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Abstract. Many applications using cryptographic hash functions do not
require collision resistance, but some kind of preimage resistance. That’s
also the reason why the widely used SHA-1 continues to be recommended
in all applications except digital signatures after 2010. Recent work on
preimage and second preimage attacks on reduced SHA-1 succeeding up
to 48 out of 80 steps (with results barely below the 2™ time complexity
of brute-force search) suggest that there is plenty of security margin left.
In this paper we show that the security margin is actually somewhat
lower, when only second preimages are the goal. We do this by giving two
examples, using known differential properties of SHA-1. First, we reduce
the complexity of a 2nd-preimage shortcut attack on 34-step SHA-1 from
an impractically high complexity to practical complexity. Next, we show
a property for up to 61 steps of the SHA-1 compression function that
violates some variant of a natural second preimage resistance assumption,
adding 13 steps to previously best known results.

Keywords: hash function, cryptanalysis, SHA-1, preimage, second preim-
age, differential

1 Introduction and overview

After the spectacular collision attacks on MD5 and SHA-1 by Wang et al.
and follow-up work [7IT3I37/40/41/42], implementors reconsider their choices.
While starting a very productive phase of research on design and analysis of
cryptographic hash functions, the impact of these results in terms of practi-
cal and worrying attacks turned out to be less than anticipated (exceptions
are e.g. [I8I36]38]). In addition to collision resistance, another property of hash
functions is crucial for practical security: preimage resistance. Hence, research
on preimage attacks and the security margin of hash functions against those
attacks seems well motivated, especially if those hash functions are in practical
use.

1.1 Motivation: security margin of SHA-1 against preimage style
attacks

SHA-1 continues to get recommended by NIST even after 2010 for applications
that do not require collision resistance [23]. Hence, SHA-1 will globally remain



in practical use for a long time. Even though close to practical collision attacks
for SHA-1 are described in [6/40], it’s resistance against preimage attacks seems
very solid.

1.2 The contribution

Progress in the cryptanalysis of a round-based primitive is often monitored via
considering the highest number of rounds for which an attack method violates
some assumption about the primitive. For preimage attack, the meet-in-the-
middle approach [BITOISIT7I34I35] proved to be successful in doing so. To this
end, we devise methods that exhibit non-ideal behavior regarding variants of
second preimage resistance for significantly more steps of the SHA-1 compression
function (see Sect. . Another concern is the efficiency of attacks. Also here,
we can demonstrate significant efficiency improvements for a step-reduced SHA-1
hash function. Details for this can be found in Section As a summary, see
Section for an overview and a comparison. What is the reason for these
improvements? We exclude preimage attacks and specifically use the knowledge
of a first preimage to get an advantage as an attacker. The approach we use
takes advantage of the existence of differentials with relatively high probability,
i.e. it exploits the similar weaknesses that also led to efficient collision search
attacks.

1.3 Preview of our results on SHA-1

We summarize our results on the second-preimage resistance of SHA-1 hash
function and compression function in Table [T] and [2] respectively. There, they
are compared with preimage attacks of De Canniere and Rechberger from Crypto
2008 [8], and to preimage attacks from Aoki and Sasaki, from Crypto 2009 [3].
The method in this paper is sensitive to changes of the Boolean function used in
the round transformation, hence we distinguish between round-reduced variants
that start from step 0, and those that can start anywhere. Note that [§] is not
sensitive to the Boolean function used, and hence the number of rounds can not
be reduced or extended with a different choice, In case of [3], the impact of the
choice of different starting rounds for the reduced variant is more difficult to
assess, but likely to be limited. Interestingly, whereas we can cover many steps
of the SHA-1 compression function and still show less than ideal properties of
it, we fail to do so for the SHA-1 hash function. The efficiency improvement for
34-step SHA-1 however works for both the compression function and the hash
function.

1.4 Related work

This approach was already proposed for MD4 in its basic form by Yu et al. [44].
There, a characteristic through all 48 steps of MD4 with probability 275 was
used to state that one in 2°6 messages is a weak message with respect to a 2nd-
preimage attack. Leurent noted [I9] that for long messages, this can be turned



Table 1. Comparison of various variants of preimage attacks on the SHA-1 hash
function with reduced number of rounds.

rounds E?Irﬁl;iilgory /prob. type technique source
34 (00-33) [ 277 /2% / > 0.5 2nd-preimage | imp. msg. + P3graph | [§]
34 (00-33) | 222 /negl./ > 0.5 | 2nd-preimage differential Sect.
44 (00-43) | 257 /221 / > 0.5 preimage imp. msg. + P?graph [8]
45 (00-44) | 2'%9/221/ > 0.5 2nd-preimage | imp. msg. + P3graph | [
48 (00-47) | 2593 /219 / > 0.5 preimage MITM 3]
48 (00-47) | 2'59-8 /negl./ > 0.5 preimage MITM [3]
48 (00-47) | 2°927 /negl./ > 0.5 preimage | optimized brute force | [27]

Table 2. Comparison of various variants of preimage attacks on the SHA-1
compression function with reduced number of rounds.

rounds fionr:ler;lri}:algory /prob. type technique | source
34 (00-33) [ 2%9/—/ > 0.5 preimage imp. msg. 8]
34 (00-33) | 1 / negl. /271225 2nd-preimage | differential | Sect.
45 (00-44) | 2'%7/ — / > 0.5 preimage imp. msg. [8]
48 (00-47) | 2'56-7/2%0/ > 0.5 preimage MITM Bl
48 (00-47) | 277 /negl. / > 0.5 preimage MITM 3]
61 (18-79) | 1 / negl. /271942 | 2nd-preimage | differential Sect.

into an attack actually finding a 2nd-preimage with complexity 2°¢. Considering
second preimage attacks on HMAC when instantiated with concrete hash func-
tions, Kim et al. [I6] give e.g. results for MD5 up to 33 out of the 64 steps, and
for SHA-1 for up to 42 steps.

Relations among various notions of preimage-style resistance requirements
are studied in numerous work, e.g. [30/33139]. Using the notation of [33], we study
the aSec property of SHA-1, and show that the SHA-1 compression function is
not ideally aSec-secure for up to 61 steps. An example of a construction that
explicitly uses the second preimage resistance of a compression function appears
in [2].

1.5 Outline of the paper

We start with a simple definition of second preimage resistance for iterated hash
functions in Section [2] followed by a description of SHA-1 in Section [3] The idea
of the attack is presented in Section[d] We apply the ideas to step-reduced SHA-1
and show an attack on the compression function and the hash function SHA-1
in Section [5} Finally, we discuss our findings and open problems in Section [6]



2 Definitions

Let an iterated hash function F' be built by iterating a compression function
f:{0,1} x {0,1}" — {0,1}" as follows:

— Split the message m of arbitrary length into k& blocks x; of size [.
— Set hg to a pre-specified IV

Compute Vz; : hy = f(hi—1, ;)

— Output F(m) = hy

A basic informal definition of second preimage resistance of a hash function is
as follows:

Definition 1. Given F(-), m, it should be hard to find an m* # m such that
F(m*) = F(m). For a hash function with n-bit output size, every guess for an
m* should have success probability of 27", and the work to find an m* should be
no less than 2™.

Def. 1) applies analogously to a compression function, i.e. with a fixed length in-
stead of arbitrary length input. For a more formal treatment, we refer to [30J33/39].

3 Description of SHA-1

SHA-1 is an iterative hash function that processes up to 2%° 512-bit input mes-

sage blocks and produces a 160-bit hash value. Like many hash functions used
today, it is based on the design principle of MD4, pioneered by Rivest [32]. In
the following we briefly describe the SHA-1 hash function. It basically consists
of two parts: the message expansion and the state update transformation. A
detailed description of the hash function is given in [24].

Table 3. Notation

notation |description
X @Y |bit-wise XOR of X and Y
X 4+ Y |addition of X and Y modulo 232
X arbitrary 32-bit word
X?  |pair of words, shortcut for (X, X*)
M; |input message word i (32 bits)
W;  |expanded input message word t (32 bits)
X < n |bit-rotation of X by n positions to the left, 0 < n < 31
X >> n |bit-rotation of X by n positions to the right, 0 < n < 31
N number of steps of the compression function




3.1 Message expansion

The message expansion of SHA-1 is a linear expansion of the 16 message words
(denoted by M;) to 80 expanded message words W;.

; <1<
Wi:{ M; for 0<1i<15, (1)

(Wis @Wi_g ®@W_14®W;_16) 1 for 16 <i<79.

3.2 State update transformation

The state update transformation of SHA-1 consists of 4 rounds of 20 steps each.

In each step the expanded message word W; is used to update the 5 chaining
variables A;, B;, C;, D;, E; as follows:

Ai+1 =F,+A K5+ f(By, O,,Dl) =+ Kj + W;

Bip1 = A;
Cirt = B; > 2
Dy =C;
Eitn =D,

Note that the function f depends on the actual round: round 1 (steps 0 to 19)
use frr and round 3 (steps 40 to 59) use fasay. The function fxor is applied in
round 2 (steps 20 to 39) and round 4 (steps 60 to 79). The functions are defined
as follows:

fir(B,C,D)=BAC®BAD (2)
fmas(B,C,D)=BAC®BAD®CAD (3)
fxor(B,C,D)=B&C&D . (4)

After the last step of the state update transformation, the chaining variables
1407 Bo, CQ, Do, EO and the Output values of the last step Ago, Bgo, 0807 Dgo, ESO
are combined using word-wise modular addition, resulting in the final value of
one iteration (feed forward). The result is the final hash value or the initial value
for the next message block.

Note that B; = A;_1, C; = A; o> 2 D; = A, 3> 2 FE; = A;_4 > 2.
This also implies that the chaining inputs fill all A; for —4 < j < 0. Thus it
suffices to consider the state variable A, which we will for the remainder of this
paper.

4 Violating second preimage resistance properties with
differentials

Assuming the existence of a differential with a certain probability p > 27", there
are two ways to use such a differential in 2nd-preimage attacks. One is to simply



use this differential for a single attempt to find a second preimage by being
given the first preimage. With p > 27", this shows less than ideal behavior of
the function, even though on average it hardly speeds up the search for an actual
second preimage. The second way is to apply this differential in an iterated hash
function on individual message blocks, and thereby increasing this probability to
actually find a second preimage. In this setting, if the number of message blocks
that can be tried is larger than p~' a second preimage can be expected with
high probability.

For the description of our approach, we use the framework developed for
SHA-1 characteristics by De Canniére and Rechberger [7], and adapt it to the
second preimage setting at hand. In the following, we briefly recall those parts
that are needed later on.

The expected difference between a particular pair of words X? will be denoted
by VX. For every bit in this pair, we write 'x’ if we expect a difference between
the same bits of both words, and we write ’-" if we do not expect a difference
between those two bits.

Let us assume that we are given a complete characteristic for N-step SHA-1,
specified by VA_4, ..., VAy and VW, ..., VIWx_1, detailing for every bit and
every word in the computation, whether or not we expect a difference at a par-
ticular bit position. Our goal is to estimate how much effort it would take to,
given a message, find another message which follows this characteristic, assum-
ing a simple depth-first search algorithm which tries to determine the pairs of
message words L? one by one starting from L2. In order to estimate the work
factor of this algorithm, we will compute the expected number of visited nodes
in the search tree. But first another definition, which is needed to estimate the
work factor.

Definition 2 ([7]). The uncontrolled probability P, (i) of a characteristic at
step i is the probability that the output A12+1 of step i follows the characteristic,
given that all input pairs do as well, i.e.,

P,(i) =P (A}, € VAiy1 | A7 ; € VA;_j for 0 < j <5, and W? € VIV;) .

With the definition above, we can now easily express the number of nodes N;(7)
visited at each step of the compression function during the second preimage
search.

Taking into account that the average number of children of a node at step 4
is P,(i), and that the search stops as soon as step N is reached, we can derive
the following recursive relation:

‘ 1 ifi=N,
NS(Z): . —1/ oo
Ny(i+1)-P;'(i) ifi<N.

u



It is now easy to see that we have two different quantities that define the
search for a second preimage. One is the number of step computations N,,, which
should be noticeably below 2™- N to be considered an attack. The other one is the
number of distinct message blocks N,,, that need to be tried during the search:

N
Nm:HPu(j)_lzNS(0)~ (6)
j=1

Note that N, could theoretically be above 2™, while the resulting work factor
can still be below an equivalent of 2™ compression function computations. This
is because the tree-based model of the search takes early-stop strategies into
account. However, this only works if in addition to the first preimage, also all
intermediate chaining values that lead to the target hash are already available
to the attacker. This may be the case in certain settings, but is certainly not a
standard assumption for second preimage attacks.

Without this additional assumption on data available to an attacker, the
workfactor is in fact

N
Ny=N-[[Pu()~". (7)
j=1

We will refer to this as setting 2, and will use setting 1 (and Eq. when we
assume the availability of internal chaining inputs.

5 Application to SHA-1

In order to find attacks on the SHA-1 compression function, or the SHA-1 hash
function, characteristics need to be found that result in a workfactor N,, which
should be noticeably below 2™ - N. The search algorithms we used are based
on methods developed in the early cryptanalysis of SHA-1 regarding collision
attacks [A20026/31] with the improvement that exact probabilities as described
in [7] instead of Hamming weights are used to prune and rank them. More
recent characteristic search algorithms (e.g. [7T212TJ43]) which exploit the fact
that non-linear propagation of differences with low probability can be useful
in collision attacks do not appear to be applicable to the setting considered
in this paper. Depending on whether the hash- or the compression function is
considered, the chaining input VA_4 ...V Aq is allowed to have a difference or
not.

In order to explain various aspects of the method, we consider two case
studies. The first is the SHA-1 hash reduced to the first 34 steps and discussed
in Section [5.1] There we show that better attack complexities can be obtained.
The second is the SHA-1 compression function reduced to 61 steps and discussed
in Section [5.2] There we aim for having results on a higher number of steps.

5.1 Hash function attacks: 34-step SHA-1 as a case study

To illustrate the techniques, we consider SHA-1 reduced to the first 34 steps,
and walk through the attack reasoning. We aim for a second-preimage attack



on the hash functions, i.e., we require from a characteristic that input- and
output chaining do not have a difference. The best characteristic we found for
our purpose is the same as the one used by Biham et al. [4, Tab. 1] for a collision
attack, and is also related to those used in Kim et al. [I6, Tab. 6], and in [28]
Tab. 6]. First, we recompute the probabilities P, (i) of the differential specified

Table 4. Characteristic with probability 274242 used for the 34-step (0-33)
attack. P, (i) is written as a logs, and N(7) is written as logs as well.

i VA YW; Py (D) [ Ns ()
-4

-3

-2

-1

0 1 |42.42
1 2 41.42
2 3 |39.42
3 2 36.42
4 3 34.42
5 2 [31.42
6 2.42 |29.42
7 x---= 3 |27.00
8 X 4 24.00
9 2 [20.00
10 x: 3 |18.00
11 X 4 15.00
12 0 |11.00
13 0 11.00
14 1 |11.00
15 2 10.00
16 3 | 8.00
17 o | 5.00
18 o | s.00
19 o | s.00
20 1 5.00
21 1 4.00
22 1 | 3.00
23 1 2.00
24 1 1.00
25 0 0.00
26 o | o0.00
27 0 0.00
28 o | o0.00
29 o | 0.00
30 o | o0.00
31 o | o0.00
32 0 0.00
33 o | o0.00
34

by the message difference m’, and the chaining output co’ (a zero difference).
What we are interested in is the probability that, given an m’ from a uniform
distribution, F(m) = F(m®&m'). A good lower bound for this probability is the
probability of the particular characteristic as shown in Table 4] which is 274242,

Taking into account also other, strongly related characteristics with lower
probability (see [2212528/29] for details), we would arrive at an improved proba-
bility of 274225, The second-preimage finding algorithm hence needs to traverse
the first preimage of a length of about 24225 (N,,) message blocks in order to
succeed with good probability. The memory requirements for this are negligible
as the first preimage can be processed in an on-line manner. In setting 1, when
intermediate chaining values are also given, most of the time only the first few
step transformations are computed. Hence the computational resources needed
in terms of computing step transformations are about an equivalent of 23787
computations of 34-step SHA-1 (N, according to Eq. , taking the early stop



technique into account. Without this assumption, the computational effort is
hence about 24225 (N, according to Eq.[7).

Comparisons with results obtained by De Canniére/Rechberger. On
one hand, this may be compared with the result from [8], where memory of
order 2™ and an equivalent of about 277 computations are needed to find a
second preimage of 34-step SHA-1 with good probability (a first preimage may
be as small as 2° message blocks with this approach, but longer first preimages
do not help to improve the attack).

Comparison with the generic Kelsey/Schneier 2nd-preimage attack.
On the other hand, this may be compared with the generic method of Kelsey
and Schneier. In [I4], Kelsey and Schneier describe a second preimage attack on
iterated hash functions that is independent of the actual compression function.
The approach finds a second preimage for a 2F-message-block message with
about kx 27/2+t1 1 2n=k+1 work. It was then later generalized to also take, among
other aspects, multiple targets into account [I]. Those attacks do not concern our
results on the SHA-1 compression function, but need to be taken into account
when considering the SHA-1 hash function. The new 2nd-preimage result we
described above needs about 242-25 message blocks in order to succeed with good
probability, i.e. k = 42.25. Using the Kelsey/Schneier approach, the resulting
attack complexity is of order 42.25 x 2160/2+1 4 9160—-42.25+1  9118.75 Hepce,
even by neglecting some constants in time complexities comparison, it seems safe
to conclude that the proposed differential based method is considerable faster.

5.2 Compression function attacks: 61-step SHA-1

To further illustrate that the availability of a first preimage helps to improve
upon current preimage attacks on reduced SHA-1, we also seek to increase the
number of steps in which results can be obtained. For this, we relax our require-
ments on 2nd-preimage attacks in three ways:

1. No practical complexity or probability, better than the ideal 27" is enough.

2. We do no longer require it to beat the generic Kelsey/Schneier result, i.e.
the result will only be valid for the compression function rather the hash
function (as Kelsey/Schneier does not apply there).

3. Any choice of consecutive steps is allowed instead of starting with step 0.

By exploiting all those relaxations, we demonstrate attacks for up to 61 steps,
thereby having reached more steps than in any compression function attack on
SHA-1 before. We used the characteristic given in Table [f] The product of all
uncontrolled probabilities P, suggests a probability of 2715842, However, this
does not take the feed-forward operation into account. For the previous example,
this was ignored safely, as no probabilistic events happen during the feed forward
operation. As can be seen in Table [5] however, we do have a single bit difference



Table 5. Characteristic with probability 2715842 used for the 61-step (18-79)
attack. P, (4) is written as logs

i VA; YW, Py (1)
-4
-3
-2
-1
0 1.00
1 0.00
2 0.00
3 0.00
4 0.00
5 1.00
6 1.00
7 2.00
8 2.00
9 5.00
10 x-x---| 4.00
11 xx 4.00
12 pes 5.00
13 -xx 6.00
14 4.00
15 -X: 4.00
16 x; 3.00
17 3.00
18 xx 5.00
19 x: 3.00
20 xx 5.00
21 x| 4.00
22 x----| 5.00
23 5.00
24 x: 5.00
25 -x: 5.00
26 x--x-| 7.00
27 6.00
28 x; 5.00
29 XX 6.00
30 xx 4.00
31 2.00
32 2.00
33 1.42
34 x---o- 3.00
35 4.00
36 4.00
37 x; 5.00
38 4.00
39 3.00
40 2.00
41 2.00
42 1.00
43 1.00
44 X 2.00
45 2.00
46 2.00
a7 1.00
48 1.00
49 1.00
50 0.00
51 0.00
52 0.00
53 0.00
54 0.00
55 1.00
56 1.00
57 1.00
58 1.00
59 1.00
60 0.00
61

in the chaining input and chaining output. We do require these differences to
cancel out during the feed forward operation, which happens with probability

1/2. Hence a lower bound for the probability to indeed have a second preimage
is 2—159.42.

As before, by taking into account also other, strongly related characteristics
with lower probability (see [221252829] for details), we would arrive at an im-
proved probability of 27159-42+1.61 — 915781 'This probability is above the ideal
27160 hence exhibiting less than ideal 2nd-preimage resistance.
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Comparisons. The best results in terms of number of rounds on the SHA-1
compression function following the impossible message approach [8] is 45 steps.
Also this approach is not able to take advantage of the relaxation of condition
(3) from above. Following the meet-in-the-middle approach, the best result is
on 48 steps [3]. There, relaxation of (3) may lead to a slightly better result, but
most likely not more than for 1-4 steps.

6 Discussion and open problems

Our results on the second preimage resistance of SHA-1 complement earlier
analysis regarding its preimage resistance. Both, attacks for more rounds, and
more computationally efficient attacks, can be obtained if the existence of a first
preimage (especially if it is long) can be assumed. Our results also complement
similar results on the iteration mode [IIT4]: also there, better second preimage
attacks than preimage attacks were obtained. A lesson to be learned from our
results are as follows. In the preimage setting, when it comes to squeezing out
the most in terms of number of rounds or in terms of attack complexity, the help
provided for an attacker by being given an existing preimage is most of the time
not used in earlier preimage-style cryptanalysis of the SHA family.

Overall, applications requiring 2nd-preimage resistance of SHA-1 are not en-
dangered by our results. Even though SHA-1 is arguably one of the more inter-
esting cryptanalytic targets, it will be interesting to see this approach considered
for other hash functions as well.
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