
Stat Biosci (2012) 4:3–26
DOI 10.1007/s12561-011-9048-z

An Efficient Optimization Algorithm for Structured
Sparse CCA, with Applications to eQTL Mapping

Xi Chen · Han Liu

Received: 3 July 2011 / Accepted: 2 December 2011 / Published online: 21 December 2011
© International Chinese Statistical Association 2011

Abstract In this paper we develop an efficient optimization algorithm for solv-
ing canonical correlation analysis (CCA) with complex structured-sparsity-inducing
penalties, including overlapping-group-lasso penalty and network-based fusion
penalty. We apply the proposed algorithm to an important genome-wide association
study problem, eQTL mapping. We show that, with the efficient optimization algo-
rithm, one can easily incorporate rich structural information among genes into the
sparse CCA framework, which improves the interpretability of the results obtained.
Our optimization algorithm is based on a general excessive gap optimization frame-
work and can scale up to millions of variables. We demonstrate the effectiveness of
our algorithm on both simulated and real eQTL datasets.

Keywords Sparse CCA · Structured sparsity · Group structure · Network structure ·
Genome-wide association study · eQTL mapping · Optimization algorithm

1 Introduction

In recent years, significant progress has been made on developing different variants
of canonical correlation analysis (CCA) models and apply them to genome-wide
association study (GWAS or GWA study) problems. Examples include identifying
genes that are correlated with regions of DNA copy number change [26, 28]; identify-
ing genes that are correlated with single nucleotide polymorphisms (SNPs) [18, 22];

X. Chen (�)
Machine Learning Department, Carnegie Mellon University, Pittsburg, USA
e-mail: xichen@cs.cmu.edu

H. Liu
Biostatistics Department, Computer Science Department, Johns Hopkins University, Baltimore, USA
e-mail: hanliu@cs.jhu.edu

mailto:xichen@cs.cmu.edu
mailto:hanliu@cs.jhu.edu

4 Stat Biosci (2012) 4:3–26

and identifying sets of genes on two different microarray platforms that have corre-
lated expressions [6]. More specifically, let us take expression quantitative trait loci
(eQTLs) mapping as an example. The problem of eQTL mapping searches for asso-
ciations between a large number of SNPs and gene expression levels collected over
a number of individuals. We denote SNP genotype data as X of dimensions n × d

and expression levels as Y of n × p. CCA finds two canonical vectors u and v to
maximize the correlation between Xu and Yv. Since the number of SNPs and ex-
pressions levels are far greater than that of subjects, the standard CCA models cannot
be directly applied. To handle this challenge, a popular approach is to impose an �1-
norm penalty on u and v to shrink the coefficients of the irrelevant variables toward
zero [22, 28, 29] and the corresponding model is referred to sparse CCA. However,
the simple �1-norm penalty is limited in that it neglects the rich structural information
among variables. When dealing with high-dimensional data, prior structural knowl-
edge is crucial for improving the estimation performance and model interpretability.
For example, a biological pathway is a group of genes that participate in a particular
biological process to perform certain functionality in a cell. To find controlling fac-
tors related to a disease, it is more meaningful to study the genes by considering their
pathway information. Similarly, we could also exploit the network structure among
genes (e.g., gene regulatory network) to obtain enhanced estimation performance.

Recently, various extensions of �1-norm penalty have been proposed to take ad-
vantage of the prior knowledge of the structure among variables. Examples include
mixed-norm group-lasso penalty [30], mixed-norm tree-structured penalty [15, 31]
and network-structured fusion penalty [14]. However, these structured-sparsity-
inducing penalties have not been incorporated into the CCA framework for analy-
sis of GWAS data. The main challenge arises from the computational side. More
specifically, it is known that sparse CCA model can be naturally formulated into a
biconvex problem and solved by an alternating optimization strategy: fix u and op-
timize with respect to v; then fix v and optimize with respect to u; and iterate over
these two steps. Since sparse CCA needs many iterations of these two steps and one
may have to run sparse CCA with multiple starting parameters to avoid local min-
ima, it is crucial to solve each subproblem (i.e. optimization with respect to u or
v) efficiently. When the simple �1-norm is imposed, the subproblem can be solved
in closed form according to [29]. For other simple structures, e.g. non-overlapping
group-lasso penalty or a chain-structured fusion penalty, one can apply coordinate
descent scheme to solve the corresponding optimization problem. However, for the
more general structured-sparsity-inducing penalties, there still lacks an efficient and
scalable optimization algorithm, which prevents the wide application of sparse CCA
models in GWAS.

In this paper, we propose an efficient optimization algorithm, which solves the
sparse CCA with a wide class of structured sparsity-inducing penalties. Our method
is based on a general excessive gap optimization framework [19]. We consider two
widely used structured-sparsity-inducing penalties in this paper:

1. Overlapping-group-lasso penalty [11]. Compare to the standard group lasso [30],
such a penalty allows arbitrary overlaps among groups which reflects the fact that a
gene can belong to multiple pathways. We refer to the corresponding CCA model
as the group-structured sparse CCA.

Stat Biosci (2012) 4:3–26 5

2. Network-based fusion penalty [14]. By leveraging any prior knowledge of the net-
work structure, the network-based fusion penalty enforces the coefficients on two
connected nodes to be similar. In addition, it can conduct automatic group pursuit
to group the genes into different clusters based on the prior network structure. We
refer to this model as the network-structured sparse CCA.

We show that it is possible to decouple the non-separable overlapping-group-lasso
and network-based fusion penalties via the dual norm and reformulate them into a
maximization form [7] where the excessive gap framework can be applied. Since it is
a first-order method only using the gradient information, the per-iteration time com-
plexity is very low (e.g. linear in the sum of group sizes or the number of edges) and
the method can scale up to millions of variables. Moreover, unlike in many first-order
methods where only the primal solutions are computed, it is a primal-dual approach
which diminishes the primal-dual gap over iterations. For each subproblem in the
alternating optimization procedure (optimization with respect to u or v), the algo-
rithm provably converges to an ε accurate solution (i.e. the duality gap is less than ε)
in O(L/

√
ε) iterations, where L is an input dependent constant. According to [20],

it has already achieved the optimal rate of convergence for solving smooth convex
problem only using the first-order information.

The rest of this paper is organized as follows. Section 2 introduces background
for sparse CCA in [28, 29]; Sect. 3 presents the group-structured sparse CCA and
proposes the corresponding optimization algorithm; Sect. 4 proposes the network-
structured sparse CCA; in Sect. 5, we first demonstrate the efficiency and scalability
of the proposed optimization algorithm, then apply the proposed structured sparse
CCA models to both simulated and real datasets. We conclude our paper in the final
section.

2 Background: Sparse CCA

Given two datasets X and Y of dimensions n × d and n × p on the same set of n

observations, we assume that each column of X and Y is normalized to have mean
zero and standard deviation one. The sparse CCA proposed in [28, 29] takes the
following form:

max
u,v

uT XT Yv

s.t. ‖u‖2 ≤ 1, ‖v‖2 ≤ 1,

P1(u) ≤ c1, P2(v) ≤ c2,

(1)

where P1 and P2 are convex and non-smooth sparsity-inducing penalties that yield
sparse u and v. Witten et al. [29] studied two specific forms of the penalty P (either
P1 or P2): (1) �1-norm penalty P(w) = ‖w‖1, which will result in a sparse w vec-
tor. (2) Chain-structured fusion penalty P(w) = ‖w‖1 + γ

∑
j |wj − wj−1|, which

assumes that variables have a natural ordering and will result in w sparse and smooth
along the ordering.

In this work, we extend the sparse CCA to more general forms of P that incorpo-
rate the group or network structural information among variables. In eQTL mapping,

6 Stat Biosci (2012) 4:3–26

the structural knowledge among genes on Y side is often of more interest. To ease
the illustration of our algorithm, we always assume that P1(u) = ‖u‖1 and mainly
focus on P2(v), which incorporates the structural information. As has been discussed
in the introduction, (1) is biconvex in u and v individually. The optimization prob-
lem can then be solved by an alternating approach. In our setting, the optimization
with respect to u with P1(u) = ‖u‖1 is relatively simple and the closed-form solution
has been obtained in [29]. However, due to the complicated structure of P2(v), the
optimization with respect to v cannot be easily solved, which is the exact challenge
addressed in this paper.

3 Group-Structured Sparse CCA

3.1 Model

In this section, we study the problem in which the group structure information among
variables in Y is pre-given from the domain knowledge, e.g. pathways in the ge-
netic data; and our goal is to identify a small subset of groups under the sparse CCA
framework. More formally, let us assume that the set of groups of variables in Y:
G = {g1, . . . , g|G|} is defined as a subset of the power set of {1, . . . , p}, and is avail-
able as prior knowledge. Note that the members (groups) of G are allowed to overlap.
Inspired by the group-lasso penalty [30] and the elastic-net penalty [33], we define
the penalty P2(v) as follows:

P2(v) =
∑

g∈G
wg‖vg‖2 + c

2
vT v, (2)

where vg ∈ R
|g| is the subvector of v in group g, wg is the predefined weight for

group g; c is the tuning parameter and ‖ · ‖2 is the vector �2-norm. The �1/�2 mixed-
norm penalty in P2(v) plays the role of group selection. Since some gene expression
levels are highly correlated, the ridge penalty c

2 vT v addresses the problem of the
collinearity, enforcing strongly correlated variables to be in or out of the model to-
gether. In addition, according to [17, 33], the ridge penalty is crucial to ensure the
stable variable selection when p � n, which is a typical setting of eQTL mapping.
It is noteworthy that, to perform variable selection within the group, we can also
include the penalty for individual variable as singleton group in P2(v) by adding
the term wj |vj |. We also note that the widely used tree-structured-sparsity-inducing
penalty [15, 31] is a special case of the overlapping-group-lasso penalty where each
tree node corresponds to a group.

Rather than solving the constraint form of P2(v), we solve the regularized problem
using the Lagrangian form:

min
u,v

−uT XT Yv + τ

2
vT v + θ

∑

g∈G
wg‖vg‖2

s.t. ‖u‖2 ≤ 1, ‖v‖2 ≤ 1, ‖u‖1 ≤ c1,

(3)

Stat Biosci (2012) 4:3–26 7

where there exists a one-to-one correspondence between (θ, τ) and (c, c2) (c2 is the
upper bound of P2(v)). We refer to this model (3) as the group-structured sparse
CCA.

3.2 Optimization Algorithm

The main difficulty in solving (3) arises from optimizing with respect to v. Let the
domain of v be denoted as Q1 = {v | ‖v‖2 ≤ 1}, β = 1

τ
YT Xu and γ = θ

τ
, the opti-

mization of (3) with respect to v can be written as

min
v∈Q1

f (v) ≡ l(v) + P(v), (4)

where l(v) = 1
2‖v − β‖2

2 is the Euclidean distance loss function and P(v) is the
overlapping-group-lasso penalty: P(v) = γ

∑
g∈G wg‖vg‖2. The optimization prob-

lem in (4) is so-called proximal mapping associated with the function P(v).1

3.2.1 Related Optimization Methods

When v is unconstrained and the groups are non-overlapped, the closed-form opti-
mal solution can be easily obtained by computing the subgradient with respect to
each vg as shown in [8]. In contrast, when the groups are overlapped, the subgra-
dient with respect to each group becomes very complicated and hence there is no
closed-form solution. A number of first-order methods [7, 8, 11, 12, 16] have re-
cently been developed for solving variants of overlapping-group-lasso problem. The
methods in [12, 16] can only be applied to the tree-structured groups or �1/�∞-
regularized group structure for the unconstrained v. Generally speaking, for the
complicated structured non-smooth penalty, there are two common first-order ap-
proaches for optimizing it: (1) compute the subgradient of the penalty and then apply
the projected subgradient descent. However, it has a very slow convergence rate of
O(1

ε2). (2) Smooth the penalty [7] and then apply any first-order method to solve the
“smoothed” problem. However, this approach does not fully utilize the special struc-
ture of the loss function in the CCA setting, that is, the design matrix is the identity
matrix and the loss is essentially a signal approximator. Therefore, it can only achieve
a sub-optimal rate of O(1

ε
). For other possible methods, interior-point method for the

second-order cone formulation and iterated reweighted least squares [1] suffer from
the high computational cost of solving a linear system. Alternating direction aug-
mented Lagrangian method [27] have no known results on the convergence rate.

In this section, by specializing a general excessive gap framework [19], we present
an efficient and provably optimal optimization algorithm for solving the proximal
mapping with �1/�2 regularized overlapping-group-lasso penalty in (4).

1To be more precise, (4) is the proximal mapping under the constraint on Q1 or the proximal mapping
associated with the function P(v) + IQ1 (v), where IQ1 (v) is the indicator function of Q1.

8 Stat Biosci (2012) 4:3–26

3.2.2 Reformulation of the Penalty

To specialize the excessive gap framework, we first reformulate the group-structured-
sparsity-inducing-penalty using the technique in [7]. For the purpose of complete-
ness, we present the detailed derivation here. Using the dual norm, ‖vg‖2 can be
written as max‖αg‖2≤1 αT

g vg, where αg ∈ R
|g|. Then we can rewrite P(v) as

P(v) = γ
∑

g∈G
wg‖vg‖2 = γ

∑

g∈G
wg max

‖αg‖2≤1
αT

g vg = max
α∈Q2

αT Cv. (5)

Here α = [αT
g1

, . . . ,αT
g|G|]T is the concatenation of the vectors {αg}g∈G ; and we de-

note the domain of α as

Q2 ≡ {
α | ‖αg‖2 ≤ 1, ∀g ∈ G

}
.

The matrix C ∈ R
(
∑

g∈G |g|)×p is defined as

C(i,g),j =
{

γwg if i = j,

0 otherwise,
(6)

where the rows of C are indexed by all pairs of (i, g) ∈ {(i, g)|i ∈ g, i ∈ {1, . . . , p}},
the columns are indexed by j ∈ {1, . . . , p}.

Example Assume v ∈ R
3 with groups G = {g1 = {1,2}, g2 = {2,3}}. Then, the ma-

trix C is

⎛

⎜
⎜
⎝

j = 1 j = 2 j = 3

i = 1 ∈ g1 γwg1 0 0
i = 2 ∈ g1 0 γwg1 0
i = 2 ∈ g2 0 γwg2 0
i = 3 ∈ g2 0 0 γwg2

⎞

⎟
⎟
⎠

To provide a deeper insight into this reformation, we show that (5) can be viewed
as Fenchel Conjugate [9] of the indicator function.

Definition 1 The Fenchel conjugate of a function f (x) is the function f ∗ defined by

f ∗(y) = sup
x∈dom(f)

(
xT y − f (x)

)
. (7)

Let δQ2(x) be the indicator function:

δQ2(x) =
{

0, x ∈ Q2,

+∞, x �∈ Q2;
the penalty function P(v) is the Fenchel conjugate of δQ2 at Cv:

P(v) = max
α∈Q2

αT Cv = δ∗
Q2

(Cv). (8)

Stat Biosci (2012) 4:3–26 9

3.2.3 Smoothing the Penalty

The difficulty for the optimization mainly arises from the non-smooth penalty P(v).
To tackle this problem, we introduce an auxiliary quadratic function to construct a
smooth approximation of P(v) using the smoothing technique in [21]. Our smooth
approximation function is given as follows:

Pμ(v) = max
α∈Q2

(
αT Cv − μd(α)

)
, (9)

where μ is the positive smoothness parameter and d(α) is defined as 1
2‖α‖2

2. It is
obvious that Pμ(v) ≤ P(v). Let D = maxα∈Q2 d(α) = |G|/2, where |G| is the number
of groups. It is easy to verify that the maximum gap between Pμ(v) and P(v) is μD:

P(v) − μD ≤ Pμ(v) ≤ P(v). (10)

The next theorem from [21] shows that for any μ > 0, Pμ(v) is a smooth function
with a simple form of gradient.

Theorem 1 ([21]) For any μ > 0, Pμ(v) is a smooth and convex function in v, and
the gradient of Pμ(v) takes the following form:

∇Pμ(v) = CT αμ(v), (11)

where αμ(v) is the optimal solution to (9):

αμ(v) = arg max
α∈Q2

αT Cv − μd(α). (12)

To compute the gradient of Pμ(v) in (11), we need to know αμ(v). The closed-
form equation for αμ(v) can be derived with some simple algebra and is presented in
the next proposition.

Proposition 1 The αμ(v) ∈ R

∑
g∈G |g| in (12) is the concatenation of subvectors

{[αμ(v)]g} for all groups g ∈ G . For any group g,

[
αμ(v)

]
g

= S2

(
γwgvg

μ

)

, (13)

where S2 is the projection operator (to the �2-ball) defined as follows:

S2(x) =
{

x
‖x‖2

, ‖x‖2 > 1,

x, ‖x‖2 ≤ 1.
(14)

We substitute P(v) in the original objective function f (v) with Pμ(v) and con-
struct the smooth approximation of f (v): fμ(v) ≡ l(v) + Pμ(v). According to (10),
the relationship of fμ(v) and f (v) can be characterized by the following inequality:

f (v) − μD ≤ fμ(v) ≤ f (v). (15)

10 Stat Biosci (2012) 4:3–26

3.2.4 Fenchel Dual of f (v)

The fundamental idea of the excessive gap method is to diminish the duality gap
between the objective f (v) and its Fenchel dual over iterations. In this section, we
derive the Fenchel dual of f (v) and study its property. According to Theorem 3.3.5
in [4], the Fenchel dual problem of f (v), φ(α), takes the following form:

φ(α) = −l∗
(−CT α

) − δQ2(α), (16)

where l∗ is the Fenchel Conjugate of l and

−l∗
(−CT α

) = − max
v∈Q1

−vT CT α − l(v) = min
v∈Q1

vT CT α + 1

2
‖v − β‖2

2.

With the similar proof technique as in Theorem 1, we present the gradient of φ(α) in
the following theorem:

Theorem 2 The gradient of φ(α) takes the following form:

∇φ(α) = Cv(α), (17)

where

v(α) = arg min
v∈Q1

vT CT α + 1

2
‖v − β‖2

2. (18)

Moreover, ∇φ(α) is Lipschitz continuous with the Lipschitz constant L(φ) = 1
σ
‖C‖2,

where σ = 1 is the strongly convex parameter for function l(v) and ‖C‖ is the matrix
spectral norm of C: ‖C‖ ≡ max‖x‖2=1 ‖Cx‖2.

According to the next proposition [7], the closed-form equations for v(α) and ‖C‖
can be written as follows:

Proposition 2 v(α) takes the following form:

v(α) = S2
(
β − CT α

)
, (19)

where S2 is the projection operator (shrinking to the �2-ball) defined in (14). ‖C‖
takes the following form:

‖C‖ = γ max
j∈{1,...,p}

√ ∑

g∈G s.t. j∈g

(wg)2. (20)

According to Proposition 2, the value of the Lipschitz constant for ∇φ(α) is

L(φ) = ‖C‖2 = γ 2 max
j∈{1,...,p}

∑

g∈G s.t. j∈g

(wg)
2. (21)

Stat Biosci (2012) 4:3–26 11

Fig. 1 Illustration of the
excessive gap method

3.2.5 Excessive Gap Method

According to the Fenchel duality theorem [4], we know that under certain mild con-
ditions which hold for our problem: minv∈Q1 f (v) = maxα∈Q2 φ(α), and for any
v ∈ Q1 and α ∈ Q2:

φ(α) ≤ f (v). (22)

The key idea of the excessive gap method [19] is to simultaneously maintain two
sequences {vt }, {αt } and a diminishing smoothness parameter sequence {μt } such
that

fμt

(
vt

) ≤ φ
(
αt

); μt+1 ≤ μt ; and lim
t→∞μt = 0. (23)

The geometric illustration of this idea is presented in Fig. 1. Combining (15), (22)
and (23), we have

fμt

(
vt

) ≤ φ
(
αt

) ≤ f
(
vt

) ≤ fμt

(
vt

) + μtD. (24)

From (24), when μt → 0, we have f (vt) ≈ φ(αt), which are hence the optimal pri-
mal and dual solutions.

Moreover, in the excessive gap method, a gradient mapping operator ψ : Q2 →
Q2 is defined as follows: for any z ∈ Q2,

ψ(z) = arg max
α∈Q2

{
〈∇φ(z),α − z

〉 − 1

2
L(φ)‖α − z‖2

2

}

. (25)

As in Proposition 1, the gradient mapping operator ψ for our problem can also be
computed in closed form as presented in the next proposition.

Proposition 3 For any z ∈ Q2, ψ(z) in (25) is the concatenation of subvectors
[ψ(z)]g for all groups g ∈ G . For any group g,

[
ψ(z)

]
g

= S2

(

zg + [∇φ(z)]g
L(φ)

)

,

where [∇φ(z)]g = γwg[v(z)]g is the gth subvector of ∇φ(z) and the projection op-
erator S2 is defined in (14).

12 Stat Biosci (2012) 4:3–26

Algorithm 1 Excessive Gap Algorithm for Proximal Mapping Associated with
Overlapping-group-lasso Penalty
Input: β , γ , G and {wg}g∈G
Initialization: (1) Construct C; (2) Compute L(φ) as in (21) and set μ0 = 2L(φ);
(3) Set v0 = v(0) = S2(β); (4) Set α0 = ψ(0)

Iterate For t = 0,1,2, . . ., until convergence of vt :

1. Set τt = 2
t+3

2. Compute αμt (v
t) as in Proposition 1

3. Set zt = (1 − τt)α
t + τtαμt (v

t)

4. Update μt+1 = (1 − τt)μt

5. Compute v(zt) = S2(β − CT zt) as in (19)

6. Update vt+1 = (1 − τt)vt + τtv(zt)

7. Update αt+1 = ψ(zt) as in Proposition 3

Output: vt+1

Propositions 1, 2 and 3 have shown that, for our problem, all the essential ingredi-
ents of the excessive gap framework can be computed in closed form. We present the
excessive gap method to solve proximal mapping associated with overlapping-group-
lasso penalty in Algorithm 1.

3.2.6 Convergence Rate and Time Complexity

The Lemma 7.4 and Theorem 7.5 in [19] guarantee that both the starting points, v0

and α0, and the sequences, {vt } and {αt } in Algorithm 1 satisfy the key condition
fμt (v

t) ≤ φ(αt) in (23). Using (24), the convergence rate can be established via the
duality gap:

f
(
vt

) − φ
(
αt

) ≤ fμt

(
vt

) + μtD − φ
(
αt

) ≤ μtD. (26)

From (26), we can see that the duality gap which characterizes the convergence rate
is reduced at the same rate at which μt approaches to 0. According to Step 4 in
Algorithm 1, the closed-form equation of μt can be written as

μt = (1 − τt−1)μt−1 = t

t + 2
μt−1 = t

t + 2
· t − 1

t + 1
· · · 2

4
· 1

3
· μ0

= 2

(t + 1)(t + 2)
μ0 = 4L(φ)

(t + 1)(t + 2)
= 4‖C‖2

(t + 1)(t + 2)
. (27)

Combining (26) and (27), we immediately obtain the convergence rate of Algo-
rithm 1 [19].

Stat Biosci (2012) 4:3–26 13

Theorem 3 (Rate of convergence for duality gap) The duality gap between the primal
solution {vt } and dual solution {αt } generated from Algorithm 1 satisfies

f
(
vt

) − φ
(
αt

) ≤ μtD = 4‖C‖2D

(t + 1)(t + 2)
, (28)

where D = maxα∈Q2 d(α). In other words, if we require that the duality gap is less

than ε, Algorithm 1 needs at most �2‖C‖
√

D
ε

− 1� iterations.

According to [20], the convergence rate in Theorem 3 has already achieved the
optimal rate for solving any convex smooth problem using only the first-order infor-
mation.

As for time complexity, it is easy to verify that the per-iteration complexity time
1 is linear in p + ∑

g∈G |g|, which is very cheap and hence can easily scale up to
high-dimensional data.

4 Network-Structured Sparse CCA

In this section, we propose to adopt a network-based fusion penalty to incorporate
the prior knowledge of the network structure into the sparse CCA framework. In
addition, such a penalty can be naturally used for the group pursuit purpose which
automatically groups the relevant variables into clusters.

The fused lasso model [24] assumes a linear ordering on the variables and uses
the penalty

∑p−1
j=1 |vj+1 − vj | to enforce the learned parameters to be piece-wise

constant. The network-based fusion penalty [14] extends the chain-structured fusion
penalty to a general graph G = (V ,E), where V = {1, . . . , p} corresponds to p vari-
ables and E is the edge set. The graph G can be obtained from any prior knowledge.
For the ease of illustration, we assume that the graph G is constructed from the cor-
relation network with the edge set:

E = {
e = (i, j) : |rij | > δ

}
, (29)

where rij is the correlation between ith and j th variable and 0 < δ < 1 is a predefined
thresholding constant. We note that any prior knowledge can be used to construct G

such as gene regulatory network. Using the correlation network, the network-based
fusion penalty is defined as

∑

(i,j)∈E

wij

∣
∣vi − sign(rij)vj

∣
∣ + c‖v‖1, (30)

where as in fused lasso [24], �1-norm penalty is used to enforce the sparsity; c is
the tuning parameter to balance the �1-norm penalty and the fusion penalty; wij is
the predefined weight for each edge e = (i, j). The term sign(rij) enforces the co-
efficients for positively correlated variables to be similar; while makes the sum of
the coefficients for negatively correlated variables close to zero. If one has a prior
belief of the correlation network structure, a natural way for assigning wij is to set

14 Stat Biosci (2012) 4:3–26

wij = |rij |q , where rij is the correlation between the ith and j th variable; q mod-
els the strength of the prior: a larger q results in a stronger belief of the correlation
network. For the purpose of simplicity, we set wij = |rij | with q = 1 throughout this
paper.

The network-based fusion penalty cannot only leverage the prior knowledge of
the network structure to enhance the estimation but also be used for the group pursuit
purpose. It can automatically group the relevant variables into clusters. In particular,
assuming that G is a complete graph and rij = 1 and for all (i, j), the network-
based fusion penalty directly conducts pairwise comparison between variables: when
the estimated v̂i = v̂j (i.e., |̂vi − v̂j | = 0), the ith and j th variables are grouped
together. We identify all subgroups among p variables by conducting such a pairwise
comparison and applying transitivity rule, i.e., v̂i = v̂j and v̂j = v̂k implies that the
ith, j th, and kth variables are in the same group. Note that another non-convex group
pursuit penalty has recently been proposed in [23]. However, it is computationally
very expensive due to the non-convexity of the penalty and could be easily trapped
by local minima.

As in group-structured sparse CCA, we also add an elastic-net penalty to address
the problem of the collinearity and improve the stability. Our network-based sparse
CCA is defined as

min
u,v

−uT XT Yv + τ

2
vT v + θ1‖v‖1 + θ2

∑

(i,j)∈E

wij

∣
∣vi − sign(rij)vj

∣
∣

s.t. ‖u‖2 ≤ 1, ‖v‖2 ≤ 1, ‖u‖1 ≤ c1.

(31)

4.1 Optimization

The optimization of (31) with respect to v can be written as

min
v∈Q1

f (v) = l(v) + P(v), (32)

where β = YT Xu
τ

; Q1 = {v | ‖v‖2 ≤ 1} is the domain of v; l(v) = 1
2‖v − β‖2

2 is the
Euclidean distance loss function and P(v) is the network-based fusion penalty with
λ = θ1

τ
and γ = θ2

τ
:

P(v) = γ
∑

(i,j)∈E

wij

∣
∣vi − sign(rij)vj

∣
∣ + λ‖v‖1. (33)

The optimization problem in (32) is essentially a generalized fused lasso signal ap-
proximator problem where the fusion penalty is defined on an arbitrary graph. Here,
the penalty P(v) can also be reformulated into maximization problem over the aux-
iliary variables. Then the excessive gap algorithm described in Algorithm 1 can be
applied in a straightforward manner.

As shown in [7], the first part of P(v) in (33) can be written as
∑

e=(i,j)∈E wij |vi −
sign(rij)vj | ≡ ‖Hv‖1, where H ∈ R

|E|×p is the edge-vertex incident matrix with the

Stat Biosci (2012) 4:3–26 15

rows indexed by the edge set E and columns by p variables of v:

He=(i,j),k =
⎧
⎨

⎩

wij , if k = i,

−sign(rij)wij , if k = j,

0, otherwise.
(34)

Therefore, the overall penalty function P(v) can be written as ‖Cv‖1, where

C =
(

γH

λI

)

∈ R
(|E|+p)×p, (35)

and I is p ×p identity matrix. By the fact that the �∞-norm and the �1-norm are dual
of each other:

P(v) ≡ ‖Cv‖1 = max
α∈Q2

αT Cv, (36)

where α is a vector of auxiliary variables with its domain Q2 = {α ∈ R
|E|+p | ‖α‖∞ ≤

1}.
After reformulating P(v) into maxα∈Q2 αT Cv, we can directly apply the ex-

cessive gap method as described Sect. 3.2. The main difference is that αμ(v) =
arg maxα∈Q2

αT Cv − μd(α) is now

αμ(v) = S∞
(

Cv
μ

)

,

where S∞ is the projection operator (shrinking to the �∞-ball) defined as follows:

S∞(x) =

⎧
⎪⎨

⎪⎩

x, if − 1 ≤ x ≤ 1,

1, if x > 1,

−1, if x < −1.

(37)

And the gradient mapping ψ(z) becomes

ψ(z) = arg max
α∈Q2

{
〈∇φ(z),α − z

〉 − 1

2
L(φ)‖α − z‖2

2

}

= S∞
(

z + ∇φ(z)
L(φ)

)

.

The excessive gap method will converge in at most �2‖C‖
√

D
ε

− 1� iterations
according to Theorem 3; and the per-iteration time complexity for network-based
fusion penalty is linear in p + |E|.

5 Experiment

In this section, we present the numerical results on both simulated and real datasets
to illustrate the performance of the proposed algorithm.

16 Stat Biosci (2012) 4:3–26

Table 1 Comparison between ExGap with Grad and IPM for SOCP

|G| = 20,p = 20,100 |G| = 40,p = 40,100

γ = 0.2 CPU Primal Obj Rel_Gap Iter γ = 0.4 CPU Primal Obj Rel_Gap Iter

ExGap 4.059E-3 4.4063E+3 4.900E-12 2 ExGap 1.960E-2 8.8682E+3 5.259E-11 3

Grad 3.135E+1 4.4063E+3 – 69 Grad 1.753E-1 8.8682E+3 – 19

SOCP 4.866E+1 4.4063E+3 8.723E-8 17 SOCP 9.642E+2 8.8682E+3 7.048E-9 20

γ = 2 CPU Primal Obj Rel_Gap Iter γ = 4 CPU Primal Obj Rel_Gap Iter

ExGap 2.591E-2 4.4123E+3 1.197E-9 9 ExGap 1.626E-1 8.8851E+3 8.384E-7 18

Grad 3.496E+1 4.4123E+3 – 773 Grad 9.462E+1 8.8851E+3 – 1036

SOCP 4.440E+1 4.4123E+3 8.267E-5 13 SOCP 2.952E+3 8.8851E+3 3.844E-8 18

|G| = 100,p = 100,100 |G| = 500,p = 500,100

γ = 1 CPU Primal Obj Rel_Gap Iter γ = 5 CPU Primal Obj Rel_Gap Iter

ExGap 2.172E-1 2.2296E+4 6.646E-8 9 ExGap 4.381E+1 1.1211E+5 4.816E-8 51

Grad 5.219E+1 2.2296E+4 – 199 Grad 1.021E+2 1.1211E+5 – 723

γ = 10 CPU Primal Obj Rel_Gap Iter γ = 50 CPU Primal Obj Rel_Gap Iter

ExGap 1.288E+0 2.2362E+4 7.891E-7 48 ExGap 1.855E+2 1.1250E+5 9.757E-7 2144

Grad 9.463E+1 2.2363E+4 – 1293 Grad 2.831E+3 1.1286E+5 – 20000

|G| = 1000,p = 1,000,100 |G| = 5000,p = 5,000,100

γ = 10 CPU Primal Obj Rel_Gap Iter γ = 50 CPU Primal Obj Rel_Gap Iter

ExGap 2.232E+2 2.2456E+5 9.376E-7 102 ExGap 1.579E+3 1.1245E+6 9.615E-7 1752

Grad 2.432E+2 2.2456E+5 – 867 Grad 2.977E+5 1.1261E+6 – 20000

γ = 100 CPU Primal Obj Rel_Gap Iter γ = 500 CPU Primal Obj Rel_Gap Iter

ExGap 8.108E+3 2.2500E+5 8.677E-7 3872 ExGap 7.432E+3 1.1250E+6 9.851E-7 9080

Grad 5.718E+3 2.2668E+5 – 20000 Grad 2.981E+5 1.1498E+6 – 20000

5.1 Computational Efficiency of Excessive Gap Method

In this section, we evaluate the scalability and efficiency of the excessive gap method
(ExGap) for solving the proximal mapping associated with the overlapping-group-
lasso penalty:

arg min
v:‖v‖2≤1

f (v) = 1

2
‖v − β‖2

2 + γ
∑

g∈G
wg‖vg‖2,

where β is given and all wg are assumed to be 1 for simplicity. We compare Ex-
Gap with two widely used optimization methods: (1) formulating the problem into
a second-order cone programming (SOCP) and solving by interior-point method
(IPM) using the state-of-the-art MATLAB package SPDT3 [25] and (2) projected
subgradient-descent method (Grad) The stepsize of the Grad is set to η√

t
as sug-

gested in [8], where the constant η is carefully tuned to be 0.1√
p

. All of the experi-
ments are performed on a PC with Intel Core 2 Quad Q6600 2.4 GHz CPU and 4 GB
RAM. The software is written in MATLAB. We terminate the optimization proce-

Stat Biosci (2012) 4:3–26 17

dure of ExGap and SOCP when the relative duality gap (Rel_Gap) is less than 10−6:

Rel_Gap = |f (vt)−φ(αt)|
1+|f (vt)|+|φ(αt)| ≤ 10−6. For Grad, since there is no dual solutions, we

use objective of ExGap as the “optimal” objective for Grad and stop Grad when its
objective is less than 1.00001 times the objective of ExGap. We set the maximum
iteration for all methods to be 20,000.

More specifically, we generate the data using the similar approach as in [10], with
an overlapping group structure imposed on β as described below. Assuming that
inputs are ordered and each group is of size 1000, we define a sequence of groups of
1000 adjacent inputs with an overlap of 100 variables between two successive groups,
i.e. G = {{1, . . . ,1000}, {901, . . . ,1900}, . . . , {p − 999, . . . , p}} with p = 1000|G| +
100. We set the support of β to be the first half of the variables and set the values of
β in the support to be 1 and otherwise 0.

We vary the number of the groups |G| and report the CPU time in seconds (CPU),
primal objective value (Primal Obj), relative duality gap (Rel_Gap) and the number
of iterations (Iter) in Table 1. For each setting of |G|, we use two levels of regular-
ization: (1) γ = |G|

100 and (2) γ = |G|
10 . Note that when |G| ≥ 50 (p ≥ 50,100), we are

unable to collect results for SOCP, because they lead to out-of-memory errors due to
the large storage requirement for solving the Newton linear system. In addition, for
large |G|, Grad cannot converge in 20,000 iterations. From Table 1, we can see that
ExGap achieves the same objective value as SOCP with small relative duality gap.
For all different scales of the problem, ExGap is much more efficient than SOCP and
Grad. It can easily scale up to high-dimensional data with millions of variables. An-
other interesting observation is that, for smaller γ, which leads to smaller ‖C‖ and
L(φ), the convergence of ExGap is much faster. This observation is consistent with
convergence result in Theorem 3. It suggests that ExGap is more efficient when the
non-smooth part plays less important role in the optimization problem.

5.2 Simulations

In this and next subsections, we use simulated data and a real eQTL dataset to inves-
tigate the performance of the overlapping group-structured and network-structured
sparse CCA. All the regularization parameters are chosen from {0.01,0.02, . . . ,0.09,

0.1,0.2, . . . ,0.9,1,2,10} and set using the permutation-based method in [28]. In-
stead of tuning all the parameters on a multi-dimensional grid which is compu-
tationally heavy, we first train the �1-regularized sparse CCA (i.e. P1(u) = ‖u‖1,
P2(v) = ‖v‖1) and the tuned regularization parameter c1 in (1) is used for all struc-
tured models. For the overlapping-group-lasso penalty in (4), all the group weights
{wg} are set to 1. In addition, we observe that the learned sparsity pattern is quite in-
sensitive to the parameter τ (the regularization parameter for the quadratic penalty);
and therefore we set it to 1 for simplicity. For all algorithms, we use 10 random ini-
tializations of u and select the results that lead to the largest correlation.

5.2.1 Group-Structured Sparse CCA

In this section, we conduct the simulation where the overlapping group structure in v
is given as a priori. We generate the data X and Y with n = 50, d = 100 and p = 82

18 Stat Biosci (2012) 4:3–26

Fig. 2 (a) True u and v;
(b) Estimated u and v using the
�1-regularized sparse CCA;
(c) Estimated u and v using the
group-structured sparse CCA

as follows. Let u be a vector of length d with 20 0s, 20 −1s, and 60 0s. We construct v
with p = 82 variables using the same approach as in [10]: assuming that v is covered
by 10 groups; each group has 10 variables with 2 variables overlapped between every
two successive groups, i.e. G = {{1, . . . ,10}, {9, . . . ,18}, . . . , {73, . . . ,82}}. For the
indices of the 2nd, 3rd, 8th, 9th and 10th groups, we set the corresponding entries of
v to be zeros and the other entries are sampled from i.i.d. N(0,1). In addition, we
randomly generate a latent vector z of length n and normalize it to unit length.

We generate the data matrix X with each Xij ∼ N(ziuj ,1) and Y with each Yij ∼
N(zivj ,1). The true and estimated vectors for u and v are presented in Fig. 2. For the
group-structured sparse CCA, we add the regularization

∑
g∈G ‖vg‖2 on v where G is

taken from the prior knowledge. It can be seen that the group-structured sparse CCA
recovers the true v much better while the simple �1-regularized sparse CCA leads to
an over-sparsified v vector.

Stat Biosci (2012) 4:3–26 19

Fig. 3 (a) True u and v;
(b) Estimated u and v using the
�1-regularized sparse CCA;
(c) Estimated u and v using the
network-structured sparse CCA

5.2.2 Network-Structured Sparse CCA for Group Pursuit

In this simulation we assume that the group structure over v is unknown and the
goal is to uncover the group structure using the network-structured sparse CCA. We
generate the data X and Y with n = 50 and p = d = 100 as follows. Let u be a vector
of length d with 20 0s, 20 −1s, and 60 0s as in the previous simulation study; and v
be a vector of length p with 10 3s, 10 −1.5s, 10 1s, 10 2s and 60 0s. In addition, we
randomly generate a latent vector z of length n and normalize it to unit length.

We generate X with each sample xi ∼ N(ziu,0.1Id×d); and Y with each sample
yi ∼ N(ziv,0.1Σy) where (Σy)jk = exp−|vj −vk |. We conduct the group pursuit via
the network-structured sparse CCA in (31), where we add the fusion penalty for each
pair of variables in v, i.e., E is the edge set of the complete graph. The estimated
vector u and v are presented in Fig. 3(c). It can be easily seen that the network-
structured sparse CCA correctly captures the group structure in the v vector. This

20 Stat Biosci (2012) 4:3–26

Table 2 List of pathways with at least 2 selected genes in the pathway: the first two columns are the
pathway ID and annotation from KEGG, the third column is the number of selected genes in this pathway;
the fourth column is the ratio of the number of selected genes in the pathway (third column) over the
number of genes in the dataset in the pathway; the last column gives the p-values which is calculated as
the hypergeometric probability to get so many genes for a KEGG pathway annotation

ID Annotation No. Genes Ratio p-value

00072 Synthesis and degradation of ketone bodies 2 100.0 7.65E-4**

00280 Valine, leucine and isoleucine degradation 2 18.18 3.58E-2

00620 Pyruvate metabolism 2 6.06 2.35E-1

00640 Propanoate metabolism 2 18.18 3.58E-2

00650 Butanoate metabolism 2 10.00 1.05E-2

00900 Terpenoid backbone biosynthesis 7 53.85 1.26E-8**

01100 Metabolic pathways 29 4.58 1.00E-3*

01110 Biosynthesis of secondary metabolites 15 6.64 7.24E-4**

00100 Steroid biosynthesis 10 66.67 2.84E-13**

00190 Oxidative phosphorylation 4 5.26 1.59E-1

00514 O-Mannosyl glycan biosynthesis 3 23.07 4.81E-3

00600 Sphingolipid metabolism 2 15.38 4.91E-2

03050 Proteasome 2 5.71 2.56E-1

04144 Endocytosis 2 5.56 2.66E-1

experiment demonstrates that network-structured sparse CCA could be a useful tool
for conducting group pursuit in the CCA framework.

5.3 Real eQTL Data

5.3.1 Group-Structured Sparse CCA: Pathway Selection

In this section, we report experiment results on a yeast eQTL data [5, 32]. In partic-
ular, we have two data matrices, X and Y. X contains d = 1260 SNPs from the chro-
mosomes 1–16 for n = 124 yeast strains. Y is the gene expression data of p = 1,155
genes for the same 124 yeast strains. All these p = 1,155 genes are from the KEGG
database [13]. According to KEGG, these genes belong to 92 pathways. We treat
each pathway as a group. The statistics of the 92 pathways are summarized as fol-
lows: the average number of genes in each group is 25.78; and the largest group has
475 genes. One thing to note is that there are a lot of overlapping genes among the
92 pathways and the average appearance frequency of each gene in the pathways is
2.05. To achieve more refined resolution of gene selection, besides the 92 pathway
groups, we also add in p = 1,155 groups where each group only has one singleton
gene. Therefore, instead of just selecting genes at the pathway level, we could also
select genes within each pathway.

Using the group-structured sparse CCA, we selected altogether 121 SNPs (i.e.
the number of nonzero elements in estimated u) and 47 genes (i.e. the number of
nonzero elements in estimated v). These 47 genes spread over 32 pathways. Such
a high coverage of pathways is mainly due to the fact that several selected genes

Stat Biosci (2012) 4:3–26 21

Fig. 4 Overview chart of KEGG functional enrichment using (a) the group-structured sparse CCA;
(b) �1-regularized sparse CCA

Fig. 5 The number of selected SNPs in each chromosome using (a) the �1-regularized sparse CCA; (b) the
group-structured sparse CCA

are important in different biological processes and hence each of them belongs to
multiple pathways. There are 14 pathways that contain at least two selected genes as
listed in Table 2. Among these 14 pathways, 5 of them are highly significant with
the p-value less than 0.001. Using the tool ClueGo [3], the overview chart of KEGG
enrichment on the selected genes is presented in Fig. 4(a). We can see from Fig. 4(a)
that the Terpenoid backbone biosynthesis is the most important functional group,
which is a large class of natural products consisting of isoprene (C5) units. In fact, the
first 8 pathways in Table 2 are all closely related to Terpenoid backbone biosynthesis.
As a comparison, the �1-regularized sparse CCA selects 173 SNPs and 71 genes and
these 71 genes belong to 50 pathways. The KEGG enrichment for �1-regularized
sparse CCA is presented Fig. 4(b).

22 Stat Biosci (2012) 4:3–26

Table 3 GO enrichment analysis for the selected genes using the group-structured sparse CCA: the first
two columns are the GO ID (category) and annotation, the third column is the number of selected genes
having the GO annotation, the fourth column is the GO cluster size and the last column gives the p-value.
The rows are ranked according to the increasing order of p-values

GO ID GO Attribute N X p-value

0006696 ergosterol biosynthetic process 17 25 2.71E-32

0008204 ergosterol metabolic process 17 27 2.09E-31

0006694 steroid biosynthetic process 17 34 5.61E-29

0016126 sterol biosynthetic process 17 34 5.61E-29

0016125 sterol metabolic process 17 45 2.52E-26

0008202 steroid metabolic process 17 49 1.46E-25

0008610 lipid biosynthetic process 20 149 4.71E-21

0006066 cellular alcohol metabolic process 21 210 2.09E-19

0044255 cellular lipid metabolic process 21 259 1.71E-17

0006629 lipid metabolic process 21 279 8.00E-17

0003824 catalytic activity 42 2195 9.20E-15

0006720 isoprenoid metabolic process 7 13 1.35E-12

0008299 isoprenoid biosynthetic process 7 13 1.35E-12

0005783 endoplasmic reticulum 20 410 2.28E-12

0043094 cellular metabolic compound salvage 12 159 1.08E-09

0005789 endoplasmic reticulum membrane 15 293 1.42E-09

0044432 endoplasmic reticulum part 15 317 4.23E-09

0006695 cholesterol biosynthetic process 4 5 1.36E-08

0008203 cholesterol metabolic process 4 5 1.36E-08

0031090 organelle membrane 23 954 4.61E-08

0044444 cytoplasmic part 39 2810 6.43E-08

0044237 cellular metabolic process 46 4187 1.08E-07

0044238 primary metabolic process 43 3581 1.86E-07

0055114 oxidation reduction 13 309 2.32E-07

0016491 oxidoreductase activity 13 318 3.23E-07

0008152 metabolic process 46 4321 4.35E-07

In addition to the above pathway analysis, we also perform the enrichment analysis
on the selected genes according to the standard Gene Ontology (GO). The enrichment
is carried out using the standard annotation tool from [2] and the result is shown in
Table 3 with the cutoff point set to 1E-3. We see that most of clusters are signifi-
cantly enriched and many of them are known to be explicitly relevant. For example,
isoprenoid metabolic process and isoprenoid biosynthetic process are very closely
related to terpenoid backbone biosynthesis.

The group-structured sparsity-inducing penalty on genes will also affect the se-
lection of SNPs. As a comparison, the �1-regularized sparse CCA selects 173 SNPs.
while the group-structured sparse CCA selects only 121 SNPs. The number of se-
lected SNPs in each chromosome is presented in Fig. 5. As we can see, most of the

Stat Biosci (2012) 4:3–26 23

Fig. 6 Overview chart of
KEGG functional enrichment
using the tree-structured sparse
CCA

Fig. 7 Selected genes and their relationship estimated by the network-structured sparse CCA

selected SNPs using the group-structured sparse CCA belong to Chromosome 12
and 13.

5.3.2 Tree-Structured Sparse CCA

In this experiment, rather than utilizing the group information extracted from the
KEGG pathways [13], we learn a hierarchical tree structure on the same yeast dataset

24 Stat Biosci (2012) 4:3–26

and then use the learned tree structure to define the groups. In more details, we run
the hierarchical agglomerative clustering on the p × p correlation matrix of Y where
each leaf node of the tree corresponds to a single gene. We discard the tree nodes for
weak correlations near the root of the tree. In particularly, we calculate the distance
of each tree node to the root; normalize them by the maximum distance and discard
those nodes with the distance less than 0.3. Each node of the tree defines a group
which contains the genes represented by its leaf children nodes. Finally, we obtain
973 groups corresponding to internal nodes and 1,155 singleton group corresponding
to leaf nodes. After obtaining the group structure induced from the clustering tree,
we then apply the group-structured sparse CCA as in the last section. We name the
obtained model as tree-structured sparse CCA.

The tree-structured sparse CCA selects altogether 123 SNPs and 66 genes. An
overview chart of functional enrichment using the KEGG pathways is presented in
Fig. 6. As we can see, most of the functions are identical to those learned by the
group-structured sparse CCA with the group information obtained from KEGG, e.g.
Terpenoid backbone biosynthesis, Steroid biosynthesis, O-Mannosyl glycan biosyn-
thesis, Sphingolipid, etc. We also perform the GO enrichment analysis on the selected
genes and obtained 30 GO clusters. All of these clusters are significantly enriched and
25 of them are the same as the GO clusters obtained by the group-structured sparse
CCA with the groups from KEGG. This experiment suggests that, even without any
prior knowledge of the pathway information as group structure, our correlation-based
tree-structured sparse CCA can also select the relevant genes and provide the similar
enrichment results.

5.3.3 Network-Structured Sparse CCA

In this section, we apply the network-structured sparse CCA on the yeast eQTL data
based on the correlation network. More specifically, we compute the pairwise corre-
lation among gene expression levels and construct the edge set E by those pairs of
variables with the absolute value of the correlation greater than 0.8. With the edge
set E, we apply the network-based sparse CCA and select 67 genes. To visualize
the network induced by the estimated v̂, we should connect the (i, j) pair if v̂i = v̂j

which indicates that the ith gene and j th gene are in the same group. However, due
to the numerical error introduced during the computation, v̂i cannot be exactly the
same as v̂j . Therefore, we connect two selected genes (nodes) if |̂vi − v̂j | ≤ 10−3

and present the learned network structure in Fig. 7 (singleton nodes are not plotted).
We observe that there are two obvious clusters. With the learned clustering structure,
we can study the functional enrichment of each cluster separately, which could lead
to more elaborate enrichment analysis as compared to the analysis of the selected
genes all together.

6 Conclusions

The sparse CCA model [28, 29] provides an appealing framework to investigate
genome-wide association study. In this paper, we further extend this model so that it

Stat Biosci (2012) 4:3–26 25

can exploit either the group or the network structure information among variables via
the structured sparsity-inducing penalty. Moreover, we provide an efficient optimiza-
tion algorithm that can solve large-scale structured sparse CCA problems efficiently.
Compared to the previous sparse CCA methods, our structured sparse CCA models
allow for more rich structure information.

Acknowledgements We would like to thank Seyoung Kim for pointing out and helping us prepare the
yeast data. We also thank Jaime G. Carbonell for the helpful discussion on the excessive gap methods and
related first-order methods. We would also like to thank anonymous reviewers and the associate editor for
their constructive comments on improving the quality of the paper.

References

1. Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Mach Learn 73(3):243–
272

2. Berriz G, Beaver J, Cenik C, Tasan M, Roth F (2009) Next generation software for functional trend
analysis. Bioinformatics 25(22):3043–3044

3. Bindea G et al (2009) Cluego: a cytoscape plug-in to decipher functionally grouped gene ontology
and pathway annotation networks. Bioinformatics 25(8):1091–1093

4. Borwein J, Lewis AS (2000) Convex analysis and nonlinear optimization: theory and examples.
Springer, Berlin

5. Brem RB, Krulyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits
in yeast. Proc Natl Acad Sci 102(5):1572–1577

6. Cao KL, Pascal M, Robert-Cranie C, Philippe B (2009) Sparse canonical methods for biological data
integration: application to a cross-platform study. Bioinformatics 10

7. Chen X, Lin Q, Kim S, Carbonell J, Xing E (2011) Smoothing proximal gradient method for general
structured sparse learning. In: Uncertainty in artificial intelligence

8. Duchi J, Singer Y (2009) Efficient online and batch learning using forward backward splitting. J Mach
Learn Res 10:2899–2934

9. Hiriart-Urruty JB, Lemarechal C (2001) Fundamentals of convex analysis. Springer, Berlin
10. Jacob L, Obozinski G, Vert JP (2009) Group lasso with overlap and graph lasso. In: ICML
11. Jenatton R, Audibert J, Bach F (2009) Structured variable selection with sparsity-inducing norms.

Tech rep, INRIA
12. Jenatton R, Mairal J, Obozinski G, Bach F (2010) Proximal methods for sparse hierarchical dictionary

learning. In: ICML
13. Kanehisa M, Goto S (2000) Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res

28:27–30
14. Kim S, Xing E (2009) Statistical estimation of correlated genome associations to a quantitative trait

network. PLoS Genet 5(8)
15. Kim S, Xing EP (2010) Tree-guided group lasso for multi-task regression with structured sparsity. In:

ICML
16. Mairal J, Jenatton R, Obozinski G, Bach F (2010) Network flow algorithms for structured sparsity. In:

NIPS
17. Mol D, Vito D, Rosasco L (2009) Elastic net regularization in learning theory. J Complex 25:201–230
18. Naylor M, Lin X, Weiss S, Raby B, Lange C (2010) Using canonical correlation analysis to discover

genetic regulatory variants. PLoS One
19. Nesterov Y (2003) Excessive gap technique in non-smooth convex minimization. Tech rep, Université

catholique de Louvain, Center for Operations Research and Econometrics (CORE)
20. Nesterov Y (2003) Introductory lectures on convex optimization: a basic course. Kluwer Academic,

Dordrecht
21. Nesterov Y (2005) Smooth minimization of non-smooth functions. Math Program 103(1):127–152
22. Parkhomenko E, Tritchler D, Beyene J (2009) Sparse canonical correlation analysis with application

to genomic data integration. Stat Appl Genet Mol Biol 8:1–34
23. Shen X, Huang HC (2010) Grouping pursuit through a regularization solution surface. J Am Stat

Assoc 105(490):727–739

26 Stat Biosci (2012) 4:3–26

24. Tibshirani R, Saunders M (2005) Sparsity and smoothness via the fused lasso. J R Stat Soc B
67(1):91–108

25. Tütüncü RH, Toh KC, Todd MJ (2003) Solving semidefinite-quadratic-linear programs using sdpt3.
Math Program 95:189–217

26. Waaijenborg S, de Witt Hamer PV, Zwinderman A (2008) Quantifying the association between gene
expressions and DNA-markers by penalized canonical correlation analysis. Stat Appl Genet Mol
Biol 7

27. Wen Z, Goldfarb D, Yin W (2009) Alternating direction augmented Lagrangian methods for semidef-
inite programming. Tech rep, Dept of IEOR, Columbia University

28. Witten D, Tibshirani R (2009) Extensions of sparse canonical correlation analysis with applications
to genomic data. Stat Appl Genet Mol Biol 8(1):1–27

29. Witten D, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with applications to sparse
principal components and canonical correlation analysis. Biostatistics 10:515–534

30. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat
Soc B 68:49–67

31. Zhao P, Rocha G, Yu B (2009) Grouped and hierarchical model selection through composite absolute
penalties. Ann Stat 37(6A):3468–3497

32. Zhu J et al (2008) Integrating large-scale functional genomic data to dissect the complexity of yeast
regulatory networks. Nat Genet 40:854–861

33. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B
67:301–320

	An Efficient Optimization Algorithm for Structured Sparse CCA, with Applications to eQTL Mapping
	Abstract
	Introduction
	Background: Sparse CCA
	Group-Structured Sparse CCA
	Model
	Optimization Algorithm
	Related Optimization Methods
	Reformulation of the Penalty
	Smoothing the Penalty
	Fenchel Dual of f(v)
	Excessive Gap Method
	Convergence Rate and Time Complexity

	Network-Structured Sparse CCA
	Optimization

	Experiment
	Computational Efficiency of Excessive Gap Method
	Simulations
	Group-Structured Sparse CCA
	Network-Structured Sparse CCA for Group Pursuit

	Real eQTL Data
	Group-Structured Sparse CCA: Pathway Selection
	Tree-Structured Sparse CCA
	Network-Structured Sparse CCA

	Conclusions
	Acknowledgements
	References

