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Abstract

An effective process time (EPT) approach is proposed for aggregate model building of multi-
server tandem queues with finite buffers. Effective process time distributions of the workstations
in the flow line are measured without identifying the contributing factors. A sample path equation
is used to compute the EPT realizations from arrival and departure events of lots at the respective
workstations. If the amount of blocking in the line is high, the goodness of the EPT distribution
fits determines the accuracy of the EPT-based aggregate model. Otherwise, an aggregate model
based on just the first two moments of the EPT distributions is sufficient to obtain accurate predic-
tions. The approach is illustrated in an industrial case study using both simulation and analytical
queueing approximations as aggregate models.



1 Introduction
Multi-server tandem queues with finite buffers commonly occur in industrial practice. The per-
formance of such lines is typically expressed in terms of throughput and flow time. Irregularities
in processing play a key role in the throughput and flow time performance. Due to the limited
buffer capacity, blocking of workstations may occur.

For the performance prediction of finitely buffered multi-server tandem queues, typically discrete
event simulation models (e.g. [3, 4, 14]) or queueing models (e.g. [9, 6, 15, 24, 22]) are used.
Simulation models are usually more accurate than queueing models since they can incorporate
more shop-floor realities. On the other hand, queueing models are often computationally far
less expensive. Both types of models have to be fed with appropriate data regarding processing,
disturbances, and other realities that occur on the shop-floor. Common methods in literature
either assume a distribution or measure individual influences on processing [7, 9, 6].

In industrial practice, it is often hard to identify and quantify all relevant shop-floor details that
contribute to the flow time performance of the workstations. [12, 13] present an algorithm to
obtain effective process time distributions for infinitely buffered workstations from lot arrivals
and departures. The advantage of their method is that it does not require the quantification of the
individual contributing factors. The motivation of their work is to arrive at a measurable metric
for variability at a workstation (variance in processing).

In this paper we generalize this concept to build EPT-based aggregate queueing models of finitely
buffered, multi-server tandem flow lines. Using the aggregation based on the effective process
time paradigm [11], we aim to arrive at simplified queueing models, either simulation or analyt-
ical, for which the aggregate process distribution parameters can be obtained from event data on
the shop-floor, such as arrivals and departures.

The contribution of the paper is twofold. First, we show that a sample path equation can be used
to compute EPT-realizations in multi-server workstations with blocking. Second, we investigate
the effect of the shape of the EPT distribution fit on the accuracy of the EPT-based aggregate
queueing model. In particular we consider the offset (i.e., the smallest EPT-realization that was
measured) as third distribution parameter in a shifted gamma distribution next to the EPT mean
and variance. The accuracy of both the mean flow time and the variance of flow time prediction
are considered.

The paper is outlined as follows. First we present our proposed aggregate modeling approach
using the effective process time, and give considerations about the applicability of the aggre-
gation. Then the calculation of the effective process time is presented. This is followed by
several examples to experimentally investigate the role of the shape of the EPT distribution fit
on the accuracy of the aggregate model prediction. Next, in an industrial case problem, the use
of EPT-distributions in queueing models and simulation models is illustrated. Finally the main
conclusions and some remarks on future work are offered.

2 Aggregate modeling using the effective pro-
cess time
For the prediction of flow line performance, queueing models are used. Two well-known classes
of models are discrete-event simulation models and analytical queueing models.



A simulation model is the imitation of the operation of an actual real-world system [4], in our case
a manufacturing flow line. In a simulation model, the various shop-floor realities may be modeled
in detail. As an example we cite [3] who included operator behavior in their model. Often it is
tried to include the most important details in the model to arrive at an accurate simulation model
representation of the factory floor. A drawback is that running a simulation model to obtain
statistically relevant outcomes may become computationally expensive. An additional difficulty
is to get all required data regarding the shop-floor details in the model. In practice, some of the
data may be hard to get.

Analytical queueing models are an interesting alternative to simulation models. One may distin-
guish exact and approximative analytical models. Examples can be found in [9, 6, 15, 24] and
[22]. Such analytical models cannot be as detailed a description as simulation models. These
models must adhere to rather restrictive assumptions regarding the inclusion of shop-floor real-
ities. However, if one can keep the number of states in the model limited, analytical queueing
models are cheap to evaluate compared to a simulation model. In some cases even exact or
explicit approximative expressions can be derived. Even though the number of parameters in
analytical models is typically much smaller than in simulation models, feeding the model with
appropriate data is nevertheless not trivial.

We aim at an aggregate modeling approach that enables one to obtain its parameters from simple
events such as lot arrivals and departures, readily measurable from the shop-floor. For this we
start from the effective process time as aggregate process time distribution.

2.1 Concept

The effective process time aggregates the raw processing time and all the shop-floor realities and
disturbances hampering the progress of the processing, into a single process time distribution.
Examples of realities and disturbances are machine downs, setup, rework, operator availability,
lot size, metrology, tool change, etcetera. The inclusion of multiple phenomena into a single
distribution is referred to as aggregation. The phrase effective process time was introduced by
[11], although the concept of aggregation is of course not new. Hopp and Spearman defined the
effective process time of a lot as ‘the time spent by the lot on a workstation from a logistical point
of view’. They give explicit expressions to compute the mean EPT and the EPT coefficient of
variation from the various outages, either preemptive or non-preemptive. They use the EPT mean
and the EPT variance in explicit queueing approximation equations, such as Kingman’s equation,
to estimate and explain the mean flow time performance.

In many practical cases, the outages may not all be quantifiable. Nevertheless, aggregation such
as the EPT is appealing, in particular if the EPT can be measured without identifying the con-
tributing factors. For workstations with infinite buffers, a method to actually do this was first
proposed by [12, 13]. From lot arrival and departure events they calculate for each departing lot
an EPT realization. By collecting consecutive EPT realizations, a workstation EPT distribution
is obtained. All influences on processing at the workstation are then aggregated into the EPT
distribution.

This idea may be further generalized into an EPT-based aggregate modeling framework. Then
the EPT is not only used as a performance metric quantifying the effective workstation capacity
(mean) and variability (variance), but also to build an aggregate simulation or analytical queueing
model, so the idea is that the EPT is a measurable quantity on the factory floor while the aggregate
queueing model can stay simple and is feeded directly with parameter values obtained from the
measured EPT distributions. The basic approach we propose is:

Step 1 Measure arrival and departure events at the workstations in the manufacturing system, and,



for multi-server workstations register which lot has been processed on which machine.

Step 2 Translate the events into EPT-realizations, one for each departing lot.

Step 3 From the EPT realizations, compute mean and variance.

Step 4 Build an aggregate queueing model, either simulation or analytical, using the measured
EPT means and variances of the workstations.

In this paper we develop the EPT-based aggregate modeling approach for multi-server tandem
flow lines subject to blocking. Blocking refers to the situation where a lot cannot be sent away
since the receiving buffer of the subsequent station is full. As a consequence, the server cannot
commence processing a new lot. Blocking can have a large impact on throughput and flow time
performance.

For the aggregate model building of flow lines with blocking we will in particular consider ap-
proximative analytical queueing methods such as developed by [22] and [21]. These methods
require as input for the workstations the mean and variance of the process time for which we will
obviously use the EPT mean and variance. Van Vuuren et al., demonstrated using a range of test
problems, the accuracy of their approximation compared to a simulation model representation.
A clear advantage of such an analytical approximation is the speed of evaluation compared to
running a simulation model.

In the sequel we will use the following notations and definitions. The mean of the EPT distribu-
tion is denoted te. The ratio of m (number of parallel machines in a workstation) and te quantifies
the mean effective capacity available at the workstation. The ratio of the raw processing time
t0 and the mean effective process time te quantifies capacity loss. The latter ratio relates to the
industry metric OEE (see e.g. [18]) and the revision E proposed by [17]. The squared coefficient
of variation of the EPT distribution is denoted c2e . Following [11] we refer to this as a quantifi-
cation of variability in processing. We call the model in which certain shop-floor realities are
not included explicitly but represented by an aggregate EPT-distribution, an EPT-based aggre-
gate model or simply an EPT-based model. The structure of the EPT-based model (i.e., material
flows, number of workstations, number of servers per workstation and number of bufferplaces)
is identical to the original system (or detailed model of the original system). Finally, the queuing
performance is expressed in throughput (δ [lots/hour]) and flow time (ϕ [hour]).

2.2 Considerations

For certain cases, shop-floor realities may be aggregated without great loss of accuracy. For an
M/G/1 and M/G/n workstation the mean flow time depends solely on the first two moments of the
process time distribution. For a multi-server station with generally distributed arrivals (G/G/n)
this remarkable property is approximately still valid, provided that service times and arrivals are
phase-type distributed [1, 23].

The performance is predicted exact as long as the first two moments of the process time dis-
tribution are known, regardless of the shape of the distribution function. This implies that it
is sufficient to fit a two-moment distribution (e.g. a Gamma distribution) to the measured EPT
realizations.

For finitely buffered flow lines this shape independence property may not hold anymore. As
a consequence, the first two moments (mean and variance) may not suffice to obtain accurate
predictions from the aggregate queueing model. Then the EPT distribution has to be described
more accurately by using a higher order distribution fit. For instance, in most manufacturing
lines, processing at the workstations takes at least some minimum time. The shift or offset may



be included as third parameter in the distribution fit to account for this, e.g. using a shifted
Gamma or other type of distribution. In Section 4 we investigate in further detail the contribution
of the offset to the mean flow time for flow lines subject to blocking.

Alternatively, one may decide to include one or more shop-floor realities explicitly in the aggre-
gate queueing model. For instance, if certain lot types give rise to different processing charac-
teristics, one can fit a separate (two-moment) distribution for each lot type. The lot type then
becomes an integral part of the aggregate model. For a simulation aggregate model, this poses no
additional difficulties. For an analytical aggregate model, new model equations may need to be
derived to account for the shop-floor reality that becomes part of the aggregate model (lot type in
the example).

One may also want to leave out a certain shop-floor reality from the EPT distribution entirely, and
measure and model it separately. This happens when the time scales of events are different. For
instance, when the machines are highly reliable, machine downs occur only very infrequently.
Then it may happen that for the measurement period under consideration, one may have pro-
duced thousands of lots (thus obtained the same amount of EPT realizations) while only a couple
of machine downs have occurred. If the downs have a considerable effect on the shape of the EPT
distribution, but only few actual down events occur, then no statistically reliable distribution pa-
rameter estimates can be obtained. Data on the down behavior should then be collected separately
on a different time scale, and be excluded from the EPT. Again, the down then has to be modeled
explicitly in the aggregate model. Note in this respect the analytical queueing approximations
developed by [19].

Taking these considerations into account, the EPT approach may be rephrased as:

Step 0 Define the structure of the model, and define which shop-floor realities or disturbances are
modeled explicitly and excluded from aggregation in the EPT.

Step 1 Measure arrival and departure events at the workstations in the manufacturing system; for
multi-server workstations register which lot has been processed on which machine; obtain
data regarding the explicit realities.

Step 2 Translate the events into EPT-realizations, one for each departing lot.

Step 3 Fit for each workstation a suitable distribution to the measured EPT realizations.

Step 4 Build an aggregate queueing model, either simulation or analytical, using the fitted EPT-
distributions.

Step 5 If the EPT model is sufficiently accurate, stop. Otherwise, return to Step 4 to reconsider
the distribution fitting or go back to Step 0 to reconsider the aggregation.

Preferably we start with building the simplest possible model, and refine when necessary. The
accuracy of an EPT-based model may be validated by comparing the estimated throughput and
flow time to the throughput of the actual system and the flow time of the lots in the actual system.
We will mainly focus on mean throughput and mean flow time. Higher moments may also be
considered but, as we will show, the required quality of the EPT distribution fit regarding the
actual shape becomes more pronounced.

2.3 Application

Once a suitable EPT-based model is obtained, it can serve two main purposes.



First, the obtained EPT parameters provide insight in the performance of the flow line. Parameter
te details the average amount of time claimed by a lot at the workstations. The workstation that
has the lowest effective capacity is the actual bottleneck. Parameter c2e quantifies the amount of
variability associated with the effective processing of lots. Workstations with a high value for c2e
may be a problem since they interrupt the steady flow of lots.

Secondly, the EPT-based model may be used to predict the effect of changes in the line con-
figuration or in numerical optimization procedures. Accurate but quick to evaluate models are
then a prerequisite. An analytical model compared to a simulation queueing model has a great
advantage here.

3 EPT calculation
[13] (2001,2003) compute EPT-distributions for infinitely buffered multi-server workstations in
isolation. They present an EPT algorithm that computes an EPT realization for each departing
lot. Their algorithm is based on the observation that as long as there are lots in the workstation
capacity is claimed. Each arriving lot starts a new capacity claim if the number of lots in the
workstation is less than the number of installed servers. Each departing lot ends a capacity claim.
So the number of ongoing capacity claims equals the maximum of the number of lots in the
system and the number of servers. The method proposed by Jacobs et al. also incorporates time
losses due to dispatching issues (assignment of lots to machines) in the EPT, for instance the case
that a server should be available for processing but none of the lots waiting in the queue is ever
processed on that particular machine. We will refer to this as a violation of the EPT-nonidling
assumption as we will explain later in this section.

Workstations subject to blocking cannot be considered in isolation. We therefore follow a dif-
ferent approach to calculate the EPTs. We show that a simple sample path equation can be used
to compute the EPT realizations in a flow line subject to blocking. The key observation when
blocking is present is that the EPT excludes time losses due to blocking. Blocking is excluded
since it is due to the finity of the buffers. The EPT-based model will also have the same finite
buffers, which means that the blocking phenomenon is already covered in the structure of the
EPT-based aggregate model itself. For similar reasons, starvation of a workstation should not be
included in the EPT.

3.1 EPT for finitely buffered, single server workstations

The EPT for a finitely buffered workstation is computed using three events: the possible departure
PDi,j (the time-epoch at which workstation j finishes processing lot i and tries to send it on to the
next workstation in the line), the actual departure ADi,j (the time-epoch at which lot i physically
leaves workstation j) and the actual arrival AAi,j (the time-epoch at which the lot with the ith
actual departure enters (the buffer of) workstation j). If no blocking occurs, PDi,j=ADi,j holds
since the receiving workstation has sufficient capacity available to receive the lot. Note that, if
transport is instantaneous, ADi,j equals AAi,j+1.

An EPT-realization ends upon the possible departure of the respective lot. The EPT-realization
begins as soon as the workstation could have started processing the lot, that is at the maximum of
the moment that the lot arrived in the buffer or the moment that the preceding lot has left. So the
EPT-realization begins at max

{

AAi,j,ADi−1,j

}

and ends at PDi,j. The EPT-realization can then be
computed from:

EPTi,j = PDi,j − max
{

AAi,j,ADi−1,j

}

. (1)



which is a reverse use of the sample path equation for finitely buffered, single-server workstations
([6] or [2]); instead of computing departure events, we compute EPT realizations.

3.2 EPT for finitely buffered, multi-server workstations

Calculation of EPTs for multi-server workstations subject to blocking can be done using the same
equation: Sort the processed lots by the machine they were processed on; then apply Equation
(1) for each machine in the workstation.

This approach of calculating the EPT realizations per machine assumes that waiting lots will be
processed on the next available machine. This is often referred to as the non-idling assumption.
Note that in our case the non-idling assumption has to be interpreted from the EPT point of view.
From an EPT point of view the state of a machine that finishes processing a lot changes from
busy to available. The machine is from an EPT point of view busy again when the next lot to be
processed is present in the queue. Actual loading of the lot on the machine may be delayed for
whatever reason.

The EPT-nonidling assumption is violated when a machine comes available and lots are present
in the buffer but none of these will be processed on the respective machine. By applying Equation
(1) for each machine separately this particular loss of capacity is not accounted for in the EPT
and has to be accounted for separately. This case will not be considered further in this paper.

Finally, if we have an infinitely buffered workstation instead of a finitely buffered one, PDi,j may
be replaced by ADi,j in Equation (1). When the EPT-nonidling assumption is satisfied, then it can
be shown that using Equation (1) is equivalent to the algorithm proposed by [13].

4 Examples
In this section, the applicability of the EPT-method for finitely buffered, multiple server flowlines
is evaluated using several examples. First, we briefly illustrate that Equation (1) provides the
correct EPT-parameters. Next, we show that EPT-based models for finitely buffered flow lines
may require more input than just the first two moments of the EPT distribution. We study this
more extensively for the ‘offset’ as third distribution parameter. Finally, we show that the variance
of the flow time distribution may also be approximated using the EPT approach.

4.1 Validation of Equation (1)

Consider a two-workstation flow line. The first workstation, which consists of a single server,
is never starved. The service time at the first workstation is exponentially distributed with mean
process time λ−1 = 1.00 [hr/lot]. The second workstation, which is never blocked, consists of two
(identical) parallel servers and a single buffer space. The process times are again exponentially
distributed, with mean process time µ−1 = 2.05 [hr/lot].

Following the EPT approach, events are measured per lot per workstation. These events are
the actual and possible departures, and the arrivals. The collected events are used as input for
Equation (1), with which EPT realizations are computed. The gathered EPT realizations are
represented as gamma distributions. For the first workstation, the mean effective process time
we measure is te,0 = 1.0 [hr]; whereas the squared coefficient of variation is c2e,0 = 1.0. For
the second workstation, parameters te,1 = 2.05 [hr] and c2e,1 = 1.0 are measured. These values
correspond with the input given above.



4.2 Influence of the EPT-distribution shape

Consider a line consisting of three unbuffered workstations. The first workstation is never starved,
the third workstation is never blocked. The first workstation contains one machine, the second
and third workstation each contain two machines. The clean process time on the first workstation
is triangularly distributed with minimum 0.9, maximum 1.1 and modus 1.0. On the second and
third workstation, the process time is also triangularly distributed, but now with minimum 1.8,
maximum 2.2 and modus 2.0.

On all machines, a setup is required after every 10th lot that has been processed. A setup is
triangularly distributed with minimum 0.5, maximum 1.5 and mean 1.0. Machines are prone to
failure. The busy time between failures is exponentially distributed on each machine with mean
tf = 15.0. After a failure, the machine should be repaired. The repair time is exponentially
distributed with mean tr = 3.0. After a repair, processing of the lot is resumed where it was left.
For this system, the simulated mean flow time is ϕ = 7.111. The 95% confidence interval of the
simulation results presented in this section is less than 1% of the corresponding parameter.

From this system, EPT-realizations were obtained using Equation (1). The mean and variance of
the distributions were te,0 = 1.292, c2e,0 = 0.777, te,1 = 2.490, c2e,1 = 0.400 and te,2 = 2.492, c2e,2 =
0.405 for the three workstations respectively. These values were inserted in an EPT-based model.
The model approximates ϕ̃ = 7.563. Hence, it overestimates the flow time by 6.4%.

From our measurements, we know that in the real system, the smallest EPTs measured at the
workstations (referred to as offset) were respectively ∆0 = 0.9, ∆1 = 1.8 and ∆2 = 1.8. However,
this knowledge is not used in the EPT-based model. By fitting a shifted gamma distribution ([8]),
this offset can be included in the EPT model. The estimated parameters of the shifted gamma
distribution are ∆e,0 = 0.9, te,0 = 1.292, c2e,0 = 0.777, ∆e,1 = 1.8, te,1 = 2.490, c2e,1 = 0.400 and
∆e,2 = 1.8,te,2 = 2.492, c2e,2 = 0.405. Then, the EPT-based model approximates ϕ̃ = 7.223. Now,
the mean flow time is only overestimated by 1.6%. Inclusion of the offset here improves the
accuracy of the EPT model.

4.3 Relevance of the offset

In many practical cases, a minimum (positive) value for the process time distribution is present
(processing requires at least a fixed minimum amount of time). As the previous example il-
lustrates, for flow lines subject to blocking the shape of the EPT distribution may need to be
represented in more detail than just using the first two moments to obtain a sufficient prediction
accuracy of the EPT-based model. In this subsection, we experimentally investigate the contribu-
tion of the offset. Our hypothesis is that the shape of the process time distribution (i.e. inclusion
of the offset in this example) becomes increasingly important when flow times on one worksta-
tion heavily affect flow times on other workstations, i.e. when blocking occurs. The stronger the
effect of blocking is, the stronger we expect the shape of the EPT distribution fit to impact the
accuracy of the EPT-based model.

First, consider a three-workstation flow line with one server per workstation. Process times are
distributed with a shifted gamma distribution with mean 1.0 and squared coefficient of variation
of 1.0. The offset (or shift) is taken at 0.0 and 0.9. In Figure 1, we see that the influence of the
offset is reduced if the buffersize is increased for both throughput and flow time. Increasing the
buffer level corresponds to decreasing the amount of blocking. Hence, this observation confirms
our hypothesis.

Insert Figure 1 about here



Next, consider a ten-workstation flow line with n ∈ {1..10} servers per workstation. Each work-
station has one bufferplace. Process times are distributed according to a shifted gamma distri-
bution with mean 1.0 and a squared coefficient of variation of c2e ∈ {0.5, 1.0, 2.0} and offsets
(shifts) of 0.0 and 0.9 respectively. The results are displayed in Figure 2. Herein, dδ =

δ∆=0.0−δ∆=0.9

δ∆=0.0

and dφ =
ϕ∆=0.0−ϕ∆=0.9

ϕ∆=0.0
. From this figure, we see that the influence of the offset becomes smaller as

there are more parallel servers in the system. Including extra parallel servers leads to a reduction
of blocking. Again, this observation confirms our hypothesis. The second observation from Fig-
ure 2 is that, if the level of variability in the line (i.e. c2e ) is reduced, the relevance of the offset
also becomes smaller. Reducing the variability implies that the level of blocking is also reduced.
Hence, again our hypothesis is confirmed.

Insert Figure 2 about here

From these experiments, we conclude that the offset only needs to be included in the EPT dis-
tribution fit if the amount of blocking is high, that is, for few parallel servers, small buffer sizes,
and high levels of variability. Otherwise, an EPT distribution fit with just the mean and variance
is sufficient. This does not only hold for the offset but for the distribution shape in general. The
advantage is then that analytical queueing models based on the first two moments of the process
time distribution, such as proposed by [22] and [21], can be used.

4.4 Estimation of the variance of the flow time

Estimation of the variance of the flow time is relevant for instance in the context of customer
reliability. In this example, we experimentally investigate the possibility to estimate the second
moment of the flow time. Reconsider the three workstation example of Section 4.2, where the
first workstation consisted of one server, while the second and third workstation both had two
servers. All three workstations are unbuffered. For that system, we obtained ϕ = 7.111. The
variance of the flow time can also be measured: S2

ϕ = 8.611.

If we build an EPT-based model using solely te and c2e , then we approximate ϕ̃ = 7.563 and
S̃2

ϕ = 6.457, which are respectively an overestimation of 6.4% and an underestimation of 25 %.
By explicitly including the offset in the EPT-based model using a shifted gamma distribution, we
approximate ϕ̃ = 7.223 and S̃2

ϕ = 8.120, an overestimation of 1.6% and an underestimation of
5.7% respectively.

Including more detail in the distribution fit further enhances the accuracy of the EPT-based model.
Therefore, using the work of [16], we fit a shifted Erlang-Coxian distribution to the EPT of
a machine. Then, we obtain ϕ̃ = 7.118 and S̃2

ϕ = 8.434, an overestimation of 0.1% and an
underestimation of 2.1% respectively. We see that describing the EPT distribution in greater
detail, the prediction accuracy of the EPT model increases. To accurately predict the variance
in the flow time a more detailed distribution fit is required compared to predicting just the mean
flow time.

5 Industrial case
The proposed method is tested on a case inspired by industry practice. The industrial case con-
siders a manufacturing line for lamp sockets, see [20]. The layout of the case is shown in Figure
3.

Insert Figure 3 about here



In supply station S0, sheets of aluminum are die-cut into small cilinders. The rolls of aluminum-
sheet arriving at S0 are large enough to safely assume that S0 is never starving. The lots of
cylinders are transported to W0, where screw thread is cut in the cilinders. Next, the lamp sockets
are placed inside a glass-oven (W1), where a small amount of liquid glass is poured into the
sockets. In W2, the finishing bath, the socket is bathed in a solvent of nickel or stain. Finally,
in W3, lots are packed into carton boxes and cleared away for shipping. It is assumed that W3 is
never blocked.

Workstation S0 has two parallel servers. In W0, lots can be placed in a finite buffer of capacity
two; the workstation has four parallel machines. W1 has a finite buffer of capacity four, and
one server. W2 has a single server and a single bufferspace; finally W3 has a single server and
four buffer spaces. Note that each single lot in this case corresponds to 6000 bulbs. The process
times are approximately constant on the workstations, aside from the failure behavior. The time
consumed by a lot on the workstation is thus accurately captured by the clean process time, the
busy time between failures (exponentially distributed) and a description of the failure behavior.

In this paper, failure behavior is assumed that consists of up to two exponentially distributed
stages. First, when a machine breaks down an operator will check whether he can make an
emergency repair, with rate λ0. With probability p, the emergency repair suffices and the machine
is fixed. With probability 1 − p, the repair is not sufficient and a professional mechanic has to be
notified. This mechanic repairs the machine in the second stage with rate λ1, and repairs the
machine with probability 1. The respective parameters for all workstations are presented in Table
1. In the table, b refers to the number of bufferspaces per workstation, m refers to the number of
parallel machines, µ0 is the inverse of the clean process time and µb is the inverse of the mean
time to failure.

Insert Table 1 about here

A detailed simulation model is built using the simulation modeling language χ-0.8 [10, 5]. In the
detailed model, workstations have clean process times modified by failures and repairs as quan-
tified in Table 1. In the case, the detailed simulation model was treated as the real life situation,
from which the AA, PD, and AD events were measured for each workstation. Using the EPT-
algorithms presented in Section 3, the EPT-realizations for all workstations were gathered. These
EPT realizations were fitted into (shifted) gamma distributions. The obtained EPT-parameters are
reported in Table 2. The following EPT-based aggregate models were built: a simulation model
in which the offset is incorporated in the EPT-distribution fits (this model is referred to as EA-1),
a simulation model in which the offset is included in the EPT-distribution fit at W1,W2,W3 (re-
ferred to as EA-2), a simulation in which the EPT-distribution fits have no offsets (i.e., all shifts
in the shifted gamma distribution are set to zero) (called EA-3) and a queueing approximation
model using the approach of [22] (labeled EA-4).

Insert Tables 2 and 3 about here

Simulation results comparing the three EPT-based models to the detailed model are presented
in Table 3. These results show that all models are very close to each other, since the amount
of blocking and starvation of the bottleneck workstation (W1) is low. The low level of blocking
and starvation is reflected by the obtained throughput (δ = 3.460), which is nearly equal to the
theoretical upperbound for the bottleneck (δmax = t−1e = 0.2888−1 = 3.462). This illustrates that
in a (highly) unbalanced line, the level of blocking and starvation at the bottleneck workstation is
decisive for the relevance of the offset.

This assertion is tested by changing the configuration of the line. First, the clean process times are
changed to make the line more evenly balanced. Furthermore, in order to increase the variance in
the line, the mean times between failure are decreased. The changes are given in Table 4, along
with the new EPT-parameters. The new results of the four EPT-models, compared to the original



model, are presented in Table 5. The relevance of the offset has indeed increased. However, the
influence is still reasonably small, for EA-3 the approximation error has grown to 14% for flow
time and 4% for throughput. The queueing model (EA-4) tries to approximate the behavior of
EA-3. The error present in the queueing approximation happens to cancel out the error induced
by neglecting the offset. In other cases, the two errors may add up. Summarizing, the case study
illustrates that, for moderate levels of variability and moderate levels of buffering, the shape of the
distribution fit (in this case represented by the offset) is not very influential on the prediction of the
flow line performance. The EPT-based aggregate models stille provide accurate approximations.

Insert Tables 4 and 5 about here

The EPT-parameters of Table 2 can be used to perform a bottleneck analysis. Workstations with
low effective capacity rej = mj/tej (with mj the number of servers on workstation j) or high
c2e are potential bottlenecks. A closer look at these bottleneck stations may reveal options for
improvement. Before they are implemented on the shop-floor, the effects of changes in te and c2e
can be predicted using the EPT-based aggregate model.

6 Conclusion and future work
The process time distributions play a key role in the throughput and flow time performance of a
multi-server tandem queue subject to blocking. In industry practice, often only average produc-
tion losses are quantified. In this paper, an effective process time (EPT) approach is proposed that
enables one to measure aggregate process time distributions of workstations which incorporate
outages that delay the processing without the need to quantify each of the contributing factors.
The mean and variance of a measured EPT distribution quantify the effective workstation capacity
and variability, respectively, which can be used for bottleneck analysis. The measured EPT dis-
tributions may also be fitted using a suitable distribution function for EPT-based aggregate model
building. The EPT-based aggregate model can either be a simulation or an analytical queueing
model with the advantage that it does not require the explicit modeling of the shopfloor details
that are covered by the EPT distributions.

The EPT distribution of a finitely buffered, multi-server workstation can be determined using
three manufacturing events: (1) the arrival of a lot in the (buffer) of the workstation, (2) the
moment in time at which processing of the lot is finished and (3) the departure of the lot from
the workstation. Using a simple sample path equation, these events can be translated into EPT-
realizations.

For performance prediction using the EPT-based queueing model, often just the first two moments
of the EPT workstation distributions suffice. Then computationally cheap queueing models, such
as proposed by [22] and [21], can be used with the measured EPT mean and variance as input.
However, if blocking plays a major role in the system, then the shape of the EPT distribution
needs to be represented more accurately. This happens when buffer sizes are small or zero,
variability is high, and only few (or just one) parallel servers are present in a workstation. We
have illustrated this in examples using the offset as ’third’ distribution parameter, representing
a minimum positive process time. We also showed that the EPT distribution shape needs to be
represented in greater detail if an accurate prediction of for instance the variance of the flow time
is desired.

The EPT-based models presented in this paper assume that the EPT non-idling assumption holds.
This implies that, from an EPT point of view, a server is not idle if an unprocessed lot is in
the buffer. This assumption may be violated when one machine has a long down and the other
machine(s) in the workstation take over. [13] proposed a method to cope with such a situation



for infinitely buffered multi-server workstations. In future work, addressing violation of the non-
idling assumption will be further investigated, also for the finitely buffered case.

The method developed in this paper is potentially very interesting for performance analysis of
asynchronous assembly lines, as for instance encountered in automotive industry. Assembly
of various components into an assembled part occurs at various stages of production. We are
currently investigating the EPT of an assembly machine, and the role of transport therein.
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Figure 1: Influence of buffer size on throughput δ and flow time ϕ for a three workstation flow
line
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Figure 2: Relative difference between a 10-station flow line with and without inclusion of an offset of 0.9
for various levels of variability. The workstation parameters are te = 1.0 and cap = 1.
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Figure 3: Layout industrial case

Station m b µ0 [lot/hr] µb [f/hr] λ0 [r/hr] p λ1 [r/hr]
S0 2 1 5.89 0.016 2 0.2 0.8
W0 4 2 1.54 0.003 2 0.4 0.8
W1 1 4 3.56 0.040 2 0.8 1
W2 1 1 32.67 0.020 12 0.5 1
W3 1 4 16.44 0.040 12 0.5 3

Table 1: Parameters of the workstations



Workstation te [hr] c2e [-] ∆e [hr]
S0 0.1738 0.3572 0.1698
W0 0.6518 0.0143 0.6494
W1 0.2888 0.1497 0.2809
W2 0.0310 0.7141 0.0306
W3 0.0614 0.0988 0.0608

Table 2: EPT-parameters of the workstations

Parameter Original EA-1 EA-2 EA-3 EA-4
δ [lots/hr] 3.460 3.460 3.460 3.462 3.453

ϕ [hr] 4.138 4.138 4.139 4.136 4.04

Table 3: Estimated throughput and flow time

Station µ0 [lot/hr] µb [f/hr] te [hr] c2e [-] ∆e [hr]
S0 1.78 0.50 0.9836 1.1637 0.5618
W0 0.89 0.10 1.2639 0.2196 1.1236
W1 3.56 0.60 0.3990 1.1670 0.2809
W2 3.56 0.30 0.3301 0.8500 0.2809
W3 3.56 0.60 0.3230 0.2468 0.2809

Table 4: Changed parameters of the workstations and resulting EPT-parameters

Parameter Original EA-1 EA-2 EA-3 EA-4
δ [lots/hr] 1.925 1.931 1.899 1.860 1.933

ϕ [hr] 5.586 5.467 5.503 6.396 6.09

Table 5: Estimated throughput and flow time after changes


