
1
A
w
a
a
t
m
i
n
p
t
n
n
m
t

i
i
c
c
t

w
a
e
a
p
m
t
w
a
t
w
s
s

m
t
t
o

V. B. Yurchenko and A. Altintas Vol. 26, No. 2 /February 2009 /J. Opt. Soc. Am. A 305
Physical optics modeling of 2D dielectric lenses
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We propose an advanced physical optics formulation for the accurate modeling of dielectric lenses used in
quasi-optical systems of millimeter, submillimeter, and infrared wave applications. For comparison, we obtain
an exact full-wave solution of a two-dimensional lens problem and use it as a benchmark for testing and vali-
dation of asymptotic models being considered. © 2009 Optical Society of America
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. INTRODUCTION
n accurate design of large-scale quasi-optical systems
ith dielectric lenses requires advanced wavelike
symptotic modeling of refractive components. An ex-
mple of such a system is QUaD, a submillimeter-wave
elescope for cosmic microwave polarization measure-
ents [1]. For this high precision instrument to be real-

zed, extremely accurate modeling of aberrations is
eeded with further minimization of their effects. The
roblem is particularly challenging when polarization in
he focal domain has to be computed [2]. In this case, with
o exact solution available due to the size limit, there is a
eed of advanced asymptotic methods for the wavelike
odeling of lenses similar to the physical optics simula-

ions of large reflectors [3].
Other applications for the wavelike asymptotic model-

ng of lenses may include optics for infrared and terahertz
maging (e.g., in security checks), automotive radars for
ollision-avoidance systems (where, specifically, cylindri-
al lenses are being used [4]), special microlenses for op-
ical recording devices [5–8], etc.

When developing asymptotic methods, comparisons
ith exact solutions are of importance. In the meantime,
n exact solution for electromagnetic scattering by a di-
lectric body is a complicated problem when the body is of
large electrical size. There are various approaches to the
roblem ranging from the finite difference, finite ele-
ents, and similar methods [9] to sophisticated formula-

ions based on the integral equations [10,11] combined
ith regularization techniques [12–14]. Exact methods
re usually limited to systems of small size, often less
han ten wavelengths in diameter even in those cases
hen advanced solvers are available (e.g., ANSOFT HFSS

oftware). Besides, there is only a limited number of exact
olutions for dielectric lenses described in the literature.

One example of a full-wave solution is the modeling of a
icrocylindrical axilens [6] by using the integral equa-

ions [11] with no regularization. A rigorous regulariza-
ion method [13,14] is proposed for the body of special ge-
metry considered as a resonator. A promising hybrid
1084-7529/09/020305-8/$15.00 © 2
echnique is developed for diffractive microlenses [5],
here the finite difference method solves the problem in

he near field and the partial plane wave (PW) propaga-
ion is used to transform the solution to the far field.

However, there appears to be no exact solutions pub-
ished for conventional lens geometries, e.g., for a com-

on biconvex lens of a standard shape. Similarly, there
re no wavelike asymptotic methods developed for lenses
hat outperform simulations based on the ray tracing ap-
roach [2]. Conventional wave theory of lenses [2] is, in
act, the paraxial Fourier-optics, where nonparaxial cases
re classified as a standing problem. The same paraxial
imitations and related approximations (scalar waves,
tc.) lay in the basis of quasioptical simulation models [1]
hat, therefore, do not account for polarization effects and
onparaxial issues in the interaction of the vector electro-
agnetic waves with the dielectric lens body.
In the meantime, lenses of intermediate (quasi-optical)

ize (tens to a few hundreds of radiation wavelength) do,
sually, require both the large-angle incidence and the
ector character of the electromagnetic field to be ac-
ounted for while being too large for exact simulations. It
s this kind of lens enhanced asymptotic modeling that is
equired for emerging practical applications.

The aim of this paper is to present enhanced
symptotic simulation methods for dielectric lenses of the
uasioptical range and to provide validation for these
ethods by comparing them with full-wave analytic solu-

ions obtained for two-dimensional (2D) focusing lenses of
conventional biconvex profile.
In Section 2, we obtain a full-wave analytic solution to

he problem of an electromagnetic wave being focused by
2D dielectric lens with a typical cross section profile

ormed by two circular arcs as shown in Fig. 1. In this so-
ution, we consider the cases of PW and cylindrical wave
CW) incidence on the lens surface and compute the wave
elds behind the lens for two orthogonal polarizations, TE
nd TM, respectively. Then, in Section 3, we describe
symptotic methods appropriate for quasi-optical lenses
hat utilize the physical optics approach. Finally, we com-
009 Optical Society of America
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are simulation results produced by asymptotic methods
ith exact solutions at various values of lens parameters.

. FULL-WAVE SIMULATION OF A
WO-DIMENSIONAL FOCUSING
IELECTRIC LENS
. Simulation Method
ull-wave analytic solutions for dielectric lenses in the 2D
roblems shown in Fig. 1 can be obtained by direct meth-
ds when using CW expansions of incident and scattered
elds with respect to O1 and O2 frames associated with
ircular arcs S1L and S2L that form the lens cross section
rofile.
The lens geometry is defined by the lens diameter D

nd the arc curvature radii R1,2 so that the lens angular
alf-size �1,2 as viewed from the origin O1,2 is �1,2
arcsin�D /2R1,2�, the distance between the origins is L
R1 cos��1�+R2 cos��2�, and the lens thickness along the
-axis is t=R1+R2−L.

In this paper, we consider the waves of TE �H � ẑ� and
M �E � ẑ� polarization with two kinds of wave sources,
amely, the uniform PW and CW incident on the lens

rom the left (Fig. 1). The incident wave in the PW case
ropagates along the positive direction of the x-axis. In
he CW case, the incident wave is radiated from a line
ource located at a certain distance in front of the lens. In
he xy plane, it is an omnidirectional source placed at the
C ,yC point on the left side of the lens with xC�−R1 and
C=0 being the source coordinates in the O1 frame (the
eft and right apex points of the lens have coordinates
L=−R1 and xR=−R1+ t, respectively).

Using the O1 frame, we expand the relevant
-component of the field (U=Ez in the TM cases and U
Hz in the TE cases) in cylindrical functions in the do-
ains D1e, D1i, and DL as follows:

U = �
n

�AnJn�kr1� + BnYn�kr1��ein�1,

�r ,� � � D , �1�

xO

S
2

1L 2L

D

D

D
1i

1e
D

DL

θ22i

2e

R
2 R

1
θ1

S

2v
S

1v
S

D

yL

O
1

ig. 1. Geometry of a 2D convex dielectric lens (cross section
rofile). The excitation wave (PW or CW) of either TM �E � ẑ� or
E �H � ẑ� polarizations is incident from the left.
1 1 L
U = �
n

CnJn�kr1�ein�1,

�r1,�1� � D1i, �2�

U = �
n

�FnHn�kr1� + bn�kr1��ein�1,

�r1,�1� � D1e, �3�

here An, Bn, Cn, and Fn are the unknown expansion co-
fficients, Jn�·�, Yn�·� and Hn�·�=Hn

�2��·� are the Bessel,
eumann, and Hankel functions of order n (the time de-
endence of the wave field is assumed to be exp�i�t�), k
2� /� and kd=k�� are the wavenumbers in free space
nd in the lens dielectric material of (complex) relative
ermittivity �, respectively, � is the free-space wave-
ength, r1 and �1 are the radial and angular coordinates
n the O1 frame, R1 and R2 are the curvature radii of the
ntrance �S1L� and exit �S2L� lens surfaces, and the ex-
ansion domains are defined as D1e,2e= �r1,2 :r1,2�R1,2	,
1i,2i=D1,2−DL, D1,2= �r1,2 :r1,2�R1,2	, and DL=D1�D2.
The expansions satisfy the Helmholtz equations in the

elevant domains and boundary conditions of (a) no sin-
ularity at the origin (there is neither source nor sink at
oint O1) and (b) no incoming waves from infinity except
he given source wave (the radiation boundary condition).
he terms bn represent the source wave and take on the

orm bn�kr1�= i−nJn�kr1� in the PW case and bn�kr1�
�−1�nJn�kr1�Hn�kLC� in the CW case, where LC= 
CO1
 is

he distance from the source point C to the frame origin
1 (the source distance from the lens front surface is
CL=LC−R1).
The Neumann addition theorem for cylindrical func-

ions is used for transforming the expansions from one
rame �O1� to another �O2� when imposing boundary con-
itions for tangential field components at the lens sur-
aces S1L and S2L. Then, by using the orthogonality of an-
ular harmonics, we arrive at the set of linear algebraic
quations with respect to expansion coefficients as fol-
ows:

�
n,m

��AnJm−n�kdL� + BnYm−n�kdL��Jm�kdR2�

− CnJm−n�kL�Jm�kR2�	Smp��2� = 0, �4�

�
n,m

�	�AnJm−n�kdL� + BnYm−n�kdL��Jm� �kdR2�

− CnJm−n�kL�Jm� �kR2�	Smp��2� = 0, �5�

�
n

��AnJn�kdR1� + BnYn�kdR1��Pnp�
� + CnJn�kR1�Snp�
�	

− FpHp�kR1� = bp�kR1�, �6�

�
n

�	�AnJn��kdR1� + BnYn��kdR1��Pnp�
� + CnJn��kR1�Snp�
�	

− FpHp��kR1� = bp��kR1�, �7�
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here p=0, ±1, . . ., Smp���=sin��m−p��� / ���m−p�� if m
p, Smp���=� /� if m=p, Pnp�
�=�np−Snp�
�, 
=�−�1, 	
�� in TM and 	=1/�� in TE polarizations, and prime
�� denotes the derivative of a function over argument. By

ntroducing reasonably large truncation numbers N and
for summations in n and m, respectively, we could find

ufficiently convergent numerical solutions to Eqs. (4)–(7)
hat, by substitution into Eqs. (2) and (3), allowed us to
ompute fields in the focal domain behind the lens.

Because of rapid growth or decay of cylindrical func-
ions with angular harmonic index n, direct solutions of
his kind are limited to lenses of relatively small size
truncation numbers have to be limited from above). In
ractice, we could simulate lenses with the curvature ra-
ii R1, R2, and lens diameter D up to about 12� when hav-
ng the lens refractive index ñ=1.5 (notice, the lenses
sed in, e.g., car radar applications [4] are of a similar
ize D�10�). A further increase of the lens size can be
chieved by implementing regularization methods.

. Simulation Results
he results showing the wave focusing effects in TM and
E polarizations for both the PW and the CW incident
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ig. 2. Exact (solid curves) and asymptotic solutions (dashed
urves for RS2 and dotted curves for KU models, see below) in
he case of TM PW incidence on a symmetric 2D dielectric lens;
a) x and (b) y cuts of Pz power distribution behind the lens. Here,
=1.5, R1=R2=D, �1=�2=30°; A and B groups of curves corre-
pond to D=12� �x =−8.7�� and D=6� �x =−4.3��, respectively.
R R
elds are plotted in Figs. 2 and 3. We choose the lens re-
ractive index ñ=1.5 so that, in the case of PW incidence,
he geometrical focal point F1 of a thin symmetric lens co-
ncides with the frame origin O1 (the case of PW incidence
as examined in detail in our earlier work [15]).
Power density Pz= 
Uz
2 associated with Ez and Hz field

omponents of TM and TE waves, respectively, is shown
n the focal domain of lens in transverse �y� and longitu-
inal �x� cuts passing through the focal point F1. A com-
on feature of these and other simulations is that the TE

olarized waves produce a greater power density at the
ocal point as compared to the TM waves of the same in-
ident power. This is due to the difference in TE and TM
ave transmissions at oblique incidence at the lens sur-

aces as expressed by the Fresnel coefficients. The effect is
ore complicated for small lenses and CWs [Fig. 3(a)],

hough, typically, it remains of a similar kind.
The second common feature is that the width of the fo-

al spot defined as the distance between the first minima
f the field is twice the wavelength in all the cases of PW
ocusing [Fig. 2(b)]. In the meantime, the width of diffrac-
ion fringes is one wavelength for lenses of a different size
ith nearly identical patterns in both polarizations. In
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ig. 3. (a) Exact solutions in TE (solid curves) and TM (dotted
urves) cases of CW incidence on a lens with R1=10� when (A)
=R2=8� �xR=−8.0�� and (B) D=R2=10� �xR=−7.2�� at LC
30� (LCL=20�, ñ=1.5) and (b) comparison of exact (solid curve)
nd asymptotic solutions (dashed curves for RS2 and dotted
urves for KU models, see below) in case A of TE CW incidence.
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he case of CW focusing, the focal spot is, typically, wider
nd the focusing effect is more complicated (see below).
In general, there are some intrinsic resonant effects as-

ociated with lenses, which are especially pronounced in
he narrowband applications. With increasing the size of
he lens and the bandwidth of radiation, the resonant ef-
ects smear out and become insignificant (especially in the
resence of losses).

. ASYMPTOTIC WAVELIKE MODELING OF
IELECTRIC LENSES
. Two-Term Kirchhoff Approximation
symptotic approximations proposed in this paper are
ased on various forms of diffraction integrals that repre-
ent wave propagation from the lens exit surface to the
bservation points behind the lens. The integral trans-
orms of this or a similar kind are needed in any near-
eld to far-field propagation in free space.
Inside the lens, propagation of the incident wave from

he entrance surface S1L to the exit surface S2L can be
valuated by using the ray tracing through the lens body.
n this paper, the ray tracing is implemented on account
f (a) the transmission Fresnel coefficients at S1L and S2L
urfaces, (b) phase increments along the rays inside the
ens, and (c) wave amplitude increments (decrements)
ue to the ray convergence (divergence) because of refrac-
ion. This evaluation is quite accurate for typical lenses
ecause of a relatively short ray propagation path inside
he lens as compared to the lens transverse dimensions.

The first method we consider is based on the two-term
irchhoff diffraction integral. The integral is evaluated
ver the extended exit surface S2 that consists of the lens
xit surface S2L and the free-space surface S2F extended
rom the lens rim to infinity in the transverse direction.
he first term depends on the wave amplitude U that is
irectly evaluated at the exit surface S2 as explained
bove. The second term depends on the normal derivative
f U at S2 that is approximated by using the U values at
2 and the set of ray directions that define the local incli-
ation of the wavefront (we denote this approach as the
U model).

. One-Term Rayleigh–Sommerfeld Formulation
odified for Curved Surfaces
nother asymptotic model is obtained by starting with a
ne-term Rayleigh–Sommerfeld diffraction integral and
odifying it for nonplanar (curved) exit surfaces. Since

he idea of the original Rayleigh–Sommerfeld formulation
s the choice of the Green’s function that vanishes at the
lane integration surface (thus removing the second
oorly defined term in the Kirchhoff formulation), we fur-
her modify the Green’s function to make it identically
ero at the curved lens exit surface S2L while using the
riginal form at the planar free-space surface S2F outside
he lens. We denote this formulation as an RS2 model.

Notice, the Green’s function defined above is an exact
ne for the domain of a given geometry. It means that, if
he field on the exit surface S2 is known precisely, the for-
ulation is exact. Therefore, the RS2 model is superior to

ther forms of the Rayleigh–Sommerfeld approach pro-
osed for curved surfaces as, e.g., those where no modifi-
ation of the Green’s function is made [7] or an alternative
our-term Green’s function is introduced [8] that, how-
ver, generates entirely wrong results when tested in our
imulations.

. Comparison of Exact and Asymptotic Solutions
n important goal of this paper is the validation of
symptotic models by comparing their results one with
nother and with available exact solutions when consid-
ring various kinds of lenses. Therefore, we examine the
erformance of asymptotic models and relevant software
odes in a broad domain of lens parameters.

The comparison of KU and RS2 simulations with full-
ave solutions is presented in Figs. 2 and 3(b). In these

ases, the lenses are characterized by the focal length f
D��. In these and other simulations [15], KU and RS2
odels appeared to be, in general, sufficiently accurate.
Inaccuracy in asymptotic models may arise due to (a)

eglect of the edge diffraction and the internal reflection
n the lens, (b) inaccuracy of the ray model for the wave
ropagation inside the lens, (c) approximations in the am-
litude and phase evaluation of the wave transmitted
hrough the lens exit surface, and (d) additional approxi-
ations in the KU model needed for the evaluation of a
ormal derivative of the wave field at the lens exit surface
2L.
A typical feature observed in asymptotic solutions is

hat the values of power density Pz�x ,y� computed with
U and RS2 models provide the lower and the upper
ounds for the exact solution, respectively. Therefore, by
ombining both the KU and RS2 results, we can, gener-
lly, estimate and improve the accuracy of approximate
symptotic simulations.
Capabilities of asymptotic models in computing 2D

eld distributions are shown in Fig. 4. Figure 4(a) shows
n exact power pattern (in relative units) in the focal do-
ain of the lens presented in case B of Fig. 3 in TE polar-

zation (CW excitation by the line source at LC=30� when
=R1=R2=10�). One can see a pair of specific fringes

riginating at the lens rim due to the edge diffraction (the
aves aside the lens are partially suppressed by this ef-

ect near the lens rim). The lens is suspended freely in
pace as shown in Fig. 1.

Figure 4(b) shows the pattern computed for the same
ens with the RS2 asymptotic model.There is a clear simi-
arity between the patterns in Figs. 4(a) and 4(b) in all the

ain features, such as the focal spot, basic diffraction
ringes in the focal domain, two rather bright caustics,
nd even a specific interference structure along the caus-
ics consistent with fringes behind the lens. A noticeable
ifference is only the absence of significant edge diffrac-
ion and no suppression of waves aside the lens, respec-
ively (there is no special account for edge diffraction in
his model yet).

In practice, the lens is usually mounted into a stop that
s not transparent for the incident waves. The stop is not
ccounted for by an exact solution described above. The
symptotic models can, however, easily account for the
top. Figure 4(c) shows the pattern computed with the
S2 model for the same lens as described above, which is
ounted into the stop. The stop is simulated as an ab-

orbing screen orthogonal to the x-axis with an aperture
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f size D where the lens is fixed by its rim. The pattern
hows significant suppression of the side waves behind
he screen except those diffracted by the lens, though all
he wave features in the focal domain are the same as in
igs. 4(a) and 4(b).

ig. 4. Power patterns Pz�x ,y� behind the lens in case B of Fig.
in TE CW incidence. (a) Exact solution for a lens suspended in

ree space, (b) RS2 simulation for the same case, and (c) RS2
imulation for the same lens mounted into a stop.
. Asymptotic Solutions for Large- and Small-Scale
enses
symptotic approximations should be particularly useful

or large-scale lenses, where exact solutions are not acces-
ible while asymptotic methods remain efficient. Gener-
lly, short-wave asymptotic methods are more accurate
or large scattering objects as compared to small ones.
he rule is valid for dielectric lenses as well, though in

his case, there are two kinds of parameters that control
he accuracy, namely, (a) the lens surface curvature radii
i and (b) their ratio to the lens diameter (equivalently,

he lens aperture angles �i) rather than the lens diameter
alone.
The discrepancy between KU and RS2 models de-

reases with increasing the size of the lens of the same
rofile. For example, the discrepancy in Pz at the focal
oint of a rather bulky symmetric lens in case A of Fig.
(a) decreases from nearly 25% when D=R1=R2=12� to
0% and 5% for a lens of the same shape at D=R1=R2
100� and D=R1=R2=300�, respectively. Yet, the dis-
repancy for bulky lenses such as this �t /D=0.27� is rela-
ively significant, being the consequence of general diffi-
ulty in solving large-angle ��1=�2=30° � nonparaxial lens
roblems [2].
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ig. 5. Power density Pz (TM PW case) in the focal domain of
symmetric lenses of diameter (a) D=30� and (b) D=90� �ñ
1.5� when either R1=100�, R2=60� (A orientation of lens), or
1=60�, R2=100� (B orientation) computed with KU (dotted

urves) and RS2 (solid curves) asymptotic methods.
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Another example is presented in Fig. 5, which com-
ares the effects in relatively thin and thick asymmetric
enses of a sufficiently large scale. It shows the power
ensity Pz (TM PW case) in the focal domain of asymmet-
ic lenses of diameter (a) D=30� and (b) D=90� when ei-
her R1=100�, R2=60� (A orientation of lens), or R1
60�, R2=100� (B orientation) computed with KU and
S2 methods (these are relatively large lenses with focal

ength f�D�� that cannot be easily simulated by exact
ethods).
Figure 5(a) illustrates a good agreement (better than

%) of asymptotic methods for a lens of a limited diameter
D=30�� in the case of relatively large radii R1,2 when
1=8.6°, �2=14.5° (in B orientation) and the lens thick-
ess is t=3�. In the meantime, Fig. 5(b) shows quite a sig-
ificant discrepancy between asymptotic methods (up to
0%) when the lens diameter is three times greater �D
90�� at the same radii R1,2 as before. In this case, �1
48.6°, �2=26.7°, and the lens thickness t=31� (the rela-

ive lens thickness is t /D=0.10 and t /D=0.34 in Figs. 5(a)
nd 5(b), respectively). Figure 5(b) also shows a certain
dvantage of the B orientation of large asymmetric lenses
or obtaining a sharper focusing of incident PWs.
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ig. 6. (a) Power density Pz (TE PW case) in the focal domain of
n essentially asymmetric lens of small size in A and B orienta-
ions (ñ=1.5, D=6�, R1=10�, R2=4� in case A when �1
17.5° ,�2=48.6°) computed with KU (dotted curves) and RS2

dashed curves) asymptotic methods as compared to exact solu-
ions (solid curves), and (b) total internal reflection near the lens
im in case A as illustrated by ray tracing (a few rays near the
im in this plot do not propagate through the lens).
. Optimal Asymptotic Approximations for Asymmetric
enses
he results above are obtained for symmetric or slightly
symmetric lenses that have comparable surface curva-
ure radii R1�R2. For asymmetric lenses with R1�R2
nd a relatively small focal length �f�D�10�� we ob-
erve, however, certain problems. For these lenses, the re-
ults of two asymptotic methods may differ significantly
Fig. 6(a) dashed and dotted curves in case A]. The effect
s less pronounced for greater lenses of a similar shape,
hough the tendency remains the same.

A detailed analysis revealed that, in these cases, we ob-
erve the effect of total internal reflection of rays near the
ens rim. Due to this effect, no wave can propagate
hrough the lens in the rim area [Fig. 6(b)]. Moreover, the
rea near the rim where the wave would experience total
nternal reflection may be quite significant. Notice, even
hough both the KU and the RS2 models take account of
his effect by assigning zero amplitude to the wave in this
rea on the exit surface S2L, inconsistency of approximate
eld distributions (and also of a normal derivative in the
U model) in this domain may be much too significant for

ertain models to be reliable.
To compare the applicability of different models for

symmetric lenses, we computed exact solutions in those
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ig. 7. (a) Power density Pz�y� at x=xF (A curves) and Pz�x� at
=0 (B curves) computed by KU (dotted curve) and RS2 (dashed
urve) asymptotic methods in the comparison with an exact so-
ution (solid curve), and (b) set of rays in the case of CW inci-
ence on an asymmetric lens in the B orientation when D=8�,

=6�, R =10�, L =16�, and ñ=1.5 (TE polarization).
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ases where it was possible [Fig. 6(a) solid curves]. It ap-
ears that exact solutions are also quite difficult to obtain
n those cases when the effect of total internal reflection is
bserved.

The comparison of asymptotic and exact solutions for
symmetric lenses with curvature radii R1�R2 has
hown that the Rayleigh–Sommerfeld model RS2 based
n the modified Green’s function has an advantage over
he Kirchhoff formulation KU. The reason for the advan-
age of the RS2 model over the KU one (and, indeed, over
ther Rayleigh–Sommerfeld models [5–8]) is that, in this
orm, it uses an integral representation with an exact
reen’s function, which is chosen to be precisely matching

he lens geometry. In all the cases considered, the RS2
ethod proved to be capable of a rather accurate repre-

entation of waves of asymmetric lenses when compared
o the exact solutions, whereas the KU method failed sub-
tantially in these circumstances.

As a final example, Fig. 7 shows the power density Pz
nd a set of rays in the case of CW incidence on an asym-
etric lens in the B orientation (TE polarization) when
=8�, R1=6�, R2=10�, and LC=16�. The transverse cut

f Pz�x ,y� through the focal point F defined as the point of
aximum power shows a wider focal spot in the case of
W focusing as compared to the PW cases (nearly 4�
gainst 2� in the PW cases).

ig. 8. (a) Power and (b) phase patterns computed by an exact
ethod in the case of Fig. 7.
Another important feature is a significant shift of the
ocal point F closer to the lens as compared to the (ap-
roximate) paraxial geometrical focus F0 (xF=8� against
F0

�24�). This effect is a common feature of converging
iffracted waves [16]. Notice, however, that a similar shift
n the PW case shown in Fig. 6 is far less significant.

The issue is well illustrated in Fig. 8, which shows both
he 2D power and phase patterns behind the lens. The
hase pattern in Fig. 8(b) shows the phase slippage that
ccurs in the focal area in the process of wave focusing.
he actual phase slippage in this example happens at
P�14�, i.e., about halfway between the maximum power
ocal point and the geometrical focus.

. CONCLUSIONS
e proposed and analyzed a few asymptotic wavelike ap-

roximations for the accurate and efficient modeling of di-
lectric lenses used in quasi-optical systems of millimeter,
ubmillimeter, and infrared wave applications. For com-
arison, we developed an exact full-wave analytic solution
f a two-dimensional focusing lens problem and used it as
benchmark for testing and validation of the asymptotic
odels being proposed.
The main asymptotic formulations considered are the

wo-term Kirchhoff model with an appropriate approxi-
ation of the normal derivative of complex wave ampli-

ude at the lens surface (KU) and the one-term Rayleigh–
ommerfeld diffraction integral formulation modified for
onplanar (curved) exit lens surfaces (RS2). The
ayleigh–Sommerfeld approximation modified for curved
urfaces (RS2 model) is found to be more general and bet-
er suited for various kinds of dielectric lenses including
ymmetric and asymmetric, thin and thick, and rather
arge and relatively small lenses.

Both the Kirchhoff model (KU) and the Rayleigh–
ommerfeld representation modified for nonplanar sur-

aces (RS2) are remarkably accurate for large lenses
f ,D���, where no total internal reflection effects occur
i.e., typically for symmetric lenses or sufficiently thin
symmetric ones with a relatively flat exit surface).
Both the KU and RS2 approximations are also surpris-

ngly accurate for small lenses, including the microlenses,
hen both the lens diameter D and the focal length f are

omparable with the radiation wavelength ��f�D���,
hough small lenses have to be symmetric for minimizing
he possibility of total internal reflection effects. The KU
odel fails, however, for bulk asymmetric lenses with a

ather convex exit surface, where the total internal reflec-
ion occurs for the waves near the lens rim.
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