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Abstract—This paper is related to community detection in
complex networks. We show the use of kernel spectral clustering
for the analysis of unweighted networks. We employ the primal-
dual framework and make use of out-of-sample extensions. In
particular, we propose a method to extract from a network a
small subgraph representative for its overall community struc-
ture. We use a model selection procedure based on the modularity
statistic which is novel, because modularity is commonly used
only at a training level. We demonstrate the effectiveness of
our model on synthetic networks and benchmark data from real
networks (power grid network and protein interaction network of
yeast). Finally, we compare our model with the Nyström method,
showing that our approach is better in terms of quality of the
discovered partitions and needs less computation time.

I. I NTRODUCTION

I N recent years, the study of networks represents a major
topic in the scientific community (see for example [1] for

a complete overview on the subject). Many complex systems
can described as networks, where the nodes (or vertices)
represent some entities between which some relationships
exist. Examples include social networks, web graphs, telecom-
munication networks, biological networks, trade networks.
In this framework, a hot topic is the community detection
problem or clustering, that is identifying groups of nodes
within which the connections (or edges) are numerous and
between which they are scarce. Spectral clustering methods
are a standard technique used for clustering, based on the
eigendecomposition of a Laplacian matrix derived from the
data. Recently a spectral clustering formulation as a weighted
kernel PCA problem with primal and dual representations has
been proposed in [2].

The main advantage of this interpretation is the extension
of the clustering model to out-of-sample nodes. The clustering
model can be trained on a small subset of the whole graph
(by solving an affordable eigenvalue problem) and then be
applied to the rest of the network in a learning framework. This
issue is particularly important when we have to deal with huge
complex networks. Moreover, the out-of-sample extension is
a unique feature of our algorithm in the community detection
field, and for example can easily solve the problem of online
clustering of huge growing networks. In fact, this task can
be accomplished by applying the model on every new node
arriving in a data stream. This couldn’t be the case for all the
community detection algorithms present in the literature that
for every new node have to run again on the whole graph. In
this picture, two tasks become crucial:
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• the choice of a good criterion to properly select the pa-
rameters to feed into the model, like the kernel parameters
(if any) and the number of clusters. In fact this allows to
obtain a relevant grouping among the data.

• the extraction of a subgraph which is representative of
the overall community structure characterizing the entire
network.

In order to achieve the first goal here we use a new method
proposed in [3]. This criterion is based on Modularity, a
quality function introduced in [4]. The Modularity statistic
(although with some drawbacks) has been shown to be a
meaningful quality function accounting for the presence of
a significant community structure in networks. It quantifies
the quality of a division of a network into modules. The most
common use of the Modularity is a basis for optimization
methods for detecting community structure in networks, but
only at the training level (like in [5]). In our case, however,
we use it as a cluster validity criterion for our model selection
purposes. In particular, we consider Modularity to judge the
partitions found by the kernel spectral clustering algorithm,
which is based on its own optimization problem (briefly de-
scribed later). Regarding the selection of a small representative
subgraph to use as training set, we propose an active selection
method based on the greedy optimization of the expansion
factor (see [6]), taking inspiration also from fixed-size kernel
models [7].

Once the model has been trained on a small subgraph (fed
with appropriate parameters), it can be easily extended to
unseen nodes in a machine learning framework with a low
computational burden. Up to our knowledge, this characteristic
is unique in the field of community detection on networks,
since all the best existing algorithms work only at the training
level.

The rest of this paper is organized as follows: Section II
introduces the problem of community detection. Section III
summarizes the kernel spectral clustering model. Section IV
describes the Modularity-based criterion for model selection,
the training and validation set to use in the learning process
and the kernel function that has been considered. In section
V the active method to select a representative subgraph
is presented. Section VI is dedicated to the description of
the datasets under investigation. Some simulation results,
described in terms of quality of the discovered community
structure and computational time, are presented in SectionVII:
only unweighted networks are taken into account, considering
both real and artificial datasets. Moreover, all the experiments
are performed in Matlab (for Linux) on an Intel Core Duo
Quad with 2.83 GHz. Finally, Section VIII concludes the paper
and suggests some future works.



II. PROBLEM STATEMENT

A graph (or network) is a mathematical structure used
to model pairwise relations between objects from a certain
collection. It refers to a set of vertices or nodes and a collection
of edges that connect pairs of vertices. A way to represent a
graph is the use of a similarity matrixS, which is anN ×N
matrix with N equal to the number of vertices in the network.
In our case we deal with unweighted graphs andS is called
adjacency matrix (in general indicated with the symbolA) and
Sij = 1 if there is an edge connecting the verticesi and j,
otherwiseSij = 0. Associated to the similarity matrix there is
the degree matrixD, a diagonal matrix with diagonal entries
di =

∑
j Sij indicating the sum of all the edges connecting

nodei with the other vertices.
The structure of many networks reveals a high degree of

organization, where vertices with similar properties are more
likely to be linked together and tend to form modules. Discov-
ering these modules that are naturally present within a graph
has become a hot topic in the modern science of complex
systems and is called community detection. Moreover, once
communities have been detected, the roles of the vertices
in each community can be further investigated. For example
nodes that have a central position in a module are probably
responsible for the control and stability of that cluster, while
vertices lying on the boundaries between the discovered com-
munities are likely to have a role of intermediary within the
graph. The community structure of a graph can also be used
to give a compact visualization of large systems. Indeed, one
could display only the communities and their interconnections,
leading to a more understandable and intuitive descriptionof
the graph. This kind of representation is called a supernetwork:
each community is a node of this graph and has a link with
the other nodes with weight proportional to the number of
intercommunity edges of the original network (see for instance
Figures 8 and 9) in Section VII).

Nowadays there is a plethora of algorithms performing the
community detection task (see for example [8] for an analysis
of some of them). All of them work only at the training
level. This means that they use all the graph to extract the
partitions, and if new nodes are added to the network the
algorithm has to process the new graph including also the
old nodes. On the other hand, our approach allows the out-
of-sample extension: once our model has been trained on
a small representative subgraph selected from the network
under investigation, the membership of any other node can
be predicted in a straightforward way, without need of any
heuristic technique. Up to our knowledge, this feature is
unique in the community detection field and in principle could
permit to analyze large networks in a reasonable time and
efficiently cluster online data stream.

III. K ERNEL SPECTRAL CLUSTERING MODEL

A. General picture

The first step to follow in spectral clustering is to build
a similarity matrix among the objects to analyze. If we are

given some data points, typically the similarity between the
points is related to their mutual distance in the space they are
embedded in. This similarity matrix can then be considered
a weighted graph. The other case (that one we consider) is
when the starting data at hand are already a graph (weighted
or unweighted). In this case, classical spectral clustering can be
directly applied. Nevertheless, in the kernel spectral clustering
model described next, a graph over the starting network needs
to be built up in order to describe the similarity among the
nodes in the kernel-based framework.

Given a graph, several properties of it can be explained
through spectral graph theory, which is the study of the eigen-
spectrum of graph Laplacian matrices [9], [10], [11], [12].
Typical graph Laplacians are: the unnormalized Laplacian
defined asL = D − S, the symmetric normalized Laplacian
LSYM = D−1/2LD−1/2 = IN − D−1/2SD−1/2 and the non-
symmetric normalized LaplacianLRW = D−1L = IN −D−1S
denotedLRW because it is related to a random walk on
the graph. In the latter case, the clustering problem can be
interpreted as finding a partition of the graph in such a way that
the random walker remains most of the time in the same cluster
with few jumps to other clusters, minimizing the probability of
transitions between clusters. The stochastic transition matrix P
of a random walker on a graph can be obtained by normalizing
the similarity matrixS associated to the graph such that its
rows sum to 1. Theij-th entry ofP represents the probability
of moving from nodei to nodej in one step of the process.
This transition matrix can be defined asP = D−1S. The
corresponding eigenvalue problem becomesPr = ξr, and as
we show afterward it can be viewed as the dual problem of
a constrained optimization problem typical of least squares
support vector machines (LS-SVM)[7].

B. Primal-dual formulation

The kernel spectral clustering model is described by a
primal-dual formulation. The parameters of the model are
estimated in the training phase using training data, some (if
any) hyper-parameters are tuned in a validation stage and
finally the model is tested on a test set. In our case the data that
we deal with are theN nodes of the graph under investigation.
Each training nodexi is a row of the adjacency matrixS,
that is xi = S(i, :) ∈ R

N (since matrixS is symmetric,
considering the columns is equivalent). For more details, also
regarding validation data, see Section IV-B. Before continuing
it is worthwhile to point out that for large networks the number
of nodes (and then the dimension of each data pointxi ) can
be very big (nowadays network data can contain millions of
nodes). However, this does not represent a problem because
usually the networks at hand are sparse and can be easily
stored in the memory of a PC. If the graph cannot be fitted
completely into the main memory, it can be stored in the hard
disk and the memberships, in the test phase, can be predicted
just by uploading into the memory the related nodes and
calculating their out-of-sample extension. In other words, there
is no need to store in the memory the whole graph and the
related kernel matrix. Moreover the sparsity allows to reduce



the computation time needed for the evaluation of the kernel
matrix. GivenNtr training nodesD = {xi}

Ntr
i=1, xi ∈ R

N and
the number of communitiesk, the primal problem of spectral
clustering via weighted kernel PCA is formulated as follows
[2]:

min
w(l),e(l),bl

1

2

k−1∑

l=1

w(l)T

w(l) −
1

2N

k−1∑

l=1

γle
(l)T

D−1
Ω e(l) (1)

such thate(l) = Φw(l) + bl1Ntr (2)

where e(l) = [e
(l)
1 , . . . , e

(l)
Ntr

]T are the projections,l =
1, . . . , k − 1 indicates the number of score variables needed
to encode thek clusters to find,D−1

Ω ∈ R
Ntr×Ntr is the

inverse of the degree matrix associated to the kernel matrix
Ω (as explained later),Φ is the Ntr × dh feature matrix
Φ = [ϕ(x1)

T ; . . . ; ϕ(xNtr)
T ] and γl ∈ R

+ are regularization
constants. The clustering model is expressed by:

e
(l)
i = w(l)T

ϕ(xi) + bl, i = 1, . . . , Ntr (3)

whereϕ : R
N → R

dh is the mapping to a high-dimensional
feature space,bl are bias terms,l = 1, . . . , k − 1. The
projectionse(l)

i represent the latent variables of a set ofk− 1

binary clustering indicators given by sign(e
(l)
i ) which can be

combined to form the final groups in an encoding/decoding
scheme. The dual problem related to this primal formulation
is:

D−1
Ω MDΩα(l) = λlα

(l) (4)

where Ω is the kernel matrix with ij-th entry Ωij =
K(xi, xj) = ϕ(xi)

T ϕ(xj), DΩ is the diagonal matrix with
diagonal entriesdΩ

i =
∑

j Ωij , MD is a centering matrix
defined asMD = INtr − (1/1T

Ntr
D−1

Ω 1Ntr)(1N tr1
T
Ntr

D−1
Ω ), the

α(l) are dual variables. The kernel functionK : R
N×R

N → R

plays the role of the similarity function of the graph. Now,
the dual problem is related to the random walk model and
represents the weighted kernel PCA formulation of it used in
our simulations (for a complete derivation see [2]).

C. Encoding/decoding scheme

In the ideal case ofk well separated clusters and properly
chosen kernel parameters, the matrixD−1MDΩ has k − 1
piecewise constant eigenvectors with eigenvalue1 (see for
example [9]). In the eigenvector space every clusterAp,
p = 1, . . . , k is a point and is represented with a unique
codewordcp ∈ {−1, 1}k−1. The codebookCB = {cp}k

p=1

can then be obtained in the training process from the rows
of the binarized projected variables matrix for training data
[sign(e(1)), . . . , sign(e(k))]. An effect of the centering matrix
MD defined in the last section is the fact that the eigenvectors
have zero mean. This is important for encoding since the opti-
mal threshold for binarizing the eigenvectors is automatically
determined. Taking into account that the first eigenvectorα(1)

already provides a binary clustering then number of score
variables needed to encodek clusters isk − 1. The decoding
scheme consists of comparing the cluster indicators obtained
in the validation/test stage with the codebook and selecting

the nearest codeword in terms of Hamming distance. This
scheme corresponds to the ECOC decoding procedure and it is
used for out-of-sample extension. In particular, the proposed
extension is based on the score variables which correspond to
the projections of the mapped out-of-sample points onto the
eigenvectors found in the training stage. The cluster indicators
can be obtained by binarizing the score variables for out-of-
sample points as follows:

sign(e(l)
test) = sign(Ωtestα

(l) + bl1Ntest) (5)

with l = 1, . . . , k−1. Ωtest is theNtest×Ntr kernel matrix eval-
uated using the test points with entriesΩtest,ri = K(xtest

r , xi),
r = 1, . . . , Ntest, i = 1, . . . , Ntr. This natural extension to
out-of-sample points corresponds to the main advantage of
the kernel spectral clustering framework. In this way, the
clustering model can be trained, validated and tested in an
unsupervised learning scheme.

Finally, a new notion regarding the out-of-sample points has
been introduced in [13]. One of the KKT condition related to
the optimization problem (1) links the projections for training
datae(l) with eigenvectorsα(l). This relationship can be used
to compute the out-of-sample eigenvectorsα

(l)
test∈ R

Ntest , by:

α
(l)
test =

1

λ(l)
(D−1

teste
(l)
test), l = 1, . . . , k − 1, (6)

where D−1
test = diag( 1

deg(xtest
1 ),...,deg(xtest

N
) ) ∈ R

Ntest×Ntest

is the inverse degree matrix for test data and deg(x)=∑Ntr

j=1 K(x, xj) extends the concept of degree to out-of-
sample data. In Section V we will show, for one of the
networks under investigation in this paper, how the degree
distribution for the out-of-sample data is similar to the real
degree distribution. This is a further demonstration that the
model can generalize well on new nodes.

IV. M ODEL SELECTION CRITERION BY MEANS OF

MODULARITY EVALUATION

A. Modularity

Often people use heuristics to select the tuning parameters
present in their models. Since model selection is a crucial
point, here we use a systematic way to do it properly, described
in [3]. The method is based on a validation. We train the kernel
spectral clustering model described in the previous section
with different number of clusters. In the validation step the
obtained groupings are judged depending on Modularity: the
one (or more) partition with the highest value of Modularity
is selected.

Modularity is a quality function of a graph introduced in
[4]. It is based on the idea that a random graph is not ex-
pected to have a cluster structure, so the possible existence of
clusters can be revealed by the comparison between the actual
density of edges and the density one would expect to have in
the graph if the vertices were attached randomly, regardless
of community structure (this characterizes a particular null
model). Modularity can be either positive or negative, with



positive high values indicating the possible presence of a
strong community structure. It can be written as follows:

Q =
1

2m

∑

ij

(Sij − Fij)δij (7)

with i, j ∈ Ap. The sum runs over all pairs of vertices,
S as before is the similarity matrix,m indicates the sum
of all the weights, andFij represent the expected number
of edges between verticesi and j in the null model. The
Kronecker deltaδij function yields1 if vertices i and j are
in the same community and0 otherwise. Since the standard
null model of Modularity imposes that the expected degree
sequence matches the actual degree sequence of the graph,
the Modularity can be written as:Q = 1

2m

∑
ij(Sij−

didj

2m )δij ,
where we indicate withdi =

∑
j Sij the degree of the vertex

i. Then, after some linear algebra calculations [14], it can be
shown that the problem of maximizing the Q-measure in order
to find the optimal partition is given by:

max
X

[tr(XT MX)] such thatXT X = DM . (8)

Here M = S − 1
2mddT is the Modularity matrix or Q-

Laplacian,d = [d1, . . . , dN ] indicates the vector of the degrees
of each node,DM ∈ R

k×k is a diagonal matrix with diagonal
entryDM

ii = |Ci| where|Ci| is the number of nodes in cluster
Ci, andX represents the cluster indicator matrix.

B. Proposed algorithm

The model selection algorithm can briefly be expressed in
the following way:
————————————————————————-
Algorithm MS Modularity-based model selection algorithm
————————————————————————-
Input : training set, validation set stage I, validation set stage
II, positive (semi-) definite kernel functionK(xi, xj)
Output : selected number of clustersk and (if any) kernel
parameters

1) compute cluster indicator matrixX from the cluster re-
sults of the different models, obtained using the training
set and the validation set I stage in the learning process,

2) compute the Modularity matrixB = S − ddT

2m , where
S refer to the validation set used in the II stage of the
validation process

3) compute the ModularityM = 1
2m tr(XT BX),

4) select the model (i.e.k and the kernel parameters)
corresponding to the partition(s) which gives the highest
Modularity value.

————————————————————————-
The training set, validation set and the two stages of the
validation process have the following meaning. The training
set is the matrix given as input to the kernel spectral
clustering model during the training phase (see 1). The
validation process can be divided into two stages:

1) stage I: the cluster memberships for the validation set
(data not belonging to the training set) are predicted by
the model based on eq.(5);

2) stage II: the quality of the predicted memberships are
judged by means of Modularity criterion.

In these two stages the validation sets involve the same data
(the nodes of the graphs under study) but represented in
different ways. In stage I some rows of the adjacency matrix
are considered: this is called an adjacency list. In stage IIthe
validation set is a square matrix (a kind of validation adjacency
matrix), because this is needed in order to calculate the related
Modularity. See Figure 1 for further clarification.

Stage I Stage II

Adjacency list Adjacency matrix

Fig. 1. Example of training and validation set used for unweighted graphs.
In this case the first25% of the total nodes form the training set and the
remaining75% the validation set. In the first stage of the validation process the
graph is represented as an adjacency list while in the secondstage (consisting
of evaluating the quality of the predicted partitions by means of Modularity
criterion) it is given as an adjacency matrix.

C. The community kernel

In dealing with unweighted networks a recently proposed
kernel function particularly suited for the study of unweighted
networks, the community kernel [15] is used to build up the
similarity matrix of the graph. This kernel function does not
have any parameter to tune and the similarityΩij between two
nodesi andj is defined as the number of edges connecting the
common neighbors of these two nodes:Ωij =

∑
k,l∈Nij

Akl.
HereNij is the set of the common neighbors of nodesi and
j, A indicates the adjacency matrix of the graph,Ω is the
kernel matrix. As a consequence, even if two nodes are not
directly connected to each other, if they share many common
neighbors their similarityΩij will be set to a large value.
Moreover, in [15] it is empirically observed that this kernel
matrix is positive definite, a fundamental requirement in order
to use the community kernel the LS-SVM framework. We
use a matlab implementation consisting of one loop and the
computation time for calculating the kernel matrix is directly
proportional to the number of the training nodes and the
sparsity of the dataset. Moreover, since every step of the
loop is independent from the previous, the code is suitable
for parallelization on several CPU or on a GPU, with a
potential increase in speed of a factor 50 or more (see for
examplehttp://wiki.accelereyes.com/wiki/index.php/JACKET).
Finally, also a C++ implementation could lead to a significant
improvement in terms of speed: for example the matlab
implementation of the Louvain [5] method takes about16 s to
analyze the artificial network with3 000 nodes considered in
this paper, while the C++ implementation allows it to process,



according to its authors, a network with2 million nodes in a
couple of minutes.

V. SELECTING A REPRESENTATIVE SUBGRAPH

Sampling a subgraph representative of the community struc-
ture of whole network under study is a crucial task in our
model, since it allows a meaningful out-of-sample extension
to nodes not present in the training set. Simply taking a random
sample of nodes can lead to very different results in several
runs, since the quality of the selected subgraph can have a
huge variability. Theoretically a sampled subgraph can also be
a set of disconnected parts, causing bad results in the predicted
memberships of the test nodes. Also selecting a subgraph in
such a way that it follows the same degree distribution or
betweenness centrality distribution of the whole graph can
produce samples that are not representative of the community
structure of the larger network. Recently a new quality func-
tion describing the representativeness of the sample respect
to the community structure of the whole graph has been
introduced in [6]. This quality function is called expansion
factor (EF) and is defined as|N(G)|

|G| , where G indicates a
subgraph,N(G) its neighborhood, i.e. the remaining part of
the network to whichG is connected, and|| is the cardinality of
a set. The idea is that by selecting a subgraph for which the
expansion factor is maximum, one samples a representative
subgraph. Roughly speaking, by including inG nodes that
best contribute to the expansion factor, we are taking nodes
that are more connected to the rest of the network than toG.
These nodes are then very likely to belong to clusters not
yet represented in the subgraph, allowing us to produce a
sample which is a condensed representation of the community
structure of the whole network.

Here we propose a greedy strategy for the optimization of
the expansion factor EF, that can be summarized as follows:
————————————————————————-
Algorithm EF Subset selection maximizing expansion factor
————————————————————————-
Input : network ofN nodesV = {ni}N

i=1 (represented as the
adjacency matrixA ∈ R

N×N ), size of subgraphm
Output : active set ofm selected nodes

1) select randomly an initial subgraphG = {nj}m
j=1 ⊂ V

2) repeat
3) computeEF (G)
4) randomly pick two nodes asn∗ ∈ V andn+ ∈ V −G
5) let {W = V − {n∗}} ∪ {n+}
6) if EF (W) > EF (G)
7) swap({n+},{n∗})
8) end if
9) until change inEF value is too small (according to a

thresholdǫ)
10) return G

————————————————————————-
The selection of the active subset can take from a few to
several minutes or hours depending on the sizeN of the
entire network and its density, the chosen sizem for the
active subset and the thresholdǫ.

Figure 2 depicts a typical example of the greedy optimiza-
tion of the EF performed by the algorithm (in this case the
artificial network formed by3 000 nodes and described later
is considered). Moreover, in Figure 4 is shown how the active
sampling technique produces better sample than a random
sampling. To see this, we compare the ARI index [16] between
the partitions predicted by the kernel spectral clusteringmodel
and the true memberships, by using the training set selected
randomly or actively. In Figure 3 we can see that the degree
and betweenness centrality distribution of the active set is
quite different from those one of the whole graph. All these
empirical observations are in agreement with what has been
discussed in [6]. On the other hand, if we compare the degree
distribution associated to the full kernel matrixΩ and the out-
of-sample degree distribution related to the test kernel matrix
Ωtest (see Section III-C), they are quite similar (see Fig. 5).
This implies that the active selected subset is meaningful and
allows our model to correctly generalize to unseen nodes, as
it is also shown in Table II.
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Fig. 2. Example of the greedy optimization of the expansion factor EF.
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Fig. 3. Degree and betweeness centrality distribution (number of nodes) of
the entire starting synthetic network with9 communities (top left and top
right) and of a typical active set selected from the algorithm EF (bottom left
and bottom right). We can notice that the representativeness of the set in terms
of community structure can not be related to its representativeness in terms
of degree distribution.

VI. D ESCRIPTION OF THE DATASETS

Real and artificial datasets are investigated. The software
provided by Fortunato related to the paper [17] is used to pro-
duce the unweighted synthetic graphs, while the real datasets
that are studied here are now classic real-world networks
present in the literature. A short description of the data is
furnished in Table I.
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Fig. 4. Results related to the analysis of the artificial network with 9

communities described in section VI-A
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Fig. 5. The degree distribution related to the full kernel matrix (of size
3 000 × 3 000) describing the similarity between the nodes of the network
Art_9C is pictured in the first row. In the second row the degree distribution
associated to the test kernel matrix (of size3 000 × 300) is shown. The two
distributions look like quite similar, meaning that the model trained on the
active selected subset can generalize well in the test phase.

A. Synthetic networks

Three graphs are investigated:

• Art_9C: a benchmark network with3 000 nodes and
22 904 edges formed by9 communities.

• Art_13C: an artificial network with10 000 nodes and
76 789 edges formed by13 communities.

• Art_22C: a synthetic graph with50 000 nodes and
383 220 edges formed by22 communities.

Network Nodes Edges Sparsity (%)
Art_9C 3 000 22 904 99.49

Art_13C 10 000 76 789 99.85

Art_22C 50 000 383 220 99.97

Yeast_pro 2 114 4 480 99.90

Power grid 4 941 6 594 99.95

TABLE I
SUMMARY OF SOME PROPERTIES OF THE GRAPHS ANALYZED IN THIS

PAPER. SPARSITY REFERS TO THE ADJACENCY MATRIX ASSOCIATED TO

EACH GRAPH AND INDICATES THE PERCENTAGE OF ZERO ENTRIES WITH

RESPECT THE TOTAL NUMBER OF ELEMENTS OF THE MATRIX.

B. Real networks

The graphs under investigation are:
• Yeast_pro: interaction network data for yeast formed

by 2 114 nodes and4 480 edges. As explained in [18]
proteins can have direct or indirect interactions with one
another. Indirect interaction refers to being a member of
the same functional module (e.g., transcription initiation
complex, ribosome) but without directly binding to one
another. In contrast, direct interaction, refers to two amino
acid chains that bind to each other. Obviously, many of
these interactions reflect the dynamic state of the cell
and are present or absent depending on the particular
environment or developmental status of the cell. However,
the sum of existing and potential interactions altogether
defines the protein network and is ultimately encoded
within the genome of a given organism.

• Power grid: the network of Western USA power grid [19]
formed by 4 941 nodes and6 594 edges. The vertices
represent generators, transformers and substations, and
edges represent high voltage transmission lines between
them.

VII. S IMULATION RESULTS

A. General overview

In the case of the synthetic networks, in order to compare
the memberships predicted by the kernel spectral clustering
model with the true memberships the ARI index is used. On
the other hand, in the case of the real datasets, to assess
the quality of the clustering produced by the model, the
Modularity of the predicted partition is calculated. Finally, the
computation time associated to the analysis of the graphs under
study refers to the test stage, since in comparison the time
needed to find the parameters of the model during the training
phase (calculating the kernel matrix and solving the related
eigenvalue problem) is negligible. Moreover, the traininghas
to be done just once: in fact, each time we need to calculate
the membership of a new node in a network, we just need
to extend the trained model on it. All the results, related
to the test and (if any) validation stage are summarized in
Table II and Figures 6, 7. For the power grid network, the
model selection procedure performed here gives us another
indication regarding the number of cluster in which to divide
the network compared to the model selection performed in
[3]. The suggested divisions are both good in terms of their
quality. For instance all the partitions with Modularity value
above0.51 can be taken into account. In this paper we take into
consideration the new result (16 communities), since here the
average Modularity achieves a clearer maximum on a wider
range of possible choices. In Table III also the results obtained
using the Nyström method are shown: only the synthetic
graphs are considered, in order to make a more objective
comparison with our model.

B. Comparison with the Nyström method

The Nyström method is a technique for finding numerical
approximations of eigenfunctions. It has been proposed in



[20] to reduce the computational burden in spectral clustering
eigenvalue problems. In fact, it allows one to extrapolate the
complete grouping solution using only a small subset extracted
randomly from the whole dataset to partition. From Table
III we can notice that the kernel spectral clustering model
on average performs better than the Nyström method for all
the graphs but the network Art_22C. In this case, however,
the Nyström method needs at least5 000 randomly selected
nodes in the initial working subset in order to perform the
clustering task. On the other hand less nodes are required by
the active selection technique to obtain a good subgraph. These
observations require additional investigations to be properly
understood.

C. Complexity

Finally, a further analysis related to the computation time
required by the kernel spectral clustering model is shown in
Figure 10: the computational complexity seems to beO(N2),
whereN indicates the number of nodes of the whole graph.
However, it mainly depends on the number of training nodes.
For other networks it can happens that less nodes are needed in
the training subgraph in order to obtain a good clustering inthe
test stage, thus reducing the computational complexity. This
performance can be considered already good and competitive
with many of the best existing algorithms for community
detection (see for example section3.3 in [21]).

Synthetic
Network

Size training
set (nodes)

ARI CPU time (s)

Art_9C 300 0.99 8.28

Art_13C 1 000 0.98 187.03

Art_22C 2 500 0.71 9778.57

Real
Network

Size training
set (nodes)

Modularity CPU time (s)

Yeast_pro 1 057 0.39 4.93

Power grid 988 0.54 21.90

TABLE II
RESULTS OF THE KERNEL SPECTRAL CLUSTERING MODEL.

Synthetic
Network

Size training
set (nodes)

ARI CPU time (s)

Art_9C 300 0.85 ±

0.10

7.82

Art_13C 1 000 0.87 ±

0.07

457.29

Art_22C 5 000 0.79 ±

0.06

14 889.68

TABLE III
RESULTS OF THENYSTRÖM METHOD USING10 RANDOMIZATIONS OF THE

INITIAL WORKING SUBSET. THE AVERAGE VALUE AND THE ASSOCIATED

STANDARD DEVIATION ARE SHOWN. THE CPUTIME IS RELATED TO A

SINGLE RUN.

D. Final comments

As a general comment, we can say that the results shown
in Table II are good. Indeed, the quality of the partitions
predicted by the kernel spectral clustering model is meaningful
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Fig. 6. Validation procedure for the protein interaction network.
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Fig. 7. Validation procedure for the power grid network.

Fig. 8. Partition discovered by the kernel spectral clustering model for
the network of interacting proteins of yeast. Every circle represents a cluster
with size related to the number of nodes belonging to it. The position of
the circles is not relevant. The edges are the links between nodes belonging
to different communities, with thickness proportional to the number of these
intercommunity edges. The nodes and edges in each detected community, for
simplicity, are not shown. The Modularity corresponding tothis partition is
0.39, meaning that this community structure can be considered meaningful.
Finally, the figure has been made by using the software for large network
analysisPajek (seehttp://pajek.imfm.si/doku.php).

Fig. 9. Community structure of the Western USA power grid discovered by
the kernel spectral clustering model. The comments made forFigure 8 are
still valid here. The Modularity statistic related to this depicted partition is
0.54.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

 

 

Size network

C
P

U
tim

e
(s

)

Fig. 10. Computational complexity of the kernel spectral clustering model
for the networks analyzed in this paper.



according to the related values of the ARI index or the
Modularity statistic. Moreover we can see that on average
our model performs better than the Nyström method for all
the synthetic graphs but the network Art_22C. Probably the
structure of this graph is such that a random subsampling of
the nodes is the best strategy for selecting a good working set.
However, extra research work is needed to understand this last
issue. Finally, the computation time is reasonable and can be
potentially improved by a factor 50 or more (see end of section
IV-C). Furthermore, it is lower than the Nyström technique for
the largest graphs.

1) Synthetic networks:The agreement between the true
memberships and the partitions predicted by the kernel spectral
clustering model is good for all the cases. Moreover, the results
are obtained by using a small training subgraph, selected to
be representative of the overall community structure charac-
terizing the entire network.

2) Yeast_pro:Unlike the analysis performed in [18], we
consider both direct and indirect interactions, for a totalof
2 114 nodes instead of1 870. We found7 clusters, with the
largest component containing about the60% of the linked
proteins (and all the proteins with indirect interactions). This
outcome is shown in Figure 8 (only the directly interacting
proteins are considered). The community structure found by
our algorithm seems quite attractive for its simplicity, but
needs further investigation in order to assess a meaningful
biological interpretation of the discovered modules.

3) Power grid: The main difference with the analysis
performed in [3] is that now we have a representative training
set of the whole graph and if in future more nodes will be
added to the network, to infer their membership we just have
to perform the out-of-sample extension based on this training
set. Moreover, here we test the ability of our model on the test
set represented by the entire network, obtaining a rather good
result in terms of the Modularity of the discovered partition.
The latter is depicted in Figure 9.

VIII. C ONCLUSIONS

In this paper we applied the kernel spectral clustering
model described in [2] and the model selection procedure
proposed in [3] in order to analyze large unweighted networks,
real and artificial. Moreover, we proposed a method to draw
from the whole network a subgraph representative of the
community structure of the entire network, based on the greedy
optimization of the expansion factor [6]. This actively selected
subgraph is then used as training set in the learning process
of the kernel machine.

The results obtained, summarized in Table II, are good
both in terms of the quality of the discovered partitions and
the computation time needed to perform the analysis. Future
challenges may relate to on-line learning and very large scale
problems.
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