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a b s t r a c t

In this paper, we generalize the traditional on-line leasing problem to the case where the
equipment is depreciable and the investor can always sell the used equipment for a positive
price, which is an essential feature of many practical leasing problems. The traditional
risk–reward model for the case with a certain forecast has been discussed for the on-line
leasing of depreciable equipment. On the basis of this, an improved risk–reward model
with a probability forecast is obtained here and presented as themain result. A relationship
between the two risk–reward models, in which the latter includes the former as a special
case, is proved. Numerical analysis shows that the competitive performance is significantly
improved in the risk–reward models.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

On-line algorithms have been used in solving financial optimization problems [1–3]. When Sleator and Tarjan [4]
advanced to comparing an on-line algorithm to the optimal off-line algorithm and Karlin et al. [5] coined the term
competitive analysis, an extensive and systematic study started. In particular, on-line leasing has been widely studied
[6–11]. Competitive analysis compares the performances of on-line algorithms to that of the optimal off-line algorithm
and uses the competitive ratio to evaluate the on-line algorithms. However, competitive analysis is a worst-case analysis,
and has been judged to be too conservative. Hence, probabilistic analysis is introduced in [10,12] to handle the problem,
but this assumes that the inputs are subject to a known distribution. Therefore, probabilistic analysis has been criticized
for making distributional assumptions that are too strong. As a result, al-Binali [13] advanced a risk–reward framework to
blend competitive analysis and probabilistic analysis. The risk–reward model not only allows the investor to benefit from
a correct forecast but also allows him/her to control the risk of performing too poorly with respect to the optimal off-line
algorithm when the forecast is incorrect. The forecast in al-Binali’s risk–reward model is usually certain. On the basis of an
uncertain forecast, Dong et al. [11] put forward amore flexible risk–rewardmodel, which depends on the risk tolerance level,
the different forecasts and the probability of each forecast’s correctness. The new risk–reward model not only includes al-
Binali’s risk–rewardmodel, but also can achieve better performance in some situations which are decided by the probability
of each forecast’s correctness. So, in this paper we called this the improved risk–reward model. Generally, there are two
actions in the risk–reward models: a riskless action that leads to a certain outcome and a risky action that leads to either a
gain or a loss. The outcome is the competitive ratio achieved, and it is uncertain for the risky action. However, traditional
competitive analysis does not give the on-line investor a risky choice, but simply selects the riskless action and achieves the
optimal competitive ratio. al-Binali has given a detailed explanation of the operation of the risk–reward framework [13].

We used al-Binali’s risk–rewardmodel to discuss the on-line leasing of depreciable equipment, and obtained the optimal
restricted ratioswith andwithout an interest rate [14]. The problem of on-line leasing of depreciable equipment is described
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again as follows. An on-line investor needs depreciable equipment (e.g., a plane, a house) for finite periods (e.g., days,
months), but he/she does not know the quantity in advance. Denote the rental cost in every period by L and the initial
price of the equipment by P . Generally, P ≫ L. Let N be the number of actual usage periods. At the beginning of each period,
the on-line investor can determine whether the equipment will be needed for the current period; and he/she must decide
between the following two choices: to lease the equipment with a leasing fee L, or to buy it with a depreciation D, which is
the loss of the equipment’s value in one time period, and a transaction cost C . After using the equipment for finite periods,
the on-line investor can sell it in the secondary market. This leasing problem is obviously different from that considered in
previous studies since it assumes that the equipment is depreciable and a secondary market exists, which is an essential
feature of many practical leasing problems.

The risk–reward model obtained with a certain forecast is provided under certain assumptions [14]. The assumptions
are that the life expectancy of the equipment is finite and long enough, the rental periods are contiguous and finite, and
the number of rental periods is less than the equipment’s life expectancy. Hence, one unit of new equipment can meet the
need of the on-line investor. That is to say, we only consider the case where the net value of depreciable equipment after
depreciation is larger than 0, i.e., N < P/D, which means that the equipment still has some value after N periods and the
investor can always sell it for a positive price.

On the basis of the risk–reward model (we call this the general risk–reward model in the following exposition) obtained
with a certain forecast, this paper mainly uses the improved risk–rewardmodel to discuss the on-line leasing of depreciable
equipment. With the probability forecast, we have obtained the optimal risk algorithm. Our analysis shows that the
improved risk–reward model has extended the general risk–reward model. The rest of this paper is organized as follows. In
Section 2, we first give some basic definitions and notation for al-Binali’s risk–rewardmodel [13]; thenwe restate our results
for the general risk–reward model for on-line leasing of depreciable equipment, which was presented in [14]. In Section 3,
we use the improved risk–rewardmodel to discuss the on-line leasing of depreciable equipment and obtain the optimal risk
algorithm; and we show that the improved risk–reward model has extended the general risk–reward model. In Section 4,
we show numerically that the optimal restricted ratios dramatically decrease compared with the optimal competitive ratio.
In Section 5, we conclude the paper and discuss future research topics.

2. The general risk–reward model for on-line leasing of depreciable equipment

2.1. al-Binali’s risk–reward model with a certain forecast

In this subsection, we give definitions and notation for al-Binali’s risk–reward model [13]. Consider a cost minimization
problem ℘ consisting of a set I of inputs. Let CostALG(σ ) be the cost of the on-line algorithm ALG on input σ , where σ ∈ I .
The cost of an optimal off-line algorithm OPT on input σ is CostOPT (σ ) = minALG CostALG(σ ). Then the competitive ratio of
an algorithm ALG on problem ℘ is

RALG = sup
σ∈I

CostALG(σ )

CostOPT (σ )
.

The optimal competitive ratio for problem ℘ is
R∗

= inf
ALG

RALG.

The risk of an algorithm ALG is defined as RALG/R∗. If r (r ≥ 1) is the risk tolerance of the investor, then denote the set of
all algorithms that satisfy the investor’s risk tolerance by Jr = {ALG : RALG ≤ rR∗

}.
A forecast is assumed to be a subset of the input set I . Denote the forecast by F and F ⊂ I . We define RF(ALG) to be the

competitive ratio of an algorithm ALG restricted to cases where the forecast is correct, i.e.,

RF(ALG) = sup
σ∈F

CostALG(σ )

CostOPT (σ )
,

and denote by RF = infALG∈Jr RF(ALG) the optimal restricted ratio, which can also be seen as the best possible ratio for
algorithms in Jr when the forecast is correct. Then, we need to measure the reward of ALG as an improvement over the
optimal on-line algorithm. Hence, we define

fF(ALG) =
R∗

RF(ALG)

as the reward of ALG. Given a problem ℘ consisting of input set I , a forecast F ⊂ I and a risk tolerance r , there exists an
optimal risk tolerant algorithm ALG∗

∈ Jr such that
fF(ALG∗) = sup

ALG∗∈Jr
fF(ALG).

Therefore,when the forecast is correct, the optimal restricted ratio is RF and the reward of the optimal risk tolerant algorithm
is fF(ALG∗) = R∗/RF . Otherwise it is not meaningful to talk about the reward. In other words, the risk–reward model uses a
forecast to develop an algorithm which maximizes the reward should the forecast come true. However, it does not exceed
the investor’s risk tolerance for any input sequence.



Y. Zhang et al. / Computers and Mathematics with Applications 63 (2012) 167–174 169

2.2. Traditional competitive analysis for on-line leasing of depreciable equipment

Let L and D be the rental cost and the depreciation per period, respectively. The transaction costs of buying and selling
are both C(C < D). Then, we have: (1) the equipment leasing company must make profits; thus L > D holds; (2) in the
first period, the rental cost is less than the purchasing cost, as otherwise, the on-line investor would buy the equipment at
the beginning; thus L < 2C + D holds. Here, the assumptions are that the price of new equipment does not change, and
the price of used equipment equals that of new equipment minus the total depreciation. Suppose that the on-line investor
needs the equipment throughout N contiguous periods and he/she has no knowledge about N . Therefore, the cost of the
optimal off-line algorithm is

CostOPT (N) = min{NL, 2C + ND}

=


NL, N < T0;
ND + 2C, N ≥ T0,

(1)

where T0 = 2C/(L − D). For simplicity we assume that T0 is an integer. Suppose the set of on-line strategies is {S(T )}T≥1,
where S(T ) is the strategy where the investor buys the equipment after leasing it for the first T − 1 periods and then uses it
continuously for the following N −T +1 periods, and then sells it in the secondarymarket. Therefore, the cost of the on-line
strategy S(T ) is

CostON (N) =


NL, N < T ;

(T − 1)L + (N − T + 1)D + 2C, N ≥ T .
(2)

On the basis of (1) and (2), using traditional competitive analysis, we can obtain an optimal deterministic on-line leasing
strategy for depreciable equipment and its optimal competitive ratio. The conclusions are given in Theorem 2.1. The proof
is presented in [14], and is similar to that in [6], and is therefore omitted.

Theorem 2.1. The optimal deterministic strategy for on-line leasing of depreciable equipment is: buy after leasing for T0 − 1
periods and then use it continuously during the following N − T0 + 1 periods, and then sell it in the secondary market. Moreover,
the optimal competitive ratio of this strategy is

R∗
= 1 +

(L − D)(2C + D − L)
2LC

,

where T0 = 2C/(L − D).

As can be seen, the ratio R∗ is obtained by the optimal strategy S∗: if N ≤ T0 − 1, then the investor always leases the
equipment; otherwise, the investor buys the equipment after leasing it for T0 − 1 periods and then uses it continuously
during the following N − T0 + 1 periods, and then sells it in the secondary market.

2.3. The general risk–reward model for on-line leasing of depreciable equipment

In this subsection we restate our result for the general risk–reward model for on-line leasing of depreciable equipment.
It was obtained by using al-Binali’s risk–reward framework which is based on the deterministic strategy achieved above
and two forecasts of N < T0 and N ≥ T0. When forecast N < T0 is correct, the algorithms where the investor always leases
in the set Jr = {ALG : RALG ≤ rR∗

} will be used by the on-line investor and the optimal restricted ratio is RF = 1. For the
forecast case of N ≥ T0, the risk algorithm was obtained in [14]. The improved risk–reward model presented in Section 3 is
based on this case. Hence, for convenience we restate the conclusions of Theorem 2.2 and present a simple proof.

Theorem 2.2. If the forecast N ≥ T0 is correct and the risk tolerance satisfies r ≥ max(1, ∆), then the optimal restricted ratio is

RF = 1 +
(L − D)(D + 2C − LrR∗)

D(D + 2C − L) + 2CL(rR∗ − 1)
, (3)

where

∆ =
(L − D)(2C + D) + 2CL

R∗((L − D)(2C + D) + 2CD)
.

Proof. Our hypothesis for the strategy that the on-line investor adopts is A(S), which is to lease for the first S periods and
then buy. Hence, the adversary can make the competitive ratio be

SL + D + 2C
min{(S + 1)D + 2C, (S + 1)L}

.

On the basis of the risk tolerance, there are two cases as follows.
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Case 1. S < T0. According to the definition of risk tolerance, it holds that

SL + D + 2C
(S + 1)L

≤ rR∗.

If D + 2C − rLR∗
≥ 0, we have

S ≥
D + 2C − rLR∗

(rR∗ − 1)L
≡ S1. (4)

Case 2. S ≥ T0. The restricted ratio in the false forecast satisfies

SL + D + 2C
(S + 1)D + 2C

≤ rR∗.

If L − rDR∗ > 0, we have

S ≤
(D + 2C)(rR∗

− 1)
L − rDR∗

≡ S2. (5)

It is easy to check that S1 ≤ S2. In fact, we have

S2 − S1 =
(D + 2C)L(rR∗

− 1)2 − (D + 2C − rLR∗)(L − rDR∗)

(rR∗ − 1)(L − rDR∗)L

=
(D + 2C)[L(rR∗)2 − 2LrR∗

+ rDR∗
] + rLR∗(L − rDR∗)

(rR∗ − 1)(L − rDR∗)L

≥
rLR∗

[L(rR∗)2 − 2LrR∗
+ rDR∗

+ L − rDR∗
]

(rR∗ − 1)(L − rDR∗)L

=
L2rR∗(rR∗

− 1)2

(rR∗ − 1)(l − rR∗D)L
≥ 0,

where the inequality follows from the condition D+ 2C − LrR∗
≥ 0. As can be seen, S1 and S2 change with r . When T0 ≥ S1,

we have

r ≥
(L − D)(2C + D) + 2CL
R∗((L − D)L + 2CL)

(6)

and when T0 ≤ S2, we have

r ≥
(L − D)(2C + D) + 2CL

R∗((L − D)(2C + D) + 2CD)
. (7)

It is easy to check that the right hand side of (7) is larger than that of (6). Therefore, T0 ∈ [S1, S2] implies

r ≥
(L − D)(2C + D) + 2CL

R∗((L − D)(2C + D) + 2CD)
≡ ∆. (8)

The risk tolerance r means that S can only change in the interval [S1, S2]. If the forecastN ≥ T0 is correct, the optimal off-line
strategy is to buy the equipment at the beginning. Hence, the restricted ratio in this forecast is

RF (S) =
SL + D + 2C

(S + 1)D + 2C
. (9)

Since ∂
∂S RF (S) > 0, RF (S) attains its minimum given by (3) at S = S1. �

3. The improved risk–reward model for on-line leasing of depreciable equipment

3.1. The improved risk–reward model with a probability forecast

In al-Binali’s risk–rewardmodel, the forecast is usually certain. Under the assumption that the forecast is uncertain, Dong
et al. [11] extended the certain forecast to the probability forecast. The probability forecast is established as follows. Divide
the input I by a group of subsets, which are denoted by F1, F2, . . . , Fm, where ∪Fi = I and Fi ∩ Fj = ∅ for i ≠ j. Let Pi be the
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probability that the investor anticipates that the input σ ∈ Fi, where
∑m

i=1 Pi = 1. The set of {(Fi, Pi)| i = 1, 2, . . . ,m} is
called a probability forecast. Let

RPFi(ALG) = sup
σ∈Fi

CostALG(σ )

CostOPT (σ )

be the restricted competitive ratio of algorithm ALGwith the correct forecast Fi. Denote the reward of the correct forecast Fi
by

fPFi(ALG) =
R∗

RPFi(ALG)

,

where R∗ is the optimal competitive ratio of algorithm ALG with no forecast. On the basis of this, with the probability
forecast {(Fi, Pi)|i = 1, 2, . . . ,m}, Dong et al. defined RPF(ALG) =

∑m
i=1 PiRPFi(ALG) and fPF(ALG) = R∗/RPF(ALG) as the restricted

competitive ratio and the reward, respectively. They also proved that the reward of the probability forecast has two desired
properties [11].

Property 1. For any on-line algorithm ALG,mini{fPFi(ALG)} ≤ fPF(ALG) ≤ maxi{fPFi(ALG)}.
Let {(Fi, Pi)|i = 1, 2, . . . ,m} be a probability forecast. Divide Fi into Fi,1 and Fi,2, where Fi,1 ∪ Fi,2 = Fi and Fi,1 ∩ Fi,2 = ∅.

And divide Pi into Pi,1 and Pi,2, where Pi,1 + Pi,2 = Pi. In this way, a more detailed probability forecast based on {(Fi, Pi)|i =

1, 2, . . . ,m} is constructed. It can be denoted by {(F1, P1), (F2, P2), . . . , (Fi−1, Pi−1), (Fi,1, Pi,1), (Fi,2, Pi,2), (Fi+1, Pi+1), . . . ,

(Fm, Pm)}. Let f̂PF(ALG) be the reward obtained with the newly constructed probability forecast. Then the following Property 2 is
obtained.

Property 2. For any on-line algorithm ALG ∈ {S(T )}T≥1, fPF(ALG) ≤ f̂PF(ALG).
Properties 1 and 2 show that the more detailed the probability forecast is, the greater the reward is. With the probability

forecast, there exists a more generalized risk–reward model. Following previous notation, denote the risk tolerance level by r, and
denote the set of all on-line algorithms with risk tolerance level r by Jr = {ALG|RALG ≤ rR∗

}. The main purpose of the improved
risk–reward framework is to look for an algorithm ALG∗

∈ Jr that maximizes the reward with the probability forecast. Therefore,
the mathematical model for obtaining the optimal risk algorithm is presented as follows:

max
ALG

fPF(ALG) =
R∗

RPF(ALG)

(10)

s.t. RALG ≤ rR∗. (11)

Steps for obtaining the optimal risk algorithm with the probability forecast:
1. With respect to the specific on-line problem, determine the optimal competitive ratio R∗ that is obtainedwith no forecast.
2. Divide the total inputs I into F1, F2, . . . , Fm, where ∪Fi = I and Fi ∩ Fj = ∅ for i ≠ j.
3. Denote the probability that the investor anticipates that the input σ ∈ Fi by Pi, where

∑m
i=1 Pi = 1.

4. Compute the restricted competitive ratio RPFi(ALG) and RPF(ALG) with the probability forecast {(Fi, Pi)|i = 1, 2, . . . ,m}.
5. Set the risk tolerance level to r .
6. Solve the model (10)–(11) to obtain the optimal risk algorithm.

3.2. The improved risk–reward model for on-line leasing of depreciable equipment

In this subsection, we pursue the risk algorithm for the deterministic strategies {S(T )}T≥1 by using a probability forecast.
From Section 2 we know that the optimal competitive ratio of algorithm S(T ) obtained with no forecast is R∗.

As can be seen, T0 = 2C/(L − D) is the key point of the optimal off-line leasing algorithm. On the basis of this, we
construct the probability forecast by using two forecasts: F1 = {N : N < T0}with probability P1 and F2 = {N : N ≥ T0}with
probability P2, where P1+P2 = 1. In each period, the ratio of leasing cost to buying cost for an on-line investor is L/(2C+D);
and the ratio of selling profit to leasing profit for the owner is D/L. When the two ratios are equal, i.e., L/(2C + D) = D/L,
using the steps for obtaining the optimal risk algorithmdescribed in Section 3.1, we obtain the following Theorem3.1, which
gives optimal risk algorithm with strategies {S(T )}T≥1 with a probability forecast {(F1, P1), (F2, P2)}.

Theorem 3.1. For on-line leasing of depreciable equipment, with deterministic strategy S(t) with a probability forecast
{(F1, P1), (F2, P2)}, when setting the risk tolerance level r ≥ max(1, ∆), the optimal risk algorithm is S(T ∗) and T ∗ is

T ∗
=



2C
(L − D)

, P1 ≥ 1/2;

2C


P1
1−P1

L − D


P1
1−P1

, δ ≤ P1 < 1/2;

D + 2C − L
(R∗r − 1)L

, P1 < δ,

(12)
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where

δ =
(S1L/(2C + S1D))2

1 + (S1L/(2C + S1D))2
.

Proof. According to Section 2, the algorithm set with risk level r can be denoted by Srl = {S(T ) : T ∈ [S1, S2]}, where r ≥ ∆.
With the probability forecast {(F1, P1), (F2, P2)}, we have

RPF(S(T )) =

2−
i=1

PiRPFi(S(T ))

and

RPFi(S(T )) = sup
σ∈Fi

CostON(σ )

CostOPT (σ )
, i = 1, 2.

By computing, we obtain

RPF1(S(T )) = sup
N<T0

CostON(N)

CostOPT (N)
=


1, T ≥ T0;
L(T − 1) + D + 2C

LT
, T < T0;

(13)

RPF2(S(T )) = sup
N≥T0

CostON(N)

CostOPT (N)
=


L(T − 1) + D + 2C

DT + 2C
, T ≥ T0;

L(T − 1) + D + 2C
DT + 2C

, T < T0.
(14)

Consequently, we have

RPF(S(T )) =


P1 + (1 − P1)

L(T − 1) + D + 2C
DT + 2C

, T ≥ T0;

P1
L(T − 1) + D + 2C

LT
+ (1 − P1)

L(T − 1) + D + 2C
DT + 2C

, T < T0,
(15)

and the derivative of RPF(S(T )) with respect to T is

∂

∂T
RPF(S(T )) =


(1 − P1)

(L − D)(2C + D)

(DT + 2C)2
, T ≥ T0;

−P1
2C + D − L

LT 2
+ (1 − P1)

(L − D)(2C + D)

(DT + 2C)2
, T < T0.

(16)

On the basis of (16) and equality D/L = L/(2C + D), we have ∂
∂T RPF(T ) < 0 for T < T0 and P1 ≥ 1/2. In fact, letting

G(T ) = −
2C + D − L

LT 2
+

(L − D)(2C + D)

(DT + 2C)2
,

when P1 ≥ 1/2, we obtain

∂

∂T
RPF(S(T )) ≤

1
2
G(T ).

On the other hand, we have

∂

∂T
G(T ) =

2L2(2C + D − L)
(LT )3

−
2(L − D)D(2C + D)

(DT + 2C)3
> 0,

which is obtained on the basis of LT < DT + 2C for T < T0. Therefore, we have
∂

∂T
RPF(S(T )) ≤

1
2
G(T ) <

1
2
G(T )|T=T0 = 0.

Thus, when P1 ≥ 1/2, RPF(S(T )) is monotonically decreasing at T < T0, and monotonically increasing at T ≥ T0; and in this
case the optimal risk algorithm is S(T0).

When P1 < 1/2, RPF(S(T )) is monotonically decreasing at T < N∗, and monotonically increasing at T ≥ N∗, where

N∗
=

2C


P1
(1−P1)

L − D


P1
(1−P1)

.
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Table 1
Comparison between R∗ and RF .

L D C r R∗ RF
R∗

−RF
R∗−1 (%)

1000 800 200 1.05 1.100 1.041 59
1200 1000 250 1.05 1.100 1.058 42
1600 1200 300 1.03 1.083 1.018 78.3

Table 2
Comparison between optimal restricted ratios and the
optimal competitive ratio with L = 80,D = 64, C = 18.

r R∗ RF [S1, S2] P1 RPF

1.05 1.11 1.060 [1.51, 4.06]

1.00 1.000
0.80 1.022
0.50 1.055
0.45 1.108
0.30 1.093
0.00 1.060

In addition, N∗
≥ S1 demands

P1 ≥
(S1L/(2C + S1D))2

1 + (S1L/(2C + S1D))2
, δ.

Hence, when δ ≤ P1 < 1/2, the optimal risk leasing algorithm is S(N∗).
Furthermore, when P1 ≤ δ, the optimal risk algorithm is S(S1). This is identical to that obtained under al-Binali’s

risk–rewardmodel since in this case the probability P2 that forecasts F2’s correctness is very large and the probability forecast
{(F1, P1), (F2, P2)} is almost equivalent to the certain forecast F2.

Therefore, from the above analysis we obtain the optimal risk leasing algorithm S(T ∗) that makes RPF(S(T )) reach its
minimum and T ∗ is given by Eq. (12). �

Corollary 3.2. When P1 = 1, T ∗
= 2C/(L − D), and the optimal restricted ratio is RPF = 1 which is also the optimal restricted

ratio RF obtained with the certain forecast N < 2C/(L − D); when P1 = 0, T ∗
= (D + 2C − L)/(R∗r − 1)L, and the optimal

restricted ratio is

1 + (L − D)(D + 2C − LrR∗)/(D(D + 2C − L) + 2CL(rR∗
− 1)),

which is also the optimal restricted ratio RF obtained with a the certain forecast N ≥ 2C/(L − D).

Corollary 3.2 shows that the improved risk–reward model has generalized al-Binali’s risk–reward model.

4. Numerical analysis

Numerical examples are presented in this section to illustrate the improved performance of the two risk–rewardmodels
and the relationship between them. The results are presented in Tables 1 and 2.

As regards al-Binali’s risk–reward model whose optimal restricted ratio is RF , we take (R∗
− RF )/(R∗

− 1) as the
improvement measurement over the traditional competitive ratio R∗ since the largest improvement is R∗

−1. From Table 1,
it is clear that with the correct forecast, the average improvement is 59.8%, which means that the investor can improve
his/her performance significantly by taking the risk of achieving a competitive ratio larger than the optimal competitive
ratio.

Given the risk tolerance, Table 2 presents the optimal competitive ratio R∗, the optimal restricted ratio RF , the interval
[S1, S2], and the optimal restricted ratio RPF with a different P1. From Table 2, we can clearly conclude the relationships
between R∗, RF and RPF . That is, RF is a special case of RPF (P1 = 0) and the optimal restricted ratio RPF is almost always less
than the optimal competitive ratio R∗ at every P1.

5. Conclusions

The case of on-line leasing of depreciable equipment is discussed in this paper. Using the competitive ratio for the
evaluation of on-line algorithms, based on the general risk–reward model obtained with al-Binali’s certain forecast, we
mainly use the improved risk–reward model to discuss the on-line leasing of depreciable equipment. Numerical analysis
shows that the competitive performance is significantly improved in the two risk–reward models. There are many aspects
of this problem meriting future research. It might be interesting to introduce factors of inflation and salvage to the models.
It is also interesting to consider randomized competitive strategies for on-line leasing of depreciable equipment.
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