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Abstract. Process mining is a relatively new research field, offering methods of business 

processes analysis and improvement, which are based on studying their execution history 

(event logs). Conformance checking is one of the main sub-fields of process mining. 

Conformance checking algorithms are aimed to assess how well a given process model, 

typically represented by a Petri net, and a corresponding event log fit each other. Alignment-

based conformance checking is the most advanced and frequently used type of such 

algorithms.  This paper deals with the problem of high computational complexity of the 

alignment-based conformance checking algorithm. Currently, alignment-based conformance 

checking is quite inefficient in terms of memory consumption and time required for 

computations. Solving this particular problem is of high importance for checking 

conformance between real-life business process models and event logs, which might be quite 

problematic using existing approaches. MapReduce is a popular model of parallel computing 

which allows for simple implementation of efficient and scalable distributed calculations. In 

this paper, a MapReduce version of the alignment-based conformance checking algorithm is 

described and evaluated. We show that conformance checking can be distributed using 

MapReduce and can benefit from it. Moreover, it is demonstrated that computation time 

scales linearly with the growth of event log size.  

Key words: process mining; conformance checking; MapReduce; Hadoop; big data.  

DOI: 10.15514/ISPRAS-2016-28(3)-7 

For citation: Shugurov I.S., Mitsyuk A.A.  Applying MapReduce to Conformance Checking. 

Trudy ISP RAN / Proc. ISP RAS], vol.28, issue 2, 2016. pp. 103-122. DOI: 

10.15514/ISPRAS-2016-28(3)-7 

1. Introduction 

Ever-increasing size and complexity of modern information systems force both 

researchers and practitioners to find novel approaches of formal specification, 

modeling, and verification. This process is essential for ensuring their robustness 

and for possible optimization and improvements of existing business processes. 
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Process mining is a research field, which offers such approaches [1]. Process 

mining is a discipline, which combines techniques from data analysis, data mining, 

and conventional process modeling. Typically, three main sub-fields of process 

mining are distinguished in the literature: (1) process discovery; (2) conformance 

checking and (3) enhancement [1]. 

The aim of process discovery is to build a process model based solely on the 

execution history of a particular process. Event logs are the most common and 

natural way of persisting and representing execution history. By an event log, we 

understand a set of traces where each trace corresponds exactly to one process 

execution. A typical process discovery algorithm takes an even log as an input 

parameter and constructs a process model which adequately describes the behavior 

observed in the event log. 

The task of conformance checking is to measure how well a given process model 

and an event log fit each other. Furthermore, showing only the coefficient of 

conformance is usually insufficient for real-life application since analysts often need 

to see where and how often deviations happen in order to draw any conclusions. 

Therefore, it is often the case when conformance checking algorithms include 

computation of additional metrics as well as visualization of deviations. 

Process enhancement deals with improvements of processes as well as 

corresponding process models. 

One of the challenges of process mining, when applied in real life, is the size of data 

to be processed and analyzed [2], [3]. Since process discovery has drawn significant 

attention of researchers, there are a number of solutions which allow for fast process 

discovery from large event logs [4]. These solutions vary from using distributed 

systems and parallel computing [5] to applying more efficient algorithms, which 

require less data scans and manipulations [6], [7]. In contrast, conformance 

checking remains problematic to be made fast due to its theoretical and algorithmic 

difficulties. At the same time, efficient, easy-to-use and robust conformance 

checking is the key to better process improvement since enhancement approaches 

often rely heavily on measuring conformance (for example, see model repair 

approaches [8], [9]). 

This paper concentrates on implementation details of distributed conformance 

checking rather than on its theoretical aspects. It describes a possible way of 

speeding up conformance checking. It implies improving one of the existing 

conformance checking algorithms so that it can be executed in a distributed manner 

by means of using MapReduce [10]. One of the very first papers discussing 

distributed conformance checking [11] was dedicated solely to theoretical 

foundations of process models and event logs decomposition. The author takes a 

look at the algorithmic side of distributed conformance checking and totally skips 

problems of its software implementation. In this paper, we consider practical aspects 

of distributed conformance checking. Furthermore, we prove viability of the 

proposed approach by demonstrating that it really allows measuring conformance of 

bigger event logs better than currently existing approaches. 
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This paper is structured as follows. Section 2 introduces foundational concepts we 

use in the paper. In section 3, the reader can find the main contribution. Section 4 

proposes several improvements of the approach proposed in section 3. An 

implementation of the presented approach is described in section 5. Related work is 

reviewed in section 6. Finally, section 7 concludes the paper. 

2. Preliminaries 

In this paper, we consider process models in the Petri net (simple P/T-nets) notation. 

A Petri net is a bipartite graph, which consists of nodes of two types. In process 

mining, transitions, denoted by rectangles, are considered as process activities, 

whereas places, denoted by circles, designate the constraints imposed on the 

control-flow. String labels may be associated with transitions in order to show the 

correspondence between activities and transitions. Transitions without labels are 

called silent. It implies that silent transitions model behavior and constrains of an 

activity in a process, executions of which are not recorded into event logs. Each 

place denotes a causal dependence between two or more transitions. Places may 

contain so-called tokens. A transition may fire if there are tokens in all places 

connected to it via incoming arcs. When fired, it consumes one token from each 

input place and produces one token to each output place. Marking is a distribution 

of tokens over all places of a Petri net, thus a marking denotes the current state of a 

process. 

An event log is a recorded history of process runs. Usually the execution of a 

process in some information system is recorded for documenting, administrative, 

security, and other purposes. The main goal of process mining is to explore and use 

these data for the diagnosis and improvement of actual processes. 

We consider event logs of standardized nature as they are used in process mining. 

Formally, an event log is multiset of traces where each trace is a sequence of events. 

Each trace corresponds to exactly one process run. An event contains the name of 

associated activity, timestamp, performer name and may contain other additional 

properties. In this paper we consider simple event logs, in which events contains 

only names of activities. An example model and the corresponding event log are 

shown in fig. 1. 

 

Fig. 1. Petri net and event log 
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2.1 Conformance checking  

The conformance checking and its place in process mining are defined in [1]. 

Usually four dimensions of conformance are considered: fitness, precision, 

generalization, and simplicity. However, this paper focuses exclusively on fitness. 

By the term fitness, we understand the extent to which a model can reproduce traces 

from an event log. In other words, fitness shows how well the model reflects the 

reality. The fitness dimension is typically regarded as being the most frequently 

used and best-defined [1] among the dimensions. 

Nowadays, the most advanced and refined conformance checking approach is the 

one using alignments [12]. The term alignment is used to denote the set of pairs 

where each pair consists of an event from an event log and a corresponding 

transition of a model. Such pairs are constructed sequentially for each event in a 

trace. A simple alignment for the trace 𝑇𝑟3 (see fig. 1) is depicted in fig. 2. 

However, it is allowed to pair an event with no transitions (a special ”no move“ 

symbol ≫). This means that the event is present in a log but cannot be replayed by 

any transition in the model. It is also possible to map a transition to no events (this 

is denoted by the same symbol ≫). In that case, the transition is fired but there is no 

evidence of this fact in the event log. Thus, there are two main types of steps 

composing any alignment: a synchronous move (a transition fired with the same 

label as an event name from the event log) and a non-synchronous move (a 

transition label and an event name are the different ones or a move is skipped either 

in the model or in log). 

 

Fig. 2. Alignment 

Alignments help to measure the difference between a trace from an event log and 

behavior specified by a model. In order to quantify the difference one has to 

calculate the number of non-synchronous moves and assess their significance. This 

assessment is accomplished by introducing a cost function, which is used for 

calculating cost of an alignment. By cost, we understand a number which somehow 

designates the significance. The general idea is that some deviations are more severe 

than others, thus these deviations have more impact on the overall conformance. 

Using cost function one can assign cost for each type of deviation for each transition 

and event. Thus, cost function maps a pair of an event and a transition to a number, 

which signifies a penalty for having such a pair in a trace. The more the cost is, the 

more significant this deviation is. Assuming that all costs are set to 1, the alignment 

shown in fig. 2 has the cost 1, because there is only one nonsynchronous move in it 

(event D in the trace has to be skipped during model run). Accumulating costs for 

all alignments of a particular event log, it is possible to derive the cost for the entire 

log. 
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It is possible that a particular run through the model and a particular trace have 

several possible alignments. In order to choose between them a cost function is used 

to evaluate the cost of each alignment. An alignment with the lowest cost is selected 

as the optimal alignment. According to [12], it makes sense to use only optimal 

alignments when calculating fitness. Alignment-based fitness can be measured 

using the metric defined in [13]:  

𝑓(𝐿, 𝑁) = 1 −  
∑ ∑ 𝑐𝑜𝑠𝑡

𝑓𝑛

δopt(𝑒, 𝑁)𝑒∈𝑡𝑟𝑡𝑟∈𝐿

∑ 𝑐𝑜𝑠𝑡𝑎𝑖𝑡𝑟 ∈𝐿

 

where 𝐿 is an event log, 𝑁 is a model, 𝑐𝑜𝑠𝑡
𝑓𝑛

𝛿𝑜𝑝𝑡   (𝑒, 𝑁) is a cost of a pair (𝑒, (𝑡𝑖 , 𝑡𝑖
𝑙 )) 

(e is an event, 𝑡𝑖 is a transition from model run, 𝑡𝑖
𝑙 is its label) in the particular 

optimal alignment 𝛿𝑜𝑝𝑡, which depends on used cost function 𝑐𝑓, 𝑐𝑜𝑠𝑡𝑎𝑖 is a total 

cost of the trace 𝑡𝑟 if all moves in it are considered as non-synchronous. Thus, 

fitness is a normalized ratio of the accumulated costs calculated for the optimal 

alignments to the accumulated costs for the worst possible alignments for a 

particular event log. 

It is shown in [12] that construction of alignments and selection of optimal among 

them for each trace can be converted to solving the shortest path problem. Formally, 

a trace from the event log is represented as an event net, which is a special Petri net 

having the form of the sequence of transitions connected through places. Then the 

product of the model and this event net is constructed. It is shown in [12] that the 

problem of optimal alignment calculation can be viewed as a problem of finding a 

firing sequence in this product, which can be achieved by using a state-space 

exploration approach. 

The proposed approach has a low computational performance when dealing with 

large models, large event logs or in case of low fitness because of the necessity to 

solve the shortest path problem, especially for model of certain types [12]. The 

author himself states in [12] that ”from a computational point of view, computing 

alignments is extremely expensive“. Moreover, its existing implementation keeps 

the processed models, event logs, event nets, and computed alignments in 

computer’s main memory. This approach allows for flexible configuration of 

visualization settings, and, in some cases, faster completion. However, this feature 

makes usage of existing implementation rather hard and inconvenient because the 

algorithm typically consumes several gigabytes of main memory even for 

processing relatively small models and small event logs (dozens of megabytes). 

Thus, it is not suitable for real-life usage. 

This paper proposes a way of checking conformance between process models and 

big event logs of gigabyte sizes using MapReduce. 

2.2 MapReduce  

MapReduce is a computational model proposed and popularized in [10], although 

the idea dates back to the origins of functional programming. MapReduce is a 
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popular technology among practitioners and a research area among scientists. It has 

a good tool support; all major cloud platform vendors provide the possibility to 

execute MapReduce jobs on their cloud clusters. 

The model simplifies parallel and distributed computing by allowing software 

developers to define only two quite primitive functions: map and reduce. At each 

invocation of a map function (also called mapper), it takes a key-value pair and 

produces an arbitrary number of key-value pairs. The aim of reduce functions (also 

called reducers) is to aggregate values with the same key and perform necessary 

computations over them. Thus, a reduce function takes a key-list pair as input 

parameters. Usage of such rather trivial functions makes their distribution 

straightforward. Last but not least, comes another important function allowed by 

MapReduce which is called combine. Its main purpose is to perform reduce-like 

computation between mappers and reducers. Combine functions (also known as 

combiners) are invoked on the same very computers as mappers. Combiners allow 

for further parallelizing computations and decreasing amount of data transferred to 

reducers and processed by them. It was pointed out even in the original article [10] 

that combiners may dramatically decrease computation time. 

One of the most crucial advantages of MapReduce is that algorithms expressed in 

such a model are inherently deadlock-free and parallel. Another important 

advantage is the tendency to perform computations where required data resides. 

Generally, computation of map tasks take place where the required data is stored 

since its location is known beforehand. Such an approach ensures that data transfer 

between computers and latency, inflicted by it, are minimized. Ideally, data is 

transferred between computers where map tasks are executed and computers where 

reduce tasks are executed. Unfortunately, it is rarely achievable since all files are 

separated into smaller parts, called blocks, and distributed (and also replicated) over 

a cluster, thus data needed for execution of a single map task may reside in different 

data chunks — there will be a need to move a portion of data from one computer to 

another. 

3. Fitness measurement using MapReduce 

This section describes the approach we propose for checking conformance. 

The few adjustments of the existing conformance checking algorithm with 

alignments need to be done in order to implement the proposed schema. It is 

expected that the algorithm will benefit if distribution is applied to traces. It means 

that traces are distributed over a cluster so that their alignments can be computed in 

parallel. Another possible option was to distribute computation of each alignment 

since efficient distributed graph algorithms for solving the shortest path problem are 

known. However, use of them seems excessive because they are aimed at solving 

problems on graphs consisting of thousands and millions of nodes, which is not the 

case for business process models. A process model consisting of more than a 

hundred nodes seems unrealistic. 
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The general schema is depicted in fig. 3. Map function takes traces one by one and 

computes their alignments. This process can easily be carried out in parallel since, 

by its definition, an alignment is computed individually for each trace. It is enough 

to use a single reduce function, which aggregates fitnesses of all traces and 

calculating fitness of the overall event log. Single reducer implies that key-value 

pairs emitted by all mappers have the same key. Single reducer can be considered as 

a bottleneck due to the reason that before it can start processing it waits for 

completion of all maps and transition of all costs to a single computer. To diminish 

the negative effect of a single reducer, a combiner function comes in handy. The 

problem is that calculating average is not an associative operation, thus it is 

impossible to use the basic reduce function instead of the combine function. We 

implemented it in a manner resembling the one described in [14]. The general idea 

is that calculating average can be easily decomposed into calculating a sum of all 

entries of some metric and counting a number of entries, where both of them are 

associative operations. It implies changing the structure of values used in key-value 

pairs. The modified version of values contains not only statistics (fitness and so on) 

but also a counter which shows how many traces describes a particular value. Given 

that, combiners only have to sum the values they receive and increment the counter. 

 

Fig. 3. Conformance checking with MapReduce 

4. Potential improvements  

One of the possible improvements of the algorithm is to enhance it by adding trace 

deduplication. When large event logs are considered, the possibility of the 

equivalent traces occurring several times is very high. Hence, it might be desired to 

find only unique traces, number of their occurrences and compute alignments only 

for them. It will allow for lessening the number of computed alignments. However, 

efficient MapReduce algorithm for deduplication of event sequences is far from 

trivial. Moreover, it is not guaranteed that time needed for deduplication and 

subsequent conformance checking will be shorter than in case of using the standard 

approach. This question can only be answered by conducting relevant experiments.  

Even though process models is not prone to be large, a lot of time is still required 

for checking conformance. Another possible improvement, which aims at reducing 

model size, is to employ the ”divide and conquer“ principle. The way in which the 
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principle can be applied to cope with high computational complexity of 

conformance checking was proposed in [15] and [16]. The general idea is to divide 

a process model into smaller sub-parts. Next step is event log projection. This 

means that for each fragment of a model all events from the event log that 

correspond (names of events are equal to labels of activities) to a particular 

fragment are selected. As a result, we get as many projected event logs as 

decomposed Petri net fragment. 

Once it is done, alignments and costs of each fragment can be computed. Then it is 

possible to sum costs of parts following specific rules to get a lower bound of the 

cost of the entire log. Having these costs, an upper bound of fitness can be 

computed. Performance gain is the most crucial motivation of this approach. Since 

time needed for computing alignments depends on trace size, usage of smaller parts 

of the model ensures faster computation. A wide range of model decomposition 

strategies have been proposed in [17], [15], [18], which leaves the user with the 

necessity to empirically choose between them. Last but not least, decomposition 

also incurs time overhead and projected event logs takes up disk space, so usage of 

the algorithm is not beneficial (or even feasible) in all the possible cases. 

Furthermore, there is no research done to establish when usage of which approach 

makes more sense. 

It is possible to employ a similar approach in the MapReduce environment. There 

are two possible options: (1) computation of the overall event log fitness and (2) 

computation of fitness of each separate model part. In all the cases fitness is 

computed in a three-stage process as it is shown in fig. 4. The zero stage again is the 

splitting of the log by traces, which is followed by trace decomposition. Traces are 

decomposed using the maximal decomposition described in [15]. However, 

incorporation of other decomposition techniques [15], [17], [16] is also possible. At 

the second stage, alignments of sub-traces are computed and then aggregated. The 

final stage differs depending on the selected computation option. At this stage either 

fitness of the overall event log is computed at a single reducer or fitnesses of 

individual parts are computed at different reducers (the number of reducers can be 

up to the number of model parts). If fitness of individual process parts is calculated, 

after the second map unique identification of a model part is used as a key for 

emitted key-value pairs. When decomposition is applied, log deduplication’s 

importance and potential benefit grow even more. 

 

Fig. 4. Possible approach with vertical decomposition 
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5. Implementation and testing 

This section describes the actual implementation
1
 of the proposed approach and its 

experimental testing. Hadoop [19] was used for implementation and testing of the 

approach because it is a common and widely supported open source tool. 

5.1 Implementation 

The original algorithm was implemented as a ProM Framework plugin. The ProM 

Framework [20], [21] is a well-known tool for implementation of process mining 

algorithms. The ProM Framework consists of two main components: 

 ProM core libraries which are responsible for the main functionality used 

by all users and extensions, 

 extensions (typically called plugins) which are created by researchers and 

are responsible for import/export operations, visualization, and actual data 

processing. 

The platform is written in such a way that it allows plugins to use data produced by 

other plugins. Furthermore, ProM encourages programmers to separate concerns: 

export plugins are only used for exporting data, visualization plugins are used for 

visualizing objects. As a result, a common usage scenario always consist of a chain 

of invocations of different plugins. Among main advantages of ProM are 

configurability, extensibility, and simplicity of usage. Last but not least, the 

platform allows researchers to easily create and share plugins with others thus 

extending the tool and contributing to the overall field of process mining. Despite 

all these positive sides, usage of ProM can be inconvenient and tedious, if the 

desired goal is unusual in any way. 

XES [22] is often considered as a de facto standard for persisting event logs in the 

area of process mining. Technically, it is an XML-based standard, which means that 

it is tool-independent, extensible, and easy to use. Moreover, ProM fully supports 

this standard and has all required plugins for working with it. 

Our approach involves usage of raw event logs stored in the format of XES only at 

the zero step of the algorithm. Before separate traces are available for the required 

computations, it is necessary to sequentially read XES files dividing them into 

separate traces. It is accomplished by using the XMLInputFormat from the Mahout 

project [23]. XMLInputFormat provides the capability of extracting file parts 

located between two specified tags. Moreover, the class is responsible for ensuring 

that the entire requested part (in our case — trace) is read, no matter in which blocks 

and on which data nodes it resides. 

The fact that the initial algorithm was implemented for ProM inflicts several 

inconveniences for its distribution. First of all, it is assumed that the plugin is 

invoked by ProM via a special context. Essentially, it implies several things: 

 the entire ProM distribution has to be sent to each computational node, 

                                                           
1
 The tool is available at https://sourceforge.net/p/distributedconformance/ 
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 at each computational node, it is required to start up ProM (it may take up 

to couple of minutes on an average computer). 

As a result, it may significantly increase latency and incur higher time needed for 

termination of computations. To avoid this, it was decided to alter implementation 

in such a way that a number of libraries the algorithm depends on in as minimal as it 

is possible to achieve. In other words, on the one hand it was desired to separate the 

implementation of the algorithm from ProM. On the other hand, usage of ProM 

could be useful for initial settings and visualization of final results. As a result, we 

achieved such a level of decoupling, that it is possible to launch the algorithm 

completely autonomously without the need of installation of the ProM Framework 

or any ProM plugins. 

 

Fig. 5. Implementation of the approach 

The resulting architecture is illustrated in fig. 5. Conformance measurement is done 

in two-step approach. At first step, the user loads a model, represented by a Petri net 

into a special ProM plugin, which serves for setting the options of the alignments-

based conformance algorithm (mapping between transitions and events in event 

logs, costs of insertion and skipping in alignments). We use standard ProM classes 

for representing Petri nets because they allow for easier compatibility with other 

ProM plugins. Loading a model to a main memory should not be a problem because 

it is highly unlikely for such models to contain even hundreds of nodes, thus the size 

of process models is typically relatively small. Another possible option was to 

specify settings exclusively via XML files, though we found it less intuitive and 

convenient than visual settings. Once the algorithm is configured, settings are 

written to a file which later will be uploaded to a cluster. Last but not least, it is 

important to state that this ProM plugin depends neither on Hadoop nor on a chosen 

cloud cluster nor on any other auxiliary Hadoop libraries. 
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When Hadoop job is initiated, the user is asked to specify directories where event 

logs are placed, a path to a Petri net, and a path to conformance settings. A model 

and settings are then automatically added into the Hadoop distributed cache — the 

files are replicated to each data node, so they are available for fast access by any 

mapper. At a startup of each model, the files are loaded into main memory because 

they will be used for all the alignment computations. 

After completion of conformance measurement, the results are written to a single 

file, which afterwards can be downloaded and viewed in ProM. Another sub-task is 

to find in which cases deduplication is worthwhile and how exactly it affects 

computational time. 

5.2 Experimental results 

The proposed algorithm was tested and evaluated using Amazon Web Services [24]. 

In our cluster, we used five m3.xlarge instances (one as a master node, four as data 

nodes). A local computer used for conducting experiments with the original 

algorithm had the following configuration: Intel Core i7-3630QM, 2.40 GHz, 8 GB 

of main memory, Windows 7 64 bit. 

For testing purposes, we created a process model comprising some of the main 

workflow patterns: sequence, parallel split, synchronize, exclusive choice, and 

simple merge [25]. Afterwards, several models derived from the original were 

created — they all differ in fitness. Artificial event logs were generated using the 

approach proposed in [26]. Logs were generated only for the original model. All 

resulting logs were of different sizes. 

 

Fig. 6. Computation time of the standard approach 

Fig. 6 illustrates how computation time depends on a number on traces and fitness. 

It is clear from the plots that computational complexity scales linearly with the 

growth of a number of traces. Moreover, it is seen that computation time highly 

depends on fitness. The lower the fitness, the slower the computations will be. It 

seems that computation time does not scale linearly with the decrease of fitness if 

the same quantity of logs is used. The clear indicators are the margins between lines 

representing fitness 1 and 0.96, and 0.96 and 0.9. Furthermore, we can conclude that 
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the lower fitness, the faster computation time increases with the rise of the number 

of traces. 

 

 

Fig. 7. Computation time with MapReduce 

Fig. 7 provides an overview of how the algorithm scales when it is distributed using 

MapReduce. It is worth mentioning that 1.66 Gb of logs contain 500 thousand 

traces. As in the case of the not distributed algorithm, the graph shows that the 

algorithm scales linearly with the increase of a number of traces. Furthermore, 

similarly to the not distributed case, for non-fitting models computations take 

considerably longer than for perfectly fitting ones, and that computation time grows 

faster for non-fitting models. 

 

Fig. 8. Comparison of the standard and the distributed approaches 

In fig. 8, a comparison of distributed and not distributed approaches is provided. 

Unfortunately, it is impossible to establish exactly when the distributed 

implementation beats the original in terms of performance since the original one 

cannot handle event logs of considerable size. In addition, the original algorithm 
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was not able of handling more than a hundred of Mbytes. On data of such small 

sizes, MapReduce and Hadoop fail to work efficiently because they are designed for 

processing much bigger files. In fact, Hadoop does not parallelize processing of 

files which are smaller than a single file block. It is clear from Figure 8 that for 

relatively small event logs the distributed version works more slowly. It is clear 

from the graph that our solutions can handle event logs of several dozens of GBs 

even on a small cluster used for conducting these experiments. 

6. Related work 

Although applicability of MapReduce or distributed systems for the tasks of process 

mining has not drawn significant attention yet, there are a few papers, which 

consider this subject. 

In [27] the authors focus exclusively on finding process and events correlation in 

large event logs. According to them, MapReduce solution for such a 

computationally and data intensive task as events correlation discovery performs 

well and can be scaled to large datasets. 

Other works where the authors study applicability of MapReduce to process mining 

are [28], [29]. In these articles, a thorough description of several popular discovery 

algorithms is provided (the alpha algorithm [30], and the flexible heuristics miner 

[31]). Every one of them consists of several consequent MapReduce jobs. First 

MapReduce job is responsible for reading event logs from the disc, splitting them 

into traces, and ordering event in each trace. The general idea of the second 

MapReduce all the implementations is that first step of process discovery typically 

requires extracting trivial dependencies between events called log-based ordering 

relations. Examples of those are: 

 a >  b — event a is directly followed by event b, 

 a >>  b — a loop of length two, 

 a >>>  b — event a is followed by event b somewhere in the log. 

These relations can be found individually for each trace. Therefore, their 

computations are trivially parallelized using Mappers. Further MapReduce jobs vary 

but they somehow use mined primitive log-ordering relations to build a process 

model. The main potential problem of implementations is that these further 

MapReduce jobs typically compute relations for the overall event log. To achieve 

this, it is often the case when it is necessary for mappers to produce identical keys 

for all emitted pairs so that they all end up on the same computer and processed by 

the same reducer. Moreover, the proposed implementations extensively use identity 

mappers. It is a standard term for mappers, which emit exactly the same key-value 

pairs as they receive without performing any additional computations — all useful 

computations performed by combiners or reducers. They are used only because 

MapReduce paradigm requires presence of mappers. Despite these concerns, it is 

shown that performance and scalability provided by MapReduce are good enough 

for the task of process discovery from large volumes of data. Our solution, in 
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contrast to the described above, uses a more suitable file format. It allows measuring 

conformance without extra steps needed for preliminary log transformations. 

In [32] the authors describe their framework for simplified execution of process 

mining algorithms on Hadoop clusters. The primarily focus of this work is to show 

how process mining algorithm can be submitted to a Hadoop cluster via the ProM 

user interface. In order to demonstrate viability of their approach, the authors claim 

that they implemented and tested the Alpha miner, the flexible heuristics miner, and 

the inductive miner [33]. We opted for not using the presented framework in order 

to simplify the usage of our ProM plugin and not to force the user to download all 

the codebase required by Hadoop and its ecosystem. 

To sum up, these papers clearly demonstrate not only that process mining can 

benefit from using distributed systems and MapReduce, but also that such 

distributed process mining algorithms are needed and desired for usage in the real-

life environment. Moreover, from these papers it is clear that some common 

approaches and techniques of process mining suit the MapReduce model well. Last 

but not least, analysis of the related work reveal that there are only theoretical 

considerations of parallel or distributed conformance checking and its usefulness. 

7. Conclusions 

This paper presents one of the possible ways of speeding up large-scale 

conformance checking. The paper provides a helicopter-view of distributed 

conformance checking and suggests ways for possible extensions and 

improvements. One of the proposed algorithms was implemented and evaluated on 

event logs, which were different in terms of size and fitness. 

As a possible extension, it is worth considering implementing the algorithm using 

the Spark framework rather than Hadoop because as it is often claimed Spark might 

provide better performance due to its in-memory nature. Furthermore, the XES 

standard which defines how event logs should be structured for convenient process 

mining, but it seems that the XES standard is not the best option for using with 

Hadoop. Thus, it is possible to consider other storage formats such as Hadoop 

sequence files or the Avro format. 
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Аннотация. Process mining – это относительно новая область исследований, в рамках 

которой разрабатываются методы исследования и улучшения бизнес-процессов. 

Спецификой методов process mining является то, что они основываются на анализе 

истории выполнения процессов, которая представляется в виде логов событий.  

Проверка соответствия моделей процессов и логов событий  является одним из 

ключевых направлений в области process mining. Алгоритмы проверки соответствия 

используются для того, чтобы оценить, насколько хорошо данная модель бизнес-

процесса, представленная, например, в виде сети Петри, описывает поведение, 

записанное в логе событий.  Проверка соответствия, базирующаяся на использовании 

так называемых "выравниваний", на данный момент является самым передовым и 

часто используемым алгоритмом проверки соответствия. В данной работе 

рассматривается проблема большой вычислительной сложности данного алгоритма. В 

настоящее время проверка соответствия на основе выравниваний является не слишком 

эффективной с точки зрения потребления памяти и времени, необходимого для 

вычислений. Решение этой проблемы имеет большое значение для успешного 

применения проверки соответствия между реальными моделями бизнес-процессов и 

логами событий, что весьма проблематично с использованием существующих 

подходов. MapReduce является популярной моделью параллельных вычислений, 

которая упрощает реализацию эффективных и масштабируемых распределенных 

вычислений. В данной работе представлена модифицированная версия алгоритма 

проверки соответствия на основе выравниваний с применением MapReduce. Так же в 

работе показано, что проверка соответствия может быть распределена с помощью 

MapReduce, и что такое распределение может привести к уменьшению времени, 

требуемого для вычислений. Показано, что алгоритм проверки соответствия модели 

процесса и лога событий может быть реализован в распределенном виде с помощью 

MapReduce.  Показано, что время вычисления растет линейно с ростом размера логов 
событий.  
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