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1. INTRODUCTION

An accurate design of large-scale quasi-optical systems
with dielectric lenses requires advanced wavelike
asymptotic modeling of refractive components. An ex-
ample of such a system is QUaD, a submillimeter-wave
telescope for cosmic microwave polarization measure-
ments [1]. For this high precision instrument to be real-
ized, extremely accurate modeling of aberrations is
needed with further minimization of their effects. The
problem is particularly challenging when polarization in
the focal domain has to be computed [2]. In this case, with
no exact solution available due to the size limit, there is a
need of advanced asymptotic methods for the wavelike
modeling of lenses similar to the physical optics simula-
tions of large reflectors [3].

Other applications for the wavelike asymptotic model-
ing of lenses may include optics for infrared and terahertz
imaging (e.g., in security checks), automotive radars for
collision-avoidance systems (where, specifically, cylindri-
cal lenses are being used [4]), special microlenses for op-
tical recording devices [5-8], etc.

When developing asymptotic methods, comparisons
with exact solutions are of importance. In the meantime,
an exact solution for electromagnetic scattering by a di-
electric body is a complicated problem when the body is of
a large electrical size. There are various approaches to the
problem ranging from the finite difference, finite ele-
ments, and similar methods [9] to sophisticated formula-
tions based on the integral equations [10,11] combined
with regularization techniques [12-14]. Exact methods
are usually limited to systems of small size, often less
than ten wavelengths in diameter even in those cases
when advanced solvers are available (e.g., ANSOFT HFSS
software). Besides, there is only a limited number of exact
solutions for dielectric lenses described in the literature.

One example of a full-wave solution is the modeling of a
microcylindrical axilens [6] by using the integral equa-
tions [11] with no regularization. A rigorous regulariza-
tion method [13,14] is proposed for the body of special ge-
ometry considered as a resonator. A promising hybrid
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technique is developed for diffractive microlenses [5],
where the finite difference method solves the problem in
the near field and the partial plane wave (PW) propaga-
tion is used to transform the solution to the far field.

However, there appears to be no exact solutions pub-
lished for conventional lens geometries, e.g., for a com-
mon biconvex lens of a standard shape. Similarly, there
are no wavelike asymptotic methods developed for lenses
that outperform simulations based on the ray tracing ap-
proach [2]. Conventional wave theory of lenses [2] is, in
fact, the paraxial Fourier-optics, where nonparaxial cases
are classified as a standing problem. The same paraxial
limitations and related approximations (scalar waves,
etc.) lay in the basis of quasioptical simulation models [1]
that, therefore, do not account for polarization effects and
nonparaxial issues in the interaction of the vector electro-
magnetic waves with the dielectric lens body.

In the meantime, lenses of intermediate (quasi-optical)
size (tens to a few hundreds of radiation wavelength) do,
usually, require both the large-angle incidence and the
vector character of the electromagnetic field to be ac-
counted for while being too large for exact simulations. It
is this kind of lens enhanced asymptotic modeling that is
required for emerging practical applications.

The aim of this paper is to present enhanced
asymptotic simulation methods for dielectric lenses of the
quasioptical range and to provide validation for these
methods by comparing them with full-wave analytic solu-
tions obtained for two-dimensional (2D) focusing lenses of
a conventional biconvex profile.

In Section 2, we obtain a full-wave analytic solution to
the problem of an electromagnetic wave being focused by
a 2D dielectric lens with a typical cross section profile
formed by two circular arcs as shown in Fig. 1. In this so-
lution, we consider the cases of PW and cylindrical wave
(CW) incidence on the lens surface and compute the wave
fields behind the lens for two orthogonal polarizations, TE
and TM, respectively. Then, in Section 3, we describe
asymptotic methods appropriate for quasi-optical lenses
that utilize the physical optics approach. Finally, we com-
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Fig. 1. Geometry of a 2D convex dielectric lens (cross section
profile). The excitation wave (PW or CW) of either TM (E| z) or
TE (H| 2) polarizations is incident from the left.

pare simulation results produced by asymptotic methods
with exact solutions at various values of lens parameters.

2. FULL-WAVE SIMULATION OF A
TWO-DIMENSIONAL FOCUSING
DIELECTRIC LENS

A. Simulation Method

Full-wave analytic solutions for dielectric lenses in the 2D
problems shown in Fig. 1 can be obtained by direct meth-
ods when using CW expansions of incident and scattered
fields with respect to O; and O4 frames associated with
circular arcs Sz, and Sy;, that form the lens cross section
profile.

The lens geometry is defined by the lens diameter D
and the arc curvature radii Ry so that the lens angular
half-size 6,5 as viewed from the origin O;y is 6,
=arcsin(D/2R ), the distance between the origins is L
=R cos(6;) +Rs cos(6y), and the lens thickness along the
x-axis is t=R;+Ry—L.

In this paper, we consider the waves of TE (H|z) and
TM (Ellz) polarization with two kinds of wave sources,
namely, the uniform PW and CW incident on the lens
from the left (Fig. 1). The incident wave in the PW case
propagates along the positive direction of the x-axis. In
the CW case, the incident wave is radiated from a line
source located at a certain distance in front of the lens. In
the xy plane, it is an omnidirectional source placed at the
xc,yc point on the left side of the lens with x<-R; and
yc=0 being the source coordinates in the O; frame (the
left and right apex points of the lens have coordinates
xr=—R; and xg=—R+¢, respectively).

Using the O; frame, we expand the relevant
z-component of the field (U=E, in the TM cases and U
=H, in the TE cases) in cylindrical functions in the do-
mains D,,, Dy;, and Dy, as follows:

U= [A,J,(kr)) +B,Y,(kr)le"",

(r1,¢1) € Dy, (1)
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U= Cd,(kry)e™d,

(r1,¢1) € Dy;, (2)

U=, [F,H,(kry) +b,(kry)]e" ",

(rl’ ¢1) € Dle7 (3)

where A, B,,, C,, and F,, are the unknown expansion co-
efficients, J,(-), Y,(-) and H,L(~)=H512)(-) are the Bessel,
Neumann, and Hankel functions of order n (the time de-
pendence of the wave field is assumed to be exp(iwt)), k
=2x/\ and kdzk\s‘; are the wavenumbers in free space
and in the lens dielectric material of (complex) relative
permittivity e, respectively, N is the free-space wave-
length, r; and ¢; are the radial and angular coordinates
in the O; frame, R; and R, are the curvature radii of the
entrance (S;7) and exit (Sy;) lens surfaces, and the ex-
pansion domains are defined as Dq, 9,=1{r12:71,2>R1 2},
Dy 9;=D13-Dy, D1 5={r19:712<Ri3}, and D ,=D;ND5.

The expansions satisfy the Helmholtz equations in the
relevant domains and boundary conditions of (a) no sin-
gularity at the origin (there is neither source nor sink at
point O7) and (b) no incoming waves from infinity except
the given source wave (the radiation boundary condition).
The terms b,, represent the source wave and take on the
form b&,(kry)=i"J,(kr;) in the PW case and b,(kr;)
=(=1)"J,(kr{)H,(kL¢) in the CW case, where Lo=|CO| is
the distance from the source point C to the frame origin
O; (the source distance from the lens front surface is
LCLzLC_Rl)-

The Neumann addition theorem for cylindrical func-
tions is used for transforming the expansions from one
frame (O;) to another (O5) when imposing boundary con-
ditions for tangential field components at the lens sur-
faces Sz, and Sy;. Then, by using the orthogonality of an-
gular harmonics, we arrive at the set of linear algebraic
equations with respect to expansion coefficients as fol-
lows:

2 [Aw mon(kal) + B,Y y_n(kal) ¥ (kaRo)

n,m

- CnJm—n(kL)Jm(kRZ)}Smp(02) = 05 (4)

2 AT pnllgL) + B, Y, (kaL) 1, (R gRo)

n,m

= Co (L), (RR9)}S 1p(62) = 0, (5)

> {[Ad (kR 1) + B, Y y(kgR1)IPyy(7) + Coi (kR1)S (1)}
- FpHp(le) = bp(le)’ (6)
2 {n[AnJr,L(del) + BnYr,L(del)]Pnp(T) + CnJr,;(le)Snp(T)}

~ FHy(kRy) = by(kRy),  (7)
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where p=0,+1,..., Sy, (0)=sin[(m-p)dl/[n(m-p)] if m
#D, Smp(0)=0/m if m=p, Ppp(7)=6,,=Snp(7), 7=7-61, 7
=\e in TM and n=1/\e in TE polarizations, and prime
(") denotes the derivative of a function over argument. By
introducing reasonably large truncation numbers N and
M for summations in n and m, respectively, we could find
sufficiently convergent numerical solutions to Eqgs. (4)—(7)
that, by substitution into Eqgs. (2) and (3), allowed us to
compute fields in the focal domain behind the lens.
Because of rapid growth or decay of cylindrical func-
tions with angular harmonic index n, direct solutions of
this kind are limited to lenses of relatively small size
(truncation numbers have to be limited from above). In
practice, we could simulate lenses with the curvature ra-
dii Rq, Ry, and lens diameter D up to about 12\ when hav-
ing the lens refractive index 7=1.5 (notice, the lenses
used in, e.g., car radar applications [4] are of a similar
size D=10\). A further increase of the lens size can be
achieved by implementing regularization methods.

B. Simulation Results
The results showing the wave focusing effects in TM and
TE polarizations for both the PW and the CW incident
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Fig. 2. Exact (solid curves) and asymptotic solutions (dashed
curves for RS2 and dotted curves for KU models, see below) in
the case of TM PW incidence on a symmetric 2D dielectric lens;
(a) x and (b) y cuts of P, power distribution behind the lens. Here,
n=1.5, Ri=Ry=D, 6,=6,=30°; A and B groups of curves corre-
spond to D=12\ (xp=-8.7\) and D=6\ (xr=-4.3\), respectively.
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fields are plotted in Figs. 2 and 3. We choose the lens re-
fractive index 7=1.5 so that, in the case of PW incidence,
the geometrical focal point F'; of a thin symmetric lens co-
incides with the frame origin O (the case of PW incidence
was examined in detail in our earlier work [15]).

Power density P,=|U,|? associated with E, and H, field
components of TM and TE waves, respectively, is shown
in the focal domain of lens in transverse (y) and longitu-
dinal (x) cuts passing through the focal point F;. A com-
mon feature of these and other simulations is that the TE
polarized waves produce a greater power density at the
focal point as compared to the TM waves of the same in-
cident power. This is due to the difference in TE and TM
wave transmissions at oblique incidence at the lens sur-
faces as expressed by the Fresnel coefficients. The effect is
more complicated for small lenses and CWs [Fig. 3(a)],
though, typically, it remains of a similar kind.

The second common feature is that the width of the fo-
cal spot defined as the distance between the first minima
of the field is twice the wavelength in all the cases of PW
focusing [Fig. 2(b)]. In the meantime, the width of diffrac-
tion fringes is one wavelength for lenses of a different size
with nearly identical patterns in both polarizations. In

8 6 -4 -2 0 2 4 6 8 10 12 14 16
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(b)
Fig. 3. (a) Exact solutions in TE (solid curves) and TM (dotted
curves) cases of CW incidence on a lens with R;=10\ when (A)
D=R,=8\ (xzg=-8.0N) and (B) D=Ry,=10\ (xzp=-7.2\) at L.
=30\ (L, =20\, n=1.5) and (b) comparison of exact (solid curve)
and asymptotic solutions (dashed curves for RS2 and dotted
curves for KU models, see below) in case A of TE CW incidence.
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the case of CW focusing, the focal spot is, typically, wider
and the focusing effect is more complicated (see below).

In general, there are some intrinsic resonant effects as-
sociated with lenses, which are especially pronounced in
the narrowband applications. With increasing the size of
the lens and the bandwidth of radiation, the resonant ef-
fects smear out and become insignificant (especially in the
presence of losses).

3. ASYMPTOTIC WAVELIKE MODELING OF
DIELECTRIC LENSES

A. Two-Term Kirchhoff Approximation

Asymptotic approximations proposed in this paper are
based on various forms of diffraction integrals that repre-
sent wave propagation from the lens exit surface to the
observation points behind the lens. The integral trans-
forms of this or a similar kind are needed in any near-
field to far-field propagation in free space.

Inside the lens, propagation of the incident wave from
the entrance surface S;; to the exit surface Sy; can be
evaluated by using the ray tracing through the lens body.
In this paper, the ray tracing is implemented on account
of (a) the transmission Fresnel coefficients at S;;, and Sy,
surfaces, (b) phase increments along the rays inside the
lens, and (c) wave amplitude increments (decrements)
due to the ray convergence (divergence) because of refrac-
tion. This evaluation is quite accurate for typical lenses
because of a relatively short ray propagation path inside
the lens as compared to the lens transverse dimensions.

The first method we consider is based on the two-term
Kirchhoff diffraction integral. The integral is evaluated
over the extended exit surface S, that consists of the lens
exit surface Sy;, and the free-space surface Sy extended
from the lens rim to infinity in the transverse direction.
The first term depends on the wave amplitude U that is
directly evaluated at the exit surface S, as explained
above. The second term depends on the normal derivative
of U at Sy that is approximated by using the U values at
Sy and the set of ray directions that define the local incli-
nation of the wavefront (we denote this approach as the
KU model).

B. One-Term Rayleigh-Sommerfeld Formulation
Modified for Curved Surfaces
Another asymptotic model is obtained by starting with a
one-term Rayleigh—Sommerfeld diffraction integral and
modifying it for nonplanar (curved) exit surfaces. Since
the idea of the original Rayleigh—Sommerfeld formulation
is the choice of the Green’s function that vanishes at the
plane integration surface (thus removing the second
poorly defined term in the Kirchhoff formulation), we fur-
ther modify the Green’s function to make it identically
zero at the curved lens exit surface Sg;, while using the
original form at the planar free-space surface Sof outside
the lens. We denote this formulation as an RS2 model.
Notice, the Green’s function defined above is an exact
one for the domain of a given geometry. It means that, if
the field on the exit surface Sy is known precisely, the for-
mulation is exact. Therefore, the RS2 model is superior to
other forms of the Rayleigh—Sommerfeld approach pro-
posed for curved surfaces as, e.g., those where no modifi-

V. B. Yurchenko and A. Altintas

cation of the Green’s function is made [7] or an alternative
four-term Green’s function is introduced [8] that, how-
ever, generates entirely wrong results when tested in our
simulations.

C. Comparison of Exact and Asymptotic Solutions

An important goal of this paper is the validation of
asymptotic models by comparing their results one with
another and with available exact solutions when consid-
ering various kinds of lenses. Therefore, we examine the
performance of asymptotic models and relevant software
codes in a broad domain of lens parameters.

The comparison of KU and RS2 simulations with full-
wave solutions is presented in Figs. 2 and 3(b). In these
cases, the lenses are characterized by the focal length f
~D>\. In these and other simulations [15], KU and RS2
models appeared to be, in general, sufficiently accurate.

Inaccuracy in asymptotic models may arise due to (a)
neglect of the edge diffraction and the internal reflection
in the lens, (b) inaccuracy of the ray model for the wave
propagation inside the lens, (¢) approximations in the am-
plitude and phase evaluation of the wave transmitted
through the lens exit surface, and (d) additional approxi-
mations in the KU model needed for the evaluation of a
normal derivative of the wave field at the lens exit surface
SZL'

A typical feature observed in asymptotic solutions is
that the values of power density P,(x,y) computed with
KU and RS2 models provide the lower and the upper
bounds for the exact solution, respectively. Therefore, by
combining both the KU and RS2 results, we can, gener-
ally, estimate and improve the accuracy of approximate
asymptotic simulations.

Capabilities of asymptotic models in computing 2D
field distributions are shown in Fig. 4. Figure 4(a) shows
an exact power pattern (in relative units) in the focal do-
main of the lens presented in case B of Fig. 3 in TE polar-
ization (CW excitation by the line source at Ly=30\ when
D=R{=Ry5=10)\). One can see a pair of specific fringes
originating at the lens rim due to the edge diffraction (the
waves aside the lens are partially suppressed by this ef-
fect near the lens rim). The lens is suspended freely in
space as shown in Fig. 1.

Figure 4(b) shows the pattern computed for the same
lens with the RS2 asymptotic model.There is a clear simi-
larity between the patterns in Figs. 4(a) and 4(b) in all the
main features, such as the focal spot, basic diffraction
fringes in the focal domain, two rather bright caustics,
and even a specific interference structure along the caus-
tics consistent with fringes behind the lens. A noticeable
difference is only the absence of significant edge diffrac-
tion and no suppression of waves aside the lens, respec-
tively (there is no special account for edge diffraction in
this model yet).

In practice, the lens is usually mounted into a stop that
is not transparent for the incident waves. The stop is not
accounted for by an exact solution described above. The
asymptotic models can, however, easily account for the
stop. Figure 4(c) shows the pattern computed with the
RS2 model for the same lens as described above, which is
mounted into the stop. The stop is simulated as an ab-
sorbing screen orthogonal to the x-axis with an aperture
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Fig. 4. Power patterns P,(x,y) behind the lens in case B of Fig.
3 in TE CW incidence. (a) Exact solution for a lens suspended in
free space, (b) RS2 simulation for the same case, and (c) RS2
simulation for the same lens mounted into a stop.

of size D where the lens is fixed by its rim. The pattern
shows significant suppression of the side waves behind
the screen except those diffracted by the lens, though all
the wave features in the focal domain are the same as in
Figs. 4(a) and 4(b).
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D. Asymptotic Solutions for Large- and Small-Scale
Lenses

Asymptotic approximations should be particularly useful
for large-scale lenses, where exact solutions are not acces-
sible while asymptotic methods remain efficient. Gener-
ally, short-wave asymptotic methods are more accurate
for large scattering objects as compared to small ones.
The rule is valid for dielectric lenses as well, though in
this case, there are two kinds of parameters that control
the accuracy, namely, (a) the lens surface curvature radii
R; and (b) their ratio to the lens diameter (equivalently,
the lens aperture angles 6;) rather than the lens diameter
D alone.

The discrepancy between KU and RS2 models de-
creases with increasing the size of the lens of the same
profile. For example, the discrepancy in P, at the focal
point of a rather bulky symmetric lens in case A of Fig.
2(a) decreases from nearly 25% when D=R;=R2=12\ to
10% and 5% for a lens of the same shape at D=R;=R2
=100\ and D=R;=R2=300\, respectively. Yet, the dis-
crepancy for bulky lenses such as this (¢/D=0.27) is rela-
tively significant, being the consequence of general diffi-
culty in solving large-angle (6; = 6,=30°) nonparaxial lens
problems [2].
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Fig. 5. Power density P, (TM PW case) in the focal domain of
asymmetric lenses of diameter (a) D=30N and (b) D=90\ (7
=1.5) when either R;=100\, R,=60\ (A orientation of lens), or
R;=60\, Ry=100\ (B orientation) computed with KU (dotted
curves) and RS2 (solid curves) asymptotic methods.
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Another example is presented in Fig. 5, which com-
pares the effects in relatively thin and thick asymmetric
lenses of a sufficiently large scale. It shows the power
density P, (TM PW case) in the focal domain of asymmet-
ric lenses of diameter (a) D=30\ and (b) D=90\ when ei-
ther R{=100\, R3=60\ (A orientation of lens), or R;
=60\, Ry=100\ (B orientation) computed with KU and
RS2 methods (these are relatively large lenses with focal
length f>D >\ that cannot be easily simulated by exact
methods).

Figure 5(a) illustrates a good agreement (better than
2%) of asymptotic methods for a lens of a limited diameter
(D=30\) in the case of relatively large radii R,y when
0;=8.6°, 6,=14.5° (in B orientation) and the lens thick-
ness is t=3\. In the meantime, Fig. 5(b) shows quite a sig-
nificant discrepancy between asymptotic methods (up to
10%) when the lens diameter is three times greater (D
=90\) at the same radii R,y as before. In this case, 6;
=48.6°, 6,=26.7°, and the lens thickness ¢=31\ (the rela-
tive lens thickness is t/D=0.10 and ¢/D=0.34 in Figs. 5(a)
and 5(b), respectively). Figure 5(b) also shows a certain
advantage of the B orientation of large asymmetric lenses
for obtaining a sharper focusing of incident PWs.

(b)

Fig. 6. (a) Power density P, (TE PW case) in the focal domain of
an essentially asymmetric lens of small size in A and B orienta-
tions (7=1.5, D=6\, R;=10\, Ry=4\ in case A when 6,
=17.5°,60,=48.6°) computed with KU (dotted curves) and RS2
(dashed curves) asymptotic methods as compared to exact solu-
tions (solid curves), and (b) total internal reflection near the lens
rim in case A as illustrated by ray tracing (a few rays near the
rim in this plot do not propagate through the lens).
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E. Optimal Asymptotic Approximations for Asymmetric
Lenses

The results above are obtained for symmetric or slightly
asymmetric lenses that have comparable surface curva-
ture radii R;~R,. For asymmetric lenses with R;>R,
and a relatively small focal length (f~D~10\) we ob-
serve, however, certain problems. For these lenses, the re-
sults of two asymptotic methods may differ significantly
[Fig. 6(a) dashed and dotted curves in case A]. The effect
is less pronounced for greater lenses of a similar shape,
though the tendency remains the same.

A detailed analysis revealed that, in these cases, we ob-
serve the effect of total internal reflection of rays near the
lens rim. Due to this effect, no wave can propagate
through the lens in the rim area [Fig. 6(b)]. Moreover, the
area near the rim where the wave would experience total
internal reflection may be quite significant. Notice, even
though both the KU and the RS2 models take account of
this effect by assigning zero amplitude to the wave in this
area on the exit surface Sy;, inconsistency of approximate
field distributions (and also of a normal derivative in the
KU model) in this domain may be much too significant for
certain models to be reliable.

To compare the applicability of different models for
asymmetric lenses, we computed exact solutions in those

-4 2 0 2 4 6 8 10 12 14
X (y=0), y(x=xg)

(b)
Fig. 7. (a) Power density P,(y) at x=xp (A curves) and P,(x) at
y=0 (B curves) computed by KU (dotted curve) and RS2 (dashed
curve) asymptotic methods in the comparison with an exact so-
lution (solid curve), and (b) set of rays in the case of CW inci-
dence on an asymmetric lens in the B orientation when D=8\,
R{=6\, Ry=10\, L;=16\, and n=1.5 (TE polarization).
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cases where it was possible [Fig. 6(a) solid curves]. It ap-
pears that exact solutions are also quite difficult to obtain
in those cases when the effect of total internal reflection is
observed.

The comparison of asymptotic and exact solutions for
asymmetric lenses with curvature radii R{>Ry has
shown that the Rayleigh—-Sommerfeld model RS2 based
on the modified Green’s function has an advantage over
the Kirchhoff formulation KU. The reason for the advan-
tage of the RS2 model over the KU one (and, indeed, over
other Rayleigh—Sommerfeld models [5-8]) is that, in this
form, it uses an integral representation with an exact
Green’s function, which is chosen to be precisely matching
the lens geometry. In all the cases considered, the RS2
method proved to be capable of a rather accurate repre-
sentation of waves of asymmetric lenses when compared
to the exact solutions, whereas the KU method failed sub-
stantially in these circumstances.

As a final example, Fig. 7 shows the power density P,
and a set of rays in the case of CW incidence on an asym-
metric lens in the B orientation (TE polarization) when
D=8\, R{=6\, Ry=10\, and L=16\. The transverse cut
of P,(x,y) through the focal point F' defined as the point of
maximum power shows a wider focal spot in the case of
CW focusing as compared to the PW cases (nearly 4\
against 2\ in the PW cases).

180
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//// /’/ _,,-//ff y /.! /,/ // /] /' /! / ".’ /( ,”‘ /,1 11 i
-4

(b)

Fig. 8. (a) Power and (b) phase patterns computed by an exact
method in the case of Fig. 7.
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Another important feature is a significant shift of the
focal point F' closer to the lens as compared to the (ap-
proximate) paraxial geometrical focus Fy (xz=8\ against
xp,~24\). This effect is a common feature of converging
diffracted waves [16]. Notice, however, that a similar shift
in the PW case shown in Fig. 6 is far less significant.

The issue is well illustrated in Fig. 8, which shows both
the 2D power and phase patterns behind the lens. The
phase pattern in Fig. 8(b) shows the phase slippage that
occurs in the focal area in the process of wave focusing.
The actual phase slippage in this example happens at
xp=14\, i.e., about halfway between the maximum power
focal point and the geometrical focus.

4. CONCLUSIONS

We proposed and analyzed a few asymptotic wavelike ap-
proximations for the accurate and efficient modeling of di-
electric lenses used in quasi-optical systems of millimeter,
submillimeter, and infrared wave applications. For com-
parison, we developed an exact full-wave analytic solution
of a two-dimensional focusing lens problem and used it as
a benchmark for testing and validation of the asymptotic
models being proposed.

The main asymptotic formulations considered are the
two-term Kirchhoff model with an appropriate approxi-
mation of the normal derivative of complex wave ampli-
tude at the lens surface (KU) and the one-term Rayleigh—
Sommerfeld diffraction integral formulation modified for
nonplanar (curved) exit lens surfaces (RS2). The
Rayleigh—Sommerfeld approximation modified for curved
surfaces (RS2 model) is found to be more general and bet-
ter suited for various kinds of dielectric lenses including
symmetric and asymmetric, thin and thick, and rather
large and relatively small lenses.

Both the Kirchhoff model (KU) and the Rayleigh—
Sommerfeld representation modified for nonplanar sur-
faces (RS2) are remarkably accurate for large lenses
(f,D>X\), where no total internal reflection effects occur
(i.e., typically for symmetric lenses or sufficiently thin
asymmetric ones with a relatively flat exit surface).

Both the KU and RS2 approximations are also surpris-
ingly accurate for small lenses, including the microlenses,
when both the lens diameter D and the focal length f are
comparable with the radiation wavelength \(f~D~N\),
though small lenses have to be symmetric for minimizing
the possibility of total internal reflection effects. The KU
model fails, however, for bulk asymmetric lenses with a
rather convex exit surface, where the total internal reflec-
tion occurs for the waves near the lens rim.

ACKNOWLEDGMENT

The authors are grateful to J. A. Murphy for useful dis-
cussions.

REFERENCES

1. C. O’Sullivan, G. Cahill, J. A. Murphy, W. K. Gear, J.
Harris, P. A. R. Ade, S. E. Church, K. L. Thompson, C.



312

J. Opt. Soc. Am. A/Vol. 26, No. 2/February 2009

Pryke, J. Bock, M. Bowden, M. L. Brown, J. E. Carlstrom,
P. G. Castro, T. Culverhouse, R. B. Friedman, K. M. Ganga,
V. Haynes, J. R. Hinderks, J. Kovak, A. E. Lange, E. M.
Leitch, O. E. Mallie, S. J. Melhuish, A. Orlando, L.
Piccirillo, G. Pisano, N. Rajguru, B. A. Rusholme, R.
Schwarz, A. N. Taylor, E. Y. S. Wu, and M. Zemcov, “The
quasi-optical design of the QUaD telescope,” Infrared Phys.
Technol. 51, 277-286 (2008).

A. Walther, The Ray and Wave Theory of Lenses
(Cambridge U. Press, 2006).

C. A. Balanis, Advanced Engineering Electromagnetics
(Wiley, 1989).

P. Wenig, M. Schneider, and R. Weigel, “Performance
analysis of a cylindric dielectric lens antenna for 77 GHz
Automotive Radar,” in Proceedings of International Radar
Symposium (IRS 2008), 21-23 May 2008, Wroclaw, Poland,
A. Kawalec and P. Kaniewski, eds. (Institute of
Radioelectronics, 2008), paper B1-1.

D. Feng, Y. Yan, G. Jin, and S. Fan, “Axial focusing
characteristics of diffractive microlenses based on a
rigorous electromagnetic theory,” J. Opt. A, Pure Appl. Opt.
6, 1067-1071 (2004).

J.-S. Ye, B.-Z. Dong, B.-Y. Gu, G.-Z. Yang, and S.-T. Liu,
“Analysis of a closed-boundary axilens with long focal
depth and high transverse resolution based on rigorous
electromagnetic theory,” J. Opt. Soc. Am. A 19, 2030-2035
(2002).

J.-S. Ye, B.-Y. Gu, B.-Z. Dong, and S.-T. Liu, “Application of
improved first Rayleigh—Sommerfeld method to analyze the
performance of cylindrical microlenses with different
f-numbers,” J. Opt. Soc. Am. A 22, 862-869 (2005).

8.

10.

11.

12.

13.

14.

15.

16.

V. B. Yurchenko and A. Altintas

K. Duan and B. Lu, “Improved diffraction integral for
studying the diffracted field of a spherical microlens,” J.
Opt. Soc. Am. A 22, 2677-2681 (2005).
M. N. O. Sadiku, Numerical
Electromagnetics (CRC, 1992).

C. Muller, Foundations of the Mathematical Theory of
Electromagnetic Waves (Springer-Verlag, 1969).

D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary
integral methods applied to the analysis of diffractive
optical elements,” J. Opt. Soc. Am. A 14, 34-43 (1997).

G. Fikioris, “A note on the method of analytical
regularization,” IEEE Antennas Propag. Mag. 43, 34-40
(2001).

S. V. Boriskina, P. Sewell, T. M. Benson, and A. I. Nosich,
“Accurate  simulation of two-dimensional optical
microcavities with uniquely solvable boundary integral
equations and trigonometric Galerkin discretization,” J.
Opt. Soc. Am. A 21, 393-402 (2004).

A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson,
P. Sewell, and A. Altintas, “Lens or resonator?
Electromagnetic behavior of an extended hemielliptic lens
for a submillimeter-wave receiver,” Microwave Opt.
Technol. Lett. 43, 515-518 (2004).

V. B. Yurchenko and A. Altintas, “Asymptotic wave-like
modeling of dielectric lenses,” in Proceedings of the 6th
International Conference on Antenna Theory and
Techniques (ICATT 2007), 17-21 September 2007,
Sevastopol, Ukraine, Y. S. Shifrin and N. N. Kolchigin, eds.
(IEEE, 2007), pp. 93-98.

Y. Li and E. Wolf, “Focal shifts in diffracted converging
spherical waves,” Opt. Commun. 39, 211-215 (1981).

Techniques in



