.

In order to determine the shear viscosity, we need
project out the longitudinal part of the velocity field. W
therefore consider the correlations of the vorticity,wk

5kxũy2kyũx , where ũx is the Fourier transform of thex
component of the macroscopic velocity. Fluctuating hyd
dynamics@46# predicts that vorticity correlations decay as

^wk~ t !w2k~0!&;exp@2n~k!k2t#. ~68!

We have used Eq.~68! to determine the shear viscosity bo
with and without the random shift before the stochastic ro
tion step for the parameterskBT50.012 75 (l/a50.11), a
590°, M535, andL516. Without the shift, the value ofn
determined in this way is at least a factor of 2 larger than t
given by Eq.~47! of Ref. @31# for a590°. We also observed
an anomaly inn(k) for small mean free path if one compo
nent of the wave vector is zero. In particular, as can be s
in Fig. 3 ~solid lines!, the viscosity at wave vectork
52p(1,0)/L is approximately four times smaller than fo

FIG. 2. Normalized relaxation timetR /M for the fourth mo-
ment of the velocity distribution as a function of 12cos(a), where
a is the rotation angle. Measurements with different values ofM
~average number of particles per box! fall on the same curve:M
515 ~filled circles!, M535 ~squares and dashed line!, M570
~filled triangles!. The solid line is a plot of@12cos(a)#21. Param-
eters: time stept51, kBT50.012 75, andL516.
5-9
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k52p(1,1)/L. This would imply, for example, that the vis
cosity for Poiseuille flow would be four times larger if th
flow axis makes an angle of 45° with respect to the cell a
than if it were parallel. We also observed a similar dras
change in the value ofn(k0) if we imposed a homogeneou
flow parallel to the wave vectork05(kx,0). This breakdown
of Galilean invariance for small mean free path is consist
with the anomalous behavior described in Sec. I A for
self-diffusion constant.

If a random shift of the particle coordinates is perform
prior to the collision step, as described in Sec. I A, all t
anomalies described above disappear. Figure 3~dashed lines!
shows the exponential decay of the vorticity correlations
two different wave vectors when there is a random shift.
can be seen, the viscosity atk52p(1,0)/L is now essentially
the same as fork52p(1,1)/L. We also found thatn no
longer depends on the value of a superimposed hom
neous flow in this case. The shifting procedure, in conju
tion with the stochastic collision, leads to an additional co
tribution to the viscosity which removes thek-dependent
anomalies. This is the source of the additional term in
stress tensor, Eq.~64!, which determines the shear viscosi
via the Green-Kubo relation~66!.

We have also measured the viscosity at long times usin
nonequilibrium~linear response! technique in order to vali-
date the fluctuation-dissipation theorem for this model. I
periodic L3L system, a constant, but spatially modulat
force, f5( f x,0), with f x5Fcos(2py/L)/M , was applied to
every particle. After a sufficiently long time, the averag
cell velocity in x direction converged tôux&5Acos(ky),
with wave numberk52p/L. The Navier-Stokes equatio
predictsA5F/(nk2). A was measured for different values
the driving forceF, extrapolated toF50, and used to deter
mine thek-dependent viscosityn(k). Note that this method
yields the viscosity at large times. In two dimensions,
viscosity is predicted to diverge very slowly~logarithmi-
cally! with time, with an amplitude proportional to 1/M ~for
more details, see Part 2 of this paper!. In a finite system,
however, n will saturate at some system-size depend
value. In our case, the average particle number per boxM,

FIG. 3. Normalized vorticity correlations
^wk(0)w2k(t)&/^uwk(0)u& versus time for two different wave vec
tors k at small mean free path,l/a50.11, with ~dashed lines! and
without ~solid lines! the random shift of the grid before the collisio
step. The upper solid and dashed lines are results fok
52p(0,1)/L. The lower solid and dashed lines correspond tok
52p(1,1)/L. Parameters:kBT50.012 75, a590°, M535, and
L516.
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was large, and we did not see any significant difference
tween the viscosities measured using the equilibrium met
~via the vorticity! and the nonequilibrium~constant force!
method, in agreement with the fluctuation-dissipation th
rem.

IV. CONCLUSION

In this paper, we have presented a detailed, system
derivation of the equations of motion for the correlatio
functions and discrete Green-Kubo relations for the stoch
tic rotation dynamics model originally proposed by Malev
nets and Kapral@31,32#. Several results for this model hav
been presented in Refs.@31,32#; for example, it was shown
that there is anH theorem and that this algorithm yields th
correct ideal gas hydrodynamics equations. However,
analysis of Refs.@31,32#, as well as the applicability of the
original algorithm, is limited to situations in which the mea
free path is larger than the cell size, so that the assumptio
molecular chaos is valid. In this, and a previous paper@33#,
we have shown that there are unphysical anomalies in
transport coefficients and a breakdown of Galilean inva
ance for small mean free paths. It was also shown tha
small modification of the algorithm, which involves a ra
domization of the collision environment, resolves these pr
lems. In addition, as will be shown in detail in Part 2 of th
series, there are large discrepancies between the value o
viscosity measured in simulations and the result of Male
nets and Kapral„Eq. ~47! in Ref. @31# and Eq.~29! in Ref.
@32#… in two dimensions fora'90°. This discrepancy is
resolved in Part 2 by explicitly considering the effects of t
discrete cell structure, an effect which was neglected in R
@31,32#.

The discrete-time projection operator formalism e
ployed in this paper is similar to that utilized by Dufty an
Ernst@41# in their derivation of the Green-Kubo relations fo
lattice gas cellular automata. Using this approach, we w
able to incorporate the cell shifting procedure discussed
Sec. I A, and it was shown that while the shifting procedu
does not change the reversible Euler terms in the equat
of motion, it does lead to new contributions to the Gree
Kubo relations. The Green-Kubo relations are analyzed
Part 2, where accurate, analytical expressions for the var
transport coefficients are derived which are valid for all v
ues ofl/a and arbitrary Mach number. The derivations pr
sented in Part 2 require no assumptions regarding molec
chaos; they are quite general, and as will be shown e
where, can be used to analyze more complicated situat
such as binary fluids or nonideal gases.
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