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Getting it right: designing microarray (and not
‘microawry’) comparative genomic hybridization
studies for cancer research
David SP Tan, Maryou BK Lambros, Rachael Natrajan and Jorge S Reis-Filho

The development of high-resolution microarray-based comparative genomic hybridization (aCGH), using cDNA, bacterial
artificial chromosome (BAC) and oligonucleotide probes, is providing tremendous opportunities for translational research
by facilitating detailed analysis of entire cancer genomes in a single experiment. However, this technology will only fulfil
its promise if studies incorporating aCGH are designed with a full understanding of its current limitations and the
strategies available to circumvent them. While there have been several excellent reviews on the current status of
this technology, there is currently very little guidance available regarding the appropriate design of experiments
incorporating aCGH (including the strengths and weaknesses of each platform), and how best to combine the results
obtained from aCGH with other ‘omic’ technologies, including gene expression. In this review, we present the key design
issues that need to be considered in order to optimize aCGH studies, including sample selection, the definition of
appropriate experimental objectives, arguments for and against the various microarray platforms that are currently
available, and methods for data validation and integration. It is envisaged that future well-designed aCGH studies
will enhance our understanding of the genetic basis of cancer, and lead to the identification of novel predictive
and prognostic cancer biomarkers, as well as molecular therapeutic targets in cancer.
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Microarray-based comparative genomic hybridization
(aCGH) was developed in the late 1990s and brought with it
the advantages of rapid, high-resolution screening of entire
genomes with minimal cytogenetic expertise required for
analysis.1 Since then, progress in microarray technologies
have led to the development of various genomic analysis
array platforms with even higher resolution, including tiling
path bacterial artificial chromosome (BAC) arrays of up to
B50–100 kb resolution2 and oligonucleotide arrays with a
theoretical resolution of up to B2 kb.3 By facilitating the
detailed analysis of global genomic copy number changes in
tumours, new vistas of enquiry can now be explored. These
include the possible derivation of new molecular classifica-
tions of tumours based on common patterns of genetic
aberration,4,5 remodelling of carcinogenesis and tumour
progression by comparing genetic profiles of normal, pre-
invasive, invasive primary and metastatic lesions,6–8 and,

consequently, the identification of novel molecular thera-
peutic targets.9

The principles of aCGH are similar to those of chromo-
somal CGH, a technique that has been extensively used for
the characterization of the genomes of solid tumours.1,7,10

Briefly, the procedure was first developed in the form of an
experiment where labelled test and reference DNA is hy-
bridized to probes on a microarray, which are then scanned
to produce an image of differential signal intensities (ie dual
channel/colour microarrays). Based on the normalized
Log2 ratios for each specific clone, a genome-wide (semi)-
quantitative analysis of copy number changes in a given locus
is defined.10 More recently, single colour (single channel)
microarray CGH analysis tools have been developed (see
below). Hence, aCGH provides a genome-wide assessment of
numerical genomic aberrations in tumours and, depending
on the platform, of loss of heterozygosity (LOH) as well (see
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below). This technique is an excellent screening tool for the
identification of deletions, gains and amplification, but, via
conventional protocols, is unable to detect polyploidy and
balanced chromosomal translocations.7,10

Microarray techniques are subject to considerable data
variability, due in part to variations in methods of DNA
extraction, probe labelling and hybridization, the type of
microarray platform used, the number and histological type
of samples analysed, the methods used for microarray and
statistical analysis and results validation.11 Hence, numerous
methodological issues need to be addressed before its impact
on translational research can be fully realized. Although there
have been several excellent reviews10,12,13 on the current
status of this technology, there is currently very little gui-
dance available regarding the appropriate design of experi-
ments incorporating aCGH, and how best to integrate the
results obtained from aCGH with other ‘omic’ technologies
including gene-expression arrays. The ‘omic’ field is plagued
with acronyms and jargons, some of which are summarized
in Table 1. In this review, we present the key design issues that
need to be considered in order to optimize aCGH studies.
These are summarized in Tables 2 and 3.

CHOOSING AND OPTIMIZING SAMPLES: WHAT SAMPLES
ARE AVAILABLE?
In designing any microarray studies, the key determinant for
all subsequent decisions is the type of samples available for
the study as this has a direct impact on the quantity, quality
and purity (ie the proportion of DNA belonging to the cells
of interest) of extractable DNA for analysis. While a high
quantity of 100% pure, good quality DNA can easily be ex-
tracted from cell lines, the impact of aCGH studies on
translational research in oncology can only be maximized if
human tissue is used.

The vast majority of translational research studies suc-
cessfully incorporating aCGH analyses have used fresh frozen
tissues to provide the highest quality nucleic acid for analysis.
However, the most widely available resource for DNA re-
mains locked in archival formalin-fixed, paraffin embedded
(FFPE) material. This is particularly the case with rare and
unusual tumour subtypes where there is a paucity of fresh
frozen tissues. In addition, FFPE material is accompanied by
a wealth of long-term clinical follow up data, which lend
further strength to these studies. Hence, there are tre-
mendous advantages to be gained if FFPE tissue can be uti-
lized in aCGH studies. However, extracted DNA from FFPE is
often heavily crosslinked, degraded and fragmented, hetero-
geneous (ie mix of cells of different genomic composition),
and rarely composed of 100% tumour cells, and therefore
suboptimal for microarray analysis.14 Consequently, aCGH
profiles of FFPE material generally have larger variances,
lower intensities and lower dynamic range compared with
hybridizations of fresh frozen tissue and cell-line-derived
DNA.

Currently, the majority of aCGH studies that have reported
success in using DNA extracted from archival FFPE cancers
to identify copy number changes and putative therapeutic
targets have been based on BAC array platforms.9,15–18

Nonetheless, there have recently been limited reports of
success in aCGH profiling of FFPE tumours using cDNA
arrays,19,20 Affymetrix21 and Illumina22 single-nucleotide
polymorphism (SNP) array platforms as well. Furthermore, a
multiplex-PCR-based quality control procedure that can
predict the viability of the test DNA for the aCGH analysis
has recently been described.14 When using FFPE or fresh

Table 1 Abbreviations and jargons used in microarray-based
comparative genomic hybridization analysis

Abbreviation
or jargon

aCGH Microarray-based comparative genomic hybridization

ASPE Allele-specific primer extension

BAC Bacterial artificial chromosome

Chip Microarray platform

CISH Chromogenic in situ hybridization

CNV Copy number variations, aka copy number

polymorphisms

DOP-PCR Degenerate oligonucleotide primer polymerase

chain reaction

ESP End sequence profiling

FFPE Formalin-fixed paraffin embedded

FISH Fluorescent in situ hybridization

HMW High molecular weight

Log R ratios Log2 of the normalized hybridization intensity of

both alleles obtained with Illumina single-nucleotide

polymorphism arrays

LOH Loss of heterozygosity

MIP arrays Molecular inversion probe arrays

MiRNA Micro RNA

OaCGH Oligonucleotide array comparative genomic

hybridization

PGL Predictive gene lists, aka ‘gene signature’ (ie lists

of genes that are predictive of a given outcome)

QPCR Real-time polymerase chain reaction

SBE Single base extension

SCOMP Single-cell comparative genomic hybridization

SISH Silver in situ hybridization

SNP Single-nucleotide polymorphism

UPD Uniparental disomy

WGA Whole genome amplification

WGG Whole genome genotyping

738 Laboratory Investigation | Volume 87 August 2007 | www.laboratoryinvestigation.org

aCGHstudies for cancer research

DSP Tan et al

MINI REVIEW



frozen tissue for aCGH analysis, the purity DNA content
from tumour tissue can be ensured by careful microdissec-
tion of tumour from surrounding stromal components.
Where tumours are heavily infiltrated with stromal and in-
flammatory cells, microdissection of tissue of which at least
70–75% is composed of tumour (or tissue of interest) has
been deemed sufficiently pure for aCGH.14,23 With the ad-
vent of laser capture microdissection, it is now possible to
study the genetic features of limited number of cells or small
lesions of interest. The limiting step for coupling laser cap-
ture microdissection or other microdissection techniques
with aCGH has been the small amount of DNA retrieved
using these methods. In the study of tumours where most
diagnoses are currently made on core needle biopsies, eg
breast cancer, the lack of material can present a significant
obstacle to detailed molecular analysis.

In an effort to increase the yield of DNA for aCGH, whole-
genome amplification (WGA) methods have been developed
in order to obtain adequate DNA yields with the highest
possible fidelity to the original profile.24–29 PCR-based am-
plification methods, including degenerate oligonucleotide
primer polymerase chain reaction (DOP-PCR) and single-cell
comparative genomic hybridization (SCOMP), have been
shown to provide a DNA yield sufficient for CGH analysis;
however some regions, particularly those with repetitive
sequences such as 1p32-pter, 16p, 19p, and 22q, are reported
to be affected by amplification bias/genomic distortion.30

Multiple displacement amplification (MDA) is a non-PCR-
based amplification method which uses bacteriophage
Phi29 or large fragment-Bst DNA polymerase for WGA,
and is supposed to have a much lower propensity for over/
under representation (three-fold vs 1000-fold) than PCR-
based WGA methods.24,31 In addition, MDA produces longer
products from each priming event than PCR-based methods,
theoretically generating equal representation of loci, thus
providing nearly perfect coverage of the human genome.24

Phi29 has only been successfully applied to fresh frozen tissue
and cell line DNA in aCGH studies;24,32,33 although there are
anecdotal reports of successful Phi29 amplification of DNA
amplified from FFPE tissue samples,34 this has proven to be
inconsistent to say the least. Bst amplification has been
shown to produce good results with FFPE DNA as well.29

However, preferential amplification of regions of known copy
number variation have also been observed in microarray
CGH experiments where Phi29 amplified test DNA has been
used.24,32 Amplification bias can be compensated for by using
similarly amplified reference DNA, with a starting template
concentration of 410 ng in the assay, which effectively re-
moves these areas of regional misrepresentation.24 These
studies illustrate the need for caution in applying these
amplification methods, and the need to be aware of these
biases to enable appropriate corrective measures to be taken
before accurate interpretation of results from studies using
amplified DNA is possible. To reliably translate the increased
resolution of microarray-based CGH into the identification
of gene-specific copy number changes, particularly where
only small quantities of DNA are available, unbiased ampli-
fication methods, which remain elusive, are required.

Recent reports estimate that 12% of the entire human
genome is prone to copy number variation (CNV) between
European, African and Asian populations.35 The spectrum of
CNVs encompass deletions, insertions, duplications and
complex multisite variants,33 ranging in size from kilobases
(kb) to megabases (Mb),36,37 and CNV maps are now pub-
licly available (http://projects.tcag.ca/variation/ and http://
www.sanger.ac.uk/PostGenomics/decipher/). Furthermore,
the fact that CNVs have been shown to influence gene ex-
pression, phenotypic variation and adaptation by disrupting
genes and altering gene dosage,38,39 thus causing disease
or increasing one’s risk of developing disease, suggests that
CNVs are likely to have a real biological impact on tumor-
igenesis. This poses a potentially significant confounding
factor when interpreting results from aCGH studies using
pooled reference DNA from several different individuals,
since gains or losses may simply represent CNVs rather than
a true cancer specific aberration. The problem may be
overcome by using individually matched DNA extracted
from normal tissue as reference DNA. However, this is not
feasible in many circumstances, particularly with archival
samples, and future studies using prospectively collected tu-
mour samples should try to include the accrual of matched
normal tissue from each patient (eg blood). If this is not

Table 2 Challenges for microarray-based comparative
genomic hybridization study design

Sample related

Sample type

Tissue procurement

Tissue heterogeneity

Intra-tumour heterogeneity

DNA yield and quality

DNA amplification methods

Links with clinical databases

Platform related

Reliability

Availability

Cost

Types of aberrations detected

Resolution

Analysis methods

Integration of results with those of other high-throughput methods

Other

Tumour-specific aberrations vs copy number polymorphisms
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Table 3 Advantages and limitations in the microarray-based comparative genomic hybridization study designa

Advantages Limitations

Specimen type

Cell lines Readily available No direct association with clinical findings

HMW DNA Prone to minor but occasionally significant in vitro artefacts

Can be used in models for biological validation

of findings

Frozen samples Results can be linked with relevant clinical data Limited availability

HMW DNA Microdissection possible but not trivial

FFPE samples Readily available Degraded DNA

Results can be linked with relevant clinical data

Tissue harvest

Nonmicrodissected

samples

High DNA yield Most samples have o70% of tumour cells

Needle microdissected 470% of tumour cells Not all samples are suitable (eg invasive lobular cancers)

samples High DNA yield

Laser microdissected 470% (usually 490%) of tumour cells Low DNA yield

samples Allows for separation of morphologically or

immunohistochemically distinct populations

DNA amplification methods required

Whole genome DNA

amplification

Allows for use of microdissected samples Most methods induce genomic distortion (ie amplification bias)

Array platforma

cDNA arrays Platforms readily available and cheap Low sensitivity and resolution

Limited types of input DNA

No allelic information

Suboptimal quantification of copy numbers

BAC arrays Robust technology Limited availability from commercial suppliers

Suitable for analysis of FFPE samples Challenging chip production

BACs can be used in in situ assays for validation Limited resolution

of aCGH findings No allelic information

Analysis methods already available Underestimates high level copy numbers

Oligonucleotide arrays High resolution Limited types of input DNA

Easy production No allelic information

Highly specific probes Questionable accuracy for detection of low-level copy number gains

and deletions

SNP arrays High resolution Limited types of input DNA

Easy production Analysis methods under development

Highly specific probes

Provides allelic information

Questionable accuracy for detection of low-level copy number gains

and deletions
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possible, an alternative would be to pool reference DNA from
a sufficiently ethnically varied group of control subjects to
minimize the prevalence of specific copy number poly-
morphisms in the reference DNA.

Finally, the issue of tumour heterogeneity also needs to
be addressed when designing an aCGH study. A genetic
profile derived from aCGH analysis of DNA extracted from
a small segment of tumour tissue is representative of the
cumulative genetic aberrations of all cells within that
tumour segment; in other words, aCGH profiles are usually
more representative of, but do not provide an exclusive
representation of, the modal population of neoplastic cells.
Clonal genetic heterogeneity exists within most tumours,40

so pooling DNA samples extracted from different regions in
a large tumour or extracting DNA from a large tumour area
is sensible. In any case, the resulting genomic/gene-expres-
sion profile of any tumour obtained from any high-
throughput analysis platform will certainly include the
profile of the modal tumour population which is likely to be
the predominant cell population throughout the tumour,
whichever the region sampled. Interestingly, aCGH analysis
performed by our lab, comparing three different core biop-
sies from the same tumour in a cohort of 46 tumours, de-
monstrated the overwhelming similarity between different
samples from the same breast tumour.41 In a recent un-
published analysis, we observed KIT gene amplification by
CISH analysis in B10% of neoplastic cells of a glioblastoma,
and subsequently found KIT gene amplification by analysing
the same sample using aCGH (Reis-Filho JS and Lambros MB,
unpublished results). This is not surprising given that neoplastic
cells with that amplification harboured 420 copies of the gene.
Hence, aCGH preferentially identifies low-level genomic gains
and losses seen in the modal population; however, high-level
amplification seen in as little as 10% of neoplastic cells can
sometimes also be identified using this technique.

WHAT IS THE QUESTION?
Traditionally, molecular genetic research has been hypothesis
driven: one hypothesizes the functional role of a candidate

gene or molecule and proceeds to validate the hypothesis
using various molecular biological approaches with clearly
defined objectives.42 In the process, one might also derive a
mechanistic description of its function. Although such
approaches are useful when applied to the study of specific
molecular pathways in cancer, they become much less
applicable in the context of evolving high-throughput
technologies and our growing knowledge of the immense
heterogeneity of cancer biology. Furthermore, the emerging
picture from these high-throughput studies is that of a
systems biology disease43 characterized by multiple defects
throughout an overwhelmingly complex interaction of
multiple regulatory networks and parallel signalling path-
ways that would confound any attempt at reducing the
molecular pathogenesis of cancer to singular molecular
defects, even with a comprehensive mechanistic description
of the process. The advent of high-throughput technologies
is now placing us in a unique position where we can make
use of the increased efficiency afforded by these techniques
to devise discovery-based approaches to study different
aspects of cancer. This represents a shift from hypothesis-
driven validation studies to hypothesis generation studies.
This idea should come as no surprise to the readers
of Laboratory Investigation. In 2005, Drs Crawford and
Tykocinski42 emphasized that if we are to capitalize on the
unparalleled amount of data generated with high-through-
put studies, a paradigm shift in the way data are perceived,
hypotheses are tested, and results are shared is absolutely
required. Genome-wide profiling of cancer has the potential
to identify novel genetic aberrations and therapeutic targets,
enhance our understanding of the link between the clin-
icopathological phenotype and genetics of cancer, and
lead to the development of a functional and predictive
molecular pathological classification of cancer. In the
process, long-held misconceptions regarding the culprit
genes and proteins involved in pathogenesis and clinical
behaviour of tumours as a result of erstwhile technological
constraints may also be rectified. A well-validated, com-
prehensive molecular genetic characterization of tumours

Table 3 Continued

Advantages Limitations

MIP arrays Suitable for analysis of FFPE samples

Very accurate copy number analysis

Challenging protocol optimisation

Analysis methods under development

Limited availability

Data integration Detailed analysis of the genome, transcriptome,

proteome and metabolome

Unprecedented data complexity

Analysis tools not fully developed

FFPE: formalin-fixed, paraffin-embedded samples; HMW: high molecular weight.
a

Please see Tables 4 and 5.
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can then serve as a basis for traditional hypothesis-driven
approaches to validate the function and tumorigenic role of
putative tumour suppressor genes and oncogenes. It is with
this in mind that we turn our attention to determining the
experimental objectives, and thus asking the right questions
in aCGH studies.

A basic principle needs to be acknowledged before decid-
ing on any experimental study: you only get the right answer
if you ask the right question and make use of the right tools.
When designing microarray studies, there are three com-
monly adopted approaches, namely class comparison, class
discovery or class prediction studies.11 In class comparison
studies, two or more groups or classes of tumours, for ex-
ample, core biopsies of breast tumours before and after
neoadjuvant chemotherapy41 or invasive ductal vs invasive
lobular carcinomas,44,45 are profiled and compared for dif-
ferences. In class discovery, a group of similar tumours are
profiled and subjected to unsupervised cluster analysis in
order to derive newly ‘discovered’ subsets based on differ-
ences in the profile. This approach has been employed in
deriving molecular subtypes of breast and head and neck
cancer46,47 based on gene-expression profiling. Finally, in
class prediction studies, the aim is to derive prognostic or
predictive algorithms or patterns based on the profiles
derived from tumours. The majority of these class-directed
studies have been carried out using microarray-based gene-
expression approaches, with the derivation of several pre-
dictive gene lists (PGLs) in various tumour types.25,48

However, the reliability and reproducibility of these early
gene-expression-based studies involving limited numbers of
patient samples to derive PGLs have been called into ques-
tion,49 particularly given the fact that the actual sample sizes
required to achieve sufficient power in these class-prediction
studies is often considerable, estimated to be more than
several thousand, in order to avoid ‘over-fitting’.50 Although
aCGH profiles are a direct reflection of structural genomic
aberrations, and therefore considerably less capricious than
gene-expression profiles, there remains no formal reliable
method for optimal power calculations in the design of these
studies. However, it would be fair to say that the larger the
sample size the higher the accuracy of the class comparison
and class discovery analyses. Therefore adequate tissue
procurement is paramount in the design and execution of
aCGH studies. Although our pathology files are a unique
resource of tissue for aCGH translational research studies, the
time has come for the development of tissue banks com-
prising tumour and matched normal samples, linked to an
integrated and constantly updated clinical database and the
results of other molecular studies performed. We should not
forget that pathologists should ultimately be the curators of
such tissue banks, given that pathology expertise is of utmost
importance for the selection and processing of human tissue
samples.42 Furthermore, if one is to develop accurate PGLs,
adequate tissue procurement should be incorporated in the
protocols of clinical trials, to enable the development of

optimally designed and sufficiently powered high-through-
put prognostic and predictive studies. Based more on prag-
matism than statistical data, we have adopted a minimum
sample size of approximately 50 subjects for class comparison
and class discovery studies. Additionally, when deciding on
which ‘classes’ of tumour to use, it needs to be acknow-
ledged that, given the clinical phenotypic diversity exhibited
by different histological subtypes of cancer, it is more likely
that useful information will be gained from microrarray
studies analysing sufficient numbers of individual cancer
histological subtypes before attempting cross-subtype com-
parisons. For instance, when analysing breast cancer samples,
it is of paramount importance to remember that histological
grade, more than any other clinicpathological feature and
known tumour intrinsic characteristic, is associated with
the type, pattern and complexity of molecular genetic
changes.7,51–55

Another way of using aCGH is in the molecular genetic
characterization of tumours, leading to the identification of
putative genetically important aberrations in carcinogenesis
and tumour progression, thus providing a basis for hypoth-
esis testing to determine the clinical relevance of genes within
aberrant regions. This approach has led to the identification
of novel oncogenes, prognostic markers and putative ther-
apeutic targets in various tumours such as E2F3 in bladder
cancer,56 RAB25 in breast and ovarian cancer,57 IGF1R in
Wilm’s tumours,58 and FGFR1 in breast cancer.9 Here, the
emphasis in on discovering individual genetic aberrations
that have a significant impact on tumour biology. In addi-
tion, this data may be overlaid with data obtained from
other high-throughput microarray techniques, for example,
expression array data. Amplified and overexpressed genes are
likely to represent key ‘addictive’ oncogene candidates
involved in tumour development and progression,59,60 while
homozygously deleted and underexpressed genes may re-
present important tumour suppressor genes.61 Once overlaid,
putative candidate oncogenes and tumour suppressor genes
can be analysed using an integrative biology approach where
key molecular pathogenic pathways, and hence potential
therapeutic targets, may be identified62 (see below: Data
Integration). It should be noted that homozygous
deletions (HOD) are rarely seen in aCGH studies using DNA
extracted from tumour samples with a purity of o70%,
as the presence of contaminating normal DNA will affect the
displacement of the deleted clones, and regions of HOD may
only be seen as a region of high level loss. On the other hand,
amplifications are much easier to identify, and amplicons as
small as 50 kb can be detected using the majority of current
platforms.

Clearly the type and number of samples available will
affect the feasibility of any of the aforementioned approaches.
While thousands of samples will need to be accrued before a
class prediction study can be performed, a more limited
sample set could be used in class discovery/comparison or
molecular genetic characterization studies.
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AN ARRAY OF ARRAYS: WHAT IS THE IDEAL MOLECULAR
GENETIC PROFILING TOOL?
Overview
In microarray utopia, the ideal genetic profiling platform
would have high hybridization intensity, high resolution, low
levels of noise or experimental variation, flexibility in terms
of input material, a minimal requirement for laboratory
work, and a straightforward, user-friendly method for ana-
lysis, all being achieved with push-button simplicity—as luck
would have it, such a tool does not yet exist. Instead, a host of
different platforms, most of which are commercially avail-
able, have emerged, each with its inherent pros and cons
(Tables 4 and 5).

There are two basic types of genomic array technology:
ordered arrays or random arrays. Ordered arrays are manu-
factured by spotting (using pins) or synthesizing individual
probes in an organized pattern on a planar surface. The main
problems associated with ordered arrays are concerns with
clone management and probe identity due to PCR con-
tamination. Furthermore, spotted (eg cDNA, BAC and some
oligonucleotide) arrays are usually prone to batch-to-batch
variation of hybridization, and therefore hybridization in-
tensity and spot morphology may vary from batch to batch.
Reasons behind this include changes in humidity during the
spotting process, ozone content in the microenvironment of
the spotting machine and blockages to spotting pins resulting
in heterogenous spot morphology. To minimize this, quality
control measures need to be adopted during the manu-
facturing process so that inadequately spotted batches, and
the reasons for technical failure, can be identified before any
assays are performed. An alternative to spotting is in situ (on-
chip) light-directed chemical synthesis of the probes on the
slide surface, a process known as photolithography,63 with
the advantages of increased ease of manufacture and reduced
batch-to-batch variation. However, it is difficult to assess the
quality of the oligonucleotides manufactured on the surface.
In contrast to ordered arrays, random arrays are constructed
by first immobilizing individual probes onto beads which are
then pooled and assembled onto a patterned planar surface.
This allows an average of B30 replicates of each probe in the
array. The identity of each bead is determined following
hybridization of specific labelled complements to the probe
sequences on the bead. Currently, the majority of aCGH
platforms are ordered arrays, with random bead arrays
only commercially available from Illumina (http://www.
illumina.com/).

cDNA Arrays
Initial studies on genome-wide approaches to aCGH were
performed using cDNA micoarrays which were originally
designed for expression profiling.64 The advantage of this
technique is the widespread availability of cDNA clone-sets,
thus enabling large-scale production of microarrays, its high
spatial resolution, and the ability to directly correlate geno-
mic deletions and amplifications with changes in expression

derived from the same method. However, cDNA microarray
analysis enables only the detection of aberrations in known
genes and expressed sequence tags (ESTs), as cDNA probes are
only representative of expressed genes on a chromosome,
hence rendering regions without known transcriptionally
active genes uncovered. As only exonic regions of the genome
are covered by cDNA microarrays, changes in gene regulatory
elements such as promoter regions, transcription-factor-
binding sites, microRNAs (miRNA) and small nucleolar RNAs
(snRNA), and poorly defined ESTs are largely undetectable.
The absence of intronic sequences also reduces the stability of
the hybridization dynamics, leading to cross-hybridization and
reduced sensitivity. Finally, extensive sequence similarities may
exist between cDNA clones of paralogous genes, which further
complicate the interpretation of array CGH data. Even though
this platform has elucidated valuable information, it cannot
compete with currently available alternatives in terms of its
maximal achievable resolution.

BAC Arrays
BACs, P1-derived artificial chromosomes (PACs) and yeast
artificial chromosomes (YACs) are large insert genomic
clones which have been widely used in aCGH studies.3,10,12

BAC probes vary in length from 100 to 200 kb and the re-
solution (ie the distance between each DNA target re-
presented on the array) of each BAC array is defined by the
number of unique probes it contains. The probe content of
genome-wide BAC arrays range from 2400 to B32 000 un-
ique elements (tiling path array). Tiling path arrays (ie arrays
where each BAC overlaps with its contiguous BACs) provide
a resolution of up to B50 kb, given that a genomic change
can only be detected if it is sufficiently big to significantly
change the hybridization intensity in one of the channels
(ie change the red:green ratios). These platforms provide
sufficiently intense signals for the detection of single-copy
number changes, are able to accurately define the boundaries
of genomic aberrations, and, importantly, can be applied to
archival FFPE tissue as well.30,65

One of the main drawbacks with BAC arrays is the high
concentrations of high-quality BAC DNA needed to achieve
good array performance.3 Given the low initial yields of DNA
from isolated BAC clones, DNA amplification is required to
generate sufficient quantities of adequately pure BAC DNA
for the assay. Producing a tiling path array is thus costly and
highly labour intensive. In addition, as BAC probes are re-
presentative of the human genome, they will also contain
repetitive sequences, which can lead to nonspecific hy-
bridization. In order to prevent nonspecific hybridization to
these repetitive sequences, Cot-1 DNA is often included in
the hybridization reaction, adding to the overall cost of the
assay. Furthermore, as the human genome is still being up-
dated on a regular basis, mapping inaccuracies of BAC clones
often arise. To avoid making incorrect assumptions about the
data, all BAC clones should be fluorescent in situ hybridiza-
tion (FISH) mapped and end-sequence verified in the process
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of array construction, and any data derived from aCGH should
be validated using in situ hybridization techniques (ISH),
for example FISH,9,58,66 CISH,15,67,68 or Silver-ISH (SISH)
(www.ventanamed.com) or with real-time copy number PCR.

Oligonucleotide Arrays
Oligonucleotide array aCGH (OaCGH) platforms consist
of single-stranded 25–85 mer oligonucleotide elements.3,13

Different types of oligonucleotide arrays have different
labelling and hybridization protocols and can provide
high-resolution copy number measurements.3 There are
two main types of oligonucleotide arrays: SNP arrays and
non-SNP arrays. Non-SNP arrays are comprised of
60–75 mer oligonucleotides with site-specific sequences
across the genome. SNP arrays are comprised of oligonu-
cleotides that correspond to SNPs along the human genome
and were originally designed for use in linkage analysis
and whole genome genotyping (WGG). Hence, in addition
to allelic copy number changes, SNP arrays can also provide

information regarding LOH and copy neutral genetic
anomalies such as uniparental disomy (UPD) and mitotic
recombination (Figure 1).

SNP-OaCGH platforms
Affymetrix is a commercial SNP aCGH platform comprised
of B25 mer oligonucleotides photolithographically synthe-
sized on the arrays (http://www.affymetrix.com/). As this is a
single channel array, only test DNA needs to be labelled and
hybridized. The labelling of the test sample involves the use of
a restriction enzyme (NspI or StyI)-based complexity re-
duction procedure requiring at least 250 ng of DNA. Digested
DNA is ligated to adaptors that recognize the cohesive four
base-pair (bp) overhangs and amplified using a generic pri-
mer that recognizes the adaptor sequence. Amplified DNA is
subsequently fragmented, labelled, and hybridized to the
oligonucleotide array. The variation per element on the array
is relatively high, which gets compensated by the large
amount of elements on the array, currently 250 000 per array

Table 4 Comparison of aCGH plaforms

Platform Number of
elements (K)

Type of platform Size of probes Channels Resolution Optimal
sample type

Allelic
information

cDNA Variable

(up to B30)

Spotted cDNAs Varies from gene

to gene

Dual colour Exonic regions of known

expressed genes and

ESTs only

Cell lines

Frozen tissue

FFPE

No

BAC 2–32 Spotted BACs B100–150 kb Dual colour Variable 41 MB–B50 kb Cell lines No

Frozen tissue

FFPE

Agilent 44 Spotted 60 mers Dual colour B35 kb (actual 4200 kb) Cell lines No

244 Oligonucleotide B6.4 kb (actual B60 kb) Frozen tissue

NimbleGen 385 Photolithography 45–85 mers Dual colour B6 kb (actual B60 kb) Cell lines No

oligonucleotide Frozen tissue

Affymetrix

(SNP array)

250

500

1000

Photolithography

oligonucleotide

25 mers Single colour B12 kb (actual B120 kb)

B6 kb (actual B60 kb)

B3 kb?

Cell lines

Frozen tissue

FFPE

Yes

Illumina 300 Oligonucleotide 50 mers Single colour B5 kb (actual B50 kb) Cell lines Yes

(SNP array) 550 Beadarray B2.8 kb (actual B28 kb) Frozen tissue

650 B2.0 kb (actual B20 kb)

1000 B1 kb?

Molecular 20 Spotted 41–61 bp Four colour Exon level changes Cell lines Yes

Inversion oligonucleotide Frozen tissue

Probes (MIP) FFPE
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(Mapping 500K Array Set which comprises 2� 250K ele-
ments per array). A 1 million SNP array is anticipated later
this year. Recently, Affymetrix have introduced the SNP Array
5.0 chip which is a single microarray featuring all SNPs from
the Mapping 500K Array Set, as well as 420 000 additional
nonpolymorphic probes that can measure other genetic
differences like CNV.

Illumina is a commercially available random bead-array
whole genome genotyping (WGG) platform that also allows
combined DNA copy number and LOH analysis. There are
currently several types of high-density SNP-array platforms
manufactured by Illumina; the exon-centred Sentrix Human-
1 SNP beadchip (109K), the HumanHap300 (317 tag SNPs),
and a higher density HumanHap550 (550K tag SNPs).13 The

Illumina WGG protocol consists of four automated steps
beginning with whole genome amplification, hybridization to
an oligonucleotide array, an SNP scoring assay which involves
either an allele-specific primer extension (ASPE) one-colour
assay (Infinium I) or a single-base extension (SBE) two-
colour assay (infinium II).13 The Illumina platform works
best with relatively intact, high-quality DNA. For the In-
finium Assay, a total 750 ng of DNA with fragment sizes of
at least 2 kb is recommend, which would largely exclude the
use of DNA extracted from FFPE tissue. Illumina have also
recently released the HumanCNV370-Duo DNA Analysis
BeadChip which contains the standard SNP content of the
HumanHap300 Genotyping BeadChip with an additional
B55 000 markers designed to specifically target nearly 11 000

Table 5 Types of array platforms and their impact on the design of microarray comparative genomic hybridization analysis

BAC
arrays

Oligonucleotide arrays MIP
arraysa

Non-SNP arrays SNP arrays

Availability

Academic sources Yes Limited No No

Industry Limited Yes Yes Limited

Types of samplesb

Cell lines Yes Yes Yes Yes

Frozen Yes Yes Yes Yes

FFPE Yes Possible, but

not trivial

No Yes

Required amount of DNA input Variable High High Variable

Cost

Implementation High High High High

Chip Low High Variable High

Reagents Highc Variable Low High

Types of changes detected

Single copy number gains Yes (optimal) Yes (challenging) Yes (challenging) Yes

Amplifications Yes Yes Yes Yes

Deletions Yes Yes Yes (challenging) Yes

Copy number silent LOH No No Yes Possible

Analysis toolsd Readily available Readily available (principles similar

to those of BAC arrays)

Limitede Limited

Publicly available data for data miningd Readily available Limited Available No

a
Technology still in development.

b
Using standard protocols.

c
Cot-1 DNA and fluorophores are particularly expensive.

d
As of March 2007.

e
Under development by several groups; MIP: molecular inversion probes.
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CNV regions. A 1 million Illumina SNP array is also sched-
uled for release this year.

Non-SNP OaCGH platforms
Agilent Technologies (http://www.agilent.com/) originally
manufactured array platforms comprised of 60 mer oligo-
nucleotides for expression analysis. They now offer an oli-
gonucleotide array, also comprised of 60 oligonucleotides,
designed specifically for aCGH as well. These arrays can be
purchased with up to B236K (Agilent Human Genome CGH
Microarray Kit 244A) unique oligonucleotides per array. The
assay requires about 1 mg of DNA, which poses a problem for
samples where only small quantities of DNA are available.

This problem is overcome by incorporating a PCR amplifi-
cation procedure, but, inevitably, this adds a further source of
variation to the assay and increases its overall cost.

NimbleGen (http://www.nimbledgen.com) is another
commercially available oligonucleotide platform where
385K isothermal oligonucleotides are photolithographically
synthesized on a single glass slide.3 This is a highly flexible
platform in which each array can be designed and produced
with different probe sets, thus allowing arrays designed
for analysis at whole-genome level or focused on specific
chromosomal regions. The probes vary in length between
50–75 mer and the platform affords a theoretical resolution
of B6 kb in a human whole genome CGH array. Using the

Figure 1 Copy number silent loss of heterozygosity (LOH). Chromosome plot of a high-grade breast cancer displaying no copy number aberrations (ie Log2

ratios centred around 0) on chromosome 2 using our in-house 16K BAC array platform (a) and Hap300 Illumina SNP platform (b, Log R ratios plot). Note the

presence of a loss of the heterozygous allele in the B Allele Frequency Plot (red box). NB: In regions without LOH, B allele frequency data points can be seen

at 0 (homozygous A, ie no allele B), 50% (heterozygous) and 100% (homozygous B, ie only allele B). In regions of LOH (red box), the heterozygous features

(ie B allele frequency of 0.5) are lost. This figure exemplifies one of the typical profiles found in loci displaying copy number silent LOH, which cannot be

identified with BAC arrays or non-SNP oligonucleotide arrays. Given that there is no change in DNA content in copy number silent LOH events, Log2 ratios/

Log R ratios do not show any changes in copy number; however, these events can be identified through a thorough analysis of B allele frequency plots by

the identification of regions of loss of the ‘heterozygous features’ (ie loss of B allele frequency of 0.5).
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NimbleGen platform, Lucito et al69 have described a com-
plexity-reduction method, called ROMA (representational
oligonucleotide microarray analysis), involving restriction
enzyme digestion of both test and reference DNA followed by
PCR amplification, which increases the concentration of
DNA complementary to the probes, thus increasing the signal
intensity from specific hybridization and consequently re-
ducing the variation in signal intensity from similar copy
number changes. Using ROMA, 50 ng of test DNA is suffi-
cient for the assay, provided both test and reference DNA are
similarly digested and amplified to exclude biases induced by
PCR amplification. This approach has recently been applied
to the characterization of breast cancer molecular genetic
profiles and provided tantalizing results,70 which may pave
the way for a novel molecular genetic taxonomy for breast
cancer.

Oligonucleotide vs BAC Arrays
Compared to BAC arrays, oligonucleotide arrays are easier to
manufacture, have a greater intrinsic scalability to allow
detection of higher feature densities, and can theoretically
provide a much higher spatial resolution and locus dis-
crimination. In addition SNP-aCGH oligonucleotide plat-
forms also facilitate the detection copy-neutral allelic
imbalances, which may have aetiological significance in
carcinogenesis (eg the second event leading to BRCA1 and
BRCA2 is often copy number neutral LOH).

The main limitation with OaCGH platforms is a higher
probe-to-probe variation and sequence dependence of hy-
bridization in the arrays, due in part to greater variation in
hybridization dynamics, which may be a function of probe
length (oligonucleotide probes are B100 kb shorter then
BAC probes), leading to higher variation in signal intensity
for similar copy numbers (Figure 2). On the other hand, the
characteristics of the oligonucleotides also translate into
more background noise and lower signal intensities for each
probe, such that the dynamic range of signal intensity ratios
is narrower, thus making it more difficult to discern low-level
gains and losses. Consequently, although theoretically af-
fording a resolution as high as B2 kb, signals from several
probes (B5–10) need to be averaged before a call can be
made. However, given the scalability of OaCGH arrays, the
resolution of these platforms can easily be improved by in-
creasing the feature density (ie number of SNPs) in the array.
Hence, an array with 500K SNPs per slide, allowing an
averaging of 10 SNPs for each call, will allow a resolution of
B50 kb. With the anticipated introduction of a 1000K SNP
array later this year, the effective resolution of OaCGH arrays
may increase to as much as B25 kb. Alternatively, the data
need to be analysed using algorithms that reduce the ex-
perimental variation for regions with similar copy numbers
(ie smoothing algorithms), such as adaptive weighted
smoothing (aws),71 maximum likelihood models, hidden
Markov models,72 or row Loess methods73 and Gaussian
smoothing,74 as per BAC array data, before confidently

defining genomic changes. In simplistic terms, these
analytical methods transform aCGH data by organizing a
user-defined consecutive sequence of adjacent signals into
regions of constant copy number known as segments, which
are subsequently classified as a gain, a loss, or no change
depending on their signal intensities. As a result, the
resolution of OaCGH arrays will decrease depending on the
averaging or smoothing window.

Regardless of resolution, however, accurate gene mapping
information (NCBI genome build) is of paramount im-
portance to define regions harbouring copy number aberra-
tions, which is the responsibility of the manufacturing
companies. Hence, like with BAC arrays, results from
OaCGH must be validated as well. However, while the same
probes in BAC arrays can be used for validation using CISH
or FISH, this is not possible in the case of oligonucleotide
probes since, given their small size, the signals will similarly
be too small for detection by means of in situ techniques (eg
FISH or CISH). Finally, the incompatibility of most OaCGH
array platforms with FFPE DNA remains to be addressed.
However, there have been preliminary encouraging reports
suggesting that Agilent Technologies oligonucleotide plat-
forms may be suitable for aCGH analysis of DNA extracted
from FFPE sections (http://www.agilent.com).

Molecular Inversion Probe Arrays
Molecular inversion probes (MIPs) represent single oligo-
nucleotides with two inverted recognition sequences at the
flanks that recognize and hybridize to targeted genomic DNA
sequences ranging between 41 to 61 bp in length (http://
www.affymetrix.com/technology/mip_technology.affx). After
the probe specifically hybridizes to the target DNA, a single
base-pair gap exists in the middle of the two recognition
sequences. This gap can either be an SNP or a non-
polymorphic nucleotide. Following a series of specific
enzymatic steps, the gap is filled with an appropriate oligo-
nucleotide resulting in the formation of a circularized probe
that subsequently undergoes unimolecular rearrangement
(ie probe inversion), which enables the probe to be amplified.
Crossreacted or unreacted probes are separated from the
resulting circularized probe via an exonuclease reaction.
Each MIP oligonucleotide has a unique sequence barcode tag
which can be assayed via a tag microarray once it anneals
to its specific complementary genomic sequence and is
circularized.13

MIP technology has several theoretical advantages over
other array platforms: (1) the non-allele-specific unim-
olecular design of the assay, coupled with the constraint of
dual-recognition sequences, enables multiplexing of 410 000
individual probes without background from crossreactions
between probes, thus conferring significant advantages with
regard to probe specificity and performance, and thus the
robustness of genotype and copy number calling; (2) no PCR
amplification is required at the point of mutation detection,
thus reducing the risk of amplification bias and overall cost
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of the assay; (3) unlike aCGH platforms where probes are
designed specifically to perform optimally under one set of
hybridization conditions, there is greater flexibility in terms

of designing MIP probes as signals are assayed using a tag
array; (4) hence, one can use nearly any unique sequence and
choose specific exons or other interesting sequences when

Figure 2 Comparison of the dynamic range of BAC and SNP arrays. Genome plot illustrating the molecular genetic profile obtained with DNA samples

extracted from two pools of six healthy female blood donors using our in-house 16K BAC array platform (top) and the molecular genetic profile of a healthy

female blood donor using the Illumina Hap300 SNP platform (bottom). Log2 ratios (top) and Log R ratios (ie, Log2 of the sum of the normalized

hybridization intensity values for alleles A and B, bottom) are plotted on the y-axis against each clone according to genomic location on the x-axis.

The centromere of each chromosome is represented by a vertical dotted line.
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designing MIP probes. Therefore, unlike other aCGH plat-
forms, expanding or refining a gene copy analysis for dif-
ferent genomic regions simply requires the design of new
oligonucleotides rather than a new microarray; (5) hence,
this technology is particularly well suited to identifying
genomic deletion mutations at a very high resolution, for
example, at exonic and microsatellite marker level changes,75

and has been reported to work with DNA from FFPE tissue as
well.75,76 However, this technology has not yet been ex-
tensively tested and the current MIP assay requirement for
2 mg test DNA76 makes this technology prohibitive for sam-
ples with limited amounts of DNA available. Currently, a 20K
platform is commercially available from Affymetrix but up to
120 000 SNPs can be assayed in a single array.

TILING A PATH TO EUREKA!—DESIGNING AN ACGH
STUDY
Once the samples to be tested have been identified and the
study objectives have been defined (ie class-directed or
molecular characterization), the choice of platform is then
dependent on the type of sample available. On current evi-
dence, BAC arrays appear to be more suited to aCGH using
DNA extracted from FFPE tissue. Where fresh frozen tumour
samples are unavailable, and FFPE DNA is not of sufficient
quality for aCGH analysis, then an alternative approach,
whereby cell line DNA is interrogated in the first instance
followed by validation (eg using in situ techniques) of
identified genomic aberrations of interest in a larger set of
FFPE tissue samples, may be employed (Figure 3). This is a
particularly plausible approach for studies where the objec-
tive is molecular genetic characterization of tumours for the
identification of putative oncogene and tumour suppressor
gene candidates. Indeed, recent articles have shown that
many of the genomic aberrations observed by using tumour
samples for aCGH analysis are also reflected in the genomic
profiles obtained from cell lines.60,77

Evidently, a platform with higher resolution is likely to
provide a more comprehensive picture of the global genomic
aberrations in a tumour. For example, while studies had
previously reported DNA amplification at 8p12–p11.278 in
breast cancer, which is associated with a poorer prognosis, it
was only after fine-mapping using a high-resolution BAC
array that the remarkably complex structure of this amplified
region, which is composed of at least four distinct amplifi-
cation cores, emerged.79 Similar findings have been described
for other amplicons in breast cancer.80 Clearly, the ease of
detecting any particular genomic copy number aberration is
inversely proportional to its size (length) and the number of
elements involved. Hence, a large 1 Mb region with multiple
copy number gains would encompass multiple elements and
be detected by most array platforms, while a small 20 kb
region with only a single copy number change (eg micro-
deletion) would be beyond the resolution of most array
platforms, with the possible exception of MIP arrays and
some SNP arrays. Obviously, cost is also another major

consideration, and if high-resolution arrays are unavailable,
one might even choose to combine a lower resolution BAC
array for global genomic analysis before fine mapping of an
individual chromosome or genomic region of interest using
custom-designed oligonucleotide arrays (eg NimbleGen).81

Regardless of resolution, however, some platforms are
better at picking up specific anomalies than others. Hence, if
a global picture of large scale gains/amplifications and losses
is all that is required, then any array platform will suffice,
provided it is of the desired resolution. Alternatively, if the
detection of more subtle aberrations involving copy number
neutral allelic imbalances such as UPD and mitotic re-
combination is required, then SNP arrays are the platform of
choice. It is also worth noting that a method for identifying
balanced chromosomal translocations using both BAC and
oligonucleotide arrays, known as array painting, has been
developed.82,83 Similar in concept to reverse chromosome
painting, array painting involves fluorescent labelling of flow-
sorted chromosomes followed by hybridization to a BAC or
oligonucleotide microarray, thus facilitating the detection of
cytogenetically balanced chromosome rearrangements.82,83

ANALYSIS AND VALIDATION
This review is focussed on study design rather than analysis,
and a comprehensive review of analytical methods is thus
beyond its scope. Suffice to say that to some extent experi-
mental design and objectives will determine the type of
analysis used. Extensive reviews of various analytical tools
and methods are available,84,85 and numerous bioinformatics
software packages designed for the analysis of aCGH
data are available from commercial sources and the world-
wide web. These include regularly updated versions of the
R data transformation and statistical analysis program
(http://www.r-project.org/) and Bio-Conductor (http://www.
bioconductor.org/).86 In addition, all commercially available
aCGH platforms come with their own specific data analysis
software (eg Illumina Beadstudio and QuantiSNP87) and
bioinformatics support. Although these methods have the
potential to convert aCGH data into meaningful informa-
tion, there are a few issues in data analysis, directly affected
by study design, which should be discussed.

Having established an aCGH profile, the next challenge is
to define the boundaries between normal copy number, low-
level gains and losses, and amplifications and homozygous
deletions. One approach would be to first establish the
thresholds for normal copy number, by running normal test
vs normal reference experiments using matched normal DNA
or, if this is not available, a pooled reference DNA sample.
Some have suggested that at least six unrelated, healthy in-
dividuals should be included in the pooled sample to reduce
the false discovery of aberrations in the control sample
caused by CNVs.14 However, as the true prevalence of CNVs
remains unknown,88 we prefer to err on the side of caution,
and have incorporated B24 unrelated, healthy and ethnically
varied individuals in our pooled samples for aCGH studies.
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Based on the standard deviation derived from these experi-
ments, thresholds should be set taking into account the
balance between the false discovery rate and the ability to
detect low-level copy number changes.8,89,90 Alternatively, as
discussed earlier, segmentation algorithms can be used to
define the boundaries of copy number changes.71–73 We have
successfully used a combination of the two approaches and
identified copy number changes that can be CISH/FISH
verified.8,9,15,91,92

Whichever methods utilized in the analysis of aCGH data,
it is vitally important that the invariably and often excessively
large volume of data generated is appropriately curated and
validated with in situ or molecular methods. These include
quantitative real-time PCR (QPCR) techniques93 and FISH,
CISH, or SISH.9,58,66–68,91 Additionally, in studies where
matched normal DNA samples are not available, all regions
of copy number change should be cross-referenced with
available CNV databases.

DATA INTEGRATION
Having successfully identified and validated an extensive
candidate gene list from aCGH analysis, the next questions is
how to define a shortlist of the most likely biologically re-
levant genes. This is where data integration is particularly
useful. We have previously discussed the value of overlaying
expression and genomic array data to pinpoint ‘addictive
oncogenes’ and tumour suppressor genes, but this process
can also be extended to using data derived from other high-
throughput studies such as proteomics. Recent papers have
addressed the issue of integrating protein abundance and
mRNA transcript levels from high-throughput analysis,94

and, indeed, the integration of genomic, gene-expression and
proteomic data.95

Integrative analysis of high-throughput data confers
several advantages:43,94–96 (1) the impact of methodological
unreliability is reduced by cross validation between data from
different biological (ie genomic, gene transcription or protein
expression) levels; (2) integration of data insensitive to minor
spatiotemporal flux (eg genomic copy number changes) with
data subject to dynamic changes (eg mRNA and protein
expression); (3) improved understanding of the multilayered
complexity of various disease and physiological states; (4)
facilitate the development of a systems biology approach,
for example, mathematical models, in elucidating the intra-
and interbiological-level interactions between the signalling
networks and pathways that determine disease phenotype.
However, such integrative approaches are fraught with
complex logistic and analytical challenges, chief among which
are: (1) tissue procurement—lack of sufficient or appropriate
sample material (eg core biopsies of FFPE tumours) for use
in different assays; (2) the immense biological complexity
along the progression from genotype to phenotype and
sources of variation and functional complementarity within
each biological level95 that exists for any one individual, set
against the background of patient and tumour heterogeneity;
(3) the need for the development of sufficient bioinformatics
expertise, and the necessary software and hardware to process
the vast amount of data generated by combining high-
throughput technologies. Furthermore, most systems have
not incorporated all levels of complexity; for instance,
miRNA data have been largely neglected in most models.

While such state-of-art analytical approaches remain as-
pirational, data integration on a more modest and pragmatic
scale is certainly possible. For example, by subjecting a set of
tumours to both aCGH and gene-expression array analysis,
putative oncogene candidates within a validated region of
recurrent amplification can be interrogated at the level
of gene expression to identify a shortlist of genes where
a good correlation exists between amplification and
mRNA overexpression.9,59,60,79 From this shortlist, im-
munohistochemical analysis of protein expression in a larger
series of FFPE tissues can be performed to confirm the
presence of overexpression of certain genes in tumours.
Immunohistochemical studies on the prognostic and

Figure 3 Diagram illustrating an alternative approach for integrating data

from different high-throughput methods.
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Table 6 Six key issues in designing microarray CGH studies

Key issues Factors to consider

(1) What samples are available? Sample size (ie number of samples)

Sample type

Cell lines

Formalin fixed paraffin embedded (FFPE)

Fresh frozen tissue

Sample DNA quality, quantity and purity

Reference DNA

Matched blood samples for DNA extraction (to exclude CNVs)

Pooled DNA from various ethnic groups

(2) What is the question? Class prediction

Class comparison

Class discovery

Molecular genetic characterisation

(3) Which array platform? Cost and availability

DNA quality, quantity and purity (FFPE/fresh frozen/cell line)

Type and size of genomic aberration to be detected

Large copy number changes vs single copy number changes—resolution of aCGH platform

Global genomic profile vs copy number neutral allelic imbalances—non-SNP vs SNP arrays

Balanced translocations (array painting)

(4) Analysis Normalisation

Data analysis software

Commercially available platform-specific data analysis software

Publicly available data analysis software (eg bioconductor in R and BRB array tools)

Bioinformatics support

Awareness of CNV in regions with identified copy number changes

(5) Validation Molecular biology techniques, for example, real-time quantitative PCR

In situ and cytogenetic techniques, for example, FISH, CISH or SISH on samples tested (test set),

followed by a larger sample set (validation set)

(6) Data integration Immunohistochemistry for protein expression

RNA/microRNA expression and methylation arrays

Exon expression arrays

ESP and other genome-wide sequencing techniques

Proteomics

Integrated Systems approach: overlaying aCGH, RNA and/or protein expression data with other

high-throughput technologies followed by biological systems modelling - molecular pathways/networks

Gene functional studies using in vitro (eg siRNA for putative oncogenes) or in vivo model systems,

for example, transgenic mice

Gene sequencing for mutations

CISH, chromogenic in situ hybridization; CNV, copy number variation/polymorphism; ESP, end sequence profiling; FISH, fluorescent in situ hybridization; FFPE,
formalin-fixed, paraffin-embedded; PCR, polymerase chain reaction; siRNA, small interference RNA; SISH, silver in situ hybridization; SNP, single-nucleotide
polymorphism.
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predictive significance of these proteins will also provide a
further layer of evidence with regards to phenotypic
relevance. From this shortlist, selected genes which are
amplified, overexpressed and shown to be of prognostic
significance can be investigated to in vitro, for example, using
short interfering RNA (siRNA) to knock them down in cell
lines harbouring this specific gene amplification and over-
expression, to derive their functional significance.9 Tumour
DNA can then be subjected to gene sequencing to look for
mutations of functionally significant genes. Biologically and
clinically relevant oncogenes thus identified are likely to represent
key amplicon drivers and potential therapeutic targets, and, by
mapping a posteriori to known gene networks, serve as a basis
for further investigation of other key upstream and down-
stream regulatory molecules, pathways and networks in
cancer development, and progression as well.

FUTURE OF ARRAY-BASED CGH
Despite the rapid advances in aCGH over last 10 years, the
current technology and analysis tools only provide a rough
map of genomic aberrations in the genome. Even if the re-
solution, sensitivity, mapping accuracy, and reproducibility
of these arrays improve to the extent that microamplifica-
tions and -deletions of less than a kb can be confidently
called, they will still reveal little definitive information about
the complex modification of various regulatory and epi-
genetic elements, or the presence of translocations and gene
fusions, that are represented by these changes. Indeed, if the
ultimate goal of sequencing the entire human genome at the
cost of US$1000 becomes a reality, aCGH might eventually be
rendered obsolete. Highly parallel sequencing technologies
that can provide both quantitative and qualitative assays of
the human genome sequence are being developed13 and are
now commercially available (eg www.illumina.com).

The fact is that aCGH currently remains a crude, albeit
powerful, screening tool, and should be used as an adjunct to
other molecular techniques. Although aCGH has definitely
expedited the identification of novel amplicons and tumour
suppressor genes,57,58,91,97 this is only a step forward towards
our understanding of the complexity of cancer. Indeed, the
vogue is an integrative, systems biology approach43,96 where
results from aCGH, gene-expression analysis and functional
assays are combined to develop models that facilitate the
understanding of complex biological systems such as cancer,
and can serve as a basis for hypothesis generation, testing,
and validation. This requires a huge emphasis on sound
bioinformatics support and there is an urgent need for
concurrent development of expertise in this field if this
nascent technology is to become established as a reliable and
user-friendly assay. This can only happen in a timely fashion
with the development of multi-institutional, pan-national, or
international collaborative efforts of data sharing and vali-
dation, and bioinformatic tools development, such as the
Cancer Biomedical Informatics Grid (caBIGt) initiative
pioneered by National Cancer Institute (http://cabig.

cancer.gov). In addition, we should strive for the develop-
ment of guidelines for aCGH studies similar to but with
greater emphasis on study design and data analysis than the
minimum information about a microarray experiment
(MIAME) guidelines (http://www.mged.org/Workgroups/
MIAME/MIAMEchecklist_cgh.doc) and the implementation
of more user friendly repository websites with meta-analysis
functions, similar to websites that allow for meta-analysis of
expression array data (eg Oncomine—http://www.oncomine.
org). Ultimately, the successful application and technological
development of aCGH approaches in cancer research can
only be achieved with a full understanding of its current
limitations (Table 6) before careful development of strategies
to circumvent them. One might even say that designing an
aCGH study is akin to laying the foundations of a building:
you only get it right at the end if you got it right at the
beginning.
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