
A&A 513, A22 (2010)
DOI: 10.1051/0004-6361/200912922
c© ESO 2010

Astronomy
&

Astrophysics

Measuring galaxy segregation with the mark connection function

V. J. Martínez1,2, P. Arnalte-Mur1,2, and D. Stoyan3

1 Observatori Astronòmic, Universitat de València, Apartat de Correus 22085, 46071 València, Spain
e-mail: vicent.martinez@uv.es

2 Departament d’Astronomia i Astrofísica, Universitat de València, 46100-Burjassot, València, Spain
3 Institut für Stochastik, TU Bergakademie Freiberg, 09596 Freiberg, Germany

Received 17 July 2009 / Accepted 5 January 2010

ABSTRACT

Context. The clustering properties of galaxies belonging to different luminosity ranges or having different morphological types are
different. These characteristics or “marks” permit us to understand the galaxy catalogs that carry all this information as realizations
of marked point processes. Many attempts have been presented to quantify the dependence of the clustering of galaxies on their inner
properties.
Aims. The present paper summarizes methods on spatial marked statistics used in cosmology to disentangle luminosity, color or
morphological segregation and introduces a new one in this context, the mark connection function.
Methods. The methods used here are the partial correlation functions, including the cross-correlation function, the normalized mark
correlation function, the mark variogram and the mark connection function. All these methods are applied to a volume-limited sample
drawn from the 2dFGRS, using the spectral type η as the mark.
Results. We show the virtues of each method to provide information about the clustering properties of each population, the dependence
of the clustering on the marks, the similarity of the marks as a function of the pair distances, and the way to characterize the spatial
correlation between the marks. We demonstrate by means of these statistics that passive galaxies exhibit a stronger spatial correlation
than active galaxies at small scales (r � 20 h−1 Mpc), and that the price for galaxies to be close together is in the smaller values of the
assigned marks, which means in our case that they are more passive. Through the mark connection function we quantify the relative
positioning of different types of galaxies within the overall clustering pattern.
Conclusions. The different marked statistics provide different information about the clustering properties of each population. Different
aspects of the segregation are encapsulated by each measure, which makes the new one introduced here – the mark connection
function – particularly useful for understanding the spatial correlation between the marks.
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1. Introduction

Galaxies of different morphological types show different clus-
tering properties. It is well known, for example, that elliptical
galaxies are preferentially found in high density environments,
like the centers of rich galaxy clusters (Dressler 1980), while
the dominant population of the field are mainly spiral galax-
ies (Davis & Geller 1976; Dressler 1980). Second order char-
acteristics as the two point correlation function have been used
to quantify the clustering of galaxies with different morpholo-
gies, different spectral characteristics, different colors or belong-
ing to different luminosity ranges (Phillipps & Shanks 1987;
Hamilton 1988; Davis et al. 1988; Loveday et al. 1995; Hermit
et al. 1996; Guzzo et al. 1997). Bright galaxies show a stronger
spatial correlation than faint ones. Other clustering measures
have also been used to quantify the luminosity or morphologi-
cal segregation: multifractals (Domínguez-Tenreiro & Martínez
1989; Domínguez-Tenreiro et al. 1994), void probability func-
tions (Vogeley et al. 1991; Croton et al. 2004), distributions of
the distances to the nearest neighbors (Salzer et al. 1990), etc.

The two-point correlation function ξ(r) measures the excess
probability of finding a neighbor at a distance r from a given
galaxy when compared with that probability for a homogeneous
Poisson process. Morphological segregation is encapsulated by
the behavior of ξ(r) when it is calculated separately for different
populations of galaxies. Elliptical galaxies show a correlation

function at small scales with steeper slopes and larger ampli-
tudes than spirals (Loveday et al. 1995). A recent analysis of the
two degree field galaxy redshift survey (2dFGRS) has shown the
same trend when comparing populations for different spectral
types, where the two-point correlation function was steeper for
passive galaxies than for active galaxies (Madgwick et al. 2003).
Also, Zehavi et al. (2002) analyzed the distribution of red and
blue galaxies in the Sloan digital sky survey (SDSS) by means of
the projected correlation functionwp(rp), showing that red galax-
ies display a more prominent and steeper real-space correlation
function than blue galaxies do.

The galaxy distribution can be considered a realization of a
point process. However, in many situations, each galaxy (point
in the process) carries additional information regarding a given
characteristic (e.g. morphological type) or a given numerical
value that measures a given galaxy property: luminosity, color,
spectral type. If we attach this characteristic (mark) to the point
in the process, we end up at a marked point process, as it is called
in mainstream spatial statistics (Stoyan & Stoyan 1994; Martínez
& Saar 2002; Illian et al. 2008).

We compare different statistical methods for the study of
the marked galaxy distribution. We also introduce – for the first
time in this context – the mark connection function. We illustrate
the usefulness of these methods by applying them to a volume-
limited sample drawn from the 2dFGRS with marks given by
the galaxy spectral type. In Sect. 2, we describe the sample and
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Fig. 1. Tridimensional plot of the galaxy sam-
ple used. Red dots correspond to early-
type galaxies (population “1”), and blue dots
to late-type galaxies (population “2”). The
parallelepiped dimensions are 254 × 133 ×
31 h−1 Mpc.

the marks assigned to the galaxies. In Sect. 3 we describe the
different statistical methods considered, and in Sect. 4 we show
the results of applying them to our galaxy sample. In the conclu-
sions, we stress the capabilities of the mark connection function
to characterize the spatial correlation between the marks.

2. The samples

To illustrate the different mark clustering measures, we used a
nearly volume-limited sample drawn from the 2dFGRS and pre-
pared by the 2dF team (Croton et al. 2004). It contains galaxies
with absolute magnitudes in the range −20 < MbJ < −19 at
redshifts z < 0.13. In order to avoid the effects of complicated
boundaries while using a simple estimator, we selected galaxies
inside a rectangular parallelepiped inscribed in the North slice of
2dFGRS. The final sample used contains N = 7741 galaxies and
covers a volume of V � 106 (h−1 Mpc)3 where h is the Hubble
constant in units of 100 km s−1 Mpc−1 .

We characterized the galaxies in the sample using the spec-
tral classification parameter η (Madgwick et al. 2002). Lower
values of η correspond to more passive or “early-type” galax-
ies, while larger values correspond to active or “late-type” ones.
In order to avoid negative values of the marks, we defined the
used mark as m = η + 10. This shift does not affect our con-
clusions. Based on this η parameter, we divided our sample in
two populations, following Madgwick et al. (2003): population
“1” (passive galaxies) with η ≤ −1.4, and population “2” (active
galaxies) with η > −1.4. These subsamples contain N1 = 3828
and N2 = 3913 galaxies, respectively. We show the samples in
Fig. 1.

In order to test the existence of mark segregation, we com-
pared the results obtained for the different statistics with ran-
dom relabeling simulations. In these, we kept the original posi-
tions of galaxies, but redistributed the marks randomly among
them. This corresponds to a model in which clustering is inde-
pendent of the mark, or spectral type, of the galaxies. We sim-
ulated n = 200 realizations with the random relabeling method,
and obtained their maximum and minimum values as a function
of the distance r for each statistic. Deviations of the observed
statistics from this range of values correspond to a rejection of
the mark-independent clustering model at a pointwise signifi-

cance of 1 − 2
n + 1

� 99% (Illian et al. 2008).

3. Clustering analysis methods

Recently, the clustering dependence on luminosity, color or mor-
phology has been analyzed by means of the marked clustering
statistics, which allow us to study the galaxy clustering as a
function of their properties, and moreover provides us with dif-
ferent measures of the correlation between the galaxy proper-
ties and the environment (Skibba et al. 2009). The galaxy distri-
bution is interpreted as a realization of a marked point process
XM = {(xi,mi)}, where the mark mi denotes an intrinsic property
of the galaxy located at position xi. The mark can be the lumi-
nosity, the spectral type, the color, etc. In general, present day
galaxy catalogs provide quantitative marks ranging in a contin-
uous interval rather than just a discrete characteristic like if a
galaxy is spiral or elliptical. In any case, we shall also show how
to use interesting second-order measures to disentangle cluster-
ing dependent characteristics of two populations by dividing the
sample into two parts using a significant value of the mark as
threshold mthres and separating the two populations according to
the value of the mark: population “1” with mi ≤ mthres and pop-
ulation “2” with mi ≥ mthres.

We describe below the different methods we used to obtain
information about galaxy clustering segregation. They are the
classical partial correlation functions (for two discrete popula-
tions), the normalized mark correlation function and the mark
variogram (based on the use of continuous marks), and finally
the mark connection function (based on the use of discrete
marks).

We computed the different statistics based on the estima-
tion of the second-order intensity function for the unmarked
point process1 (λ2(r)) presented in Stoyan & Stoyan (1994),
Pons-Bordería et al. (1999), and Illian et al. (2008),

λ̂2(r) =
1

4πr2

N∑
i=1

N∑
j=1
j�i

k(r − |xi − x j|)
V(W ∩Wxi−x j )

, (1)

1 Note that the relation between λ2(r) and the standard correlation
function used in cosmology ξ(r) is λ2(r) = n2[1 + ξ(r)], where n is the
number density. The function g(r) = 1 + ξ(r) is known as the pair cor-
relation function in spatial statistics. We use the convention of denoting
the estimators by putting a hat ˆ on top of the symbol of a given function
to distinguish the estimator λ̂2(r) from the theoretically defined func-
tion λ2(r). Although this is not standard in cosmology, it is an extended
convention in spatial statistics, and it is quite useful when different esti-
mators of a single function are discussed (see, e.g., Pons-Bordería et al.
1999).
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where xi are the positions of the points, k(·) is a kernel function,
and V(W ∩Wr) is the volume of the window (the parallelepiped
in our case) intersected with a version of itself shifted by the
vector r (see Fig. 1 in Pons-Bordería et al. 1999).

In all our calculations we used the Epanechnikov kernel,

k(x) =

{
3

4w

(
1 − x2

w2

)
for − w ≤ x ≤ w

0 otherwise

with a width of w = 1 h−1 Mpc, and sampled the different func-
tions with a step in r of 0.5 h−1 Mpc. This compact kernel is very
well suited for correlation analysis (Pons-Bordería et al. 1999).
We note however that the choice of a given kernel is not crucial,
while the choice of the bandwith, w, is more important and plays
the role of the binning in the standard calculation of correlation
functions, where a top-hat kernel is typically used as default.

3.1. Partial two-point correlation functions

In the standard clustering analysis of the galaxy distribution, the
two-point correlation function ξ(r) measures the clustering in ex-
cess (ξ(r) > 0) or in defect (ξ(r) < 0) relative to a Poisson dis-
tribution, for which ξ(r) = 0. Whenever we want to compare the
clustering properties of different populations of galaxies encap-
sulated by their spatial correlations, we can consider the corre-
lation function restricted to a given population, which is called
a partial correlation function. In fact, for two populations of in-
terest, one can consider three partial two-point correlation func-
tions, namely ξ11(r), ξ22(r), and ξ12(r). The first two are those
mentioned above for types 1 and 2, while the cross-correlation
function (Peebles 1980) ξ12(r) measures the excess probability
of finding a neighbor of the type “1” at a distance r from a given
galaxy of type “2”, or vice versa.

Based on Eq. (1), the partial two-point correlation functions
were estimated as

ξ̂i j(r) =
1

4πr2n̂in̂ j

Ni∑
k=1

N j∑
l=1

k(r − |x(i)
k − x( j)

l |)
V(W ∩Wx(i)

k −x( j)
l

)
− 1 , (2)

where x(i)
k are the positions of galaxies of a population i, and

n̂i = Ni/V .
We estimated the error of the measured correlation functions

with the jackknife method (Norberg et al. 2009). We divided the
data volume in 32 equal, nearly cubic, sub-volumes. We gener-
ated the corresponding “mock” datasets omitting one of these
sub-volumes at a time, and calculated the correlation functions
for these. The jackknife errors for each scale, σi j(r), are then
obtained as

σ2
i j(r) =

Nk − 1
Nk

Nk∑
k=1

(
ξki j(r) − ξ̄i j(r)

)2
,

where ξki j(r) is the partial correlation function ξi j(r) of the
“mock” dataset k, ξ̄i j(r) is the value averaged over these datasets,
and Nk = 32.

3.2. Normalized mark correlation function

Stoyan & Stoyan (1994) introduced the normalized mark cor-
relation function. To define this function, let us first define the
quantity

λM
2 [(x1,m1), (x2,m2)]dV1dm1dV2dm2 (3)

as the joint probability that in the volume element dV1 lies a
galaxy with the mark in the range of [m1,m1 + dm1] and that
another galaxy lies in dV2 with the mark in [m2,m2 + dm2]
(Martínez & Saar 2002). The normalized mark correlation func-
tion is

kmm(r) =
1

m̄2λ2(r)

∫ ∫
m1m2λ

M
2 ((x1,m1), (x2,m2))dm1dm2, (4)

for λ2(r) � 0, where m̄ is the mean of the marks.
Despite its name the mark correlation function is not a strict

correlation function (Schlather 2001), but it describes important
aspects of the spatial correlations of marks. A true mark corre-
lation is a function given by Eq. (4), but replacing the product
m1m2 by the product of the differences (m1 − m̄)(m2 − m̄). The
normalizing denominator m̄2 must then be replaced by σ2

m, the
variance of the marks. In any case, kmm(r) < 1 represents the in-
hibition of the marks at the scale r. For example, in forests it is
typically found that trees with a larger stem diameter (mark) tend
to be isolated, since they make use of much more ground and
sun-light resources than smaller trees. Using luminosity as the
mark, the opposite effect has been found for the galaxy distribu-
tion, i.e., kmm(r) > 1 at small scales (Beisbart & Kerscher 2000),
implying stronger clustering of brighter galaxies at small sepa-
rations, in agreement with previous results showing this kind of
segregation (Hamilton 1988).

We estimated the normalized mark correlation function as

k̂mm(r) =
1

4πr2m̄2λ̂2(r)

N∑
i=1

N∑
j=1
j�i

mim jk(r − |xi − x j|)
V(W ∩Wxi−x j )

· (5)

3.3. Mark variogram

The mark variogram, γ(r) (Wälder & Stoyan 1996; Beisbart &
Kerscher 2000), is a measure of the similarity of the marks de-
pending on the distance between galaxies. It is defined as

γ(r) =
1

2λ2(r)

∫ ∫
(m1−m2)2λM

2 ((x1,m1), (x2,m2))dm1dm2. (6)

When the clustering properties of a marked point pattern are in-
dependent of the marks, the mark variogram γ(r) is constant and
takes, naturally, the value of the variance, σ2

m, of the mark distri-
bution. In the presence of segregation, γ(r) > σ2

m indicates that
galaxy pairs at a distance r tend to have different marks, while
the contrary, γ(r) < σ2

m, is an indication that these galaxy pairs
tend to have similar marks.

We estimated the mark variogram as

γ̂(r) =
1

8πr2λ̂2(r)

N∑
i=1

N∑
j=1
j�i

(mi − m j)2k(r − |xi − x j|)
V(W ∩Wxi−x j )

· (7)

3.4. Mark connection function

A statistical tool to characterize the spatial correlation between
the marks of a point pattern with discrete marks is the mark con-
nection function pi j(r), which represents the conditional proba-
bility to find two galaxies of type i and j at positions separated
by a distance r, under the condition that at these positions there
are indeed galaxies. This function yields information different to
that from the partial correlation functions, ξi j(r), as shown, for
example, in Illian et al. (2008). By its definition it gives the rel-
ative frequencies of mark pairs (i, j) of a distance r. While ξi j(r)
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takes high values if there are many (i, j)-pairs at distance r, pi j(r)
is high if the proportion of (i, j)-pairs in all pairs at a distance r is
high. So it may happen that for some r, ξi j(r) has a minimum, but
pi j(r) has a maximum, if there is only a small number of point
pairs at a distance r in the whole pattern, but many of them are
exactly (i, j)-pairs. Experience shows that often pi j(r) is able to
find finer structures in point patterns than ξi j(r), because of the
nature of pi j(r) as a conditional probability.

If the marking is independent of clustering, then pi j(r) are
constant,

pi j(r) =

{
2pi p j if i � j
p2

i if i = j. (8)

Here pi is the probability that a randomly chosen galaxy is of the
type i. The pi are estimated as

p̂i =
Ni

N
·

We calculated pi j(r) based on the estimation of the partial corre-
lation functions as

p̂i j(r) = p̂i p̂ j
ξ̂i j(r) + 1

ξ̂(r) + 1
,

where ˆξ(r) is the two-point correlation function of the full sam-
ple.

4. Results

4.1. Partial two-point correlation functions

Figure 2 shows the three corresponding partial two-point corre-
lation functions, estimated according to Eq. (2). All three clearly
show the high degree of clustering within the pattern of galaxies.
It is obvious that the correlation function for the type “1” passive
galaxies is steeper than for the type “2” active galaxies as well
as for the (1, 2) pairs. This result corroborates the spectral segre-
gation detected by Madgwick et al. (2003) for the 2dFGRS.

4.2. The normalized mark correlation function

The kmm(r) for our sample, estimated according to Eq. (5), is
shown in Fig. 3. The curve for kmm(r) shows a weak negative
correlation or spatial inhibition: kmm(r) < 1. The range of corre-
lation is about 20 h−1 Mpc, where kmm(r) gets values close to 1.
It is interesting to compare this result with the kmm(r)-function
shown in Beisbart & Kerscher (2000) using the galaxy absolute
luminosity L as the mark. They obtain an increasing behavior of
kmm(r) at small scales with kmm(r) > 1 for r < 12 h−1 Mpc, show-
ing that bright galaxies are stronger correlated than faint ones. In
our case, the tendency of the values of kmm(r) to be smaller than 1
at short scales indicates that the price for galaxies to be close to-
gether is to have reduced values of the marks, i.e., to be more
passive.

4.3. The mark variogram

In Fig. 4 we show the mark variogram for our sample, obtained
according to Eq. (7). This function is monotonously increasing.
In this case the interpretation is straightforward: γ(r) shows that
for separations of r � 10 h−1 Mpc, galaxy pairs tend to have
similar marks, that is, similar spectral type.

This result is partially explained by the previous one shown
by the kmm function: galaxies close together exhibit smaller val-
ues of the attached mark (spectral type).

Fig. 2. The partial two-point correlation functions ξi j(r) estimated for
population “1” (early-type) and population “2” (late-type) galaxies in
our sample. The top panel shows the three functions together. The three
lower panels show each of them separately (solid lines with error bars
estimated using the jackknife method), together with a shaded band
showing the minimum and maximum values for the 200 realizations
of the random relabeling simulation. The dot-dashed lines correspond
to ξ(r) for the full sample, which is the expected value of all ξi j(r) in the
absence of segregation.

4.4. The mark connection function

We show the pi j(r) obtained for the 2dFGRS galaxies to-
gether with the results of our random relabeling simulations
in Fig. 5. The first panel shows very neatly that for scales of
r � 20 h−1 Mpc the clustering of early-type galaxies is stronger
than the clustering of late-type galaxies. The three bottom panels
show that the deviation of the observed pi j(r) from the case of
random labeling is significant at these scales.

Moreover, the figure shows clear differences in the spatial
correlations of galaxies of the two types. In an overall clustering
of all galaxies, we can outline that:

1. Galaxies of the type “1” (passive or early-type) are strongly
clustered up to distances of 20 h−1 Mpc.

2. The conditional probability to find two galaxies of the type
“2” (active or late-type) at two positions separated by a
distance r (under the condition that at these locations are
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Fig. 3. Normalized mark correlation function kmm(r) for our sample
(solid line). The shaded band shows the minimum and maximum values
for the 200 realizations of the random relabeling simulation, while the
dot-dashed line corresponds to the value for the case with no segrega-
tion, kmm(r) = 1.

Fig. 4. Mark variogram γ(r) for our sample (solid line). The shaded
band shows the minimum and maximum values for the 200 realizations
of the random relabeling simulation, while the dot-dashed line corre-
sponds to the value for the case with no segregation, γ(r) = σ2

m = 6.25.

galaxies) is smaller than the same probability for random la-
beling of the marks for scales of r � 20 h−1 Mpc.

3. Galaxy pairs that have one member of the type “1” and the
other member of type “2” are less frequent than for random
labeling up to distances of 10 h−1 Mpc.

In summary, all galaxies form a highly clustered pattern. In this
pattern, the passive galaxies tend to be close to other passive
galaxies, while positioning of active galaxies is less affected by
other active galaxies. However, they tend to avoid positions close
to passive galaxies.

This clearly shows the power of the mark connection func-
tion as an analytical tool in comparison to the partial pair corre-
lation function. While for the untrained eye the curves in Fig. 2
are quite similar and show little structure, the curves in Fig. 5
give valuable information about the inner structure of the mark
distribution. Obviously, the idea to consider characteristics of
the nature of conditional probabilities helps to divulge structural
details which would be otherwise overlooked.

Fig. 5. Mark connection functions pi j(r) obtained for “early-type” (pop-
ulation “1”) and “late-type” (population “2”) galaxies in our sample.
The top panel shows the three functions together. The three bottom pan-
els show p11(r), p22(r), and p12(r) separately (solid lines), together with
the shaded band showing the minimum and maximum values for the
200 realizations of the random relabeling simulation. The dot-dashed
lines correspond to the expected values for the random labels case ac-
cording to Eq. (8).

The problem are the mutual positions, given the positions
of all galaxies without mark information. Since the three partial
two-point correlation functions shown in Fig. 2 are different for
a large range of scales, the marking with marks 1 and 2 cannot
be an independent marking, where every galaxy obtains its mark
randomly, independent of the other galaxies. In contrast, there
must exist a spatial correlation between the marks. As it was
shown in Fig. 5, the mark connection function is the appropriate
tool to measure this correlation.

5. Conclusions

We used a volume-limited galaxy sample from the 2dFGRS to
test different statistical measures used to disentangle mark seg-
regation in the distribution of the galaxies. The mark attached
to each galaxy of the sample was its spectral type η. For some
of the statistics, the value of the mark enters directly into the
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functions used to measure segregation: the normalized mark cor-
relation function kmm(r) and the mark variogram γ(r). For other
functions, like the partial correlation functions or the mark con-
nection function, the sample has been split into two populations
corresponding to passive or early-type galaxies with η ≤ −1.4
and active or late-type galaxies with η > −1.4. We summarize
our results below:

1. The partial correlation functions, including the cross-
correlation function, inform us about the degree of clustering
of each population separately. It shows that passive galaxies
exhibit stronger clustering at small separation. Nevertheless,
there is no information about the spatial correlation between
the marks.

2. The normalized mark correlation function shows that smaller
values of the marks, i.e., smaller values of spectral type (be-
ing more passive), is a clear condition for galaxies to be close
to each other in the overall clustering pattern.

3. The mark variogram shows in addition that at small separa-
tions galaxy pairs tend to have similar marks.

4. The mark connection function has been introduced here for
the first time in the analysis of the marked galaxy distribu-
tion. The function pi j(r) measures the conditional probability
to find at two positions, separated by a distance r, a galaxy
of the type “i” and a galaxy of type “ j” under the condition
that at these positions there are indeed galaxies. This func-
tion yields information different from that of the partial cor-
relation functions ξi j(r). This more sophisticated measure,
having a nature of conditional quantities, is an efficient sta-
tistical tool to characterize the spatial correlation between
the marks, filtering out the relative frequencies of the mark
pairs (i, j) at a distance r.
Applied on the 2dFGRS volume-limited sample, the mark
connection function clearly shows that passive galaxies are
clustered up to distances of 20 h−1 Mpc, while active galax-
ies exhibit weak spatial anticorrelation of the mark up to dis-
tances of 20 h−1 Mpc. Mixed pairs are less frequent up to
distances of 10 h−1 Mpc.
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