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ABSTRACT 

An efficient computational approach based on a generalized unconstrained approach in conjunction 

with isogeometric analysis (IGA) are proposed for dynamic control of smart piezoelectric composite 

plates. In composite plates, the mechanical displacement field is approximated according to the 

proposal model using isogeometric elements and the nonlinear transient formulation for plates is 

formed in the total Lagrange approach based on the von Kármán strains and solved by Newmark time 

integration. Through the thickness of each piezoelectric layer, the electric potential is assumed linearly. 

For active control of the piezoelectric composite plates, a close-loop system is used. An optimization 

procedure using genetic algorithm (GA) is considered to search optimal design for actuator input 

voltages. Various numerical examples are investigated to show high accuracy and reliability of the 

proposed method. 
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1. Introduction 

Piezoelectric materials belong to a smart material class that expresses electromechanical coupling. The 

development of smart structures integrated with sensors and actuators offers a considerable interest in 

many engineering applications: structural health monitoring, automotive sensors, actuators, vibration 

and noise suppression, shape control and precision positioning, etc. The main feature of smart 

materials is transformation between mechanical energy and electric energy. When the application of 

electric field to piezoelectric structures is considered, the mechanical deformation is generated. This  is 

known as the converse phenomenon of piezoelectric effect [1,2]. 

With the advantages of piezoelectric materials, various numerical methods have been devised. 

Mitchell and Reddy [3] presented the classical plate theory (CPT) using the third order shear 

deformation theory (TSDT) to obtain the Navier solution for composite laminates with piezoelectric 

lamina. Suleman and Venkayya [4] used the classical laminate theory (CLT) with four-node finite 

element to investigate static and vibration analyses of a laminated composite with piezoelectric layer 

based on hourglass stabilization and reduced numerical integration Victor et al. [5] developed the 

higher order finite formulations based on an analytical solution to investigate the mechanics of 

composite structures integrated with actuators and sensors. Liew et al. [6] studied post-bucking of 

FGM plates integrated with piezoelectric under thermo-electro-mechanical loadings using a 

semi-analytical solution with Galerkin differential quadrature integration algorithm based on the 

higher-order shear deformation theory (HSDT). The radial point interpolation method (RPIM) 

combined with the first order shear deformation theory (FSDT) and the CPT with rectangular plate 

bending element were investigated by Liu et al. [7,8] to compute and simulate the static deformation 

and responses of smart plates. In addition, Hwang and Park [9] studied piezoelectric plates using the 

discrete Kirchhoff quadrilateral (DKQ) element and the Newmark β -method to analyze the direct time 

responses of the plate subjected to negative velocity feedback control. A HSDT-layerwise generalized 

finite element formulation [10] and the layerwise based on analytical formulation [11] were 

investigated to study piezoelectric composite plates. Finite element (FE) formulations based on HSDT 

for analysis of smart laminated plates was studied in [12]. Ray and Mallik [13] used FEM to study 

smart structures containing piezoelectric fiber-reinforced composite actuator. Nonlinear analysis for 

composite structures using some finite element methods (FEMs) were reported in Refs. [14-16]. It was 

proved in [17] that free vibration analysis using FEM leads to less accurate solution for high 
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frequencies. Such shortcomings become more challenges in coupled-field problems as piezoelectric 

structures. 

For vibration control, Bailey et al. [18] and Shen et al. [19] investigated smart beams integrated with 

layers using analytical solutions. Tzou and Tseng [20] used a thin hexahedron solid element to examine 

dynamic control of piezoelectric plates and shells. The meshfree model based on FSDT was presented 

by Liew et al. [21] to simulate shape control of piezoelectric composite plates with different boundary 

conditions. Wang et al. [22] used FEM to investigate dynamic stability of piezoelectric composite 

plates, where the governing equations of motion using Lyapunov’s energy [23]  with active damping 

was used. Active control of geometrically nonlinear of composite structures was examined in Refs. 

[24,25]. Recently, isogeometric analysis (IGA) has been developed to investigate the piezoelectric 

composite plates by Phung-Van et al. [26]. However, nonlinear transient analysis has not considered in 

their previous work.  

For optimal control, Kumar et al. [27] and Rao et al. [28] used GA to study the optimization 

problems for finding optimal piezo location on a cantilever plate and a two-bay truss. Chang-Qing et al. 

[29] investigated optimal control of piezoelectric structures using independent modal space control 

(IMSC). Optimal location of piezoelectric using GA for vibration control of structures was investigated 

by Bruant et al. [30]. In their work, two variables for each piezo-electric device in an optimization 

problem, the location of its center and its orientation, are considered. A closed-form solution based on 

the linear quadratic regulators (LQR) for the optimal control of piezoelectric composite plates was 

reported in [31].  

It is known that FSDT requires the shear correction factors to ensure stability of solutions, but high 

accuracy of stresses is not guaranteed. HSDTs have then been developed to overcome the 

shortcomings of FSDT without any shear correction factors. Among HSDTs, the unconstrained third 

order shear deformation theory (UTSDT) [32] showed an alternative and effective approach for 

laminated plate structures. In addition, UTSDT allows us to relax traction-free boundary condition at 

the bottom and the top surfaces of plates, which is commonly required in HSDTs. The appearence of 

the unconstrained theory opens future applications of the UTSDT to the problems considering flow 

field in which the boundary layer of stresses is significant. The differential equations for UTSDT are of 

similar complexity to those of TSDT. This approach produces more accurate solutions [33]. Responses 

of the laminated plates using UTSDT were also investigated in [33]. Static and free vibration analyses 

of composite plates using radial point interpolation method (RPIM) combined with UTSDT were 



4 

 

reported in [34]. In UTSDT, the displacement field includes seven displacement components. More 

importantly, we here propose a generalized unconstrained HSDT that also uses seven displacement 

components like UTSDT, but higher order rotations depend on an arbitrary function f(z) through the 

plate thickness.  

Hughes et al. [35,36] developed isogeometric analysis (IGA) with the original objective of 

integrating Computer Aided Design (CAD) and FE analysis. The basic functions of IGA are the same 

with those of CAD (most notably NURBS or T-Splines). One of features of IGA is that it can easily 

achieve any desired degree of basic functions through the choice of the interpolation order, as opposed 

to traditional FEM where C
0
 inter-element continuity is normally achieved. In the past few years, IGA 

has been successfully applied to various fields. Particular relevancy to this paper is the study of 

structural vibrations and the development of shell and plate isogeometric elements [37-45]. So far, 

there are few papers related to nonlinear analysis using IGA for composite plates based on FSDT 

[46,47], Euler–Bernoulli beams [48], shells [49] and so on. Apparently, there are no researches on 

geometrically nonlinear transient based on isogeometric analysis for the piezoelectric composite plates. 

Hence, we propose an efficient approach to fill this research gap via a generalized UHSDT and IGA. 

For reference, it is termed as IGA-UHSDT. The method will be applied for active control of 

geometrically nonlinear transient responses and optimization of smart piezoelectric composite plate 

structures. The IGA-UHSDT is used to approximate the displacement field of smart plates. Through 

the thickness of each piezoelectric layer, the electric potential is assumed linearly. The nonlinear 

transient formulation for plates is formed in the total Lagrange approach based on the von Kármán 

strains and solved by Newmark time integration. An optimization procedure based on GA is considered 

to find optimal input voltages. The reliability and accuracy of the method are confirmed by numerical 

examples.   

 

2. A brief of NURBS basis functions 

A knot vector { }1 2 1, ,..., n pξ ξ ξ + +=Ξ  is defined by a sequence of parameter values i ∈ξ R , 

1,...,i n p= +  . The knot vector is called open knot if the first and the last knots are repeated p+1 times. 

A B-spline basis function is C
∞ 

continuous inside a knot span and C
p-1

 continuous at a single knot. The 

associated B-spline basis functions are defined recursively starting with the zero
th

 order basis function 

(p = 0) and a polynomial order p ≥ 1, 
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From the tensor product of basis functions with two knot vectors { }1 2 1, ,...,
m q+ +=Η η η η and 

{ }1 2 1, ,...,
n p+ +=Ξ ξ ξ ξ

 
the B-spline basis functions can be obtained as 

Figure 1 plots two sets of univariate quadratic and cubic B-splines, { }1 2 3 3 4

5 5 5 5 5
0, 0, 0, , , , , ,1,1,1=Ξ

 
and 

{ }1 1 3

4 2 4
0, 0, 0, 0, , , ,1,1,1,1=Η , respectively. 

Furthermore, the NURBS functions are expressed by adding an individual weight
Aζ . A NURBS 

functions are defined by their order, a set of weighted control points, and a knot vector. NURBS 

functions represent exactly circles, spheres, conic, cylinders sections. They have most of the properties 

of B-splines and can be expressed as 

Of course, the B-spline basis function is a special case of NURBS one. 

3. Theory and formulation of piezoelectricity  

A piezoelectric composite plate is considered and illustrated in Figure 2. Lower and upper layers of the 

composite plate are piezoelectric layers. The UHSDT is used to approximate the variable 

displacements for the composite plate, while the electrical displacements are assumed to be 

independent. 

3.1 UHSDT  

The unconstrained theory based on HSDT can be rewritten in a general form using an arbitrary function 

f(z) as follows  
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where u0, u1, u2, v0, v1, v2 and w are displacement variables; x, y, z are components of the Cartesian 

coordinate system Oxyz and t is the time.  For UTSDT in Ref. [32], the function f(z) = z
3 

is used. 

Generally speaking, f(z) can be defined as a continuous function such that its first derivative is 

nonlinear through the plate thickness. Moreover, there exists an optimal function fop(z) yielding best 

accurate solutions. However, the finding of fop(z) remains an open question. In what follows, we 

introduce a new function ( )f(z)= arctan z that ensures that its first derivative is nonlinear through the 

plate thickness and solutions are more accurate than for the case of f(z) = z
3
. 

For a plate bending, the strain vector is presented by 

1 1

2 2

ji k k

ij

j i i j

uu u u

x x x x
ε

 ∂∂ ∂ ∂
= + +  ∂ ∂ ∂ ∂ 

 (5) 

Following the Von Karman theory, Eq. (5) can be rewritten as 
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0 1
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p m

s s s
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f z
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 (6) 

where  

2
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2
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0 1

1 , 2

1
, , ,

2
2

,
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m y y L NL y y
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xs s

y

u w u u
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= + = + =      
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 (7) 

in which the nonlinear component is computed as 

,
,

,

,

, ,

0
1 1

0
2 2

x
x

NL y

y
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w
w

w
w

w w

θ

 
    

= =  
   

 

A θεεεε  (8) 

The material behaviour of smart composite plates is expressed as follows [50,51] 

T −   
=     

    

σ c e

D Ee g

εεεε
     (9) 

where 
T

p s
[ε ε ]ε =ε =ε =ε =  and σ  are the strain vector and the stress vector, respectively; g denotes the 

dielectric constant matrix and D is the dielectric displacement; e is the piezoelectric constant; E, the 

electric field vector, can be defined as 

gradE φ= −  (10) 

in which φ  is the electric potential field; and c, the elasticity matrix, is defined as 
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in which 
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where ijQ  is calculated as in [52]. 

3.2 Approximation of mechanical displacements and electric potential field  

3.2.1 Mechanical displacements 

Using NURBS basic function, the field u of the composite plate is approximated as 

( ) ( )
1

, ,
m n

h

I I

I
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×

=

=∑u d  (13) 

where [ ]0 0 1 1 2 2

T

I I I I I I I I
u v u v u v w=d , and NI is the shape function as defined in Section 2. 

Substituting Eq. (13) into Eqs. (6)-(8), the strains can be rewritten as 
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and NL

I
B  is calculated by 

,
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3.2.2 Electric potential field 

The electric potential field is approximated as follows [54] 

    ( )i i i
z φφ = N φφφφ  (17) 

where 
i

φN  is the shape functions defined in section 2 with p = 1, and  1 ( 1, 2,...., )i i i

subi n− = = φ φφφφφ  

in which nsub is the number of piezoelectric layers. 

In each piezoelectric element, electric potentials are assumed to be equal at height along the 

thickness [51,53]. The E in Eq. (10) is rewritten 

    i i i

φ φ= −∇ = −E N Bφ φφ φφ φφ φ  (18) 

Note that, for the type of piezoelectric materials considered in this work e and g of the k
th

 layer in the 

local coordinate system can be written as follows [54] 

    ( )

( )

( )

( )
15 11

15 22

31 32 33 33

0 0 0 0 0 0 0

0 0 0 0 0 ; 0 0

0 0 0 0 0

k k

k k

d p

d p

d d d p

   
   = =   
      

e g  (19) 

The piezoelectric constant matrix for the k
th

 layer in the global coordinate system is given by 

    ( )

( )

( )

( )
15 11

15 22

31 32 33 33

0 0 0 0 0 0 0

0 0 0 0 0 ; 0 0

0 0 0 0 0

k k

k k

d p

d p

d d d p

   
   = =   
     

e g  (20) 

where ij
d  and iip  are calculated similar to ij

Q  in Eq. (12). 

3.3 Governing equations 

The equations for the smart plate are written 

    
0

0 0

uu uuu

u

φ

φ φφ

       
+ = ⇔ + =       
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2

0
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in which q0 is a uniform load; 0 0 0 0 0 0 ;IN  =N
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Substituting the second row of Eq. (21) into the first row, Eq. (21) can be expressed as 

      ( )1 1

uu u u uφφ φφφ φ φ
− −+ + = +Md K K K K d F K K Q��  (25) 

 

4. Active control analysis  

We now consider a composite plate integrated piezoelectric with n (n ≥ 2) layers as shown in Figure 13. 

The sensor layer (the bottom layer) is denoted with the subscript s and the charge Q is considered to be 

zero. Using the second row of Eq. (21), the sensor output can be expressed by 

    
1

s u ss sφφ φ
−   =    K K dφφφφ  (26) 

where Gd and Gv  are the constant gains of the displacement feedback control and velocity feedback 

control, respectively. 

The control law on the actuator layer, labeled with the subscript a, can be defined by [7] 

    a d v ss
G G= + �φ φ φφ φ φφ φ φφ φ φ  (27) 

Substituting Eqs. (26)-(27) into Eq. (21), we obtain 

    
1 1

a uu a d u s v u ssa a s s a s s
G Gφφ φφ φ φφ φφ φ

− −             = −             Q K d K K K d K K K d�−−−−  (28) 

Substituting Eqs. (26) and (28) into Eq. (25), one writes 

      *+ + =Md Cd K d F�� �  (29) 

where 

      
* 1

uu d u us s s
G φ φφ φ

−     = +      K K K K K  (30) 

and the active damping matrix, C, can be computed by 

      
1

v u ua s s
G φ φφ φ

−     =      C K K K  (31) 

Without effect of the structural damping, Eq. (29) can be rewritten as 

      
*+ =Md K d F��  (32) 

For static analyses, Eq. (29) reduces to 

      * =K d F  (33) 

 

5. Nonlinear transient analysis 

The equation for nonlinear transient analysis shown in Eq. (21) is now considered. At initial time, t = 0, 

displacements, velocities and accelerations are zero. Based on the Newmark method [55], a new state, 



10 

 

i.e., the first and second derivative of displacements at ( 1)m t+ ∆ , is found using the following 

formulations  

1 12

1 1 1
( ) 1

2
m m m m m

t tβ β β+ +

 
= − − − − 

∆ ∆  
q q q q q�� � ��  (34) 

1 1(1 )m m m mt tγ γ+ += + ∆ − + ∆q q q q� � �� ��  (35) 

where β = 0.25  and γ = 0.5 as in Ref. [56]. 

Substituting  Eq. (34) into Eq. (21), we obtain 

1 1 12 2

1 1 1 1
1

2
m m m m m m

t t tβ β β β
+ + +

    
+ = + + + −    

∆ ∆ ∆    
K M q f M q q q� ��  (36) 

To solve Eq. (36), the Newton-Raphson method [57] is used in this work and the residual force, φ , 

is introduced to present errors of the approximation. During each iteration, φ  needs to tend to zeros 

and can be defined at time step ( 1)m t+ ∆ , 
1m+φ , as follows 

1 1 1 1m m m m+ + + += −φ K q f��  (37) 

To have unbalanced residual force, an improved solution, 1

1

i

m

+
+q , can be updated  

1

1 1

i i

m m

+
+ += + ∆q q q  (38) 

where 1

i

m+q  is an approximate trial solution at the i
th

 iteration and ∆q  is the incremental displacement 

and expressed by [58] 

1 /
i

m T+∆ = −q φ K  (39) 

in which TK  is tangent stiffness matrix  

( ) /i

T
= ∂ ∂K φ q q  (40) 

At each time step, Eq. (38) is repeated until the error between two consecutive iterations is less then 

the  tolerance error 

1

1 1

1

i i

m m

i

m

tol

+
+ +

+

−
<

q q

q
 (41) 

6. Numerical validations 

This section shows the performance of the method through various numerical examples. The following 

symbols for boundary conditions are used: free (F), simply supported (S) or clamped (C) edges. The 

symbol, SSSS, represents a rectangular plate with fully simply supported edges. In addition, Table 1 
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shows the properties of the piezoelectric composite plates, including Poisson’s ration (ν), mass density 

(ρ), elastic properties (E), piezoelectric coefficients (d) and electric permittivities (p) and shear 

modulus (G). Note that the properties 1, 2 and 3 in Table 1 refer to the directions of axes x, y and z, 

respectively.  

6.1 Free vibration and of smart plates  

6.1.1 Static analysis 

A square smart plate with length 20 cm under a uniform load q = 100 N/m
2 

plotted in Figure 3 is 

considered. The plate has six layers: two outer piezo layers represented by pie and four composite 

layers. The configurations of the plate are [pie/-θ /θ ]s and [pie/-θ /θ ]as where “as” and “s” indicate 

anti-symmetric and symmetric, respectively; θ  is the fiber orientation. Each layer thickness of the 

non-piezoelectric composite plate is 0.25 mm and the thickness of the piezo layer is 0.1 mm. The 

composite layers are made of T300/976 graphite/epoxy and the piezo-ceramic layers are PZTG1195N. 

First, the effect of input voltages on deflection of the CFFF plate [pie/-45/45]as is shown in Figure 4. 

It can be seen, the present results agree well with those of Refs [7,59]. 

For the SSSS plate, different fiber orientation angles such as [pie/-15/15]as, [pie/-30/30]as, 

[pie/-45/45]as and [pie/-45/45]s are investigated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 plots the deflection of the plate. It can be seen that the results of IGA-UHSDT match well 
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with those of Ref. [7]. In addition, the deflection of plate under different input voltages 0V, 5V, 8V, 10V 

is shown in Figure 5. The deflection decreases for increasing input voltage as expected. The reason is 

that the input voltage induces an upward deflection of the plate due to the piezoelectric effect. This 

upward contribution becomes prevalent for an input voltage of 10V. Similar results were obtained in 

Ref.[7]. Next, the centerline deflection of a plate with configurations [-45/p/45]as and [-15/p/15]as  is 

plotted in Figure 6. Again, we can see that results in Figure 6a match well with those of RPIM in Ref. 

[7]. Also, as the fiber orientation angle decreases, the deflection of the plate increases. 

Furthermore, the deflection of the plate using only mesh of 9×9 elements with different boundary 

conditions (CFFF, SSFF, SSSS) is shown in Figure 7. Again, it can be seen that the present method 

agrees very well with those of RPIM [7]. 

6.1.2 Free vibration analysis 

In this section, the accuracy of isogeometric finite elements is investigated in case of free vibration of 

plates. A SSSS plate [pie/0/90/0/pie] (length a, thickness t and t/a = 1/50) is considered and shown in 

Figure 8. The composite layers are made of Gp/Ep and thickness of two PZT-4 piezoelectric layers is 

0.1t. Two electric boundary conditions are investigated: (1) an open-circuit condition where the electric 

potential remains free; and (2) a closed-circuit condition in which the electric potential is kept zero 

(grounded). The analytical solution for the first natural frequency was studied by Heyliger and 

Saravanos [60]. Victor et al. [5] and Saravanos et al. [11] using finite element formulations were also 

reported to obtain different natural frequencies. 

The dimensionless first natural frequency, ( )2

1
/ 1000f a tω ρ= , is considered where 

1
ω   is the first 

natural frequency. Table 3 shows the dimensionless first natural frequency of the plate with three types 

of elements: quadratic (p = 2), cubic (p = 3) and quartic (p = 4). The results given by the IGA-UHSDT 

formulation are slightly lower than the analytical solution [60]. Besides, we can see that the results of 

the present method are stable in both closed-circuit condition and open-circuit condition similarly to 

the analytical solution in [60], while those of Refs. [5,11] are slightly deviated. This was also addressed 

in [61] to show the better performance of IGA over the conventional FEM in the solution of eigenvalue 

problems. In addition,  
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Table 4 shows the convergence of the first five natural frequencies. Again, it can be seen that the 

IGA-UHSDT results match well with those of Refs. [5,11,60] and are stable for both closed- and 

open-circuit conditions. Figure 9 shows shapes of six eigenmodes. We can see that these shapes reflect 

correctly physical modes of the piezoelectric composite plates as given by the analytical solution.  

Next, a square six-ply plate [pie/-45/45]as is considered. The length of plate is 20 cm and thickness 

of the non-piezoelectric composite plate is 1 mm and each layer has the same thickness. The thickness 

of the piezo-layer is 0.1 mm. The plate is made of T300/976 graphite/epoxy layers and the 

piezo-ceramic is PZTG1195N. Table 5 shows the first ten natural frequencies of the plate using mesh 

of 13×13 B-spline elements with boundary conditions: CFFF and SSSS. It is again confirmed that the 

results of the present method match well with those of Refs. [7,59].  

6.2 Nonlinear analysis of piezoelectric composite plates 



14 

 

6.2.1 An orthortropic plate  

In this section, a SSSS square plate under a uniform loading of q0 = 1 MPa with an aim to verify the 

accuracy of the present method for geometrically nonlinear transient analysis is studied. Material 

properties and the geometry are considered as follows: Young’s modulus E1 = 525 GPa, E2 = 21 GPa, 

shear modulus G12 = G23 = G13 = 10.5 GPa, Poisson’s ratio ν = 0.25, mass density ρ = 800 kg/m
3
, length 

of the plate L = 250 mm, thickness h = 5 mm. Figure 10 shows the normalized central deflection, 

/w w h= , of the plate. It can be seen that deflection responses of present method match well with those 

of finite strip method (FSM) [62]. 

6.2.2 Smart plates  

Now consider a smart plate with material properties and geometrical dimensions are similar to section 

6.1.1. For the plate under mechanical load (parameter load 210
o

q q= × ), Figure 11 shows the nonlinear 

deflection of the plate subjected to input voltages. We see that when voltage inputs increase, 

geometrically nonlinear deflection is upward. Moreover, the central deflection of the plate under input 

voltage 8V with different fiber orientation angles is shown in Figure 12.  

 

6.3 Dynamic control and optimization  

It is well known that structural controls play role advantages and benefits in the practice such as 

reduced energy consumption, improved product, increased safety, etc. The sentence, “control will be 

the physics of the 21st century”, was spoken by Doyle JC (2001) at Conference on Decision and 

Control. As known, feedback and control are important in most technological aspects. In this work, we 

investigate behaviours of the plate under dynamic control. 

6.3.1 Nonlinear transient vibration 

We now consider a plate [pie/-45/45]s under a uniform load q = 100 N/m
2  

that is similar to the plate in 

section 6.1.1. The upper and lower surfaces of plate are bonded to a piezoelectric actuator layer and a 

piezoelectric sensor layer, respectively. We first study the response of static control with meshing 9×9 

and p = 2. The effect of the displacement feedback control gain Gd on the static deflection of the plate is 

shown in Figure 14. It is seen that when Gd increases, the deflections reduce, similarly to what reported 

in [7]. It is observed that as the plate is subjected to loadings, electric charges are generated and 

amplified through the control. Then, the signal is sent to the actuator and a voltage is generated. 

Through the converse effect of piezoelectric, a force is generated and actively controls the behavior of 
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the plate. 

Next, a smart composite plate subjected to sinusoidally distributed transverse loads is investigated. 

The sinusoidally distributed transverse load is expressed as follows 

( ) ( )0 sin sin ( )
yx

L L
q q F t

ππ=  (42) 

 

where 

1

1

1 1

1

1 0
Step load

0

1 / 0
( ) Triangular load

0

Explosive blast loadt

t t

t t

t t t t
F t

t t

e
γ−

 ≤ ≤


>
 − ≤ ≤
= 

>





 (43) 

in which q0 = 4e8 Pa, γ = 330 s
-1

. Figure 15 to Figure 17 show nonlinear transient vibrations of the 

central point of the plate under a closed-loop control. We observe that the response with control is 

smaller than those without control, as expected.  

 

6.3.2 Optimization 

Finally, we investigate optimization problems for actuator input voltages. Material properties and 

dimensions of piezoelectric plate are similar as in section 6.1. From Figure 4 and Figure 5, it can be 

seen that when the actuator input voltage increases, the deflection shape of plate is changed and 

upward. Here we can search an optimal voltage for piezoelectric plate with minimum energy. Figure 18 

depicts the convergence of objective function using GA with 20 generations for the [pie/-45/45]as plate 

(SSSS) using a mesh of 9×9 cubic elements. Table 6 displays energy of plate with different actuator 

input voltages shown in Figure 4 and Figure 5 and the optimal input voltage. We can see that energy of 

plate for case optimal voltage V = 20.7 and 5.4 for CFFF and SSSS plates is minimum.  

 

7. Conclusions 

This paper presented a simple and effective approach based on the combination of IGA and a 

generalized unconstrained approach for dynamic control and optimization of smart piezoelectric 

composite plates. The new function through the plate thickness for the UHSDT was introduced, which 

can enhance the accuracy of the solution. The NURBS basis functions were used to handle any desired 
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degree of smoothness through the choice of the interpolation order and easily fulfills the C
1
-continuity 

requirements for plate elements stemming from the HSDT. In static and free vibration analyses, the 

results of the present method are more accurate than those of several other methods with the lower 

number of degrees of freedom. The proposed approach is highly suitable for dynamic control under the 

nonlinear transient response. We believe that the present approach would provide a reliable source of 

reference when calculating smart piezoelectric composite plates with other methods. 
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FIGURES 

(a) 

Figure 1. B-splines basic functions: a) Univariate quadratic; b) Univariate cubic

 

 

Figure 2. Configuration of a piezoelectric laminated composite plate.
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(b) 

splines basic functions: a) Univariate quadratic; b) Univariate cubic

 
 

. Configuration of a piezoelectric laminated composite plate. 

 

splines basic functions: a) Univariate quadratic; b) Univariate cubic. 
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Figure 3. Square piezoelectric composite plate model. 

 

 

Figure 4. Effect of actuator input voltages on deflection of the piezoelectric composite plate 

[pie/-45/45]as subjected to a uniform loading. 
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(a) [p/-15/15]as (b) [p/-30/30]as 

  

(c) [p/-45/45]as (d) [p/-45/45]s 

Figure 5. Centerline deflection of a simply supported piezoelectric composite plate subjected to 

uniform load and different input voltages. 
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(a) [-45/p/45]as (b) [-15/p/15]as 

Figure 6. Effect of the stacking scheme and the fiber orientations on deflection of piezoelectric 

composite plate under uniform load and different input voltages. 

 

 

Figure 7. The deflection of the piezoelectric composite plates with various boundary conditions. 
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Figure 8. Model of an n-ply piezoelectric composite plate.  

 

 

 

 

 

 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 9. Shape of the first six eigenmodes of a simply supported piezoelectric composite plate: (a) 

Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6. 

 

 

Figure 10. Normalized central defections of the plate under step uniform load  
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Figure 11. Effect of input voltages on nonlinear deflection of the piezoelectric composite plates 

[-45/p/45]as 

 

 

Figure 12. Effect of different fiber orientation angles on deflection of the plate subjected to input 

voltage 8V. 
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Figure 13. A schematic diagram of a laminated plate with integrated piezoelectric sensors and 

actuators.  

 

 

Figure 14. Effect of the gain Gd of the displacement feedback control on static deflections of the 

piezoelectric composite plate. 
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Figure 15. Effect of the control gain on the geometrically nonlinear response of the piezoelectric 

composite plate under step load. 

 

 

Figure 16. Effect of the control gain on the geometrically nonlinear response of the piezoelectric 

composite plate under triangular load. 

 

 

Figure 17. Effect of the control gain on the geometrically nonlinear response of the piezoelectric 

composite plate under explosive blast load. 
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Figure 18. Convergence of objective function using GA with 20 generations. 
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TABLES 

Table 1. Material properties of piezoelectric and composite materials. 

Properties PVDF PZT-4 PZT-G1195N T300/979 Gr/Ep 

Elastic properties 

E11 (GPa) 2 81.3 63.0 150 132.38 

E22 (GPa) 2 81.3 63.0 9.0 10.76 

E33 (GPa) 2 64.5 63.0 9.0 10.76 

G12 (GPa) 1 30.6 24.2 7.1 3.61 

G13 (GPa) 1 25.6 24.2 7.1 5.65 

G23 (GPa) 1 25.6 24.2 2.5 5.65 

ν11 0.29 0.33 0.30 0.3 0.24 

ν23 0.29 0.43 0.30 0.3 0.24 

ν13 0.29 0.43 0.30 0.3 0.49 

Mass density 

ρ (kg/m
3
) 1800 7600 7600 1600 1578 

Piezoelectric coefficients 

d31 = d32 (m/V)  0.046 -1.22e-10 2.54e-10 - - 

d15 (m/V) - - - - - 

Electric permittivities 

p11 (F/m) 0.1062e-9 1475 15.3e-9  - - 

p22 (F/m) 0.1062e-9 1475 15.3e-9  - - 

p33 (F/m) 0.1062e-9 1300 15.0e-9  - - 
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Table 2. Central control point/node deflection of the simply supported piezoelectric composite plate 

subjected to a uniform load and different input voltages (
410 m−× ). 

Input Mesh Method 
Scheme 

[pie/-45/45]s [pie/-45/45]as [pie/-30/30]as [pie/-15/15]as 

0V 5 x 5 IGA-UHSDT (p = 2) -0.5618 -0.5634 -0.5940 -0.6611 

IGA-UHSDT (p = 3) -0.6390 -0.6260 -0.6635 -0.7467 

       9 x 9 IGA-UHSDT (p = 2) -0.6174 -0.6082 -0.6441 -0.7236 

  

IGA-UHSDT (p = 3) -0.6373 -0.6240 -0.6618 -0.7453 

13 x 13 IGA-UHSDT (p = 2) -0.6322 -0.6202 -0.6576 -0.7401 

  

IGA-UHSDT (p = 3) -0.6370 -0.6239 -0.6617 -0.7452 

RPIM [7] -0.6038 -0.6217 -0.6542 -0.7222 

5V 5 x 5 IGA-UHSDT (p = 2) -0.1619 -0.1627 -0.1712 -0.1898 

IGA-UHSDT (p = 3) -0.2856 -0.2827 -0.2975 -0.3279 

9 x 9 IGA-UHSDT (p = 2) -0.2512 -0.2494 -0.2625 -0.2899 

IGA-UHSDT (p = 3) -0.2847 -0.2819 -2.9701 -0.3287 

 

13 x 13 IGA-UHSDT (p = 2) -0.2766 -0.2741 -0.2888 -0.3194 

IGA-UHSDT (p = 3) -0.2842 -0.2817 -0.2968 -0.3283 

RPIM [7] -0.2717 -0.2717 -0.2862 -0.3134 

       10V 5 x 5 IGA-UHSDT (p = 2) 0.2379 0.2380 0.2514 0.2815 

  

IGA-UHSDT (p = 3) 0.0678 0.0600 0.0685 0.0909 

 

9 x 9 IGA-UHSDT (p = 2) 0.1150 0.1093 0.1191 0.1437 

  

IGA-UHSDT (p = 3) 0.0680 0.0601 0.0677 0.0880 

       13 x 13 IGA-UHSDT (p = 2) 0.0791 0.0721 0.0801 0.1013 

IGA-UHSDT (p = 3) 0.0690 0.0605 0.0682 0.0880 

RPIM [7] 0.0757 0.0604 0.0819 0.0954 
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Table 3. Dimensionless first natural frequency of the simply supported square piezoelectric composite 

plate [pie/0/90/0/pie]. 

Method Meshing 
Degrees of 

freedom (DOFs) 

 ( )2

1
/ 1000f a tω ρ=  

Closed circuit Open circuit 

IGA-UHSDT (p=2) 6 x 6 448 233.900 233.900 

IGA-UHSDT (p=3) 6 x 6 567 231.400 231.400 

IGA-UHSDT (p=4) 6 x 6 700 231.400 231.400 

FEM layerwise [11] 12 x 12 2208 234.533 256.765 

Q9 - HSDT [5] - - 230.461 250.597 

Q9 - FSDT [5] - - 206.304 245.349 

Reference solution [60] 245.941 245.942 
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Table 4. Convergence of five first natural frequencies of the square piezoelectric composite plate 

[pie/0/90/0/pie]. 

Mesh Method 
Mode sequence number 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Open circuit           

5 × 5 IGA-UHSDT (p = 2)  236.00 594.50 741.3 1014.3 1531.8 

 

IGA-UHSDT (p = 3)  231.50 528.50 673.60 925.00 1128.7 

 

 FE layerwise [11]  276.19  -  -  -  - 

       9 × 9 IGA-UHSDT (p = 2)  231.90 531.60 676.00 928.4 1087.8 

IGA-UHSDT (p = 3)  231.40 523.20 669.00 918.5 1030.0 

 

 FE layerwise [11]  261.70  -  - -  -  

       13 × 13 IGA-UHSDT (p = 2)  231.50 525.00 670.40 920.60 1040.1 

IGA-UHSDT (p = 3)  231.40 523.10 668.90 918.4 1027.9 

 FE layerwise [11]  259.66  - -  -  -  

       Q9 - HSDT (11 dofs per node) [5] 250.50 583.19 695.70 980 1145.4 

Q9 - FSDT (5 dofs per node) [5] 245.35 559.00 694.20 962 1093.0 

Ref [60] 245.94  -  -  -  - 

       Closed circuit 

5 × 5 IGA-UHSDT (p = 2)  236.00 594.50 741.30 1014.3 1531.8 

IGA-UHSDT (p = 3)  231.50 528.50 673.60 925.00 1128.7 

 FE layerwise [11]  249.86  -  -  -  - 

       9 × 9 IGA-UHSDT (p = 2)  231.90 531.60 676.00 928.40 1087.8 

 

IGA-UHSDT (p = 3)  231.40 523.20 669.00 918.50 1030.0 

 

 FE layerwise [11] 236.83   - -   -  - 

       13 × 13 IGA-UHSDT (p = 2)  231.50 525.00 670.40 920.00 1040.1 

IGA-UHSDT (p = 3)  231.40 523.10 668.90 918.40 1027.9 

 FE layerwise [11] 234.53  

       

 

Q9 - HSDT (11 dofs per node) [5] 230.46 520.38 662.92 908 1022.09 

 

Q9 - FSDT (5 dofs per node) [5] 206.30 519.44 663.34 908 1020.10 

  Ref [60]  245.94  -  -  - -  
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Table 5. The first ten natural frequencies of the square piezoelectric composite plate [pie/-45/45]as 

Mode 

CFFF SSSS 

IGA-UHSDT FEM 

[59] 

RPIM  

[7]  

IGA-UHSDT FEM 

[59] 

RPIM 

[7] p = 2 p = 3 p = 2 p = 3 

1 21.613 21.449 21.466 22.139 144.00 143.30 141.64 143.12 

2 63.786 63.161 63.347 68.082 345.90 337.90 348.37 353.48 

3 133.951 129.393 130.811 149.410 575.80 565.70 605.09 597.03 

4 186.131 182.556 182.401 199.400 702.00 652.10 711.67 605.09 

5 222.913 217.150 218.254 - 705.50 654.80 - - 

6 398.212 375.526 381.908 - 941.40 900.80 - - 

7 421.255 398.573 395.660 - 1273.70 1092.60 - - 

8 430.068 408.242 410.806 - 1322.90 1268.10 - - 

9 507.568 472.581 476.327 - 1507.10 1353.40 - - 

10 679.995 653.939 642.728 - 1887.60 1677.50 - - 

 

 

 

 

 

 

 

Table 6. Energy of plate with different input voltage and optimal input voltage.  

Boundary condition CFFF 

Actuator input voltages 0 V 30 V 50 V 80 V 20.7 (optimal) 

Energy (J) 4.2476e-03 3.0362e-03 6.0570e-03 16.33e-03 2.67e-03 

     

Boundary condition SSSS 

Actuator input voltages 0 V 5 V 8 V 10 V 5.4 (optimal) 

Energy (J) 10.37e-05 3.0670e-05 4.7090e-05 8.3139e-05 3.0249e-05 
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Highlights 

 

• An efficient computational approach following a generalized  unconstrained theory and isogeometric 

analysis (IGA) is proposed.  

• It is then used for active control of nonlinear transient responses of smart piezoelectric composite plates.  

• A procedure to search optimal design for actuator input voltages in piezoelectric plates is investigated.  

• The numerical results demonstrate high efficiency of the present method.  

 

 

 




