
Guest editors' introduction

Special issue: synthesis, transformation and analysis of logic
programs 2

Annalisa Bossia,*, Yves Devilleb,1

a Universit�a Ca' Foscari di Venezia, Via Torino 155, 30173 Mestre-Venezia, Italy
b Universit�e catholique de Louvain, Place Ste Barbe, 2 B-1348 Louvain-la-Neuve, Belgium

This volume contains the second part of the Special Issue on Synthesis, Transfor-
mation and Analysis of Logic Programs. The ®rst part on program analysis appeared
in Vol 39(1±3). The second part includes contributions on program synthesis and pro-
gram transformation.

Program Synthesis, in a broad way, refers to the elaboration of a program in some
systematic manner, starting from a (nonexecutable) speci®cation. Program synthesis
mainly focuses on automated or semi-automated synthesis. Program Transformation
deals with the successive transformations of a given program into equivalent but
``better'' programs. Usually, the adjective ``better''' refers to ``more e�cient'' with re-
spect to some operational semantics. The borderline between synthesis and transfor-
mation is very thin and rather subjective. A possible di�erence could be that
synthesis starts from speci®cations written in some richer logical languages.

There are four contributions on program synthesis and program transformation
published in this volume.

The ®rst paper, Inductive synthesis of recursive logic programs: achievements and
prospects, by Pierre Flener and Serap Yõlmaz overviews the achievements of induc-
tive synthesis of logic programs from incomplete speci®cations. This paper focusses
on the synthesis of recursive programs. It also debates the practical applicability of
these techniques in two application areas: knowledge discovery and software engi-
neering.

The borderline between synthesis and transformation, which is very thin, is even
thinner in a logic programming context. In fact, in this environment the same trans-
formations we can use to get a more e�cient program from an initial one can be ap-
plied to logic speci®cations which are not executable, as they are. This is shown in the

The Journal of Logic Programming 41 (1999) 139±140
www.elsevier.com/locate/jlpr

* Corresponding author. Tel.: +39-041-2908421; fax: +39-041-2908419; e-mail: bossi@dsi.unive.it
1 E-mail: yde@info.ucl.ac.be

0743-1066/99/$ ± see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII S 0 7 4 3 - 1 0 6 6 (9 9) 0 0 0 2 7 - 8

second paper of this volume Synthesis and transformation of logic programs using un-
fold/fold proofs by Alberto Pettorossi and Maurizio Proietti.

We refer to program specialization when the transformation aims at gaining e�-
ciency by exploiting the fact that the program will be employed in a certain context,
that is, for a restricted set of input values. The optimization is generally achieved by
partially evaluating the program with respect to the given input set. In the case of
logic programs, this takes the form of partial deduction, which can be seen as a subset
of the class of unfold/fold transformations where unfolding is the basic transforma-
tion rule. In Conjunctive partial deduction: foundations, control, algorithms and ex-
periments, Danny De Schreye, Robert Gl�uck, Jesper Jùrgensen, Michael Leuschel,
Bern Martens and Morten Heine Sùrensen present a framework for program special-
ization which extends conventional partial deduction techniques by incorporating
more rules of the unfold/fold approach.

A di�erent extension to partial evaluation is proposed by German Puebla and
Manuel Hermenegildo, in Abstract multiple specialization and its application to pro-
gram parallelization. Here, the authors consider the case when the set of possible in-
puts is unknown or in®nite and show how a form of specialization can still be
performed in such cases by means of abstract interpretation.

Many thanks to Maurice Bruynooghe, Editor-in-Chief of JLP, for inviting us to
edit this issue, and for his helpful support. We are grateful to the authors for provid-
ing high-quality contributions. Finally, we thank all the reviewers for their helpful
criticisms, suggestions and advice.

140 A. Bossi, Y. Deville / J. Logic Programming 41 (1999) 139±140

