
A Comparison of Simple Agents Implemented in Simulated
Neurons

Christian Huyck, Carl Evans and Ian Mitchell
Middlesex University - Dept. of Computer Science

London - UK
email: c.huyck, c.evans & i.mitchell@mdx.ac.uk

Abstract

Neuromorphic embodied cell assembly agents that learn are one application being developed for
the Human Brain Project (HBP). The HBP is building tools, available for all researchers, for
building brain simulations. Existing simulated neural Cell Assembly agents are being translated
to the platforms provided by the HBP; these agents run on neuromorphic chips in addition to
von Neumann based computers. Whilst translation of the agents to the software technology
demanded by the HBP platforms is relatively straightforward, porting to the neuromorphic chips
is a non-trivial software engineering task. Versions of the simple agent, CABot1, have been
developed in fatiguing leaky integrate and fire neurons, Izhikevich neurons and leaky integrate
and fire neurons. These have been developed to run in Java, PyNN, NEST and Neuromorphic
hardware. All variants are roughly equivalent. The agents view a picture, implement simple
commands, and respond to a context sensitive directive involving the content of the picture. By
running variants of these agents on different platforms, and with the different simulated neural
models, implicit assumptions in these models can be revealed. Once these Cell Assembly agents
have been translated and embodied in a virtual environment, they will be extended to learn more
effectively. The use of neural hardware supports the real time simulation of many more neurons,
providing a platform for exploration of more complex simulated neural systems.

1. Introduction

The Cell Assembly (CA), initially proposed in 1949 (Hebb, 1949; Huyck and Passmore,
2013), is a key component in brain function linking neural behaviour to psychological behaviour.
A CA is a set of neurons that are able to support firing amongst themselves; when activated, the
firing CA becomes a short-term memory that persists while many of the neurons continue to fire
at a rate much higher than the background base neural firing rate. Most typical concepts humans
have, for instance dog, mother, or foot, have a CA that represents them.

CAs are central to a series of embodied agents, the Cell Assembly robots (CABots) (Huyck
et al., 2011), implemented entirely in simulated neurons. CABots are interactive agents operating
within a virtual environment that explore, plan and learn from sensory information. The agent
can be directed by a user with natural language commands.

Three Java versions of the CABot agent were developed. The first version of the agent,
CABot1, included a component for natural language processing (NLP) and could process user
input for goal setting via a planning component. It also had a vision system which could detect
Preprint submitted to Elsevier March 17, 2015

lines within its environment. The second version, CABot2, made some advances on the earlier
version. In particular, it included a verb learning component and had improved vision which
could detect edges rather than simply lines. The third version of the agent, CABot3 (see Figure
1), is composed of four major sub-systems, and a simple control system to manage some inter-
system behaviour. The major systems, each consisting of hundreds of CAs, are:

• Natural Language Processing (NLP): process user input for goal setting;

• Visual: identification and location of objects;

• Plan: goal-oriented, communication and action; and

• Spatial Cognitive Map: long-term mapping of the environment.

When commanded, the CABot3 agent explores the environment, building a spatial cognitive
map from information gathered via its visual field. The planning mechanism is a type of Maes
network (Maes, 1989). A Maes net is a spreading activation system with goals, modules, facts,
and actions. For example, facts support goals and modules that are related to them.

The virtual environment has four rooms and each room has a different object (either a pyramid
or stalactite) within it. Testing the system relies on the agent using the cognitive map to find an
object.

The agent is managed by sub-networks composed of simulated neurons, a technical pos-
sibility thought too complex in 1988 (Smolensky, 1988). There are some compromises made
with regard to biological plausibility, but the agent is composed of, and controlled entirely by,
simulated neurons.

Recently, work has begun translating the CABots from their Java based neural simulation
and porting them, via PyNN (Davison et al., 2008), to neuromorphic chips (Indiveri et al., 2011).
This work has commenced with CABot1, but ultimately the intention is to complete this re-
engineering process for all three versions. This is one small component of the Human Brain
Project (HBP) (HBP, 2014). Porting the existing CABots to the chips is a non-trivial software
engineering task. Once done, the agent will be extended to learn visual objects, learn plans, and
will be tested on new cognitive modelling tasks. The HBP is in its early stages, but will include
a series of platforms that researchers, including those not affiliated with the project, can use for
large scale neural simulations. CABots are one type of simulation.

This paper presents several initial prototypes based on several different types of neurons,
on different simulators, on standard hardware and on the SpiNNaker neuromorphic chip. The
paper presents a qualitative comparison of these systems. There is a system with the authors’
bespoke Fatiguing Leaky Integrate and Fire neural model implemented in Java, and systems
using the HBPs typical PyNN middleware. PyNN simulations specify the topology and then run
that topology in a standard simulator. There is a PyNN system using Izhikevich (Izhikevich,
2004) neurons in the NEST simulator; a system using Integrate and Fire (Brette and Gerstner,
2005) neurons on NEST; a system using Integrate and Fire neurons on the SpiNNaker emulator;
and a system using Integrate and Fire on SpiNNaker chips. These systems have roughly the
same functionality, however there are some differences that make software engineering in some
systems simpler, at least for this project. This provides evidence for a rough equivalence of these
point neural models.

All of these prototype agents have both vision and planning. While vision uses almost half
of the neurons in CABot3, for example, planning is much smaller; none the less, this is a solid
test of the basic agent technology. Whilst the focus for this paper is the translation and porting

2

of the CABot1 agent prototype, the first major version of the FLIF Java agent (Huyck, 2008),
the longer term aims of the Neurmorphic Embodied Agents that Learn (NEAL) project include
an effort to reproduce CABot3 (Huyck et al., 2011) using PyNN. This project aims to execute
the code on neuromorphic chips. This will then be extended to perform more tasks in richer
environments aiming to provide further understanding of general neural cognitive architectures.
This application makes use of several components of the HBP.

2. NEAL, an Application in the Human Brain Project

The authors have been awarded a grant as part of the HBP to build NEAL. The HBP is broken
into 13 subprojects, and NEAL is a part of the Applications Subproject, but is also aligned with
the Neuromorphic Computing Subproject.

While NEAL is part of the Applications Subproject, and to some extent the Neuromorphic
Computing Subproject, it is also linked to other Subprojects. It takes advantage of the Neuro-
robotics, High Performance Computing, Brain Simulation and Cognitive Modelling Subprojects.

The HBP is a European Union sponsored project to further understanding of mammalian
brains in general, and human brains in particular. As brains are complex and poorly understood,
the project aims to build tools and platforms to support scientific exploration of them. The HBP
and the American Brain Research through Advancing Innovative Neurotechnologies initiative are
complementary projects that hopefully will lead to a significant advance in both understanding
of brain function, and improved computer systems.

The HBP platforms include a neuromorphic computing platform, a Neuroinformatics Plat-
form, a Brain Simulation Platform, a High Performance Computing Platform, a Medical Infor-
matics Platform, and a Neurorobotics Platform. These computational platforms will all be devel-
oped for scientists in and outside the HBP to use. The Neuroinformatics Platform will contain
neuroinformatics data such as ontologies, brain atlases and neural connectivity of both human
and mouse brains. The Brain Simulation Platform will use parallelized versions of simulators
such as NEST to support large scale simulations of neural systems; this extends the Blue Brain
Project (Markram, 2006). While the Brain Simulation Platform focuses on software, the High
Performance Computing Platform focuses more on hardware for the same purpose. The Medical
Informatics Platform focuses on medical data for problems such as Alzheimer’s disease.

While the authors’ work will make use of these other platforms, it is most closely involved
with the Neuromorphic Computing and Neurorobotics Platforms. The Neurorobotics Platform
will develop virtual environments and virtual robots, that are linked to neural simulations. This
is quite similar to the games environment used in the authors’ earlier CABot work (Huyck et al.,
2011).

The Neuromorphic Computing Platform makes use of, and provides access to, two types
of neuromorphic chips: SpiNNaker (Furber et al., 2013) and HICANN (Brüderle et al., 2011).
These chips are designed to simulate large numbers of neurons rapidly; they are radically differ-
ent from typical von Neumann architectures (Von Neumann, 1958).

One Subproject not directly linked to a platform is the Cognitive Architectures Subproject.
The goal is to select studied cognitive tasks, simulate them in an artificial neural network, and
align activity to known brain activation patterns. NEAL will be informed by this Subproject.

3

NLP
..

.

Game
Vision

Control Plan Verb
Learn

Cog.
Map

@
@I
R?

6

?
6

�
��

	

�

?
6

-

�
��

	

-�

Figure 1: Gross Topology of CABot3. Boxes represent subystems of subnets. The oval represents the environment. The
dashed box represents subsystems for CABot1; note that the environment is static for the simulations described in this
paper. The vision system is introduced in section 4.2, and the planning system is most fully described in section 4.3.

3. CABot Translation

In earlier work, the authors and colleagues developed an agent, implemented entirely by sim-
ulated neurons, in a virtual environment (Huyck et al., 2011). The virtually embodied agent used
plans, responded to natural language commands, viewed the environment, and moved around the
environment. Figure 1 shows the gross structure of the sub-systems, and how they interconnect.
This is sufficient to implement the full agent, though other connectivity could be added.

These CABot agents were implemented entirely in simulated fatiguing leaky integrate and
fire (FLIF) neurons, which were implemented in Java, and did all of the agents’ processing. The
environment was a simple three dimensional virtual space with objects implemented in a share-
ware games engine, Crystal Space (Crystal Space, 2008). The largest agent had approximately
100,000 neurons with several million synapses, and ran approximately in real time along with
the virtual 3D environment on a standard PC.

The first step in the NEAL project is to translate CABot agents from FLIF neurons simulated
in Java, to a standard neural class in PyNN. This agent can then be run on the neuromorphic
chips. PyNN (see Section 3.1) is a Python package for simulator-independent specification of
neuronal network models.

The Java CABot3 system was broken into 36 sub-networks (Huyck et al., 2011) with the
systems described in Figure 1 consisting of multiple sub-networks. The sub-networks provide
some modularity, aiding in software engineering, and, in a few cases (e.g. primary and secondary
visual cortices), link directly to cortical areas.

While the original Java neuron is a model of a biological neuron, albeit a point model, the
network’s behaviour does not readily translate to PyNN. For instance, the Java CABot models
used a 10 ms step, and when a neuron fires, neural activation is propagated to synaptically adja-
cent neurons in the next time step. PyNN and the underlying neuromorphic chips do not allow
this. So, a complete respecification of the neurons and synapses is needed.

3.1. PyNN
PyNN (Davison et al., 2008) is a type of middleware. A neural simulation is described in

PyNN. The simulation is then run through PyNN and passed onto a neural simulator such as
4

NEST (Gewaltig and Diesmann, 2007) or NEURON (Carnevale and Hines, 2006). The neural
simulator interacts with the original Python specification to manage interactions.

The HBP takes advantage of PyNN’s ability to use multiple simulators for the backend with
roughly the same results. While new neural models can be developed, PyNN specifies standard
models and several supported neural simulators can run these. Other simulators can be devel-
oped for PyNN and, in particular, simulators for the two neuromorphic chips (SpiNNaker and
HICANN) have been developed. The PyNN description can run in these and this should emulate
the behaviour of the hardware. The PyNN description of the neural topology can also be directly
loaded to the neuromorphic hardware. Moreover, this is not limited to neuromorphic hardware
but can also be run on high performance computers. There may be differences in the three types
of hardware, and indeed in the neural simulators, and these differences need to be understood.

PyNN specifies standard neural and synaptic models. These include exponential integrate
and fire models (Brette and Gerstner, 2005), Izhikevich neurons (Izhikevich, 2004), and Hodgkin
Huxley neurons (Hodgkin and Huxley, 1952). Several simulators support most of these standard
types of neurons.

PyNN also supports current injection as this is often used in neural simulations. Current is
injected into biological neurons with electrodes causing them to fire; simulations try to reproduce
this behaviour. In the PyNN CABot1 agents, current injection is used to make sensory neurons
fire so that the neural system can be driven by visual input from the environment. The goals
in the planning system are also set by current injection. The engineering in NEAL is about
translating what previously worked in the Java FLIF model to PyNN, and then on to the other
neural platforms.

3.2. Translation

With respect to the Java versions of CABot, the aim of the work was to develop neural
systems for vision, planning, and natural language parsing. Whilst some aspects of network be-
haviour do not map automatically to PyNN, as noted earlier, much of the translation from Java
to PyNN is a relatively straightforward software engineering task. The original Java version of
CABot3 showed that, given enough neurons, anything can be programmed; i.e., neurons are Tur-
ing complete (Byrne and Huyck, 2010). However, the Java FLIF models are one example where
there is not an implicit structural mapping to PyNN and so new systems have been developed.

The vision systems, both the Java FLIF and PyNN versions, are based on known neural
functioning. The retina functions as a set of on-off and off-on centre surround receptive fields
(Hubel and Wiesel, 1962). Simulated neurons mimic this behaviour, and are programmed by
setting their synaptic weights and connectivity (Huyck et al., 2006). A 3x3 on-centre off-surround
neuron has an excitatory synapse from the centre, and inhibitory synapses from the surround. A
3x3 off-centre on-surround has excitatory synapses from the surround, and an inhibitory synapse
from the centre. The 6x6 and 9x9 detectors have larger centres and larger surrounds. For the
retina, all versions have the same connectivity, though synaptic weights vary.

The simulated primary visual cortex merely gets inputs from these retinal detectors. This
includes a series of location specific edge and angle detectors. The edge detectors are orientation
specific, and six types of detectors have been developed. There is an up-facing horizontal edge,
and a down-facing horizontal edge detector; there are right and left sloping up-facing and down-
facing edge detectors. Four angles are detected: a less than angle (<), a greater than angle (>), an
and angle (∧) and an or angle (∨). Different systems use different retinal detectors with different
topologies; these have been developed through a trial and error technique.

5

The planning system is a neural implementation of a Maes net (Maes, 1989). In the Java
CABot systems, facts, modules, goals and actions are all stored as simple CAs in separate sub-
nets. The sub-nets are connected so that neural activation spreads, implementing the appropriate
plans. The CAs in these sub-nets are simple oscillators. For example, the CA for the Turn left
goal is a set of neurons that persistently fire once the goal is activated. When the goal is on in
the FLIF system, half of the neurons fire in one 10 ms cycle, and these turn the other half on in
the next 10 ms cycle, while the initial neurons are off. This allows the goal to persist indefinitely
without the neurons accumulating fatigue. This is a poor CA from a psychological perspective,
but it enables short term memory that can be explicitly turned on and off. In the PyNN versions
of the CABot systems being developed, facts and actions do not persist.

There needs to be input from the environment to the system, and in turn there needs to
be output from the agent to the environment. Input is in the form of a binary bitmap of the
environment (the agent’s camera), and user commands in the form of typed words. Output is
provided by the action sub-net of the planning system. If one of the four actions (turn left, turn
right, move forward, or move backward) is on, a symbolic command is passed to the game agent.
Here, ’on’ means that a sufficient number of neurons in the CA for that action are firing. The
system translates the subsymbolic firing behaviour of these neurons to the symbolic actions taken
by the agent. In the PyNN systems, each action is represented by a single neuron, and ’on’ means
the neuron fires.

The first working PyNN version of CABot1 (see Section 4.2) consisted of just vision and
a simple version of planning. This is able to run using the NEST simulator on a PC. While
NEST runs much more slowly on a PC than the original Java code, this still works effectively
in simulation, because the action does not need to be real time; it is slow, but verifiably correct.
This agent was rewritten with an integrate and fire neural (IF curr exp in PyNN) model.

This IF curr exp agent supported porting to the SpiNNaker emulator, and SpiNNaker chips.
In this case, input is from vision. The goal is explicitly set, since it cannot be set by user language
commands, because NLP remains to be implemented.

As noted earlier, a key aim is to develop a working PyNN version of CABot3. Translating
the CABot3-specific components will involve language, cognitive mapping, learning verbs, and
making it all work together. This work is not about solving new theoretical problems. The Java
CABot3 had binding, and cognitive models for parsing, and the Java CABot2 agent had verb
learning. These will be reimplemented, but it will make no conceptual breakthrough. Rather
they will merely show that the basic idea is flexible across different neural models. It will,
however, provide a system that can be extended and modified.

The PyNN versions of the CABot agents have similar connectivity to their Java predecessors,
but the synaptic weights are different, and individual neurons behave slightly differently. The
PyNN versions also have different numbers of neurons for some functions, and some functions
have different numbers of sub-networks; the sub-net concept is somewhat blurred in PyNN,
because it is not a predefined class in PyNN, while it is a class in the Java simulations.

4. Prototypes

There are engineering results that can be reported from the translation of the simplest agent,
CABot1. The goal was to make an agent with a visual system, and simple planning. The earlier
FLIF agent (see Section 4.1), significantly informed the process. An initial system was made
using Izhikevich neurons and the NEST simulator (see Section 4.2). It was hoped that this would

6

Neural Model FLIF Izhikevich Integrate and Fire
Java Section 4.1

Pro: More Functionality
Control Of Code
Fatigue
Con: No Reuse

Nest Section 4.2 Section 4.3
Con: Inhibition causes Pro: Many hardware
spiking platforms

Con: Slow to simulate
SpiNNaker Section 4.4

Pro: Fast
Con: Need hardware

Table 1: The major pros and cons of the systems described in the paper.

be translated to the SpiNNaker system, but the system had problems with inhibition, and so there
was no further development of the agent using the Izhikevich model. A second system was de-
veloped using integrate and fire neurons and the NEST simulator (see Section 4.3). This was then
translated to the SpiNNaker emulator and chip set (see Section 4.4). Code for all the PyNN mod-
els can be found on http://www.cwa.mdx.ac.uk/NEAL/code/cabot1/cabot1.html, and the original
Java model for CABot3 can be found at http://www.cwa.mdx.ac.uk/CABot/cabot3/CABot3.html.

4.1. Java FLIF CABot1

The original CABot1 was developed several years ago (Huyck, 2008). It was based on a
long-standing fatiguing leaky integrate and fire neural model, originally written in C++ and later
translated to Java. This system had a natural language parsing component that was not included
in PyNN versions of the CABot1 agents discussed below. It had a vision system and a planning
system.

While the original Java system was more sophisticated than the PyNN agents described be-
low, the planning and vision components were roughly equivalent. The vision system had six
receptive fields, and recognised lines in three orientations and four angles. It is to be noted that it
recognised lines, while the agents described below, and indeed later versions of the Java CABot
agents recognised edges. That is to say, the environment within which it operated had wire-frame
shapes rather than solid shapes.

The planning system of the original Java CABot1 agent was also more sophisticated than its
PyNN successor. Like the later systems it had the primitives (turn left, turn right, move forward
and move backward), compound commands (turn left then move forward, and turn right then
move forward) and the context sensitive commands (turn toward the pyramid, and turn toward
the stalactite). Additionally, this agent had two context sensitive commands that could issue
multiple primitive actions (move to the pyramid and stalactite). In this case it would turn toward
the item, then move forward, possibly having to recentre the object as it travelled. As the later
agents were open-looped systems, they could not do this. That is to say, the PyNN agents could
not modify the environment, and then see the modification. This is difficult in PyNN (though see
Section 4.5).

7

All of the CABot1 agents made use of relatively simple cell assemblies. One simple version
of this is a well connected set of neurons. While this can persist indefinitely in the PyNN systems,
this type of system would eventually “fatigue out” in the Java FLIF system. Fatigue in the
individual neurons would accumulate, and eventually, the whole circuit would cease firing. This
was solved by making simple oscillators (see Section 3.2).

The biggest advantage of the Java system was that the engineers had complete control of
all of the models. If a new behaviour for the neural model was needed, it could be readily
introduced. Similarly, access to all of the internal variables was simple, and particular code
could be optimised to make the system more efficient.

The toothbrush adage is pertinent here.

A modeller would rather use another modeller’s toothbrush, than their model.

One reason this adage works is that a modeller is in complete control of their model, under-
stands it implicitly and explicitly, and has spent a great deal of time gaining these advantages.
Unfortunately, this means that model, and in this case code, reuse becomes very difficult.

The HBP mechanism of standardising middleware, e.g., PyNN, and supported simulators
such as NEST and SpiNNaker, enables models to be run on different systems. Also, it means
that modellers can focus on the front end (the model), and not have to support the later layers.
There is support for importing new neural models (e.g., FLIF) and new learning models into
PyNN, SpiNNaker and other simulators.

4.2. Izhikevich NEST CABot1

The first PyNN system used standard Izhikevich neurons (Izhikevich, 2004). The Izhikevich
neuron is a reverberate and fire neural model. It has a small number of parameters, and these can
be set to account for several types of biological neurons, for example regular spiking and bursty
neurons. These run on NEST, and the SpiNNaker emulator, and should run on the SpiNNaker
and HICANN chips (though the authors have not tested these). This agent can be found at
http://www.cwa.mdx.ac.uk/ NEAL/code/cabot1/versJune17.tar.gz.

As the 10 ms model from the Java implementation will not work, and there are some assump-
tions in SpiNNaker around a 1 ms model, the PyNN simulations use a 1 ms model. That is, input
is considered, and activation spreads in discrete 1 ms cycles. This in itself requires entirely new
engineering. So the connections have been entirely respecified, and in many cases the number of
neurons have been changed.

With regard to the vision component, all of the on-centre off-surround and off-centre on-
surround detectors have been implemented. For example, the 3x3 on-centre off-surround detector
has 6 different behaviours. It fires maximally when the centre input is on, and the surrounding
eight neurons are off. The firing rate and onset decrease as surrounding inputs are added. With
five to eight surrounding inputs on there is no firing. The 3x3, 6x6, and 9x9 detectors have all
been implemented.

The primary visual area consisted of six edge detectors and four angle detectors (see Section
3.2). These were position specific, so that there was, for instance, a detector for horizontal edge
on the bottom of a solid for each input pixel. Object recognition was done by connections from
the primary visual features to neurons for the two objects. They were split into four visual facts,
a pyramid or stalactite on the left or right.

Much of the Java FLIF version of the CABots used oscillators to compensate for fatigue. As
noted earlier, these are poor CAs from a psychological perspective, because, unlike short term

8

memory, they persist forever. However, they are easy to work with as programming primitives.
One set of, typically five, neurons would fire in one cycle, a second in the next, then the first
again and so forth. Once the oscillator was turned on, it persisted until it was turned off. This
has been implemented in PyNN, again with Izhikevich neurons. The first few spikes are more
rapid, but the oscillator then persists indefinitely with each set, again of five, firing every 10 ms,
or every 10 cycles; this is twice as fast in simulated time as the Java FLIF version, which takes
two cycles.

The planning subsystem requires facts, goals, modules and output actions based on a Maes
Network (Maes, 1989). The facts, goals, and modules were all sets of five neurons forming
simple CAs. The action was represented by one neuron, and the action occurs when that neuron
fires.

All four primitives, both compound commands, and both context sensitive commands work;
the context sensitive commands work with the shapes on either the left or right. For example,
each primitive has a goal CA, a module CA and an action neuron. The goal CA is stimulated by
injected current and represents a command issued by the user, which will eventually be provided
by the language subsystem. When the goal CA is active, it stimulates the appropriate module
CA. When the module CA is active, the appropriate action neuron is activated. This occurs in a
feed-forward manner via excitatory connections between each CA. When the action neuron fires,
the goal is fulfilled and there is a feedback process via inhibitory connections; this turns the goal
and module CAs off. By injecting current in 100 ms cycles all of the commands can be activated,
and they work with the shapes provided.

When the authors started development, they did not properly understand that Izhekivich neu-
rons are not integrate and fire neurons, but resonate and fire neurons. This means that if a neuron
receives too much inhibition, it would fire. A great deal of effort was made while developing
this agent to parameter fit the topology so that inhibition did not cause firing. As subsequent
engineering of the later CABot3 version would make more extensive use of inhibition, it seemed
wise to try another neural model.

4.3. IF NEST CABot1
Another standard model in PyNN that is supported by the NEST simulator is the IF curr exp

model (Brette and Gerstner, 2005), a leaky integrate and fire model. This is more similar to
the original FLIF model than the Izhikevich neuron that was used in the Java system, but still
significantly different. Like the Izhikevich model, a 1 ms time step was used.

Also like the Izhikevich model, the synapse was appreciably more sophisticated than the
synapse from the Java FLIF model. In the FLIF model, if a neuron fired, activation equal to the
synaptic weight was transmitted to the post-synaptic neuron in the next cycle. In the Izhikevich
neuron and the IF curr exp model, the current continued over several cycles. This does make
more sense with a 1 ms model.

The default values for neural parameters were largely used, though the clamped input was
varied for different tasks. The code can be found on http://www.cwa.mdx.ac.uk/NEAL/code/
cabot1/cabot1Nov17.tar.gz. Note that this code can also be run on SpiNNaker (see Section 4.4).

All of the same commands used with the Izhikevich agent can be run with the IF curr exp
model. Vision works slightly better, and works on all four included figures. One of the pleasing
aspects of this system is that the 3x3 off centre receptive fields perfectly outline the figures.

As expected, the inhibition problem of the Izhikevich model ceased to be an issue with the
IF curr exp model. It was possible to inhibit neurons with very large negative values without
firing.

9

30
40
50
60
70
80
90

100
110
120
130
140

0 100 200 300 400 500 600 700

N
eu

ro
n

ID

time (ms)

Spiking Neurons in Planning

Goals

+++ ++++++ ++++++ ++++++ ++++++ +++++++++++++++
+++ ++++++++++++

+++++++++++++++
+++ ++++++++++++

+++ ++++++++++++
+++

+ Modules

•• •• •••• •• •••• •• •••• •• •••• •• •••• •••• •••• •••• •••• •••• •• •••• •• •••• •• •••• •• •••• •• ••••••••••••

• Actions

∗ ∗ ∗∗ ∗∗ ∗ ∗∗

∗

Figure 2: Planning: Maes network displaying Spiking Neurons run over 700 m/s. The commands where issued in
intervals of 100 m/s. The top, middle and bottom show Spiking Neurons for the Module, Actions and Goals, respectively.
Notice that Actions have one Neuron.

Figure 2 shows spiking neurons over a 700ms simulation run time. Each neuron has an
identification, with 30–65 to Goals, 100–104 to Actions and 110–135 to Modules. Other neurons
shown here but not spiking are allocated to other functions represented by Goals or Facts that
have not been used in this simulation. The population size is 5 for Goals and Modules, and 1 for
Action. Goal neurons are fired by a basic command, these then fire the module neurons, which
fire the action neurons. When action neurons fire, inhibitions is sent back to connected Goals
and Modules, which suppresses further activation. For the simulation the command sequence is
shown in each row in Table2. As shown in the table, the spikes occur for the Goal 2.452 ms.
(column 4) after the initial current injection. The time difference between Goals and Modules
to spike for non-compound statements is 6.801 ms. (column 5). Finally, the time difference
between simple commands being set and action is on average 17.306 ms. (column 6). When
the action neuron fires, inhibitory signals are sent back to associated Goals and Modules, which
suppresses neurons in the population from further spiking. This shows the sequence of Maes
events via neural firing times.

4.4. IF SpiNNaker Simulator and Chip Set CABot1

Apart from some minor differences, the code from the PyNN NEST model runs on the SpiN-
Naker chip. The APIs do vary somewhat, so a global configuration parameter is used to switch
between specific simulators in the Python files. The variable is the simulator name, and the API
specific differences are accounted for in this manner.

Initially, the system was modified to work on the SpiNNaker emulator. Unfortunately, the
current SpiNNaker emulator does not have the capacity for simulating many neurons; difficulties
occurred around 10,000 neurons. If visual input was a 50x50 input, and the receptive fields and

10

1.Time 2.Command 3.Abbr. 4.Goal 5.Module 6. Action
0 Turn Right TR 2.452 9.253 17.306 (TR)
100 Turn Left TL 102.452 109.253 117.306 (TL)
200 Backward BW 202.452 209.253 217.306 (BW)
300 Forward FW 302.452 309.253 317.306 (FW)
400 Turn Right TR 402.452 409.253 417.306 (TR)
500 Move Right MR 502.508 506.444 515.017 (TR)

Compound Statement 515.330 523.880 (FW)
600 Move Left ML 602.452 606.111 614.548 (TL)

Compound Statement 616.901 625.567 (FW)

Table 2: Commands and associated spike times of first neuron in population of Goals, Modules and Actions in the Maes
Net. Time is in milli-seconds (ms) and rounded to 3 d.p. Results match with Figure 2, where neuron fires multiple times
only the first neuron firing time is recorded, with the exception of compound statements that result in two actions, e.g. in
the final row command ‘Move Left’ results in two actions: ‘TL + FW’. R

primary visual feature detectors were this size, capacity was quickly exceeded. It was possible
to work with smaller inputs (e.g. 10x10), and to work with a subset of the components.

Once a small SpiNNaker board, with four SpiNNaker chips was acquired, the system was
ported. Aside from problems with large numbers of neurons, everything that worked on the
emulator worked on the board. The board also provided a much larger capacity.

One of the difficulties faced was that each PyNN population required a different processor on
the SpiNNaker board. Each SpiNNaker chip has 16 processors. This meant that the populations
had to be arranged differently; for example, initially, there was a population for each fact; this
was changed so that all the facts were in one population.

Similarly, the default number of IF curr exp neurons on a processor was 100. This could be
modified, and in the full system, 300 were allocated to each processor, and in later systems 1000.
Speed did not seem to be a problem, but it was an open-loop system.

On the chip, all of the commands were successful. Though it is not entirely transparent, it is
relatively straightforward to make a system that runs in both NEST and on the SpiNNaker board.

4.5. Beyond CABot1
The second version of CABot, CABot2 has also been re-engineered using PyNN. At present,

this only runs on the SpiNNaker board, but includes Natural Language Parsing and closed-loop
behaviour.

Perhaps the best feature of the original Java CABot3 was its natural language parsing system.
This is a cognitive model of parsing implemented in neurons (Huyck, 2009). Context free pars-
ing requires variable binding of some sort, and in this model, binding was done by short-term
potentiation. Unfortunately, the standard synaptic models in PyNN do not have an appropriate
model; the weights in the Tsodykys-Markram synapses (Tsodyks et al., 1998) do not decay when
the neurons are not firing.

Since context-free parsing is not a simple option, a regular parser was developed. This ac-
counts for all of the commands that a user can issue. The results of the commands are then used
to set the goals.

Another significant extension from CABot1 is that the agent developed in PyNN is a closed-
loop system. That is to say, the agent exists within an environment, and when the agent moves,
the environment changes. In particular, when the agent moves, the visual input changes.

11

This requires interaction between the virtual environment and the neural simulator. PyNN
provides a mechanism for the simulator to ’call-back’ a function in Python. However, this is
not cleanly transferred to SpiNNaker. In SpiNNaker a spike server is needed that sends spikes
to particular SpiNNaker neurons, and reads the values from other particular neurons. In both
CABot2 and CABot3 (Java versions) the input neurons are the words for parsing, the visual
input neurons, and a “bump” sensor for when the agent runs into something. The bump sensor is
hooked to a fact in the Maes net. The output neurons are the four action neurons.

In CABot1, the environment was an image. The original FLIF CABot3 was linked to a Crys-
tal Space environment (Crystal Space, 2008); unfortunately, this environment will not run in the
Linux operating system needed for SpiNNaker. Eventually, the HBP will provide a virtual envi-
ronment, but this is not ready. Consequently, a Python virtual environment has been developed.
For CABot2 it merely has an object.

Additionally, a controller subsystem is needed. This enables the system to parse, then set the
goal, then return to parsing when the goal has been satisfied. Parsing restarts after the goal has
been completed, and the new command from the user is available.

CABot3 requires a more sophisticated environment, extra visual features, an improved plan-
ning system, and simple cognitive mapping. The most complex command in the original Java
CABot3 was “Explore.” The environment consisted of four rooms connected by corridors. Each
room had a unique object, a striped or barred pyramid or stalactite. The agent had to go through
all four rooms, and remember the object in each room. The user could then request the agent to
go to (for example) the room before the striped pyramid. This showed that the simple cognitive
map had been learned.

This required an extra visual feature. In the original agent this was a pattern on the object,
either barred or striped. In the new PyNN version it is anticipated that this will be colour; it is
easier. The agent also needs to find the corridor to the next room and move through it. This
requires recognition of a third shape (a corridor), and will make use of bumps to get through the
corridor.

This also requires a more complex planning mechanism. The agent needs to execute repeated
actions that are context sensitive. In the original CABot3, the agent had to execute hundreds of
actions in response to an explore command.

Finally, a learning mechanisms is required for cognitive map building. Standard PyNN long-
term potentiation rules should be sufficient.

Once a PyNN version of the CABot3 agent is completed, it will be extended. One of the tasks
the Java agents completed was to learn verb associations; this was done using reinforcement
learning (Belavkin and Huyck, 2010), though this was implemented in neurons using Hebbian
learning rules to modify synaptic weights.

Binding in parsing also needs to be implemented. PyNN, NEST and SpiNNaker all enable
specification of neural models and synapse models. The short-term potentiation rule will need
to be reimplemented in PyNN and SpiNNaker. Once this is done, a psychologically plausible
parser can be reimplemented on the chip.

Finally, an agent needs to work in HICANN in addition to SpiNNaker. Hopefully at this
stage, the HICANN simulator and hardware will function seamlessly with the PyNN code, but it
may not because HICANN may have made different assumptions.

This engineering and proposed engineering is interesting because different assumptions are
implicit to each underlying simulator, and indeed to the initial Java CABots. The engineering
reveals these assumptions, leading to a better understanding of large scale neurodynamics, and a
better understanding of how to program these neural systems.

12

5. Comparison

With regard to the various versions of the agents described above, there are significant dif-
ferences. Some key differences relate to the translation of FLIF neurons written in Java to new
systems written in Python using PyNN, the various neural models employed and the various un-
derlying simulators on which they were tested. In addition, there are also differences between
the PyNN systems themselves.

The main advantage of the Java FLIF version was largely in the control of the underlying
system. The neural model could be modified, the learning rules could be modified, and the
correlation between real time and simulated time could be modified. The neural model was a
fatiguing leaky integrate and fire model, but there were a range of mechanisms that could be
used for fatigue. In the original system this mechanism was stable, but later the fatigue model
was changed so that unstimulated neurons hypo-fatigued and fired leading to spontaneous firing.

None of the CABot1 systems learned in the sense that the system could not return to its
initial state. However, short-term potentiation was used in the Java CABot1 for variable binding
in parsing. This mechanism was not available in the PyNN simulations. Control of the rule gave
a great deal of flexibility for binding.

In the Java model, control of timing was very important. This model assumed a 10 ms
cycle, while the PyNN model did not function well with this time step. Firstly, this enabled the
model to ignore behaviours such as refractory periods and synaptic delay. Secondly, the updates
were performed less frequently. Accordingly, the system was able to simulate more neurons in
real time. While the PyNN system can run with 10 ms time cycles, it still accounts for those
behaviours that are ignored by the Java system. Additionally, the SpiNNaker hardware actually
assumes a 1 ms model, and so has difficulty at these slower speeds.

Another advantage of the FLIF model was fatigue itself. This supported CAs being triggered
on their own. The down-side to this was that oscillators were needed when CAs needed to persist
indefinitely.

A key advantage of using the PyNN system is that it can be run on a variety of platforms.
This eventually should enable others to reuse this code in similar systems.

The differences between the PyNN systems were relatively minor. The major difference
between the Izhikevich model and the IF curr exp model was inhibition. The Izhikevich model,
being a reverberate and fire model, fired rapidly when heavily inhibited.

The differences between the NEST and SpiNNaker model are quite minor. There is a dif-
ference in calling the API. Another difference is that the SpiNNaker system has a limit on the
number of neurons simulated. This is somewhat flexible, but there is an absolute limit of 2048
neurons per processor. The NEST system does not have this limit, and merely runs more slowly
with more neurons.

The overarching point of this comparison is that, despite some differences, all of the systems
are, in fact, quite similar. That is to say, despite differences in language (Java vs. Python), mid-
dleware (no middleware vs. PyNN), neural model (FLIF vs. Izhekivich vs. LIF), and simulator
(Java vs. NEST vs. SpiNNaker), the systems have very similar functionality. Moreover, though
not shown here, the systems can be combined as all communicate via spikes.

A note about SpiNNaker systems. This paper describes the use of a 64 processor SpiNNaker
board, but a 100,000 processor system exists, and a 1,000,000 processor system is planned. This
would give a modeller acess to real time simuation of a billion spiking neurons.

13

6. Future work

While the engineering work of the CABot translation is useful and interesting, the second
phase of the project will lead to advancements in the theory of computing with neurons. The
CABot project has shown that neural systems are Turing complete, but the real benefit of neural
systems over standard symbolic computation is that they can learn. The CABot agents have
some simple learning, but running agents on neuromorphic chips will support larger numbers
of neurons behaving in real time. These will be able to learn in a psychologically and neurally
plausible manner. The system will learn a range of visual categories, and learn them as more
psychologically plausible CAs. The system will also learn new plans.

Since developing the Java CABots, the authors have focused on learning. By modifying
the FLIF model so that neurons spontaneously fire when hypo-fatigued, a system that learns
categories has been developed (Huyck and Mitchell, 2014). Biological neurons spike without
input, and hypo-fatigue is one mechanism that could drive this behaviour. By integrating this
with earlier visual category learning (Jamshed and Huyck, 2010), making use of more neurons,
and further exploring dynamics, a wide range of visual categories from the environment can be
learned.

To take advantage of this work, the FLIF models will be translated to PyNN, SpiNNaker and
perhaps HICANN and NEST. This will support the use of these old systems, but also the use of
explored system wide learning mechanisms.

One flaw with existing CA simulations, is that the CAs do not persist for psychologically
realistic durations. Ignited CAs are CAs with enough neurons firing to support persistent firing
throughout the CA. They are the neural implementation of psychological short-term memories,
and the duration of the persistence depends on many factors. For example, they persist longer
when more activated, and they can be reactivated. Some unpublished work with small-world
topologies has led to more realistic persistence, and this may be a solution or part of the solu-
tion for more psychologically realistic CAs. Another avenue of exploration is to use short term
potentiation to change persistence.

A first step at learning new plans will be to improve existing plans and plan elements via
reinforcement learning. This is similar to the verb learning done in the Java CABot2 that makes
use of reinforcement learning. A more significant advance may be made by using improved CAs
to learn new plans. Here instead of oscillators, more sophisticated CAs will be used giving the
system the ability to use hierarchical CAs. This will support the development of new planning
CAs, which can then be combined to make new plans.

New cognitive models will also be developed. A simple model for learning categories based
on the experiments by Shepard et al. (1961) will link neural and cognitive category learning.
The system will also be given a Wisconsin Card Sorting Task (Monchi et al., 2001), and should
perform this task reproducing human results. This will work through the virtual environment so
the system will have to actually view the cards.

The Neurorobotics Platform simulator should replace the Python virtual environment. The
sooner this happens the better, as it should be better supported by the Neuromorphic Platforms.
Finally, it is hoped that the system will be ported to the High Performance Computing Platform.
Hopefully, the PyNN implementation and Neurorobotics Platform will make this straightforward.

14

7. Conclusion

The main aim of NEAL is to build an agent, embodied in a virtual environment, based solely
on simulated neurons running on neuromorphic chips. This will make use of many resources
provided by the Human Brain Project, whose main goal is to build tools for building brain simu-
lations.

The first phase of this project involves porting the existing CABot agents from a Java based
neural simulation to PyNN, and then onto neuromorphic chips. This will require re-engineering
of the neural network, but should be relatively straightforward. Special care is needed for inter-
actions between the simulated agent and the virtual environment. Good initial progress has been
made toward this goal.

The second phase of the project will involve extending the agent, so that it can better learn
CAs. These CAs will be more psychologically plausible and will make the agent more flexible.
CAs will be learned for visual categories so that a CA will persistently fire when an item of a
particular category is presented. New plans will be learned. New neuro-cognitive models will be
developed.

This is another step along a path using a unified approach to develop embodied agents. All
computation will be done in neurons; communication between neurons will be via spikes and
different neural subsystems will communicate by this mechanism. The system will constantly
learn. As part of the HBP it will become a staging post for other work. Other researchers can use
this system as a starting point. Existing subsystems can be modified and new subsystems added.
These can then be used to perform multiple tasks, including cognitive models, and embodied
agents that learn their environment and communicate with a human via natural language.

Acknowledgements:
This work was supported by the Human Brain Project Grant 604102, Neuromorphic Embodied
Agents that Learn.

References

Belavkin, R., Huyck, C., 2010. Conflict resolution and learning probability matching in a neural cell-assembly architec-
ture. Cognitive Systems Research 12, 93–101.

Brette, R., Gerstner, W., 2005. Adaptive exponential integrate-and-fire model as an effective description of neuronal
activity. J. Neurophysiol. 94, 3637–3642.

Brüderle, D., Petrovici, M., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S., Grübl, A., Wendt, K., Müller, E., Schwartz,
M., et al., 2011. A comprehensive workflow for general-purpose neural modeling with highly configurable neuromor-
phic hardware systems. Biological cybernetics 104 (4-5), 263–296.

Byrne, E., Huyck, C., 2010. Processing with cell assemblies. Neurocomputing 74, 76–83.
Carnevale, N., Hines, M., 2006. The NEURON Book. Cambridge University Press.
Crystal Space, 2008. http : //www.crystalspace3d.org/main/main page.
Davison, A., Brüderle, D., Eppler, J., Muller, E., Pecevski, D., Perrinet, L., Yqer, P., 2008. PyNN: a common interface

for neuronal network simulators. Frontiers in neuroinformatics 2.
Furber, S., Lester, D., Plana, L., Garside, J., Painkras, E., Temple, S., Brown, A., 2013. Overview of the spinnaker system

architecture. IEEE Transactions on Computers 62 (12), 2454–2467.
Gewaltig, M., Diesmann, M., 2007. Nest (neural simulation tool). Scholarpedia 2 (4), 1430.
HBP, 2015. The human brain project.

URL https://www.humanbrainproject.eu/

Hebb, D., 1949. The Organization of Behavior. John Wiley and Sons.
Hodgkin, A., Huxley, A., 1952. A quantitative description of membrane current and its application to conduction and

excitation in nerve. Journal of Physiology 117, 500–544.
Hubel, D., Wiesel, T., 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex.

Journal of Physiology 160, 106–154.

15

Huyck, C., 2008. Cabot1: a videogame agent implemented in fLIF neurons. In: Proceedings of 2008 7th IEEE interna-
tional Conference on Cybernetic Intelligent Systems. pp. 115–120.

Huyck, C., 2009. A psycholinguistic model of natural language parsing implemented in simulated neurons. Cognitive
Neurodynamics 3(4), 316–330.

Huyck, C., Belavkin, R., Jamshed, F., Nadh, K., Passmore, P., Byrne, E., D.Diaper, 2011. CABot3: A simulated neural
games agent. In: 7th Intl Workshop on Neural-Symbolic Learning and Reasoning, NeSYS’11. pp. 500–544.

Huyck, C., Diaper, D., Belavkin, R., Kenny, I., 2006. Vision in an agent based on fatiguing leaky integrate and fire
neurons. In: Proceedings of the Fifth International Conference on Cybernetic Intelligent Systems. pp. 131–136.

Huyck, C., Mitchell, I., 2014. Post and pre-compensatory Hebbian learning for categorisation. Computational Neurody-
namics 8:4, 299–311.

Huyck, C., Passmore, P., 2013. A review of cell assemblies. Biological Cybernetics 107:3, 263–288.
Indiveri, G., Linares-Barranco, B., Hamilton, T., Schaik, A. V., Etienne-Cummings, R., Delbruck, T., Liu, S., Dudek, P.,

Häfliger, P., Renaud, S., et al., 2011. Neuromorphic silicon neuron circuits. Frontiers in neuroscience 5.
Izhikevich, E., 2004. Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks 15:5,

1063–1070.
Jamshed, F., Huyck, C., 2010. Grounding symbols: Learning 2-d shapes using cell assemblies that emerge from fLIF

neurons. In: Proceedings of the AISB.
Maes, P., 1989. How to do the right thing. Connection Science 1:3, 291–323.
Markram, H., 2006. The blue brain project. Nature Reviews Neuroscience 7, 153–160.
Monchi, O., Petrides, M., Petre, V., Worsley, K., Dagher, A., 2001. Wisconsin card sorting revisited: Distinct neural

circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging.
Journal of Neuroscience 21(19), 7733–7741.

Shepard, R., Hovland, C., Jenkins, H., 1961. Learninng and memorization of classifications. Psychological Monographs
75:517, 1–42.

Smolensky, P., 1988. On the proper treatment of connectionism. Behavioral and Brain Sciences 11:1, 1–22.
Tsodyks, M., Pawelzik, K., Markram, H., 1998. Neural networks with dynamic synapses. Neural Computation 110,

821–35.
Von Neumann, J., 1958. The computer and the brain. Yale University Press.

16

