
Observations and Lessons Learned
from Automated Testing

Stefan Berner, Roland Weber, and Rudolf K. Keller*

Zühlke Engineering AG
Zürich-Schlieren

Switzerland

{sbn, row, ruk}@zuehlke.com

ABSTRACT
This report addresses some of our observations made in a dozen of
projects in the area of software testing, and more specifically, in
automated testing. It documents, analyzes and consolidates what
we consider to be of interest to the community. The major
findings can be summarized in a number of lessons learned,
covering test strategy, testability, daily integration, and best
practices.

The report starts with a brief description of five sample projects.
Then, we discuss our observations and experiences and illustrate
them with the sample projects. The report concludes with a
synopsis of these experiences and with suggestions for future test
automation endeavors.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Management – Productivity,
Software Quality Assurance (SQA).

General Terms
Management, Design, Economics, Reliability, Experimentation.

Keywords
Software Test, Automated Testing, Test Management.

1 INTRODUCTION
This report discusses some of our experiences made in the area of
software testing. These experiences cover mostly test automation
and the architecture of testware, and, to a lesser degree,
requirements engineering and design for testability. The terms test
automation and automated testing in this context refer primarily to
the automation of the test execution and support for test

management or closely related tasks. Test automation in this paper
does not cover the automated generation and validation of test
cases and test results. The experiences have been made in a dozen
projects during the past three years. For the five most important
projects, we give a brief outline (Section 2), for subsequent
illustration and as a basis for qualitative analysis.

The authors have been involved in these projects in various roles:
software architect, software engineer, test consultant, test manager
as well as tester. We have observed and analyzed our own
mistakes and those of the other team members. What we found to
be the six most interesting observations together with the potential
rationale behind them, is discussed in Section 3. Based on this
discussion, we present a table summarizing our findings, as well
as four major lessons learned as a key to successful automated
testing (Section 4).

We do not claim that our observations, experiences and
consequences are the most important ones or even exhaustive.
This paper is an experience report. The findings are based upon
the consolidated experience of the authors, and are not the result
of one ore more controlled experiments. Hence, they may or may
not be applicable to other projects. However, in most of our
reference projects they played a major role. Overall, this report is
intended to validate, from a practical point of view, current day
approaches in automated testing and what is anticipated to be
good testing practice.

2 OVERVIEW OF PROJECTS
This section gives a brief overview of five of the projects on
which the observations and experiences are based. They are
representative in that they come from different application
domains and test automation in its various facets plays an
important role.

Project A: System to Manage Distribution of Assets
In this project, the client was in the process of the rollout of a
large number of hardware assets (desktops, laptops, monitors,
etc.). An operative asset management system was – among a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

* The third author is also an Adjunct Professor at the CS Department at
Université de Montréal, Canada.

 2

couple of other things – the prerequisite for this rollout. This
system was intended to keep track of the delivered hardware and
their configuration in order to feed billing systems. After failed
attempts to get the system into production, test specialists should
identify the problems and help to get the system productive. The
engagement objective was to establish and develop an effective
quality assurance and testing for a browser based asset
management system. Main goals were to identify and isolate the
issues, which directly hampered the productive operation. The
testing work has been performed under specific circumstances
with respect to a distributed development, an incomplete
application, incomplete application documentation and very tight
time lines – as said above the rollout was dependent on the
system.

Project B: Java-Based Application Platform
The purpose of this project was the development of an application
platform to standardize the development and operation of java-
and J2EE-based applications, respectively. Part of the engagement
in this project was an assessment of the quality of some
framework components (e.g. for logging, auditing) of the platform
and an assessment of the current status concerning development,
build and test practices.

The analysis was followed by the design and realization of a
family of reference applications to test the components of the
platform. This included documentation in form of (so called)
cookbooks, which showed how to build (and test) these
applications, which are platform conform. The reference
applications together with automated functional tests were used to
analyze the quality of the platform components. In order to get a
comprehensive notion about ‘which parts of the platform where
touched by the analysis’, tools to measure test coverage [5] and
profilers [7] were used heavily.

Project C: Point of Sale System for Life Insurances
The system to be developed was a distributed point of sale (POS)
system, developed for the life insurance division of a large bank
[1]. It was intended to assist the sales process of life insurances.
This bank intended to enter the life insurance market with a
complete portfolio of products. Instead of building a new sales
organization, the existing infrastructure (branch offices) should be
used. Therefore, the POS system should enable finance people and
bank clerks to offer and sell life insurances to bank customers.

Requirements engineering was based on use cases and on
explorative prototyping. The POS system was realized in a
common multi-tier architecture with a relational database in the
background, CORBA as middleware, and Java as the main
language to realize both the business components on the
middleware, and the client components in form of a thin client.

Project D: Sales Support for Tailored Industrial Facilities
Our assignment was to build a family of intranet based
applications supporting the sales department of a large
international company in the industrial sector. The main goal was
to create offers for customized industrial facilities within a short
time.

In this project, an XP-like development process was used with
strong involvement of the customer. Flexible responses to
changing requirements and very short release cycles were
essential to the customer, as he had to cope with conflicting and
changing requirements from different national sales departments.

The test strategy therefore emphasized on automated tests at
different levels, employing techniques supporting effective test
automation like mock objects, and on daily integration combined
with the execution of all automated tests. Testware architecture
was considered as a part of the system architecture by the
development team. At the end, test automation code accounted for
about 25% of all code in the system.

Project E: System Test Automation for Control System
In this project, our client was suffering from long release cycles of
his safety critical control and information system. The application
was designed as a distributed system that could be tailored to
match customer needs by configuration. The distributed
components communicated via a message bus. The system
supported different hardware platforms, as well as a configurable
look and feel of the user interface.

A complete regression test took almost three months, due to the
fact that tests had to be repeated on different hardware
configurations. Much emphasis was put on the verification of the
failover mechanism, which was at the heart of the system.

Our assignment was to automate an existing smoke test suite,
which had to be run on two different hardware configurations
once a week to verify the stability of baseline builds. Another goal
of the automation project was to design and implement a testware
architecture that could be reused in the automation of a regression
test suite later.

3 OBSERVATIONS AND EXPERIENCES

3.1 Test Automation Strategy Is
Often Inappropriate

A sound testing process is helpful for successful test automation,
but an appropriate test (automation) strategy is vital. The test
strategy defines, which test types – e.g. functional tests,
performance tests, reliability tests – are to be performed on which
test level – e.g. unit, integration, etc. – and which tests are
automated and/or supported by tools. Four common mistakes with
regard to test automation strategy are listed below:

Misplaced or Forgotten Test Types
Tests that are hard to do manually very often are hard to automate
as well. Tests situated in the wrong test level usually are hard to
execute, regardless whether they are executed manually or
automatically.

Tests on different test levels usually have different goals. Unit
tests generally focus on the program logic within a software
component and on correct implementation of the component
interface. It would be very inefficient to test these issues with a
GUI based system test approach. It may be difficult to force the
system under test into system states needed. Or the resulting

 3

system state cannot be verified accurately, because it is not visible
on the user interface. Additionally, the debugging effort for
program logic bugs detected during system tests will be
considerably higher.

Many organizations, we have been working in, rely mainly on
system tests, with only unsystematic unit testing. Integration tests
usually are completely neglected. This leads to inefficient testing.
Moreover, some aspects like robustness tests, that are notoriously
hard to test, are usually omitted completely.

Wrong Expectations
Many organizations have unrealistic expectations about the
benefits of test automation. Test automation is intended to save as
much money as possible spent for ‘unproductive’ testing
activities. They therefore expect a very short ROI on their test
automation investment. If these expectations are not met, test
automation is abandoned quickly.

There are a few points in test automation that are not that easily
incorporated into ROI calculations, but are strong points for
automating tests:

1. Automated testing does allow for shorter release cycles. Test
phases can be shortened considerably. Tests may be executed
more often, bugs are detected earlier and costs for bug fixing
are reduced.

2. The quality and depth of test cases increase considerably,
when testers are freed from boring and repetitive tasks. They
have more time to design more or better test cases, focusing
on areas that have been neglected so far.

Missing Diversification
Organizations new to test automation usually have a very clear
goal: saving time, money and most important scarce testing
resources. The most natural way to achieve this goal is to
automate whatever the testers have been doing manually so far.
Consequently, many organizations start by automating some
subset of their existing GUI based system tests. Frequently, this is
not an efficient strategy for test automation:

• Developing test cases interacting with a GUI is usually very
time consuming. Graphical user interfaces tend to change
frequently and test scripts have to be adapted to these
changes.

• Verification of system response and system state may be hard
too, as the system state may not always be visible, or because
verification of the system state makes the test case even more
prone to high maintenance cost.

• Automated tests on user interface level tend to find only the
failures the test designer intended them to find. Fewster and
Graham stated in [8], that a tradeoff between test sensitivity
and robustness is necessary in most circumstances.

A good automation strategy therefore combines different
approaches for test automation: system test automation,
integration test automation, and unit test automation, which is
usually most effective. In many cases, test code implemented for

one approach can be reused for other test types or approaches,
thus making a combined strategy even more effective.

Tool Usage is Restricted to Test Execution
Strategies for automated testing often consider only automation of
test execution. Sometimes there is more potential in automating
processes in the test lab like installation and configuration
procedures. Additionally, tools may be used to design test cases or
test reports more efficiently. The same is valid when it comes to
analysis and reporting. The appropriate and consequent usage of a
good test and change management tool often and easily saves
more than the mere automation of the test execution. These areas
are often overlooked, when a test strategy is defined.

Project References
In project C, the automated test (execution) nearly failed due to
wrong expectations. This time from the developer side; it was
expected to detect more errors through the mere execution of the
test suite. However, the strategy was sufficiently diversified and
the automated functional tests were partially reused to drive a
performance test against the business logic of the system.
Automated functional test were based on JUnit and for the
performance test, a decorator based on JUnitPerf [6] had been
used. This saved considerable effort compared with conventional,
GUI-based performance testing.

In project E, complete automation and sufficient diversification
was not possible due to limitations in the system architecture.
Automated test where restricted to the GUI-level. Most of the test
cases in the smoke test suite in project E were concerned with
verifying that the failover mechanism worked correctly. Both
simulating a failure and verifying the system response to this
failure was not always possible. In many cases, it would have
been easier if the automated tests had interacted directly with the
system components instead of interacting with the user interface
only. However, despite these conceptual problems scarce testing
resources could be freed from running the smoke test suite
manually once a week. And most important, the weakness in the
automation strategy has been recognized and will be addressed in
future development cycles.

A different strategy could be applied in project D. The tests were
not restricted to script-based automation of GUI-based tests. Tests
were executed on different levels: on module, integration and
system test level. Much emphasis was on early unit tests, which
accounted for more than 50% of the test automation code.
Automated integration test techniques were applied to test the
interaction between the business layer and the data access layer,
without interacting directly with the user interface. System tests
were restricted to the verification of the most important functions
only, and the system test automation code only accounted for
about 20% of all test code. Test cases were reused for load and
volume tests. A suite of manual system tests, which lasted for
about one day, complemented the automated system tests.

 4

3.2 Tests Are Far More Often Repeated Than
One Would Expect

For some test types – e.g. load and performance tests – testing is
simply not effective without automated tests and proper tool
support. For other test types – e.g. functional tests or tests of the
error handling – the cost-effectiveness of automated tests depends
highly on the number of times the test is executed. Each time an
automated test case is executed without manual intervention its
potential cost-effectiveness grows.

In general, test cases are executed (1) during the immediate
lifetime of a project, and (2) if there is any next release – usually
there is one – survive the project and are executed in following
releases. Hence, test cases usually survive the first project. In our
experience, it is usually underestimated for both cases and by a
large number how often a test case will be executed.

If test automation is not cost effective, it is rarely because the
number of (estimated) test executions is too small to justify the
automation. When the number of repeated test executions is an
argument for the cost effectiveness of automated tests, the
threshold for the break even point is lower than commonly
expected. If automated testing is not cost effective the cause are
seldom missing repetitions, but an inappropriate test automation
strategy (see Section 3.1) or an application architecture, which is
not designed with testability in mind (see Section 3.5) or
despicable testware architecture (see Section 3.6).

If you expect a test case to be executed more than ten times it is a
potential candidate for an automated test case. In our experience,
almost all test cases are executed at least five to ten times and at
least 25% of the test cases are executed by far more than 20 times.

Given a sound test strategy, we observed and experienced the
average overhead to automate a given manual test case a little
below factor 2. However, the variance is high and an overhead up
to factor 30 can be observed easily. So, it is wise to choose
carefully. For successful test automation, it is key to start with the
automation of the test cases that promise the highest return on
investment. Candidates which usually are run quite often are

smoke tests, component and integration tests. As indicated above
(see Section 3.1), extreme caution is needed if script-based
automation of GUI based tests is attempted. These test require
more effort to create ([9] they start with factor 3), deliver a large
number of false positives, are difficult to maintain, and are
therefore executed less often than expected. Kaner states in [8]
that GUI regression testing leads to weak design of the testware
and we share this experience.

Another experience is to start small, execute automated tests very
often, learn from the experience, and improve as you go on with
test automation. A structured bottom-up approach is in this
context more appropriate than a top-down one.

Project References
Testing in project A started with a very short timeline. Tests were
a combination of user interface tests and tests of import and
generation of data feeds for other systems. Due to the short
timeline and the potential risks, it was decided not to attempt an
automated approach. The overall approach could have been
characterized as ‘we do not have the time to be efficient’. It was
implicitly assumed that the number of execution would be too
small – three to five complete cycles.

In retrospection, the number of estimated number of executions
was by factor 8 below the real numbers. A complete manual
regression cycle with around 90 test cases took three persons (two
testers, one developer) around one week. Three and a half days of
this week were pure test execution, one and a half day were
analysis and reporting. Later in this project, a moderate
automation of both execution and reporting was attempted and
reduced the complete cycle to less than 3 days. Another
observation in the context of automation and comparison of
automated and manual test cases was that with an increasing
number of test cases the effort for manual execution of one test
case is disproportionately higher in comparison to the automated
variant (see Figure 1). We suspect a cause for this to be the
increasing effort to keep the test cases consistent.

3.3 The Capability To Run Automated Tests
Diminishes If Not Used

Test automation often fails because the automated tests are not run
often and frequently enough. The test suite degrades into a state
where the test cases are inconsistent and difficult to understand. It
is not uncommon that this is the main cause for the failure of
automated testing – even with an appropriate strategy and testware
(see sections 3.1 and 3.5). This is not a strategic problem but
‘only’ an operational one. Automated test suites have a strong
tendency to be quite unforgiving when suspended and not run for
a short or even very short time. The effort to run and maintain an
automated suite increases by a disproportional amount if not run
frequently. We often observe a common failure pattern in four
phases (see Figure 2).

Phase 1
Automated test cases are created in the detailed design or early
implementation phases of a project. The tests are not only a
welcome tool to find defects but also help to understand the

Figure 1. With an increasing number of test cases, the effort for

manual execution becomes disproportionally higher in comparison
to the automated variant.

 5

domain problems to a greater degree. Hence, their perceived
necessity not only in terms of defect detection is high. As there are
a relatively small number of automated test cases in this phase, the
understandability and integrity is very high. This means the test
can be run automatically and there are a small number of false
positives, i.e., erroneous test cases. False positives are fixed
immediately. Projects with an inappropriate test strategy often fail
early – at the end of phase 1 or beginning of phase 2 because the
development of the test cases does not improve domain
understanding, the development of the test cases takes too long,
and the quality of the test cases in terms of (initial) defect
detection is not sufficient.

Phase 2
The development team is now fluent with the tools and as new
functionality is added to the system, many new test cases are
added rapidly. In our experience, most new defects are detected
during the initial creation of automated test cases, and not during
their repeated execution. Hence, it is observed by the team
members that the existing test cases have a lower benefit in terms
of error detection. However, they have a high benefit in terms of a
prevention of error (re-)introduction, but this often is not or cannot
be seen at this stage and it is also not that important at this stage.

The test suites are still small – yet rapidly growing – and because
they are still understandable due to their small size, false positives
often are not fixed immediately. For obvious reasons, it seems
more fruitful to create new test cases rather than fix or maintain
the existing ones. The team members assume that it is ‘normal’
that some test cases are always ‘red’ and usually they still know
why. The perceived necessity for automated test cases drops
further as the team members become more proficient with the
domain. Less effort is spent for the maintenance of the existing
test cases. With less maintenance, the knowledge about what these
test cases exactly do and the trust slowly vanishes (cf. [12]). By
the end of phase 2 the test suites are neither integer nor
sufficiently understood. It is more convenient not to run the
automated test, at least not too often and not completely.

Phase 3
As stability of the interfaces and reliable contracts becomes more
important, the perceived necessity for automated test grows again.

The benefits of daily execution of automated tests – faults are
detected earlier, and shorter release cycles because of shorter test
phases – would be welcome now. However, the understandability
and integrity of the automated test suites are too low for an
effective execution and it cannot be restored without considerable
effort. At this stage of the project, it is often simply not possible to
(re-) invest the necessary effort into (re-) establishing the
operability of automated test suites. If it is not done, the integrity
and understandability drops below a level where a restoration of
the operability of automated test suites is no longer possible and
economic, respectively. Mid of phase 3 is usually the last
possibility to restore the operability of an automated test suite.

Phase 4
The capability to run automated tests has been lost in the project.
Unfortunately, this is often a phase where the capability to run
automated regression tests would be most welcome – often
because there are a lot of integration, deployment or performance
tuning activities. The perceived necessity for automated test grows
again. If it reaches a sufficient level, yet another attempt for
automated testing is started.

Project References
Project C was a good example for a project, which followed the
first three phases. In phase 3, it was decided to reinvest the effort
to make the automated test operational again. The background
was here, that it was possible to reuse some of the tests for a
performance test – a good argument to justify the effort.

To raise the understandability of the test suite to an acceptable
level the test cases were reorganized along test scenarios, which
were derived from the use cases. This simplified interpretation
and analysis of a failed test case considerably.

3.4 Automated Testing Can Not Replace
Manual Testing

It is the manual tasks that detect most new defects and not the
automated ones. Kaner states in [9] that of the bugs found during
an automated testing effort 60% - 80% are found during the
development of the tests. We strongly support this observation.

Running an automated test is not really a destructive kind of
testing in the sense of Myers ‘falsify the software with respect to
stated and unstated requirements’ [10]. An automated test re-
validates a unit under test. An automated test is constructive and
not destructive by nature. It cannot find defects an experienced
tester reveals. Good testers use their knowledge of weaknesses in
the development team and in the technology to provoke failures
and detect errors. It is not the repetition but the development of an
automated test and its initial execution that reveals most defects.
The replay of automated tests infrequently reveals a new defect; it
detects the introduction of similar defects – defects that already
occurred before.

In this sense, test automation often sets false expectation and a
treacherous illusion of good software quality when it is expected
that a simple and straight replay of test cases detect the defects.

Figure 2. Necessity, integrity, and understandability
of automated tests over time.

 6

With automated tests, the expert testers are freed from running the
same boring regression test suite over and over again and more
resources are available for difficult tasks. Automated tests
facilitate the use of coverage tools and profilers, which
significantly eases an iterative refinement of test cases. The
feedback loop between developing a test case, executing the test
case and assessing the quality of the test case (in terms of, which
parts of the code are touched) is immediate. This is far more
difficult with manual tests. It helps to create better test cases, with
a defined quality with less effort.

Project References
In project B, automated tests were developed primarily to assess
certain mostly non-functional qualities of selected framework
components. The tests were JUnit tests based on functional specs.
The purpose was not test automation with the objective to have a
large functional regression suite. Instead, the objective was to
have an in-depth validation of more non-functional qualities like
error handling, testability or operability.

The tests were developed iteratively with the usage of tools to
measure coverage to prove that the right code is touched. The
development style was not a typical approach to develop
automated tests, but like a specific approach to the iterative
development of repeatable tests, which can also be executed
automatically. In short, the steps described in the test development
cycle were as follows: (1) Document the objective of the test case,
(2) develop/refine automated test case, (3) execute test case, (4)
measure coverage (statement and branch), and (5) validate the
result against the objective. Refine test case if necessary (proceed
with step 1 or 2).

In retrospection, this turned out to be an effective and convenient
way, which supported a focused development and a concentration
on the essence (in the sense of Brooks [2]), because it helped to
construct test cases that reached the code that is difficult to
address – especially the error handling parts. It was easy to
realize, whether the intended parts of the code had been touched;

the tool to measure the coverage [5] marked the reached
statements in the editor.

We tracked the increase in statement and branch coverage for five
test cases over eight refinements. No (non-trivial) test case
initially reached more than 50% statement and 30% branch
coverage (see Figure 3). This shows that it is incredibly difficult
to deliver a good test case right from the start. The vast majority
of the defects were detected in the cycle of test case development,
especially in the refinement steps. Although the tests were run on
three different releases of the platform components new defects
were scarcely detected. The redetection of known defects was
below the expectations too.

3.5 Testability Is A Usually Forgotten
Non-Functional Requirement

We consider testability to have two distinctive aspects: (1) The
design of the software itself for testability and (2) the design of
environment for the automated testing. It is obvious that the latter
plays an important role with automated testing. Nevertheless, the
first is more or at least equally important for automated testing,
because it can considerably increase or decrease the effort to
create automated test cases. We consider it the primary cost driver
and thus the main enabler or disabler for automated testing.

Design for Testability
Quite often systems are difficult to test not because it is difficult
per se, but because the architecture of the system makes it
cumbersome. More technically speaking this means, systems with:

• No visible or usable layering that allows independent testing
of parts of the system separately.

• Not enough possibilities to mock parts of the system, in order
to allow for an isolated test of layers and a systematic test of
error conditions.

• Too little checked assertions to allow for self-diagnosis and
proper state of error conditions.

• Incomprehensible or missing error messages.

One can explain this situation with the usual arguments ‘no
(time|money|people) to be efficient’ or ‘not invented here’, but
beyond this, the reason for this must be sought mainly in two
areas: (1) missing requirements and (2) inadequate design for
testability.

(1) Frequently, the corresponding requirements are not in the
specification; either they have been simply forgotten or
intentionally left out. Many specifications are mostly confined to
functional (business) requirements, which are of course and by
nature those the client is most interested in. Requirements
concerning testability – like operability, deployment or the
adequacy of notifications, error messages and/or log entries – are
missing. The obvious consequences are, that systems are seldom
designed to cover these missing requirements – why should they?

(2) Design for testability: it is not really explored what a testable
architecture is. We think of testable architectures in terms of
layers, mocks, assertions, and adequacy of notifications, but we

Figure 3. Increment of statement (sc) and branch coverage (bc)
during the iterative development of a test case. Circles represent

individual measurements of the sc and squares individual
measurements of the bc.

 7

know of few directly related publications like [11] dealing directly
with design for testability. There has been done a lot of work
about maintainable (meaning change-friendly) architectures,
which is somehow related. However, there are many additional
aspects, which are not covered, and there are some aspects that are
contradictory; in these cases, explicit decisions have to be taken,
where maintainability or other qualities is related to testability.

Both factors have an impact on automated testing and an impact
on how systems are tested in general. The impact on automated
testing is that an inadequate design de facto enables or disables
automated testing. In contrast to the automation strategy or the
design of the testware, which can often be corrected, it is often
impossible to correct the design of the software under test, if it
inhibits cost effective automated testing. The impact on testing in
general is, that the way a system handles errors is insufficiently
tested. For most of the (commercial) software we have seen, we
would claim that significantly less than 50% percent of the code
that handles exceptions and errors has ever been executed before
the system is integrated. The reason for this lies in the way tests
cases need to be developed for error handling code; usually deeply
nested structures have to be reached. Without tool support to
measure coverage and the possibility to run and refine the
corresponding test cases, it is difficult and time consuming to
create the appropriate test cases (see Section 3.4).

Design of the Test Environment
Usually, fussiness in the design of the test automation
environment has not the same big impact on automated testing as
the design of the software under test or an inadequate test strategy,
as it can be corrected more easily. The most common problems
we have experienced are (1) manual installation and configuration
procedures for the system under test, (2) lack of access to essential
infrastructure like the configuration management system, and (3)
an automation where the test execution is not observable (enough)
to the tester.

Project References
Due to the absence of a usable layering in project B, the most
effort in developing the test cases went into exploring the unit
under test in order to find out if or how a test case can be
automated. As mentioned before, the purpose was not test
automation, but the assessment of certain qualities. In general, the
initial test case was inappropriate and without measurements and
further refinement, it would have been ineffective to reach the
goal. The construction of test cases, which covered the error
handling code sufficiently, turned out to be extremely demanding.
For many error conditions, it was impossible to build test cases
that reached the corresponding code. Responsible was an
architecture not designed with testability in mind.

Test automation in project E was not as efficient as expected.
However, it was (cost) effective in the end because it was a smoke
test, which is predestined for automation, because it is executed
often. The GUI-based scripting approach was hampered by
several issues related to testability both in the test environment
(manual deployment process, simulators for external systems
designed for operation through the user interface only, lack of
access to the configuration management system) and in the system

under test (log files not suited for automated parsing, only
rudimentary support for GUI library used in common GUI test
automation tools), resulting in a very high effort for test
automation: approximately 4 days for one test case with 40 test
cases, which amounts to 160 days. A manual run took 2 days, the
return on investment (maintenance not considered) was
approximately 2 years.

3.6 Testware Maintenance Is Hard
Testware comprises everything needed for (automated) testing,
including for example test scripts, test drivers, simulators, but also
input data, expected output, utilities and data used to initialize the
test system and utilities for creating test protocols and reports.

Testware has to be maintained with each new release of the
system under test. Depending on the frequency of release cycles
and the lifespan of the system under test, its maintenance tends to
have a much bigger impact on the overall cost for testing than the
initial implementation of automated tests. Testware architecture
therefore has to be designed to minimize maintenance cost.

Weinberg’s Pattern Zero [13] is frequently visible – a Pattern
Zero organization is oblivious to the fact that it is actually
developing software. Test automation projects often are done
without proper design, planning and documentation of testware
architecture. This has severe consequences on the effort needed to
maintain test scripts and automation infrastructure.

Undocumented Architecture
Test software is usually not engineered with the same diligence as
it would have been done in a ‘real’ software project. Corporate
software development standards are often neglected, important
architectural decisions are taken ad hoc during implementation.
The initial architecture tends to degrade very fast.

Missed Opportunities for Reuse
Tests tend to be repetitive. The same interactions with the test
object are repeated over and over again. With a naive test
automation approach, those repetitive actions are reimplemented,
resulting in high maintenance cost if the test object interface is
changed. This causes serious problems in case of GUI based

0

1

2

3

4

5

6

7

10 20 30 40 50

of implemented test cases

d
e

v
e

lo
p

m
e

n
t

e
ff

o
rt

 (
h

)

development effort ad hoc approach

development effort with reusable components

Figure 4. Development effort / test case (project D)

 8

system test automation, because slight changes in the user
interface, which are quite common, can lead to adjustments in
many test scripts.

Another opportunity for testware reuse is utilities, drivers and
simulators. Once available in one project, they may be reused in
other projects. Other testware components can be obtained from
the open source community or purchased from third party
vendors.

Poorly Structured Testware
Reusable utilities and components will not be used if developers
do not understand them. Most developers will spend at most a
couple of minutes looking for something that is supposed to be
there, before they reinvent it themselves. In order to avoid
duplication of testware, it has to be structured and documented in
a way that its components are easy to locate and use.

In a typical test project with several hundreds or thousands of test
cases, it may become very hard to analyze a failed test and locate
a script for a test case, if they are not organized in a clear and
intuitive way. It is important to be able to identify test cases and
scripts affected by changes in the system under test in order to
adjust them in an efficient way.

Not only test scripts need to be maintained, but also test data.
Typical symptoms of unstructured test data are (1) duplication of
test data leading to increased maintenance effort or (2) unexpected
side effects on other test cases, when maintaining test data for
individual test cases or a group of test cases.

Untested Testware
Test code needs some amount of testing, too. It is very common
for automated tests to detect an error when there is none or to miss
the failures they were actually designed to detect, because of a
bug in the testware. If reuse of test code is a goal, even well
structured test scripts and utilities become quite complex. Any
software utility or reusable component built for test automation
should be tested at least superficially with an automated test suite.
Test cases should be forced to fail at least once, in order to make
sure it doesn’t miss the point it was designed for. This is not
always easy to do, because changes in the object under test may
be necessary to trigger a test to fail.

Project References
In Project D, system tests initially were automated without giving
much attention to testware architecture. After some 30 test cases
have been implemented, the test maintenance used much of the
resources allocated for system test automation, because the user
interface was still frequently changing in response to changing
customer requirements [3]. As a consequence, all existing test
cases had to be redesigned. More emphasis was put on reusable
test code modules, which encapsulated the business processes and
their interaction with the user interface. These modules were
reused in different test cases. With this approach, not only the
effort for maintenance could be reduced considerably, but also the
development effort for new test cases.

In the initial unstructured approach, the average implementation
effort for one test case derived from use cases was about 4 hours.
With the new approach focusing on reuse of test code, the effort
increased to 6 hours at the beginning, dropping very quickly to not
more than 1 hour per test case after 50 test cases had been
implemented (see Figure 4). Higher development effort for
reusable components at the beginning soon was outweighed by the
benefits of reusing those components in other test cases.

4 SYNOPSIS AND CONSEQUENCES
 In this section, we would like to do two things: First, give a kind
of quantitative basis for the evidence of our observations and
second, attempt to draw possible consequences in form of advice
to circumvent the greatest cliffs in test automation.

Table 1 summarizes the observations and experiences discussed in
Section 3. It gives an overview in which project we assume them
to be valid, considering how often we observed them. However,
we do not have data from controlled experiments to supply
evidence for our observations and experiences. In order to gain
more confidence we evaluated them with respect to the five given
projects using an ordinal scale with four degrees: observed
extensively, observed, not observed, opposite observed. Observed
extensively means, that after revisiting the project history, the
authors agreed that the corresponding observation was a typical
and frequent pattern. Observed means that it occurred, but not as a
typical pattern or only with minor consequences. Not observed
means that the corresponding observation did not occur and not

Table 1. Support or contradiction of observations and experiences.

Observation

Project

3.1 Test Automation
Strategy Is
Often Inappropriate

3.2 Tests Are Far
More Often Repeated
Than

3.3 The Capability To
Run Automated Tests
Diminishes If Not
Used

3.4 Automated
Testing Can Not
Replace Manual
Testing

3.5 Testability is a
Usually Forgotten

… Requirement

3.6 Testware
Maintenance Is Hard

Project A Observed extensively Observed n/a Observed extensively Observed extensively n/a

Project B n/a Observed Observed extensively Observed extensively Observed extensively Observed

Project C Observed extensively Observed extensively Observed extensively Observed extensively Observed Not observed

Project D Opposite observed Observed n/a Observed Opposite observed Observed extensively

Project E Observed extensively Observed n/a Observed Observed extensively Observed

 9

caused any problems, although it could have by the nature of the
project. In projects where the problem had been explicitly
addressed and (successfully) managed, opposite observed is
indicated. A n/a is indicated, where we had not enough insight in
the project for a qualified answer or where the observation was
impossible due to the nature of the project.

The strongest support has been found for the observations
discussed in sections 3.2 and 3.4. Observation 3.3 could be
observed in two projects (B, C) only. In the other projects, a
conclusion was not possible; mostly, because we were not long
enough in those projects, the automated tests were not established
long enough, or because the test suite was run every day.
Nevertheless, we found it important and observed it many times in
projects not mentioned in this report. For the observations 3.1 and
3.5, the opposite was observed in project D. Despite this, we
agreed this to be valid often enough to be mentioned anyway and
concluded that projects where the strategy is right might have a
higher chance to work toward testable designs. A (welcome)
exception was project D, where much emphasis was put on a good
test automation strategy from the beginning, and where testability
requirements could straightforwardly be considered in the XP-like
development process with developers also responsible for testing
activities.

We have summarized our observations in four consequences,
which, in our opinion, help to successfully realize sustainable test
automation projects if considered carefully.

Adopt a Sound Test Strategy
A sound test automation strategy is crucial to test automation
success and the only way to avoid problems, which arise from
observation 3.1. An explicit test strategy gives the possibility to
estimate cost effectiveness beforehand (see observation 3.2). We
suggest organizations considering test automation to proceed in
four steps:

1. Define a testing strategy, which takes into account your
quality objectives and the specific characteristics of your test
object. Integrate activities to constantly refine and maintain
test cases.

2. Define goals for test automation. These goals may be shorter
release cycles, saving money or better product quality, or any
combination of these or other goals.

3. Choose a diversified test automation approach. Strategies
combining several approaches are usually more effective
than those only using one single approach.

4. Frequently evaluate your automation approach. Use
appropriate measurements to evaluate whether your test
automation goals have been achieved and constantly improve
your automation.

Design for Testability
Whereas an inappropriate test automation strategy may be
improved gradually, it may be very difficult or even impossible to
change a system architecture not suited for automated testing.
Consider testability in your system architecture right from the
beginning. The most serious problems arise from observation 3.5
and 3.1. A good way to cope with these is (1) to feed your
requirements engineering process with non-functional require-

ments derived from your test (automation) strategy and (2) in
terms of architecture of a system to enforce and focus on
exploitable layers, mock-ability, assertions and adequacy of
machine-generated notifications.

Integrate your Software Daily
In order to prevent your test automation regime from degrading
gradually over time, integrate your software at least once a day
and try (hard) to run all automated tests during integration. This is
a simple and effective technical measure which greatly helps to
avoid the problems which arise form observation 3.3 and 3.4.
Failures revealed by automated tests should be fixed immediately,
regardless of whether they are related to faults in the testware or
in the object under test.

Apply Good Engineering Practices
Test automation projects are software development projects like
any other, and they are prone to the same problems, like any other.
In order to be successful, apply the same diligence and good
software engineering practices as in other development projects.

Maintenance of automated test suites became a major burden to
most organizations we have been working with (see 3.6). Where
this was not an indirect consequence of the application
architecture, it was caused by inappropriate testware architecture,
poorly designed without consideration of maintainability issues.

5 REFERENCES
[1] Berner, S. About the Development of a Point of Sale

System: an Experience Report. Proc. of ICSE 2003,
Portland, OR, May 2003.

[2] Brooks, F. P. No silver bullet – essence and accidents of
software engineering. Computer, 20(4), Apr 1987.

[3] Elkoutbi, M., I. Khriss, and R. K. Keller. Automated
Prototyping of User Interfaces based on UML Scenarios. J.
of Automated Software Engineering. To appear.

[4] Fewster, M., D. Graham. Software Test Automation:
Effective use of test execution tools. ACM Press, 1999.

[5] http://www.cenqua.com/clover/
[6] http://www.clarkware.com/software/JUnitPerf.html
[7] http://www.quest.com/jprobe/
[8] Kaner, C. Architectures of Test Automation. Software

Testing, Analysis & Review Conference (Star) West, San
Jose, CA, Oct 2000.

[9] Kaner, C. Improving the Maintainability of Automated Test
Suites. Software QA, 4(4), 1997.

[10] Myer, G. J. The Art of Software Testing. New York: Wiley
& Sons, 1979.

[11] Pettichord, B. Design for Testability. Proc. of Pacific
Northwest Software Quality Conference, Oct 2002.

[12] Pettichord, B. Seven Steps to Test Automation Success.
http://www.pettichord.com (Revised version of a paper
presented at STAR West, San Jose, Nov 1999).

[13] Weinberg, G. M. Quality Software Management: Systems
Thinking, 1. Dorset House, 1999.

