
File: 571J 143601 . By:BV . Date:29:08:96 . Time:11:50 LOP8M. V8.0. Page 01:01
Codes: 6664 Signs: 4902 . Length: 60 pic 11 pts, 257 mm

Journal of Computer and System Sciences � SS1436

journal of computer and system sciences 53, 79�87 (1996)

New Lower Bounds and Hierarchy Results
for Restricted Branching Programs

Detlef Sieling*

FB Informatik, LS II, Universita� t Dortmund, 44221 Dortmund, Germany

Received August 31, 1993; revised August 14, 1995

In unrestricted branching programs all variables may be tested
arbitrarily often on each path. But exponential lower bounds are only
known if on each path the number of tests of each variable is bounded.
We examine branching programs in which for each path the number of
variables that are tested more than once is bounded by k but we do not
bound the number of tests of those variables. Using a new lower bound
method we can prove that such branching programs become more
powerful by increasing k only by 1: For k�(1&=)(n�3)(1�3)�log2�3 n,
where =>0, we exhibit Boolean functions that can be represented in
polynomial size if k variables may be tested more than once on each
path, but only in exponential size if k&1 variables may be tested more
than once on each path. Therefore, we obtain a tight hierarchy.] 1996

Academic Press, Inc.

1. INTRODUCTION

Branching programs are a powerful representation of
Boolean functions. We can derive branching programs for
some function from non-uniform Turing machines for this
function. Lower and upper bounds for branching programs
imply lower and upper bounds for the space complexity of
non-uniform Turing machines and of any other reasonable
model of sequential computation. For this reason branching
programs and lower bound methods for branching
programs are extensively studied in complexity theory.
Branching programs are also used as data structure for
Boolean functions. For restricted variants of branching
programs efficient algorithms for operations on Boolean
functions represented by these branching programs are
known. Such data structures are needed in logic synthesis,
test pattern generation, verification of VLSI designs and
analysis and synthesis of sequential circuits. The knowledge
of lower and upper bounds for these variants of branching
programs is useful for the estimation of the expressive power
of the data structures.

A branching program is a directed acyclic graph with one
source node. Sink nodes are labeled by a Boolean constant
0 or 1. Non-sink nodes, also called interior nodes, are
labeled by Boolean variables and have two outgoing edges,

one labeled by 0 and the other labeled by 1. Each input
a=(a1 , ..., an) defines a path from the source node to a sink
node. In order to obtain this path for the input a we start at
the source node. At an interior node labeled by xi we follow
the outgoing edge labeled by 0 if ai=0, or the outgoing edge
labeled by 1 if ai=1. This is iterated until we reach a sink
node. The label of this sink node is the value that the function
represented by the branching program takes for the input a.

The best known lower bound for unrestricted branching
programs can be obtained by methods due to Nec� iporuk
[11]. But this bound is only of size 0(n2 log&2 n). Since we
are interested in exponential lower bounds, we have to
consider restrictions of general branching programs.

If we want to use branching programs as data structure
for Boolean functions, we must make sure that as many as
possible important Boolean functions can be represented in
small size. Furthermore, it is necessary that the operations
on Boolean functions can be performed efficiently on the
data structure. The most important operations are evalua-
tion, satisfiability, synthesis, and equality. An exhaustive list
of operations and of applications is given in Wegener [14].
For the evaluation we have to compute for a data structure
representing the function f and an input a the value f (a).
Satisfiability is the test whether there is some input a for
which the function represented by the data structure takes
the value 1. Synthesis is the problem to compute a data
structure for f1 b f2 , where data structures for f1 and f2 and
a binary Boolean operation b are given. For the equality
test we have to decide whether two functions represented by
data structures are equal.

For unrestricted branching programs satisfiability is NP-
complete and equality is co-NP-complete. Therefore, only
restrictions of general branching programs are usable as
data structures for Boolean functions. In the following
we survey the most important restrictions of branching
programs. For ordered binary decision diagrams (OBDDs)
an ordering of the variables must be fixed. On each path
from the source node to a sink node the variables are tested
according to this ordering. This also implies that each
variable is tested at most once on each path. OBDDs

article no. 0050

79 0022-0000�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

* Supported in part by DFG Grant We 1066�7-1.

File: 571J 143602 . By:BV . Date:29:08:96 . Time:11:50 LOP8M. V8.0. Page 01:01
Codes: 6490 Signs: 5830 . Length: 56 pic 0 pts, 236 mm

are the most popular data structure for Boolean functions
because the operations can be performed efficiently on
Boolean functions represented by OBDDs (Bryant [5, 6]).
Exponential lower bounds for the size of OBDDs for integer
multiplication and the hidden weighted bit function HWB
(HWB is defined below) are also proved by Bryant [7].

In a read-once branching program (BP1) each variable
may be tested at most once on each path from the source
node to a sink node. Exponential lower bounds for the size
of read-once branching programs can be obtained by cut-
and-paste techniques due to Wegener [13] and Z8 a� k [15].
Read-once branching programs are not usable as data
structure because synthesis is NP-hard. Graph driven
binary decision diagrams (Sieling and Wegener [12],
Gergov and Meinel [9]) are read-once branching programs
for which a generalized variable ordering is given. Graph
driven binary decision diagrams have the same expressive
power as read-once branching programs and the most
important operations can be performed efficiently.

Read-k-times branching programs may contain k tests of
each variable on each path. In read-k-times branching
programs as well as in unrestricted branching programs
null-chains may occur, i.e., paths which are not chosen for
any input. This happens if on some path at some node v the
0-edge leaving v is chosen and at some other node v$ labeled
by the same variable as v the 1-edge leaving v$ is chosen.
A path that is not a null-chain is called consistent. In non-
syntactic read-k-times branching programs the number of
tests of each variable is bounded by k only for consistent
paths, while in syntactic read-k-times branching programs
this number is bounded also for null-chains. An exponential
lower bound for syntactic read-k-times branching programs
is proved by Borodin, Razborov and Smolensky [4]. It is
conjectured that for each k�2 there are functions which
can be represented by read-k-times branching programs of
polynomial size but only by read-(k&1)-times branching
programs of exponential size; this means that read-k-times
branching programs of polynomial size form a hierarchy.
But for k�3 no such function is known so far. For non-
syntactic read-k-times branching programs no exponential
lower bound is known at all.

A decision tree is a branching program for which the under-
lying graph is a tree; this means each node except
the source node has indegree one. We may assume that a
decision tree does not contain null-chains: If in a decision tree
some variable is tested more than once on some path, all tests
but the first one are redundant and can be eliminated. It is
well known that decision trees have exponential size even for
simple functions like parity. Therefore, decision trees cannot
be used as data structure for Boolean functions. Methods for
the estimate of the decision tree complexity of Boolean
functions are presented in Wegener [13].

We call a branching program leveled if the node set can
be partitioned into levels so that each edge leaving a node

at level i leads to a node at level i+1. If at each level the
same variable is tested, the branching program is called
oblivious. Exponential lower bounds for oblivious branching
programs of linear depth were first proved by Alon and
Maass [1].

There are functions that can be represented in a natural
way by branching programs in which on each path each
variable is tested at most once with the only exception that
at the end of each path one variable may be tested for a
second time. An example for such a function is the hidden
weighted bit function HWB due to Bryant [7]. This func-
tion is defined by

HWBn(x1 , ..., xn)=xs , where s= :
n

i=1

xi .

Here we assume that x0=0. It is easy to construct a branching
program for HWB. This branching program consists of two
parts: The top part has n+1 sinks numbered from 0 to n
and the j th sink is reached if �n

i=1 xi=j. The interior nodes
are arranged in n levels numbered from 1 to n. The j th level
contains j nodes labeled xj . The 0-successor of the i th node
in level j is the i th node in level j+1, the 1-successor is the
(i+1)th node in level j+1. Hence, in this part the variables
are tested on each path in the order x1 , ..., xn . We obtain the
bottom part if we replace the i th sink by a test of xi and the
sink with number 0 by a 0-sink.

This branching program for HWB is neither an OBDD
nor a read-once branching program because in the bottom
part variables are tested for a second time. It is a read-twice
branching program but we do not need the full expressive
power of read-twice branching programs because on each
path at most one variable is tested twice. It is even possible
to construct a read-once branching program of polynomial
size for HWB (Sieling and Wegener [12]) but the branch-
ing program constructed above resembles much more the
definition of HWB. Since there is no OBDD of polynomial
size for HWB (Bryant [7]), we see that OBDDs can be
made more powerful by allowing one variable to be tested
for a second time at the end of each computation path. This
leads to the question whether OBDDs in which one variable
may be tested for a second time at the end of each path can
be made more powerful by allowing two repeated tests at
the end of each path. We have to prove a lower bound for
OBDDs with one repeated test at the end of each path. Our
lower bound technique does not work only for OBDDs with
k repeated tests at the end of each path (OBDD+k) but also
for read-once branching programs with repeated tests. We
can even omit the properties that the repeated tests are
performed at the end of each computation path and that the
number of repetitions is bounded by two.

Now we define branching programs with k repeated tests
(BP1+k). On each path (consistent or not) only k variables
may be tested more than once, while all other variables may

80 DETLEF SIELING

File: 571J 143603 . By:BV . Date:29:08:96 . Time:11:50 LOP8M. V8.0. Page 01:01
Codes: 6324 Signs: 5310 . Length: 56 pic 0 pts, 236 mm

be tested at most once. On different paths the sets of
variables which may be tested more than once may be
different. Since the number of variables which may be tested
more than once is also bounded for null-chains, we have a
syntactic restriction.

We exhibit functions f k=(f k
n) that are variants of the

hidden weighted bit function. For these functions we prove
an exponential lower bound for the size of each BP1+(k&1) .
On the other hand, these functions can be represented in
polynomial size if k repeated tests are allowed. Therefore,
polynomial size branching programs with k repeated tests
form a tight hierarchy. This hierarchy result even holds if k
is a function that depends on the input length n and
k�(1&=)(n�3)1�3�log2�3 n for some =>0. If k=O(log1&= n)
for some =>0, we also obtain a hierarchy of polynomial size
OBDDs with k repeated tests.

Branching programs with k repeated tests do not appear
to be usable as data structure because synthesis is NP-hard
even for read-once branching programs. But the lower and
upper bounds show how OBDDs have to be extended in
order to make OBDDs more powerful; it is necessary to test
on each path some variables more than once. But then we
have to deal with null-chains. Read-k-times ordered binary
decision diagrams (kOBDDs) are a variant of branching
programs with null-chains. Bollig, Sauerhoff, Sieling, and
Wegener [2] have shown that there are efficient algorithms
for the operations on Boolean functions represented by
kOBDDs. In kOBDDs each path can be partitioned into k
parts so that in each part the variables are tested at most
once and according to a given ordering. The branching
program for HWB is obviously a 2OBDD. Bollig,
Sauerhoff, Sieling, and Wegener [3] prove that kOBDDs
and kIBDDs of polynomial size form proper hierarchies. In
kIBDDs the variable orderings in the k layers may be dif-
ferent. No other hierarchy results for restricted branching
programs are known so far.

Our main results are:

v We prove exponential lower bounds for new restric-
tions of branching programs.

v These lower bounds are obtained by a new lower
bound method.

v We get tight hierarchies of functions that can be
represented by polynomial size OBDDs and BP1s with k
repeated tests.

v The new method allows the proof of lower bounds
close to the corresponding upper bounds which has not
been possible so far by other lower bound methods.

2. THE CONSIDERED FUNCTIONS AND THE UPPER
BOUNDS

The function f k
n : [0, 1]n � [0, 1] is defined on the set of

variables X=[x0 , ..., xn&1]. Let m be the largest number

where mkWlog nX�n. We partition the set of variables into
k groups X 1, ..., Xk each consisting of m numbers of bit
length Wlog nX. Let s(j) be the sum (mod n if n is odd, and
mod(n&1) else) of the numbers of the j th group. Then

f k
n(x0 , ..., xn&1)=xs(1) � } } } �xs(k) .

Since in a BP1+k repeated tests are allowed not only at the
end of each computation path, we get different upper
bounds for the size of OBDDs and BP1s with k repeated
tests for f k. For simplicity we assume throughout this paper
that n is an odd number.

Theorem 1. (a) The function f k=(f k
n) can be

represented by an OBDD+k of size O(nk+1).

(b) The function f k=(f k
n) can be represented by a

BP1+k of size O(n2).

Proof. First we describe an OBDD Pl that computes for
Xl the value s(l). This OBDD has n sinks numbered from 0
to n&1 and the i th sink is reached if s(l)=i. The depth of
Pl is bounded by m Wlog nX since s(l) depends essentially on
m Wlog nX variables. The contribution of some variable xr to
s(l) is xr2

pos(r) mod n, where pos(r) denotes the position of
xr in its binary number. Hence, width n is sufficient for each
level to store the partial sum mod n of the contributions of
the variables tested before. The nodes at each level are num-
bered beginning with 0, and the source is the zeroth node at
level 0. The 0-successor of the j th node of the level where xr

is tested is the j th node of the following level; the 1-successor
is the [(j+2pos(r)) mod n]th node of the following level.

The j th node of some level is only reached if the sum mod
n of contributions of the variables tested before equals j.
This also holds for the sink nodes and, hence, Pl computes
the desired function. The number of nodes can be estimated
by O(nmWlog nX)=O(n2�k).

The OBDD+k for f k
n consists of two parts. The top part

is an OBDD with nk sinks that computes the value of the
vector (s(1), ..., s(k)). This part consists of copies of Pl which
are arranged in a complete n-ary tree of depth k. At the i th
level of this tree the variables contained in the block Xi are
tested by copies of Pi and the value s(i) is computed. The
value of (s(1), ..., s(i)) is stored in the branching program
because paths with different values for (s(1), ..., s(i)) are
never joined. The number of copies of Pl in the tree is
�k&1

j=0 n j=O(nk&1). Therefore, the number of nodes in the
top part is bounded by O(nk&1 } n2�k)=O(nk+1�k). We
obtain the bottom part if we replace each sink of the top
part which is reached if (s(1), ..., s(k))=(s*(1), ..., s*(k))
by a branching program of depth k that computes
xs*(1) � } } } �xs*(k) . Hence, the depth of the bottom part is
k and we really get an OBDD+k . The number of nodes in
the bottom part is bounded by O(k } nk) because there are nk

different values of the vector (s(1), ..., s(k)).

81LOWER BOUNDS AND HIERARCHY RESULTS

File: 571J 143604 . By:XX . Date:08:08:96 . Time:09:37 LOP8M. V8.0. Page 01:01
Codes: 4922 Signs: 3900 . Length: 56 pic 0 pts, 236 mm

In a BP1+k we may perform the test of xs(l) immediately
after the computation of s(l). We replace the i th sink of Pl

by a test of xi and obtain a branching program Pl* that
computes for the lth block the value xs(l) . Then P1* and two
copies of each Pl*, l>1, are sufficient for the computation
of xs(1) � } } } �xs(k) . K

The OBDD+k is of polynomial size only if k is a constant.
At the end of Section 3 we modify the function f k by adding
dummy variables. For this new function f� k we obtain the
upper bound O(n2) for the size of an OBDD+k also for non-
constant k. A superpolynomial lower bound for the size of
each OBDD+(k&1) for f� k can be shown if k=O(log1&= n)
for some =>0.

3. THE LOWER BOUND

First we prove the following property of the function f k:
Even if we replace a large number of input bits by arbitrary
constants, it is possible to obtain each value in
[0, ..., n&1]k for (s(1), ..., s(k)) by choosing a suitable
assignment to the remaining bits (Lemma 2). Then we
consider some node v in a given BP1+(k&1) for f k. Using
Lemma 2 we show that the sets of variables tested on
different consistent paths from the source node to v cannot
differ too much if the number of variables tested on some
consistent path to v is not too large (Lemma 3, Lemma 4,
Lemma 5). Then we can rearrange the given BP1+(k&1) and
estimate the number of consistent paths leading from the
source node to v (Lemma 6, Lemma 7). In the proof of
Theorem 8 we define a set of marked nodes in the
BP1+(k&1) and prove a lower bound for the number of
consistent paths leading from the source node to all marked
nodes. Together with the upper bound of Lemma 6 we
obtain the desired exponential lower bound for the size of
each BP1+(k&1) for f k. The hierarchy results are stated in
Theorem 9.

Lemma 2. Let t(1), ..., t(k) # [0, ..., n&1]. If in the input
X=[x0 , ..., xn&1] at most m&1 bits are replaced by
arbitrary constants, there is an assignment to the remaining
bits so that s(l)=t(l) for all l # [1, ..., k].

Proof. If at most m&1 bits are replaced by constants,
there is in each group some binary number in which no bit
has been replaced. For each group we can replace all bits
outside this number by arbitrary constants and then we can
choose a suitable value for this number in order to get
s(l)=t(l). K

Next we want to show that in each BP1+(k&1) for f k the
numbers of variables tested on different consistent paths
from the source node to some node v cannot differ too much
if these numbers of variables are not too large. We consider
the situation depicted in Fig. 1. On the path P from the
source node to v the variables xi (1) , ..., xi (u) are tested, this

FIGURE 1

means we run through P if appropriate values are assigned
to xi(1) , ..., xi(u) .

In the following we show that it may be necessary to test
arbitrarily chosen variables xj(1) , ..., xj(k) � [xi(1) , ..., xi(u)]
on some path R starting at v. This implies that on each path
Q leading from the source node to v at most k&1 variables
of xj(1) , ..., xj(k) and, therefore, at most k&1 variables not
tested on P may be tested; otherwise the number of
variables tested more than once on the path QR would
exceed k&1.

Lemma 3. Let u�u* :=m&2k&2. Let X1 , X2 , and X3

be a partition of X, where |X1 |=u, |X2 |=k, and |X3 |=
n&u&k. For each assignment to the variables in X1 there is
an assignment to the variables in X3 so that the resulting sub-
function of f k

n cannot be computed by a decision tree of depth
less than k.

Proof. Let an assignment to the variables in X1 be given.
We have to compute a suitable assignment to the variables
in X3 . The variables in X3 are called free until they are fixed
to a constant.

The possible contribution of each variable to its binary
number is a power of 2. Let r(1), ..., r(k) be the possible con-
tributions of the variables in X2 .

We claim that for some R # [0, ..., n&1] the numbers R
and (R+r(i)) mod n, 1�i�k, are indices of free variables.

82 DETLEF SIELING

File: 571J 143605 . By:BV . Date:29:08:96 . Time:11:50 LOP8M. V8.0. Page 01:01
Codes: 6484 Signs: 5384 . Length: 56 pic 0 pts, 236 mm

Each of the u+k�u*+k variables that is not free excludes
at most k+1 numbers R. Hence, it is sufficient to prove
(u*+k)(k+1)<n. This follows from the inequality

n
log n

k+1
k

&k2&3k&2<n,

which holds for every n and k.
Since n is odd and the numbers r(i) are powers of 2, we

have r(i)�0 mod n and, therefore, R�(R+r(i)) mod n for
all i # [1, ..., k]. Hence, it is possible to assign 0 to xR and 1
to x(R+r(1)) mod n , ..., x(R+r(k)) mod n .

Now the variables xR , x(R+r(1)) mod n , ..., x (R+r(k)) mod n are
no longer free. The number of variables that are not free is
still bounded by u+2k+1�m&1.

Hence, by Lemma 2, there is an assignment to the free
variables such that s(1)= } } } =s(k)=R if the variables in
X2 have value 0. By this assignment we obtain a subfunction
f * depending only on the variables in X2 . In order to prove
that the depth of each decision tree for f * is k we compute
the critical complexity of f *.

The critical complexity c(g, a) of a Boolean function
g # Bk for an input a # [0, 1]k is the number of inputs a$
which differ from a in exactly one bit and for which
g(a$){ g(a) holds. The critical complexity c(g) is defined as
the maximum of c(g, a) for all a # [0, 1]k. It is proved by
Bublitz, Schu� rfeld, Voigt, and Wegener [8] that the depth
of each decision tree for g is at least c(g).

We compute c(f *, (0, ..., 0)). If x=(0, ..., 0), we have
s(1)= } } } =s(k)=R and f *(0, ..., 0)=0 because xR=0.
Now we consider an input x where exactly one bit x* is
equal to 1. Let x* be contained in the j th group. Then we
have xs(j)=1 and xs(l)=0 for all l{j. Therefore f *(x)=1.

Since there are k inputs x with exactly one bit equal to 1,
the critical complexity of f * and, therefore, the depth of
each decision tree for f * is k. K

Lemma 4. Let a BP1+(k&1)G for f k
n be given and let u* =

m&2k&2. Let u�u* and let v be a node in the branching
program that is reachable from the source node via a consis-
tent path P on which u variables xi(1) , ..., xi(u) are tested. Then
on each other path Q from the source node to v at most k&1
variables not contained in [xi(1) , ..., xi(u)] are tested.

Proof. We assign those values to xi(1) , ..., xi(u) for which
the path P is chosen (see Fig. 1). For each choice of k
variables xj(1) , ..., xj(k) � [xi(1) , ..., xi(u)] we can apply
Lemma 3 for X1=[xi(1) , ..., xi(u)] and X2=[xj(1) , ..., xj(k)].
We obtain a subfunction f *: X2 � [0, 1] which is not
computable by a decision tree of depth less than k. This
implies that each decision tree and also each branching
program for f * contains a path on which all the variables
xj(1) , ..., xj(k) are tested.

It is easy to obtain a branching program for f |xi=c from a
branching program for f : We redirect all edges leading to a
node w labeled by xi to the c-successor of w. If the source
node is labeled by xi , we define its c-successor as new source
node. By this procedure we obtain a branching program G*
for f * starting from the branching program G for f k

n . By the
definition of f * it follows that G* contains only nodes of the
part of G with source v. Since the branching program for f *
contains a path on which xj(1) , ..., xj(k) are tested, there is
also such a path in G starting at v. At most k&1 tests may
be repeated, therefore, on each path Q leading from the
source node to v at most k&1 of the variables xj(1) , ..., xj(k)

are tested. This holds for all choices of xj(1) , ..., xj(k) �
[xi(1) , ..., xi(u)] and the claim follows. K

Let v be a node in a branching program. For each consis-
tent path leading from the source node to v we count how
many variables are tested on this path before v is reached.
We denote the largest of these numbers by L(v) and the
smallest by S(v). If some path contains several tests of some
variable, this variable is counted only once. Since we
consider only consistent paths, null-chains can affect neither
S(v) nor L(v).

Lemma 5. Let v be a node in a BP1+(k&1) for f k
n and let

u*=m&2k&2. If S(v)�u*, then S(v)�L(v)&k+1.

Proof. We assume S(v)<L(v)&k+1 or equivalently
S(v)�L(v)&k. This implies that on some path related to
L(v) at least k variables are tested which are not tested on
some path related to S(v) in contradiction to Lemma 4. K

In order to compute a lower bound for the number of
nodes in a branching program with k&1 repeated tests for
f k we mark a set of nodes in a given BP1+(k&1) . We prove
a lower bound for the number of consistent paths leading
from the source node to all marked nodes. Together with an
upper bound for the number of consistent paths leading to
a single marked node we obtain the desired lower bound. In
the following lemma we prove the upper bound for the
number of consistent paths leading to a single marked node.

Lemma 6. Let v be a node in a BP1+(k&1) for f k
n and let

u*=m&2k&2. If L(v)�u*, then the number of consistent
paths leading from the source node to v is bounded by
O(n3k&22u*(k&1)�k).

Proof. Let T be the decision tree for f k
n such that for all

inputs the sequence of tested variables is the same as in the
given BP1+(k&1) . Let V* be the set of nodes in T represent-
ing the given node v and being reached in T on a consistent
path. We partition the set of paths leading from the source
node of T to some node v* # V* into sets P(j), 1� j�Av ,
of paths on which exactly the same variables are tested. Av

denotes the number of such sets. Lemma 6 follows from the
upper bound O(n2k&2) for Av and from the upper bound
nk2u*(k&1)�k for the size of the sets P(j).

83LOWER BOUNDS AND HIERARCHY RESULTS

File: 571J 143606 . By:XX . Date:08:08:96 . Time:09:37 LOP8M. V8.0. Page 01:01
Codes: 5183 Signs: 3833 . Length: 56 pic 0 pts, 236 mm

1. An Upper Bound for Av

Let VP denote the set of variables tested on the (consis-
tent) path P from the source node to v* # V*. We do not
include the variable tested at v* in VP . Select for P a path
that maximizes |VP |. Let Q be some other (consistent) path
to v*. Due to Lemma 4 we can obtain VQ from VP if we
remove k* variables from VP , where k*�k&1, and add at
most k* other variables. Then the number of possible sets
VQ is bounded by

:
k&1

k*=0 _\
|VP |
k* + } :

k*

j=0 \
n
j+&=O(n2k&2).

This is the desired upper bound for Av .

2. An Upper Bound for the Size of P(j)

Let us consider some set P(j) and let U=[xi(1) , ..., xi(u)]
be the set of variables tested on the paths in P(j). We know
that u�u* since L(v)�u*. Since the subtrees whose sources
are contained in V* are isomorphic, it is possible to merge
all nodes in V* which belong to paths in P(j). Let v* be the
resulting node and let T* be the decision tree whose source
is v*. On each path in T* at most k&1 variables contained
in U are tested. We rearrange T* in such a way that the
U-variables are tested at the end of each path. Let
Y :=X&U. Perform on the decision tree successively the
following operations for each x* # Y:

v Create a new source node labeled by x*. The suc-
cessors of this node are two copies of the previous decision
tree.

v Eliminate redundant tests and nonreachable nodes
and edges.

In the second step all nodes labeled by x*, except the new
source node, are removed. The new decision tree computes
the same function as the old one. Before the rearrangement
on each path in the decision tree at most k&1 of the
variables xi(1) , ..., xi(u) are tested. The same holds afterwards
because only tests of x* # Y are inserted. Now the tests of
xi(1) , ..., xi(u) are the last tests on each path. These tests are
arranged in small decision trees of depth k&1 in the bottom
of the decision tree with root v* (see Fig. 2). In the following
we examine which functions have to be computed by these
small decision trees.

Each path from the source node to v* defines an assign-
ment to xi(1) , ..., xi(u) . We call (s*(1), ..., s*(k)) the value of
this partial assignment if after assigning 0 to all variables in
Y we get s*(i) as the sum mod n of the numbers in Xi for all
i # [1, ..., k]. We derive an upper bound for the number of
those paths leading from the source node to v* for which the
values of the partial assignments are equal to a fixed vector
(s*(1), ..., s*(k)). We multiply this upper bound by nk in

FIGURE 2

order to obtain the upper bound for the number of all paths
leading to v*.

Now we fix (s*(1), ..., s*(k)) and consider only
assignments to xi(1) , ..., xi(u) with value (s*(1), ..., s*(k)).
Lemma 2 implies that we can choose for (s(1), ..., s(k)) every
value in [0, ..., n&1]k and can assign suitable values to the
variables in Y in order to obtain that for i # [1, ..., k] the
sum mod n of the numbers in Xi is equal to s(i). On the
other hand, this assignment to the variables in Y determines
a path starting at v* and leading to one of the small decision
trees in the bottom part.

We assign values to the variables in Y so that s(1)=i(1),
s(2)=i(2), ..., s(k)=i(k). Then the value of f k

n is
xi(1) � } } } �xi(k) . According to the assignments of the
variables in Y we reach one of the small decision trees in the
bottom part which computes a function g1(xi(1) , ..., xi(u)).
This is also the value that the branching program computes.
Since g1(xi(1) , ..., xi(u)) is computed by a decision tree of depth
k&1, it is different from xi(1) � } } } �xi(k) . Among the
assignments to xi(1) , ..., xi(u) with value (s*(1), ..., s*(k)) only
those may define paths leading to v* for which the equation

xi(1) � } } } �xi(k) �g1(xi(1) , ..., xi(u))=0

holds.
We can derive more equations by choosing assignments

to the variables in Y for which

s(1)=i(k+1), s(2)=i(k+2), ..., s(k)=i(2k),

or

s(1)=i(2k+1), s(2)=i(2k+2), ..., s(k)=i(3k),

84 DETLEF SIELING

File: 571J 143607 . By:BV . Date:29:08:96 . Time:11:50 LOP8M. V8.0. Page 01:01
Codes: 6167 Signs: 4288 . Length: 56 pic 0 pts, 236 mm

and so on. Therefore, all of the following equations have to
be satisfied by assignments to xi(1) , ..., xi(u) with value
(s*(1), ..., s*(k)) which define paths leading to v*:

xi(1) � } } } �xi(k) �g1(xi(1) , ..., xi(u))=0

b (1)

xi((t&1)k+1) � } } } �xi(tk) �gt(xi(1) , ..., xi(u))=0.

Here we assume w.l.o.g. that t :=u�k is an integer. The
function gj is the function computed by the decision tree of
depth k&1 which is reached for the corresponding assign-
ment to the variables in Y.

The number of solutions of the system of Eq. (1) is an
upper bound for the number of paths with value
(s*(1), ..., s*(k)) leading to v*. In the following we show
that the number of solutions is 2u(k&1)�k. Since there are nk

possible values for (s*(1), ..., s*(k)), the number of paths
leading to v* is bounded by nk2u(k&1)�k. This implies the
desired upper bound nk2u*(k&1)�k because u�u*.

Let Gj (xi(1) , ..., xi(tk)) denote the left-hand side of the j th
equation of (1), i.e.,

Gj (xi(1) , ..., xi(tk))

:=xi((j&1)k+1) � } } } �xi(jk) �gj (xi(1) , ..., xi(u)).

For the calculation of the number of solutions of (1) we
prove the following lemma.

Lemma 7. For each J�[1, ..., t], J{<, there are
exactly 2tk�2 assignments to xi(1) , ..., xi(tk) so that

�
j # J

Gj (xi(1) , ..., xi(tk))=0.

Proof. Let J�[1, ..., t], J{< be given. We partition
the set of all assignments to xi(1) , ..., xi(tk) into classes
consisting of two elements. Then we show that for the
assignments in each class �j # J Gj (xi(1) , ..., xi(tk)) takes
different values. Therefore, the numbers of assignments with
�j # J Gj (xi(1) , ..., xi(tk))=0 and � j # J Gj (xi(1) , ..., xi(tk))=1
are equal. Since there are 2tk assignments to xi(1) , ..., xi(tk)

the claim follows.
We describe the partition by a procedure that computes

for each assignment \ the other member \̂ of the class \
belongs to. Let us look at the paths that are chosen in the
decision trees for the functions gj , j # J, if we assign values to
xi(1) , ..., xi(tk) according to \. Since the depth of these
decision trees is bounded by k&1, there are at most
|J |(k&1) variables on the paths selected for this input. The
� -sum �j # J Gj (xi(1) , ..., xi(tk)) consists of the �-sum
�j # J gj (xi(1) , ..., xi(tk)) and the �-sum of |J | k single
variables. Therefore, some of the single variables are not
tested on any path selected by \. Among these variables we

choose as x* the variable with the smallest index. We obtain
the assignment \̂ from \ by negating the value of x*. In the
decision trees the same paths are selected for \ and for \̂
because x* is not tested on any of these paths. This implies
\̂̂=\ and, therefore, this procedure really gives a partition
of the set of assignments.

For both \ and \̂ the � -sum �j # J gj (xi(1) , ..., xi(tk))
takes the same value because in the decision trees the same
paths are chosen. But the � -sum of single variables takes
different values because x* is different for \ and \̂. There-
fore, also �j # J Gj (xi(1) , ..., xi(tk)) takes different values for \
and \̂. K

Let Nw , w # [0, 1]t, denote the number of assignments
to xi(1) , ..., xi(tk) for which (G1(xi(1) , ..., xi(tk)), ...,
Gt(xi(1) , ..., xi(tk)))=w. The number of assignments satis-
fying all equations in (1) is N(0, ..., 0) . We show
Nw=2tk&t=2u((k&1)�k) not only for w=(0, ..., 0) but even
for all w # [0, 1]t.

Since there are 2tk assignments to xi(1) , ..., xi(tk) , we get
the following equation:

:
w # [0, 1]t

Nw=2tk. (2)

Now fix J�[1, ..., t], J{<. The number of assignments to
xi(1) , ..., xi(tk) for which �j # J Gj (xi(1) , ..., xi(tk))=c, where
c # [0, 1], can be written as

:
w|(�j # J wj)=c

Nw .

Lemma 7 implies that this sum takes the same value for
c=0 and c=1. This leads to

:
w|(�j # J wj)=0

Nw& :
w|(�j # J wj)=1

Nw=0. (3)

Since there are 2t&1 choices for the set J, we get 2t&1
equations of the form of (3). Together with Eq. (2) we
obtain a system of 2t linear equations with 2t variables Nw ,
w # [0, 1]t.

It is easy to check that Nw=2tk&t for all w # [0, 1]t

satisfies all linear equations. Therefore, it suffices to prove
that this is the unique solution. We show that the rank of the
matrix of coefficients is 2t.

We index the columns of this matrix M by vectors
w # [0, 1]t and the rows of M by sets J�[1, ..., t]. The row
indexed by the empty set belongs to Eq. (2) and the rows
indexed by J{< correspond to the equations of the form
(3). The entry of M at position (J, w) is

M(J, w)={+1
&1

if � j # J wj=0
if � j # J wj=1.

85LOWER BOUNDS AND HIERARCHY RESULTS

File: 571J 143608 . By:BV . Date:29:08:96 . Time:11:50 LOP8M. V8.0. Page 01:01
Codes: 6270 Signs: 4574 . Length: 56 pic 0 pts, 236 mm

We see that M is a Sylvester matrix. The rank of Sylvester
matrices is maximal (see, e.g., MacWilliams and Sloane
[10]). This completes the proof of Lemma 6. K

Now we are ready to prove the lower bound.

Theorem 8. The number of nodes in each OBDD+(k&1)

and each BP1+(k&1) for f k=(f k
n) is 20(n�(k2 log n)&3k log n&2k).

If k is a constant, we get the lower bound 20(n�log n).
But the proof works also for non-constant k. If k�
(1&=)(n�3)1�3�log2�3 n for some =>0, we get the lower
bound 20(n1�3).

Proof. Let a BP1+(k&1) for f k
n be given and let

u*=m&2k&2. In the given branching program we mark
all nodes v for which L(v)�u* and S(v)�u*&2k+2. We
claim that each consistent path from the source node to a
sink node contains at least one marked node. First we know
that on each such path more than u* variables are tested
because Lemma 3 implies that the subfunction of f k

n

obtained by assigning constants to u* variables is not a
constant function. Now we search on such a path for that
node v where the (u*&k+2)th variable is tested. Therefore,
S(v)�u*&k+1 and L(v)�u*&k+1. Using Lemma 5 we
conclude

L(v)�S(v)+k&1�(u*&k+1)+k&1=u*

S(v)�L(v)&k+1�(u*&k+1)&k+1=u*&2k+2.

This implies that v is a marked node and that there is at least
one marked node on each consistent path from the source
node to a sink node. We also know that on each consistent
path at least to u*&2k+2 variables are tested before a
marked node is reached. Therefore, there are at least
2u*&2k+2 consistent paths from the source node to all
marked nodes. If we select a single marked node v, we know
because of Lemma 6 that the number of consistent
paths from the source node to v is bounded by
O(n3k&22u*((k&1)�k)). Hence, the number of marked nodes is
at least

0 \ 2u*&2k+2

n3k&22u*((k&1)�k)+=20(n�(k 2 log n)&3k log n&2k). K

We obtain a tight hierarchy of polynomial size branching
programs with k repeated tests if k�(1&=)(n�3)1�3�log2�3 n
for some =>0. Since the upper bound of Theorem 1 for
OBDDs with k repeated tests becomes superpolynomial for
non-constant k, we get a hierarchy of polynomial size
OBDDs with k repeated tests only for constant k. By adding
dummy variables we obtain an upper bound of polynomial
size for a function f� k=(f� k

n). Let n~ :=wn1�kx. The function

f� k
n : [0, 1]n � [0, 1] depends essentially only on the

variables x0 , ..., xn~ &1. It is defined by

f� k
n(x0 , ..., xn&1) :=f k

n~ (x0 , ..., xn~ &1).

Due to Theorem 1 we get for the size of OBDDs with k
repeated tests for f� k the upper bound O(n~ k+1)=O(n1+1�k).

If k=O(log1&=n) for some =>0, we can apply Theorem
8 and get the superpolynomial lower bound 20(log2n) for the
size of each OBDD+(k&1) for f� k.

Let P(BP1+k) and P(OBDD+k) denote the sets of
Boolean functions that can be represented by a polynomial
size BP1+k and OBDD+k , respectively. We have proved:

Theorem 9. (a) P(BP1+(k&1)) % P(BP1+k) if k�
(1&=)(n�3)1�3�log2�3 n for some =>0.

(b) P(OBDD+(k&1)) % P(OBDD+k) if k=O(log1&= n)
for some =>0.

Since the classes of both hierarchies are separated by the
same functions, we also have

P(OBDD+k)�3 P(BP1+(k&1))

if k=O(log1&= n) for some =>0.

ACKNOWLEDGMENT

I thank Ingo Wegener for many helpful remarks on earlier versions of
this paper.

REFERENCES

1. N. Alon and W. Maass, Meanders and their applications in lower
bound arguments, J. Comput. System Sci. 37 (1988), 118�129.

2. B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener, Read k times
ordered binary decision diagrams��Efficient algorithms in the presence
of null-chains, Tech. Report, Universita� t Dortmund, 1993.

3. B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener, On the power of
different types of restricted branching programs, submitted.

4. A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for
read-k-times branching programs, Comput. Complexity 3 (1993), 1�18.

5. R. E. Bryant, Symbolic manipulation of Boolean functions using a
graphical representation, in ``Proceedings, 22nd Design Automation
Conference, 1985,'' pp. 688�694.

6. R. E. Bryant, Graph-based algorithms for Boolean function manipula-
tion, IEEE Trans. Comput. 35 (1986), 677�691.

7. R. E. Bryant, On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multi-
plication, IEEE Trans. Comput. 40 (1991), 205�213.

8. S. Bublitz, U. Schu� rfeld, B. Voigt, and I. Wegener, Properties of
complexity measures for PRAMs and WRAMs, Theoret. Comput. Sci.
48 (1986), 53�73.

9. J. Gergov and C. Meinel, Frontiers of feasible and probabilistic feasible
Boolean manipulation with branching programs, in ``Proceedings,
10th Symposium on Theoretical Aspects of Computer Science 1993,''
pp. 576�585.

86 DETLEF SIELING

File: 571J 143609 . By:BV . Date:29:08:96 . Time:11:46 LOP8M. V8.0. Page 01:01
Codes: 1428 Signs: 818 . Length: 56 pic 0 pts, 236 mm

10. F. J. MacWilliams and N. J. A. Sloane, ``The Theory of Error-Correcting
Codes,'' North-Holland, Amsterdam, 1977.

11. E� . I. Nec� iporuk, A Boolean function, Soviet Math. Dokl. 7 (1966),
999�1000.

12. D. Sieling and I. Wegener, Graph driven BDDs��A new data structure
for Boolean functions, Theoret. Comput. Sci. 141 (1995), 283�
310.

13. I. Wegener, On the complexity of branching programs and decision
trees for clique functions, J. Assoc. Comput. Mach. 35 (1988), 461�471.

14. I. Wegener, Efficient data structures for Boolean functions, Discrete
Math. 136 (1994), 347�372.

15. S. Z2 a� k, An exponential lower bound for one-time-only branching
programs, in ``Proceedings, 11th Symposium on Mathematical Foun-
dations of Computer Science, 1984,'' pp. 562�566.

87LOWER BOUNDS AND HIERARCHY RESULTS

