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Abstract—This paper is related to community detection in « the choice of a good criterion to properly select the pa-
complex networks. We show the use of kernel spectral clustiery rameters to feed into the model, like the kernel parameters

for the analysis of unweighted networks. We employ the primé (if any) and the number of clusters. In fact this allows to
dual framework and make use of out-of-sample extensions. In . .
obtain a relevant grouping among the data.

particular, we propose a method to extract from a network a

small subgraph representative for its overall community stuc- « the extraction of a subgraph which is representative of
ture. We use a model selection procedure based on the moduibr the overall community structure characterizing the entire
statistic which is novel, because modularity is commonly el network.

only at a training level. We demonstrate the effectivenessfo

our model on synthetic networks and benchmark data from real In order to achieve the first goal here we use a new method

”eeg’;’?rklfiégﬁwfl;gré%;eg":grg li”r?]gé%tle\mtmﬁreaﬁiOsrt‘rf‘d‘;twnc]’g:hcg proposed in [3]. This criterion is based on Modularity, a
Zhowi)ng thatybur apprcF))ach is better in terms ofyquality of the quality funct_lon introduced in [4]. The Modularity statest
discovered partitions and needs less computation time. (although with some drawbacks) has been shown to be a
meaningful quality function accounting for the presence of
a significant community structure in networks. It quantifies
the quality of a division of a network into modules. The most
N recent years, the study of networks represents a mag@mmon use of the Modularity is a basis for optimization
topic in the scientific community (see for example [1] fomethods for detecting community structure in networks, but
a complete overview on the subject). Many complex systeragly at the training level (like in [S]). In our case, howeyver
can described as networks, where the nodes (or vertices) use it as a cluster validity criterion for our model setatt
represent some entities between which some relationshipgposes. In particular, we consider Modularity to judge th
exist. Examples include social networks, web graphs, ¢etec partitions found by the kernel spectral clustering aldwoni
munication networks, biological networks, trade networkghich is based on its own optimization problem (briefly de-
In this framework, a hot topic is the community detectioscribed later). Regarding the selection of a small reptesiea
problem or clustering, that is identifying groups of nodesubgraph to use as training set, we propose an active selecti
within which the connections (or edges) are numerous afethod based on the greedy optimization of the expansion
between which they are scarce. Spectral clustering methdaetor (see [6]), taking inspiration also from fixed-sizeriel
are a standard technique used for clustering, based on thedels [7].
eigendecomposition of a Laplacian matrix derived from the Once the model has been trained on a small subgraph (fed
data. Recently a spectral clustering formulation as a weajh with appropriate parameters), it can be easily extended to
kernel PCA problem with primal and dual representations haaseen nodes in a machine learning framework with a low
been proposed in [2]. computational burden. Up to our knowledge, this charastieri
The main advantage of this interpretation is the extensiig unique in the field of community detection on networks,
of the clustering model to out-of-sample nodes. The clirgger since all the best existing algorithms work only at the firagn
model can be trained on a small subset of the whole grajavel.

(by solving an affordable eigenvalue problem) and then beThe rest of this paper is organized as follows: Section II
applied to the rest of the network in a learning frameworksThintroduces the problem of community detection. Section IiI
issue is particularly important when we have to deal withéhugymmarizes the kernel spectral clustering model. Secton |
complex networks. Moreover, the out-of-sample extens®on describes the Modularity-based criterion for model séect
a unique feature of our algorithm in the community detectiofie training and validation set to use in the learning preces
field, and for example can easily solve the problem of onling,§ the kernel function that has been considered. In section
clustering of huge growing networks. In fact, this task ca@ the active method to select a representative subgraph
be accomplished by applying the model on every new noge presented. Section VI is dedicated to the description of
arriving in a data stream. This couldn’t be the case for @l thne datasets under investigation. Some simulation results
community detection algorithms present in the literatii@ t gescribed in terms of quality of the discovered community
for every new node have to run again on the whole graph. $ycture and computational time, are presented in Sedtion
this picture, two tasks become crucial: only unweighted networks are taken into account, consideri
both real and artificial datasets. Moreover, all the expenits
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|I. INTRODUCTION



Il. PROBLEM STATEMENT given some data points, typically the similarity betweea th

A graph (or network) is a mathematical structure usetg]oints is related to their mutual distance in the space they a
to model pairwise relations between objects from a certaﬁmbedgfddm‘ Tr;]ls_?rl]mlla{;]ty matrix f;mt then be cons!gereq
collection. It refers to a set of vertices or nodes and acotie 2 WE!dNted graph. The other case (that one we consider) Is

of edges that connect pairs of vertices. A way to represenY" en the starting da}ta at hand are already a graph_(weighted
graph is the use of a similarity matri%, which is anN x N or unweighted). In this case, classical spectral cluggezan be

matrix with N equal to the number of vertices in the networkdirectly appll_ed. Nevertheless, in the kernel ;pectrasttelung
In our case we deal with unweighted graphs #hib called model described next, a graph over the starting networkseed

adjacency matrix (in general indicated with the symiApland to (;)e puilthupkin orld:r tod(?cescribe tEe similarity among the
Si; = 1 if there is an edge connecting the verticgeand j, hodes in the kernel-based framework.

otherwiseS;; = 0. Associated to the similarity matrix there is hGivekr: a graplh, se\r:erhal prop?]r_ti(;s_ th it cag bef ?]xpla_lined

the degree matripD, a diagonal matrix with diagonal entriestrough spectral graph t eory, whict IS the study of thereige

d; = . S;; indicating the sum of all the edges connectin pectrum of graph Laplacian matrices [9], [10], [11], [12].
g ypical graph Laplacians are: the unnormalized Laplacian

nodei with the other vertices. gfined asL = D — S, the symmetric normalized Laplacian
The structure of many networks reveals a high de ree% P
/ J 9 sym = DY2LD-Y2 = [y — D-Y/28D~1/2 and the non-

organization, where vertices with similar properties areren . . . IS -1
likely to be linked together and tend to form modules. Discoyy "Metric normalized Laplacialiw = D™ "L = Iy —D""5
enoted Lry because it is related to a random walk on

ering these modules that are naturally present within algra h In the latt the clusteri bl b
has become a hot topic in the modern science of compl; graﬁ) d n f. (3. atter C"ﬁ?’ ftﬁ us e”ﬂg pro hem cartlh €
systems and is called community detection. Moreover, onBerPretedasinding a partiion of tne graph in suc away
é e random walker remains most of the time in the same cluster
in each community can be further investigated. For examﬁ'lvéth f_f_WJurEptsWto Oth?r ctluste_lr_?], m|tn|n;]|2|r;g tthe pr.?b;z'g
nodes that have a central position in a module are probaglsns' lons between clusters. The stochastic ransitiatmms
of'a random walker on a graph can be obtained by normalizing

responsible for the control and stability of that clustehiles imilarit trix S iated to th h h that it
vertices lying on the boundaries between the discovered co%e simriarity matnix.> associated 1o the grapn such that its
ows sum to 1. Thej-th entry of P represents the probability

munities are likely to have a role of intermediary within théf moving from nodes to node; in one step of the process
raph. The community structure of a graph can also be used o ) J )
grap y grap his transition matrix can be defined & = D~!S. The

to give a compact visualization of large systems. Indeed, o . .
9 P ge sy corresponding eigenvalue problem beconkes= £r, and as

could display only the communities and their interconreeti h ft d it be Vi d the dual bl f
leading to a more understandable and intuitive description we show afterward It can be viewed as the dual problem o
a constrained optimization problem typical of least sgsare

the graph. This kind of representation is called a superortw )
each community is a node of this graph and has a link Wiﬁypport vector machines (LS-SVM)[7].
the other nodes with weight proportional to the number & primal-dual formulation

intercommunity edges of the original network (see for insta . . .

n untly eages ot gl work (s ! The kernel spectral clustering model is described by a

Figures 8 and 9) in Section VII). imal-dual f lati Th i f1h del
Nowadays there is a plethora of algorithms performing gfgimai-dual formuiation. -Tne parameters ot theé mode’ are

community detection task (see for example [8] for an analys?ﬁt'm?]ted :n tk;ent]ra;mrlng Ehisi lijSll:ng tra\;nllir:jg t?a;a, tsowne g q
of some of them). All of them work only at the traininga y) hyper-parameters are tune a vaidation stage a

level. This means that they use all the graph to extract tﬂgally the model is tested on a test set. In our case the data th

partitions, and if new nodes are added to the network t ¢ deal V.Vith are thev r_10des of the graph l_mder investigation.
algorithm has to process the new graph including also t ea(;hi trallnTgantj.eci ISR?V rov;/nof tge tﬁgjgciencynr?rstrtlﬁ,
old nodes. On the other hand, our approach allows the oh atisa; = 5, € (since ma S Symmetic,

of-sample extension: once our model has been trained %%nsmenng the columns is equivalent). For more detaltn a

a small representative subgraph selected from the nmw{’?%?,:,?::ﬁvt,ﬁil||2?gon d ata, Sie Sfec'ilon IV-B. Befkorehccmngb
#] point out that for large networks the nuen

under investigation, the membership of any other node ca nodes (and then the dimension of each data pejtcan

be predicted in a straightforward way, without need of arﬁ/e very big (nowadays network data can contain millions of
heuristic technique. Up to our knowledge, this feature Insodes)y Hcg)lwever thiz does not represent a problem because
unigue in the community detection field and in principle cbul uall .the netwé)rks at hand areps arse arf)d can be easil
permit to analyze large networks in a reasonable time alg &y b castly

- . stored in the memory of a PC. If the graph cannot be fitted
efficiently cluster online data stream. . : . .

completely into the main memory, it can be stored in the hard

||| K ERNEL SPECTRAL CLUSTERING MODEL d|Sk and the memberships, in the test phase, can be predicted
just by uploading into the memory the related nodes and
calculating their out-of-sample extension. In other wotlere

The first step to follow in spectral clustering is to builds no need to store in the memory the whole graph and the
a similarity matrix among the objects to analyze. If we areelated kernel matrix. Moreover the sparsity allows to Edu

A. General picture



the computation time needed for the evaluation of the kerrtbe nearest codeword in terms of Hamming distance. This
matrix. Given Ny training nodesD = {z; ZN=“1, z; € RN and scheme corresponds to the ECOC decoding procedure and it is
the number of communitiek, the primal problem of spectral used for out-of-sample extension. In particular, the psgob
clustering via weighted kernel PCA is formulated as followsxtension is based on the score variables which correspond t
[2]: the projections of the mapped out-of-sample points onto the
k1 k1 eigenvectors found in the training stage. The cluster atdics
min L Zw(“Tw(” b Zwe(”TDgle(“ (1) can be obtained by binarizing the score variables for out-of
w,e® b 2 2N ~ sample points as follows:

O — @
such thate'" = dw'" + blan (2) Slgr(et(el)st) _ Sigr(Qtesla(l) + blthest) (5)

where e = [e,... |7 are the projections] = . .
1,...,k — 1 indicates the number of score variables needé'\(qth £=1,...,k—1 LhestiS the Nigsix Ny kernel matrix eval-

to encode thek clusters to find,D;* € RN>MNe s the Uated using the test points with entrigs,ri = K (77, ;),
inverse of the degree matrix associated to the kernel matfix_ L., Nigss @ = 1,..., Ny. This natural extension to
Q (as explained later)® is the Ny x dj feature matrix out-of-sample points corresponds to the main advantage of

® = [p(x1)";...; p(zn,)T] andy € R are regularization the kernel spectral clustering framework. In this way, the
constants Th'e' .t:,Iusterithg model is expressed by: clustering model can be trained, validated and tested in an

unsupervised learning scheme.

eD = wO o) +bi=1,..., Ny (3)  Finally, a new notion regarding the out-of-sample points ha
h N dn i th . high-di ) been introduced in [13]. One of the KKT condition related to
wherep : RT — R s the mapping to a high-dimensionaj, . optimization problem (1) links the projections for triaig

feature spa(%ebl are bias terms/ = 1,....k — 1. The 405 () with eigenvectors(!). This relationship can be used
projectionse; * represent the latent variables of a setvof 1 compute the out-of-sample eigenvectafd, € R+, by:

binary clustering indicators given by sigﬁ”) which can be

combined to form the final groups in an encoding/decoding oD L(D‘le(”t) =1 k—1 (©)

scheme. The dual problem related to this primal formulation fest™ \(@ testTtesty 1T S ’

= &= di 1 Nicst X Niest
D' MpQa® = xa® () Where Diesi = diadggmmm —gegpemy) € Rt hes

is the inverse degree matrix for test data and degx)
where Q is the kernel matrix withij-th entry Q;; = ;V;’IK(a:,xj) extends the concept of degree to out-of-
K(zi,z5) = @(x;)To(z;), Dq is the diagonal matrix with sample data. In Section V we will show, for one of the
diagonal entriesi$® = Zj Q;, Mp is a centering matrix networks under investigation in this paper, how the degree
defined asMp = Iy, — (1/1%“D§11Ntr)(1Ntl,~1%“D§1), the distribution for the out-of-sample data is similar to thalre
o are dual variables. The kernel functign: RN xRY — R degree distribution. This is a further demonstration thet t
plays the role of the similarity function of the graph. Nowmodel can generalize well on new nodes.

the dual problem is related to the random walk model and

represents the weighted kernel PCA formulation of it used in |V. MODEL SELECTION CRITERION BY MEANS OF

our simulations (for a complete derivation see [2]). MODULARITY EVALUATION

C. Encoding/decoding scheme A. Modularity

In the ideal case ok well separated clusters and properly Often people use heuristics to select the tuning parameters
chosen kernel parameters, the matfix ' MpQ) hask — 1 present in their models. Since model selection is a crucial
piecewise constant eigenvectors with eigenvaluésee for point, here we use a systematic way to do it properly, desdrib
example [9]). In the eigenvector space every clustgs, in[3]. The method is based on a validation. We train the Kerne
p = 1,...,k is a point and is represented with a uniguspectral clustering model described in the previous sectio
codeworde, € {—1,1}*"'. The codeboolCB = {c,}k_, with different number of clusters. In the validation ste th
can then be obtained in the training process from the rowbtained groupings are judged depending on Modularity: the
of the binarized projected variables matrix for trainingada one (or more) partition with the highest value of Modularity
[sign(e™),...,signe*))]. An effect of the centering matrix is selected.

Mp defined in the last section is the fact that the eigenvectorsModularity is a quality function of a graph introduced in
have zero mean. This is important for encoding since the og#]. It is based on the idea that a random graph is not ex-
mal threshold for binarizing the eigenvectors is autonadiiic pected to have a cluster structure, so the possible exesiginc
determined. Taking into account that the first eigenvestdt clusters can be revealed by the comparison between thd actua
already provides a binary clustering then number of scodensity of edges and the density one would expect to have in
variables needed to encodeclusters isk — 1. The decoding the graph if the vertices were attached randomly, regasdles
scheme consists of comparing the cluster indicators obdairof community structure (this characterizes a particulat nu

in the validation/test stage with the codebook and selgctimodel). Modularity can be either positive or negative, with



positive high values indicating the possible presence of a2) stage Il: the quality of the predicted memberships are

strong community structure. It can be written as follows: judged by means of Modularity criterion.
_ 1 S G ) In these two stages the validation sets involve the same data
Q= om Z( ij — Fij)0i5 (the nodes of the graphs under study) but represented in

" different ways. In stage | some rows of the adjacency matrix
with i,5 € A,. The sum runs over all pairs of verticesare considered: this is called an adjacency list. In stageell

S as before is the similarity matrixy indicates the sum validation set is a square matrix (a kind of validation adjaxy

of all the weights, andF;; represent the expected numbematrix), because this is needed in order to calculate tiatee|

of edges between verticesand j in the null model. The Modularity. See Figure 1 for further clarification.

Kronecker deltay;; function yields1 if verticesi and j are

in the same community an@ otherwise. Since the standard Stage | Stage |l
null model of Modularity imposes that the expected degree

sequence matches the actual degree sequence of the gra TRAIN TRAIN

the Modularity can be written a§) = 51 3~,.(S;; —Ldiyg,

where we indicate withl; = Zj S;; the degree of the vertex

i. Then, after some linear algebra calculations [14], it can b vat vaL
shown that the problem of maximizing the Q-measure in orde

to find the optimal partition is given by:

max[tr((X” M X)] such thatX”X = DM, ®) Adjacency list Adjacency matrix
X Fig. 1. Example of training and validation set used for umghted graphs.

_ _ 1 oggT i i _ In this case the firse5% of the total nodes form the training set and the
Here M =8 ded I.S t.he Modularity matrix or Q remaining75% the validation set. In the first stage of the validation psscihe
Laplaciand = [d, ..., dy] indicates the vector of the degreegyapn is represented as an adjacency list while in the sestage (consisting

of each nodeD™ € R*** is a diagonal matrix with diagonal of evaluating the quality of the predicted partitions by meaf Modularity
entry DM — |C;| where|C;| is the number of nodes in clusterciterion) itis given as an adjacency matrix.
C;, and X represents the cluster indicator matrix.

B. Proposed algorithm C. The community kernel
The model selection algorithm can briefly be expressed in

the following way: In dealing with unweighted networks a recently proposed

kernel function particularly suited for the study of unwkiied

. . : .. _networks, the community kernel [15] is used to build up the

Algorithm MSModularity-based model selection algorlthmsimilarity matrix of the graph. This kernel function doest no

heave any parameter to tune and the similaflty between two

%odesi andj is defined as the number of edges connecting the

common neighbors of these two nodés; = Zk,lerj Ay

Here \V;; is the set of the common neighbors of nodesnd

. i j, A indicates the adjacency matrix of the gragh,is the

1) compute cluster indicator matrix from the cluster re- |.o o matrix. As a consequence, even if two nodes are not
sults of the different models, obtained using the training; .o 11y connected to each other, if they share many common
set and the validation set | stage in the learning proceﬁ%ighbors their similarity2;; will be set to a large value.

. . T
2) compute the Modularity matrisB = 5 — S where \ioreover, in [15] it is empirically observed that this kefne
S refer to the validation set used in the Il stage of thg,5¢rix is positive definite, a fundamental requirement idear
validation process . . to use the community kernel the LS-SVM framework. We
3) compute the Modularitp/ = 5-tr(X " BX), use a matlab implementation consisting of one loop and the
4) select the _model (i.ek <_':1_nd the k_erne_l parame_ters)computation time for calculating the kernel matrix is ditgc
corresponding to the partition(s) which gives the highegtohortional to the number of the training nodes and the
Modularity value. sparsity of the dataset. Moreover, since every step of the
loop is independent from the previous, the code is suitable
The training set, validation set and the two stages of ﬂﬂ@r para”e”zation on several CPU or on a GPU, with a
validation process have the following meaning. The trajnimpotential increase in speed of a factor 50 or more (see for
set is the matrix given as input to the kernel spectrakamplehttp://wiki.accelereyes.com/wiki/index.php/JACKET
clustering model during the training phase (see 1). Thgnally, also a C++ implementation could lead to a significan
validation process can be divided into two stages: improvement in terms of speed: for example the matlab
1) stage I: the cluster memberships for the validation s@tplementation of the Louvain [5] method takes abois to
(data not belonging to the training set) are predicted lanalyze the artificial network witB 000 nodes considered in
the model based on e); this paper, while the C++ implementation allows it to prages

Input: training set, validation set stage I, validation set sta
I, positive (semi-) definite kernel functio (z;, z;)

Output: selected number of clusteds and (if any) kernel
parameters




according to its authors, a network withmillion nodes in a  Figure 2 depicts a typical example of the greedy optimiza-
couple of minutes. tion of the EF performed by the algorithm (in this case the
V. SELECTING A REPRESENTATIVE SUBGRAPH artificial network formed by3 000 nodes and described later
] ) ) is considered). Moreover, in Figure 4 is shown how the active

Sampling a subgraph representative of the community Struginpling technique produces better sample than a random
ture of whole network under study is a crucial task in oW, mpling. To see this, we compare the ARI index [16] between
model, since it allows a meaningful out-of-sample extemsiqne partitions predicted by the kernel spectral clustenirglel
to nodes not present in the training set. Simply taking asand 54 the true memberships, by using the training set selected
sample of nodes can lead to very different results in sevefghgomly or actively. In Figure 3 we can see that the degree
runs, since the quality of the selected subgraph can havg @y petweenness centrality distribution of the active set i
huge variability. Theoretically a sampled subgraph caa B& qjite different from those one of the whole graph. All these
a set of disconnected parts, causing bad results in theqoeeldi ¢ ypirical observations are in agreement with what has been
memberships of the test nodes. Also selecting a subgraphyigcyssed in [6]. On the other hand, if we compare the degree
such a way that it follows the same degree distribution @fisiribution associated to the full kernel matfixand the out-
betweenness centrality distribution of the whole graph c&j.sample degree distribution related to the test kerndtima
produce samples that are not representative of the cpnwnu@kttest (see Section 11I-C), they are quite similar (see Fig. 5).
structure of the larger network. Recently a new quality fun€rys implies that the active selected subset is meaningfdl a

tion describing the representativeness of the sample €&spgiows our model to correctly generalize to unseen nodes, as
to the community structure of the whole graph has begnis a1s0 shown in Table II.

introduced in [6]. This quality function is called expansio Artificial network with © communities

factor (EF) and is defined ag\fg—ﬁ”)', where G indicates a ’
subgraph,N(G) its neighborhood, i.e. the remaining part of g ™~
the network to whicl@ is connected, anff is the cardinality of & *
a set. The idea is that by selecting a subgraph for which thg
expansion factor is maximum, one samples a representativi

subgraph. Roughly speaking, by including ¢h nodes that o Number of terations >
best contribute to the expansion factor, we are taking nod
that are more connected to the rest of the network thag. to
These nodes are then very likely to belong to clusters not
yet represented in the subgraph, allowing us to produce
sample which is a condensed representation of the communi
structure of the whole network.

Here we propose a greedy strategy for the optimization o
the expansion factor EF, that can be summarized as follow:

sion factor

er—%g. 2. Example of the greedy optimization of the expansactdr EF.

Algorithm EF Subset selection maximizing expansion factor

Input: network of N nodesV = {n;}X, (represented as the ’I ‘ ‘ | “ ‘ .

adjacency matrixd € RV*Y), size of subgrapln

Output: active set ofm selected nodes
1) select randomly an initial subgragh= {n;}7, C V
2) repeat
3) computeEF(G)

4 randomlv pick n n _ Fig. 3. Degree and betweeness centrality distribution remof nodes) of
) ando y pick two odesas €Va dn+ €ev-¢ the entire starting synthetic network with communities (top left and top

Bin division Bin division

5) let {W =V- {n*}} U {”+} right) and of a typical active set selected from the algamitBF (bottom left

6) if EF(W) > EF(G) and bottom right). We can notice that the representativenéthe set in terms
of community structure can not be related to its represeetass in terms

7 Syvap{n+},{n* ) of degree distribution.

8) end if

9) until change inE'F value is too small (according to a

thresholde) V1. DESCRIPTION OF THE DATASETS
10) return G Real and artificial datasets are investigated. The software

provided by Fortunato related to the paper [17] is used te pro
The selection of the active subset can take from a few tlhuce the unweighted synthetic graphs, while the real datase
several minutes or hours depending on the siWeof the that are studied here are now classic real-world networks
entire network and its density, the chosen sizefor the present in the literature. A short description of the data is
active subset and the thresheld furnished in Table I.



Active selection of training subgraph

éx("‘* 1

% of the whole network used as iFaining set

Random selection of training subgraph

BN EER]

Zoof
<.

% of the whole network used as frsaining set

Fig. 4. Results related to the analysis of the artificial rekwvwith 9
communities described in section VI-A

Degree distribution of the entire kernel matfix

Degree distribution of2;c s+

Fig. 5. The degree distribution related to the full kerneltniwma(of size

3000 x 3000) describing the similarity between the nodes of the networl

Art_9C is pictured in the first row. In the second row the degdeéstribution
associated to the test kernel matrix (of siz@00 x 300) is shown. The two
distributions look like quite similar, meaning that the rebdrained on the
active selected subset can generalize well in the test phase

A. Synthetic networks

Three graphs are investigated:

« Art_9C: a benchmark network witt3 000 nodes and
22904 edges formed by communities.

o Art_13C: an artificial network with10000 nodes and
76 789 edges formed by3 communities.

o Art_22C: a synthetic graph wittb0000 nodes and
383220 edges formed b®2 communities.

Network Nodes | Edges | Sparsity (%)
Art_9C 3000 22904 99.49
Art_13C 10000 76 789 99.85
Art_22C 50000 | 383220 99.97
Yeast pro | 2114 4480 99.90
Power grid | 4941 6 594 99.95
TABLE |

SUMMARY OF SOME PROPERTIES OF THE GRAPHS ANALYZED IN THIS
PAPER SPARSITY REFERS TO THE ADJACENCY MATRIX ASSOCIATED TO
EACH GRAPH AND INDICATES THE PERCENTAGE OF ZERO ENTRIES WITH

RESPECT THE TOTAL NUMBER OF ELEMENTS OF THE MATRIX

B. Real networks

The graphs under investigation are:

o Yeast pro: interaction network data for yeast formed
by 2114 nodes and4 480 edges. As explained in [18]
proteins can have direct or indirect interactions with one
another. Indirect interaction refers to being a member of
the same functional module (e.g., transcription initiatio
complex, ribosome) but without directly binding to one
another. In contrast, direct interaction, refers to tworami
acid chains that bind to each other. Obviously, many of
these interactions reflect the dynamic state of the cell
and are present or absent depending on the particular
environment or developmental status of the cell. However,
the sum of existing and potential interactions altogether
defines the protein network and is ultimately encoded
within the genome of a given organism.

o Power grid: the network of Western USA power grid [19]
formed by 4941 nodes and6 594 edges. The vertices
represent generators, transformers and substations, and
edges represent high voltage transmission lines between
them.

VIlI. SIMULATION RESULTS
A. General overview

In the case of the synthetic networks, in order to compare
the memberships predicted by the kernel spectral clusterin
model with the true memberships the ARI index is used. On
the other hand, in the case of the real datasets, to assess
the quality of the clustering produced by the model, the
k/lodularity of the predicted partition is calculated. Figathe
computation time associated to the analysis of the grapéisrun
study refers to the test stage, since in comparison the time
needed to find the parameters of the model during the training
phase (calculating the kernel matrix and solving the rdlate
eigenvalue problem) is negligible. Moreover, the trainivag
to be done just once: in fact, each time we need to calculate
the membership of a new node in a network, we just need
to extend the trained model on it. All the results, related
to the test and (if any) validation stage are summarized in
Table Il and Figures 6, 7. For the power grid network, the
model selection procedure performed here gives us another
indication regarding the number of cluster in which to désid
the network compared to the model selection performed in
[3]. The suggested divisions are both good in terms of their
quality. For instance all the partitions with Modularitylua
above0.51 can be taken into account. In this paper we take into
consideration the new resultqd communities), since here the
average Modularity achieves a clearer maximum on a wider
range of possible choices. In Table Il also the resultsiobth
using the Nystrom method are shown: only the synthetic
graphs are considered, in order to make a more objective
comparison with our model.

B. Comparison with the Nystrém method

The Nystrom method is a technique for finding numerical
approximations of eigenfunctions. It has been proposed in



[20] to reduce the computational burden in spectral clirsger : Number of detected clusters:
eigenvalue problems. In fact, it allows one to extrapolate t i
complete grouping solution using only a small subset eterhc
randomly from the whole dataset to partition. From Tableg
Il we can notice that the kernel spectral clustering model - N
on average performs better than the Nystrom method for al ... -
the graphs but the network Art_22C. In this case, howevelr, cemm e
the Nystrém method needs at le@si00 randomly selected Fig. 6. Validation procedure for the protein interactiortwrk.
nodes in the initial working subset in order to perform the
clustering task. On the other hand less nodes are required by
the active selection technique to obtain a good subgrapgedh ~ -=f
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observations require additional investigations to be erlyp iz
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C. Complexity

Finally, a further analysis related to the computation time 5w
required by the kernel spectral clustering model is shown in
Figure 10: the computational complexity seems tahev?),
where N indicates the number of nodes of the whole graph.
However, it mainly depends on the number of training nodes
For other networks it can happens that less nodes are needec
the training subgraph in order to obtain a good clusterirtgén
test stage, thus reducing the computational complexitys Th
performance can be considered already good and competitiy
with many of the best existing algorithms for community
detection (see for example sectidr3 in [21]).

NUmber of clusters
Fig. 7. Validation procedure for the power grid network.

Fig. 8. Partition discovered by the kernel spectral clusgermodel for

Synthetic Size training | ARI CPU time () th_e ne_twork of interacting proteins of yeast. Every_cir(&ergsents a cluster
Network set (nodes) with size r(_elated to the number of nodes bel(_)nglng to it. Theitpn _of

AT 9C 300 0.99 398 the circles is not relevant. The edges are the links betweelesbelonging
ArtIlSC 1000 098 187.03 to different communities, with thickness proportional ke thumber of these

intercommunity edges. The nodes and edges in each detemedunity, for

grt_lzzc 2.500 i &7(11 it ?:7!373?7 simplicity, are not shown. The Modularity correspondingthé partition is
Ng?work s;e(no';iaelgl)ng odutarity ime (s) 0.39, meaning that this community structure can be considereanimgful.
Finally, the figure has been made by using the software fgelaretwork
Yeast_pro 1057 0.39 4.93 analysisPaj ek (seehttp://pajek.imfm.si/doku.php
Power grid 988 0.54 21.90
TABLE Il

RESULTS OF THE KERNEL SPECTRAL CLUSTERING MODEL

=3
/ P_/y/ﬁ_&_//

SN
—

S ————

Synthetic Size training | ARI CPU time (s)
Network set (nodes)
Art_9C 300 0.85 £ | 7.82
0.10
Art_13C 1000 08? + | 457.29 Fig. 9. Community structure of the Western USA power griccoigred by
0.0 the kernel spectral clustering model. The comments madd-ifpure 8 are
Art_22C 5000 8;2 + | 14889.68 still valid here. The Modularity statistic related to thiepicted partition is
. 0.54.
TABLE Il

RESULTS OF THENYSTROM METHOD USING10 RANDOMIZATIONS OF THE
INITIAL WORKING SUBSET. THE AVERAGE VALUE AND THE ASSOCIATED
STANDARD DEVIATION ARE SHOWN. THE CPUTIME IS RELATED TO A
SINGLE RUN.

CPU time (s)

D. Final comments [ .
) . Size network T

As a general comment, we can say that the results shown . . .
. . ... _Fig. 10. Computational complexity of the kernel spectraistéring model
in Table Il are good. Indeed, the quality of the partitiong ihe networks analyzed in this paper.

predicted by the kernel spectral clustering model is megfain



according to the related values of the ARI index or theptimization), G0321.06 (Tensors), G.0302.07 (SVM/K&r®.0320.08 (convex MPC),
; Tt 558.08 (Robust MHE), G.0557.08 (Glycemia2), G.058&main-machine) research

Modularity statistic. Moreover we can seg that on a"eragf?%munmes (WOG: ICCoS, ANMMM, MLDM); G.0377.09 (Mechatiics MPC)

our model performs better than the Nystrom method for alwT: PhD Grants, Eureka-Flite+, SBO LeCoPro, SBO Climag8OSPOM, O&O-

: quareeBelgian Federal Science Policy Office: IUAP P6/04 (DYSCO,nBical
the synthetlc graphs blflt the network AI’t_ZZC. Pmbabl_y tFsP>(/§stems, control and optimization, 2007-2011¢4IBBT eEU: ERNSI; FP7-HD-MPC
structure of this graph is such that a random subsampling (pfso-IcT-223854), COST intelliCIS, FP7-EMBOCON (ICR&940), FP7-SADCO (

i ; P ITN-264735), ERC HIGHWIND (259 166¢Contract Research: AMINAleOther:
the nodes is the best strategy for selecting a good workm_g %ei:elmholtz: VGERPOACCM
However, extra research work is needed to understand 8tis |a Rocco Langone is a phd student at the K.U. Leuven, Belgiumlo€alzate is a

issue. Finally, the computation time is reasonable and &an

;Bstdoctoral fellow of the Research Foundation - FlandEW@). Johan Suykens is a
professor at the K.U.Leuven, Belgium. The scientific resuility is assumed by its

potentially improved by a factor 50 or more (see end of sacti@uthors.

IV-C). Furthermore, it is lower than the Nystrom techniqoe f
the largest graphs.

1) Synthetic networks:The agreement between the truel!
memberships and the partitions predicted by the kernetispec [2
clustering model is good for all the cases. Moreover, theltes
are obtained by using a small training subgraph, selected to
be representative of the overall community structure aharais]
terizing the entire network.

2) Yeast_pro:Unlike the analysis performed in [18], we
consider both direct and indirect interactions, for a taial
2114 nodes instead of 870. We found7 clusters, with the
largest component containing about the% of the linked
proteins (and all the proteins with indirect interactioriBiis
outcome is shown in Figure 8 (only the directly interactingl6l
proteins are considered). The community structure found by
our algorithm seems quite attractive for its simplicity,t bu [7]
needs further investigation in order to assess a meaningful
biological interpretation of the discovered modules. 8]

3) Power grid: The main difference with the analysis
performed in [3] is that now we have a representative trginin
set of the whole graph and if in future more nodes will bel®!
added to the network, to infer their membership we just hayg)
to perform the out-of-sample extension based on this trgini
set. Moreover, here we test the ability of our model on the td$!
set represented by the entire network, obtaining a rathed go
result in terms of the Modularity of the discovered partitio
The latter is depicted in Figure 9. (12

(4
(5]

VIIl. CONCLUSIONS [13]

In this paper we applied the kernel spectral clustering
model described in [2] and the model selection proced
proposed in [3] in order to analyze large unweighted netaor
real and artificial. Moreover, we proposed a method to draw
from the whole network a subgraph representative of the!
community structure of the entire network, based on thedyreg; 6]
optimization of the expansion factor [6]. This activelyesstkd
subgraph is then used as training set in the learning procggé
of the kernel machine.

The results obtained, summarized in Table I, are godth]
both in terms of the quality of the discovered partitions and
the computation time needed to perform the analysis. Futyyg,
challenges may relate to on-line learning and very largéesca
problems. 20
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